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ABSTRACT
With the vigorous development of the World Wide Web, many
large-scale knowledge bases (KBs) have been generated. To im-
prove the coverage ofKBs, an important task is to integrate the het-
erogeneous KBs. Several automatic alignment methods have been
proposed which achieve considerable success. However, due to the
inconsistency and uncertainty of large-scale KBs, automatic tech-
niques for KBs alignment achieve low quality (especially recall).
Thanks to the open crowdsourcing platforms, we can harness the
crowd to improve the alignment quality. To achieve this goal, in
this paper we propose a novel hybrid human-machine framework
for large-scale KB integration. We first partition the entities of dif-
ferent KBs into many smaller blocks based on their relations. We
then construct a partial order on these partitions and develop an
inference model which crowdsources a set of tasks to the crowd
and infers the answers of other tasks based on the crowdsourced
tasks. Next we formulate the question selection problem, which,
given a monetary budget B, selects B crowdsourced tasks to max-
imize the number of inferred tasks. We prove that this problem is
NP-hard and propose greedy algorithms to address this problem
with an approximation ratio of 1 − 1/e . Our experiments on real-
world datasets indicate that our method improves the quality and
outperforms state-of-the-art approaches.
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1 INTRODUCTION
Knowledge base has become one of themost important research di-
rections in the World Wide Web, which provides a uniform frame-
work for data sharing and interpreting. A growing number of large-
scale knowledge bases (KBs) have been created (e.g., DBPedia [18],
YAGO [34]), and many relevant applications (e.g., question answer-
ing [11], machine reading [27], knowledge support [2] and seman-
tic search [1]) have also been constructed.

However, different KBs are heterogeneous and inconsistent in
nature, and they can complement each other. For example, DBPe-
dia has many entities but few classes while YAGO has hundreds
of thousands of classes. Linking DBPedia with YAGO enables us to
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provide more semantic information for DBPedia which can facil-
itate many applications. Knowledge bases alignment is proposed
to address this problem, which aims to integrate different KBs to
improve the coverage and quality of KBs. There are three main
elements in KBs: class, relation (or property) and entity (instance).
Knowledge base alignment aims to link them together for disam-
biguation. Entity alignment is more challenging and important be-
cause there are large numbers of entities and it can also benefit
class and relation alignment. In this paper we focus on entity align-
ment which links the entities from different knowledge bases that
refer to the same real-world entities, e.g., US and American, Peking
and Beijing. Although there aremany automatic algorithms to align
entities [14, 17, 24, 33], they usually attain low recall (e.g., 70%), due
to the inconsistency and noise in the data. Fortunately, with the de-
velopment of crowdsourcing techniques, we can harness the crowd
to improve the alignment quality [23] [9]. Specifically, we ask the
crowd to label entity pairs, by checking whether two entities in a
pair refer to the same entity.

There are several challenges to utilize the crowd to align KBs.
Firstly, the knowledge bases have a large number of entities and it
is expensive to label every entity pair. More importantly, the crowd
is not free and we need to pay each worker for labeling a pair. Thus
we are usually given a monetary budget which can be easily con-
verted to the constraint of the number of crowdsourced pairs, and
an important problem is to select B entity pairs to crowdsource
and deduce the answer of other pairs based on the answers of the
selected pairs. Secondly, the crowd may return incorrect answers
and it is important to tolerate the errors.

To address these challenges, in this work we propose a hybrid
human-machine framework. To cope with large-scale alignment,
we first partition the whole KBs into many smaller blocks such
that the entities in the same block are highly probable to be aligned
while the entities in different blocks are less likely to be matched.
Then we only need to align the entity pairs in the same block. To
reduce monetary costs, we propose a partial order based approach,
which defines a partial order on the entity pairs. That is, if an entity
pair is labeled to be aligned, then the pairs preceding this pair (i.e.,
has higher probability) based on the partial order are also taken as
aligned. In this way, we can deduce the results for a large set of en-
tity pairs. We prove that the problem of “selecting B crowdsourced
pairs that maximizes the number of deduced pairs” is NP-hard, and
we propose two greedy algorithms to solve the problem. We also
propose an effective method to tolerate the crowd errors. To sum-
marize, we make the following contributions.
•Wepresent a hybrid human-machine frameworkwhich harnesses
the crowd to align entities in large-scale KBs (Section 3).
•We propose a partition algorithm to partition the entities which
can reduce the alignment scale significantly (Section 4).



•We define a partial order on the entity pairs and propose a partial-
order-based method (Section 5). We prove the question selection
problem as NP-hard and further propose two effective algorithms
to select themost beneficial questions (Section 6) in an error-tolerant
manner (Section 7).
•We have conducted extensive experiments on real KBs to evalu-
ate our methods. Experimental results show that our method out-
performs state-of-the-art approaches by 8% in terms of recall (Sec-
tion 8).

The rest of this paper is organized as follows. In Section 2, we in-
troduce the preliminaries and summarize related works. Section 3
shows an overview of our framework. The KB partition strategy
is presented in Section 4, and the partial order is defined in Sec-
tion 5. We present the question selection algorithms in Section 6
and discuss the error-tolerant techniques in Section 7. Experimen-
tal results are reported in Section 8 and we conclude in Section 9.
2 PRELIMINARIES
2.1 Problem Definition
The Resource Description Framework (RDF1) is a language for rep-
resenting information about resources in the World Wide Web.
Here we follow and simplify the RDF model to define our knowl-
edge base. In ourmodel, aKB contains entities (or instances), classes,
literals, relations and properties. Resourcesmay be divided into groups
called classes (e.g. location, company). The members of a class are
known as instances of the class (e.g. Beijing, Apple Inc.). A lit-
eral is a string, date or number. A relation defines the relationship
between two instances, while a property captures a literal (or at-
tribute) of an entity. A KB consists of multiple facts, where each
fact is a RDF triple: ⟨subject, predicate, object⟩ (abbreviated as SPO).
The subject here is an entity or class as defined above. The object
is a class, entity, or literal, which respectively denotes (1) the cate-
gory that the subject belongs to, (2) the related real-world object,
or (3) an attribute that describes the subject. In this paper, we use
predicate to refer to both property and relation. For example, the
predicate isLocatedIn defines the relationship between Beijing and
China, and another predicate owner defines the relationship be-
tween the Apple Inc. and Jobs.

Definition 1. (Entity Alignment in KBs) Given two KBs (say
K andK ′), the entity alignment problem is to find the pairs of entities
in K and K ′ that refer to the same real-world entity.

Definition 2. (Human-Machine Entity Alignment) Given a
budgetB, it selectsB questions to ask the crowd in order to maximize
the number of aligned pairs, where each question contains a pair of
entities and asks the crowd to identify whether the two entities refer
to the same real-world one.

2.2 Related Work
Entity Alignment on KBs has been studied extensively in these
years (see [30] for a survey). Some existing work has investigated
how to address the problem with automatic or semi-automatic ap-
proaches. Sigma [17] is an iterative propagation algorithm which
leverages both the relations and properties between entities to col-
lectively align KBs. Sigma involves experts to manually select the
related relationships and properties and thus is a semi-automatic
1http://www.w3.org/TR/rdf-primer/

method. Vmi [25] directly uses the vector space model to generate
multiple vectors for entities, and builds a set of inverted indexes to
get the primarymatching candidates. However, thematching prop-
erties also need to be specified by users. These semi-automatic ap-
proaches only ask experts to assist their automatic algorithms and
do not focus on hybrid human-machine approaches. These meth-
ods have two key differences from ours. Firstly, they cannot utilize
the feedback of experts to deduce the results of other pairs. Sec-
ondly, they take the experts as oracles which do not consider the
fact that the crowd may make errors. Paris [33] is an automatic
algorithm which provides a holistic probabilistic solution to align
large-scale KBs. It computes alignments not only for entities, but
also for classes and relations. Pba [42] improves the efficiency and
scalability of Paris, by using multiple partition techniques and lo-
cal collective approaches. They are the state-of-the-art automatic
methods but they have a low recall. Our hybrid framework takes
Paris and Pba as baselines and focuses on improving the align-
ment quality with crowdsourcing.

There are also many studies on leveraging crowdsourcing to ad-
dress the problem. CrowdMap [32] addressed the Ontology align-
ment problem via microtask crowdsourcing, while it made no con-
siderations on how to improve efficiency which is crucial for large-
scale dataset. Wang et al. [37] and Vesdapunt et al. [35] studied
how to utilize the transitivity to reduce the number of questions.
Wang et al. proposed a heuristic approach which first computed
a similarity value for each candidate pair and then presented the
candidate pairs to the crowd in a decreasing order to maximize the
deducing power. Based on this work, Vesdapunt et al. proposed
another heuristic approach and provided a better worst-case per-
formance guarantee. Obviously the transitivity can reduce the cost,
but it may introduce some negative effects on quality and latency.
Acd [38] and Gcer [39] are another two crowdsourcing ER frame-
works which mostly focus on matching quality. They achieve high
quality at high monetary budget. CrowdER [36] and Power [5]
adopt a two-step framework, in which they first generate a candi-
date set of matching pairs by automatic methods, and then intro-
duce crowdsourcing to check the matching results. However, these
crowd-based entity resolution methods can only deal with rela-
tively small structure data. Although Power uses a partial-order ap-
proach, it cannot support KBs that have complex large-scale struc-
tures. Thus our techniques (e.g., partial order and question selec-
tion) that can be applied to large-scaleKBs are different fromPower.
There are also some works address the entity alignment problem
by optimizing the choice of an action with respect to the expected
information gain [15][10]. Yet most of them focus on the align-
ment quality. We design crowd-based entity alignment algorithms
to align two large-scale KBs and focus on both the monetary cost
and the alignment quality.

There are also studies on error tolerances [7, 19–22, 40, 41].

3 THE HIKE FRAMEWORK
We present the Hike framework in Figure 1. It takes two KBs as
input, and generates matching entity pairs as output. Firstly, these
KBs are fed into automatic machine-based algorithms to divide all
the entity pairs into two parts: the matched pairs and unmatched
pairs. (1) For matched pairs, we aim to find the false positives and



add them into unmatched pairs, with the target of improving the
metric precision. (2) For the unmatched pairs, similarly our target
is to find the matched pairs, which improves the metric recall. The
techniques of the two parts are similar in nature. For illustration
purpose, we take the part that processes unmatched pairs as an
example, and discuss the main components below.
Step 1: Entity Partition. The real-worldKBs have tens of millions
of entities and it is rather expensive to enumerate every pair of
entities. Many automatic alignment algorithms leverage partition-
based algorithms to reduce thematching scale. They usually utilize
the class hierarchy to partition the KBs. In Hike, we leverage the
predicate, which is a very important hint to partition the entities,
since intuitively, (1) similar entities should have the similar predi-
cates, e.g., personsmay have BirthPlace and BirthDate as properties
in many KBs; (2) the same predicates imply that the correspond-
ing entities should be similar, e.g., the entities having predicate
BirthDate should be person. Based on the intuitions, we propose a
predicate-based entity partition method, which partitions the enti-
ties with similar predicates into the same block, which can prune
a large number of entities in different blocks (Section 4). Then we
can compose and select questions based on entities in the same
block, and ask the crowd for answers.
Step 2: Partial Order Construction. Our idea is to select a set of
questions such that based on their answers, we can maximally in-
duce the answers of other (unasked) questions. Based on this, we
define a partial order in questions. Intuitively, for a pair of enti-
ties p1=⟨e1, e2⟩, if they indeed refer to the same real-world entity
(e1=e2), then for another pair of entitiesp2=⟨e3, e4⟩, if the following
holds: (1) p2 shares very similar predicates with p1; (2) the similarity
of each predicate in p2 is higher than the corresponding predicate in
p1, we can infer that the pairs in p2 (i.e., e3 and e4) are to be the
same one with high confidence. The partial order can also be ap-
plied the other way around. That is, if an entity pair with a set of
predicates refer to different objects, then another pair with smaller
similarity in each of the corresponding predicates can be inferred
as different entities. Based on the partial order, we find that dif-
ferent entity pairs have different inference power, and pairs with
larger inference power should be asked first (Section 5).
Step 3: Question Selection. Based on the partial order, we aim to
select a set of representative pairs that can maximize the number
of induced questions. The basic idea is that each entity pair in the
partial order has its inference power and the pair with largest in-
ference power should be asked first. However, the ground truth of
each question is unknown, and we model the expected inference
power of the selected entity pairs. Thus the pairs with the maxi-
mum inference power are selected to assign (Section 6).
Step 4: Error Tolerance. Since the crowdmay return incorrect re-
sults, we need to tolerate errors. More importantly, if the partial or-
der on some entity pairs is incorrect, it will propagate the inference
errors. We propose worker-quality control and error-propagation
deduction techniques to tolerate these errors (Section 7). Our tech-
nique is general, and most recent advanced inference techniques
can also be applied in our framework.
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Figure 1: Overview of Hike framework.

4 PREDICATE-BASED ENTITY PARTITION
In order to partition the two KBs based on predicates, we define
the similarity on predicates. For ease of presentation, we first in-
troduce some notations.

Consider two KBs K and K ′. Let Φ = {p1,p2, · · · ,pm } and Φ′ =
{p′1,p′2, · · · ,p′n } denote the corresponding predicate sets. LetT (pi ) =
{(s,o) |(s,pi ,o) ∈ K ,pi ∈ Φ} denote the set of tuples with predicate
pi , where a tuple contains a subject s and object o such that (s,pi ,o)
is a triple in K .

Definition 3. (Predicate Similarity) The similarity between
two predicates pi and p′j is defined as

sim(pi , p′j ) =
|T (pi ) ∩T ′(p′j ) |
|T (pi ) ∪T ′(p′j ) |

, (1)

where (s,o) ∈ T (pi )∩T ′(p′j ) if (s,pi ,o) is a triple in K and (s,p′j ,o)
is a triple in K ′, and | · | is the size of a set.

For each predicate pi ∈ K , we find its most similar predicate
p′j ∈ K ′ such that sim(pi ,p′j ) ≥ sim(pi ,p′x ). Similarly, for each
predicate p′i ∈ K ′, we find its most similar predicate pj ∈ K such
that sim(pj ,p′i ) ≥ sim(px ,p′i ). We call these predicate pairs match-
ing predicate pairs. Formally, P = {(pi ∈ K ,p′j ∈ K ′) |sim(pi ,p′j ) ≥
sim(pi ,p′x ) for x ! j}∪ {(pj ∈ K ,p′i ∈ K ′) |sim(pj ,p′i ) ≥ sim(pj ,p′x )
for x ! i} denotes the set of matching predicate pairs. We then
associate the entity pairs to the corresponding matching predicate
pairs. For each matching predicate pair ppk = (pi ,p′j ) ∈ P, we com-
pute two sets of entities S (ppk ) = {s |(s,pi ,o) ∈ K } and S ′(ppk ) =
{s ′ |(s ′,p′j ,o′) ∈ K ′}, where the former is the set of subjects with
predicate pi and the latter is the set of subjects with predicate p′j .
For example, in Figure 2, S (pp1) = {e11 , e21 } and S ′(pp1) = {e12 , e22 },
and S (pp2) = {e11 , e21 , e31 }, S ′(pp2) = {e12 , e22 , e32 }.

Nextwe discuss how to partition entity pairs into different blocks.
Obviously, if two matching predicates share many common enti-
ties, we should partition them together. Based on this observation,
we define the similarity between matching predicate pairs.

Definition 4. (Similarity ofMatching Predicate Pairs) Given
two matching predicate pairs ppi and pp j , the similarity ρ is com-
puted as below:

ρ (ppi , pp j ) =
cos(S (ppi ), S (pp j )) + cos(S ′(ppi ), S ′(pp j ))

2 . (2)

where cos is the cosine similarity between two sets. Obviously, this
similarity is normalized, e.g. ρ (ppi ,pp j ) ∈ [0,1] and symmetric, e.g.
ρ (ppi ,pp j ) = ρ (pp j ,ppi ).



Algorithm 1: Esps: entity set pairs selection
Input: KB1, KB2 : Two knowledge bases for matching; τ :

Similarity Threshold;
Output: P : Set of partitioned entity pairs

1 begin
2 W = GenerateSimMatrix(KB1,KB2);
3 PP = GeneratePredPairs(W);
4 Q = GenerateQueue(PP, W);
5 δ = 1;
6 while δ ≥ τ do
7 Q = MergePred(Q,W,δ );
8 W = CalcPartitionSim(Q,W);
9 δ = δ − 1/10;

10 if Q do not change then
11 Break;
12 P = GeneratePartitionPairs(Q);

Given the definition of cluster similarity, the KBs partition algo-
rithm can be presented as a modified hierarchical agglomerative
clustering(HAC) algorithm, which is widely applied in the IR field.
The entity pair sets can be merged together iteratively in descend-
ing order of the similarity to build the hierarchy. Traditional HAC
algorithm [28] is often criticized on its lower efficiency, so wemod-
ified the merging process to improve the rate of convergence. Fur-
thermore, some of the largestKBs usually have only few thousands
predicates, the modified HAC algorithm can fit the clustering scale
well. The detail of the algorithm can be divided into three parts
which is demonstrated below.

Initialization: The algorithm accepts the matched instance
pairs produced by the machine algorithm from two KBs as prior
alignment data and generates anm ×n similarity matrixW of the
predicates (line 2). Then, min(m,n) predicate pairs are generated
according to the similarity matrix. Each predicate pair here have
an entity set pair (line 3). After that a priority queue is initialized to
cache the predicate partitions in descending order of the number of
the entity set pairs (line 4). This constructs the bottom level of the
hierarchy. Each node represents its own partition which produces
min(m,n) partitions in the priority queue. The cut level of similar-
ity is initialized with 1 (line 5), and the gap between the levels of
hierarchy is set to 0.1.

Hierarchical clustering: This is the main stage of the algo-
rithm and is designed to iteratively cluster the partition hierarchy.
While the cut level of similarity is more than a specified similarity
threshold (line 6), the algorithm iteratively merges the partitions
at a certain level from the priority queue according to the thresh-
old (line 7), and recalculate the similarity matrix W (line 8). The
entity set pairs belong to the merged predicate pairs are also taken
a union accordingly. The cut level of similarity is decreased by 0.1
in each iteration (line 9). The process will terminate until either
the cut level of similarity is less than the threshold or there is no
possibility to merge more partitions (lines 6∼11).

Entity partition generation: The final stage generates the set
of the partitioned entity set pairs according to the merging result
of the priority queue (line 13).

Formally, we partition P into several partitions P1, P2, · · · , Pz .
Each partition is a subset of P and the union is exactly P. For each
partition Pi , we generate its set of entities that follow a predicate in
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Figure 2: Predicate-based entity partition. (Phase I is to pro-
duce the predicate pairs, and phase II is to partition the KBs by clus-
tering the predicate pairs.)

P, i.e., Pi = {(s, s ′) |(s,pi ,o) ∈ K , (s ′,p′j ,o
′) ∈ K ′, (pi ,p′j ) ∈ Pi }. In

this way, we partition the knowledge bases to several entity blocks
P1, P2, · · · , and Pz .

Example 1. Take Fig.2 as an example. After phase I, the predi-
cate pairs pp1 ∼ pp5 are generated from the similarity matrix. Then,
the set of entities on each ppk can be calculated as S (pp1) = {e11 , e21 },
S ′(pp1) = {e12 , e22 }, S (pp2) = {e11 , e21 , e31 }, S ′(pp2) = {e12 , e22 , e32 }, S (pp3)
= {e11 , e21 , e31 }, S ′(pp3) = {e12 , e22 , e32 }, S (pp4) = {e31 , e41 , e51 }, S ′(pp4) =
{e32 , e42 , e52 }, S (pp5) = {e41 , e51 }, and S ′(pp5) = {e42 , e52 }. As mentioned
above, the cluster similarity of pp1,pp2 is ρ (pp1,pp2) = 0.82. We
can also get ρ (pp2,pp3) = 1, ρ (pp4,pp5) = 0.82, ρ (pp2,pp4) =
0.33 and ρ (pp2,pp5) = 0 in the same way. Given threshold of 0.8,
we can cluster {pp1,pp2,pp3} as one partitioned predicate pairs and
{pp4,pp5} as another partitioned predicate pairs after two rounds of
iterations, and the final partitioned entity pairs {(ei1, e

j
2) |i, j = 1, 2, 3}

and {(ei1, e
j
2) |i, j = 3, 4, 5} are generated.

The complexity of the naive HAC algorithm is O (n3) because
it enumerates every pair of ppk and calculates their similarity in
each of n − 1 iterations. Obviously this algorithm is expensive. We
specify a gap between levels and cluster all the ppk whose cluster
similarity are less than specified threshold in the gap. By this way,
the convergence is speeded up. Furthermore, we divide the similar-
ity into no more than 10 gaps which makes the number of iteration
a constant. Therefore the complexity of the algorithm is reduce to
O (n2). Taking into account the scale of the data (usually no more
than one thousand), this algorithm is applicable.

5 PARTIAL ORDER
As mentioned in Section 3, partial order can be used to maximally
induce the answers of unasked questions. Thus for each partition
P , we define a partial order on the entity pairs in the partition and
utilize the partial order to align entities..
Partial Order Set. Let P = {(ei , ej ) |ei ∈ K , ej ∈ K ′} denote a set of
entity pairs in a partition. For simplicity, each entity pair (ei , ej ) ∈
P is denoted by pi j . We use ppk to denote the k-th predicate pair of
P , and ski j to denote the similarity of pi j on predicate ppk . (How to



compute ski j will be discussed later.) We define a partial order set
(P ,≺) in a partition as an entity set P with a partial order ≺.

Definition 5 (Partial Order). The partial order ≺ can be for-
mally defined as follows: Given two pairspi j = (ei , ej ),pi ′j ′ = (ei ′, ej ′).
For each ppk , ski j ≥ ski ′j ′ and

∑
k (s

k
i j ) >

∑
k (s

k
i ′j ′), then pi j ≻ pi ′j ′,

we say pi j and pi ′j ′ are comparable and pi j precedes pi ′j ′ or pi ′j ′
succeeds pi j .

Similarity Computation. The predicate pair ppk can be divided
into three types: the name or label pair of pi j , the property pair of
pi j , and relation pair of pi j . Different type of predicates should be
treated differently when we compute similarity ski j . Here we use
vector space mode [31] and Cosine similarity to compute the ski j .
For name or label pair, we build a name vector for each entity in
pi j which consists of terms segmented from the entity’s name or
label. For each property pair, we build a property vector for each
entity in pi j which consists of terms segmented from the entity’s
literal property. For each relation pair, we build a relation vector
for each entity in pi j which consists of the related entity’s name or
literal properties and do not propagate along the relations. Then,
ski j can be computed by the Cosine similarity of the correspondence
vectors of pi j .

The total entity pair similarity can be defined as the weighted
summation of ski j which is formally described as:

si j =
∑m

k=1 ωk · s
k
i j (3)

where ωk is the weight of different ppk which reflects the impor-
tance of this predicate. Intuitively, the more powerful the ability of
the object to determine the subject is, themore important this pred-
icate is. In knowledge base, we use inverse functionality to denote
this ability. The functionality is a quasi-function which allows one
subject to map tomultiple objects. For example, if everyone has dif-
ferent E-mails in the KB, the predicate hasEmail can be regard as a
function, whereas the predicate worksat is not a function because
one may work at different places in different periods. Although
the functionality of a predicate cannot determine the equivalency
of the objects, it provides a good evidence. Deviating from [13], we
define the functionality of an predicate as below:

Definition 6. (Functionality) Given a KB K and a predicate
pi ∈ Φ, we denote the SPO triples in K on pi as (s,pi ,o) ∈ K . The
functionality of predicate pi is ratio of the number of distinct subjects
to the total number of triples with predicate pi , i.e.,

qf (pi ) =
| {s |∃o : (s, pi , o) ∈ K } |
| {⟨s, o⟩ |(s, pi , o) ∈ K } |

(4)

We define the inverse functionality asqf −1 (pi ) = qf (p−1i )where
p−1i is the inverse of pi , i.e., if there exists (s,pi ,o), then we have
(o,p−1i , s ). We use the inverse functionality to calculate the weights
of different predicates as follows:

ωk =
qf −1 (pk )∑m
t=1 qf −1 (pt )

(5)

Partial Order Set Generation. Because pi j is generated by the
Cartesian product of the two entity sets in a partition, considering
the efficiency, we first prune thematching space and keep the pairs

p11

p22 p44p33

p55p25

p45

Figure 3: A sketch map of partial order set.
beyond specified threshold as candidate entity pairs before gener-
ating the partial order set. We use inverted index and prefix filter
[6][3] on the three type of vectors to achieve this objective. Then,
given the candidate entity pairs, we can calculate the predicate sim-
ilarity si j using Equation 3. To further control the matching scale,
we set a threshold θ for si j . If si j < θ , this entity pair will be dis-
carded. We compare the similarity of each ppk in the predicate
pairs to build the partial order between entities in a partition, and
enumerate every pair in the candidate pairs to check whether they
satisfy the partial order. Thus, we construct a partial order on P .
There exists many algorithms to construct a partial order, and the
time complexity is O (n2) in general, but following the index-based
method in [5], it will be reduce to O (nloдm−1n + |ε |) where m is
the number of ppk and |ε | is the number of partial orders between
entity pairs.

Example 2. Suppose we have five entities in each KB whose predi-
cate pairs are {⟨name ,name⟩, ⟨birth_place,born_in⟩, ⟨birth_date,dob⟩,
⟨article,article⟩}. There produces 25 entity pairs altogether. After
candidate selection and similarity threshold pruning, we get 7 pairs
left. Then we construct a partial order according to their {ski j } as
shown in Fig.3. Given the normalized weights 0.439, 0.0486, 0.0244, 0.488
for the predicate pairs of this partition, we get si j for each entity pair
as labeled in the figure. The partial order and the similarity si j of the
entity pair are essential in our question selection algorithm which
will be demonstrated in detail in the next subsection.

6 QUESTION SELECTION
In this section, we first introduce the inference model that is used
to infer the answers from the unselected pairs, and then define
the question selection problems. Lastly, we develop effective algo-
rithms for question selection given a limited budget.

6.1 Inference Model
Question Selection. Given a partial order set (P ,≺) in a block,
we can infer some entity pairs’ answer without asking the crowd,
thus reducing the number of crowdsourced pairs. If pi j is matched,
the pairs (e.g., pi ′j ′) preceding this entity pair in the partial order
are all matched, because they have larger similarity than pi j (i.e.,
ski ′j ′ ≥ ski j ). Then these pairs can be inferred. Ifpi j is unmatched, for
the same reason, the pairs succeeding pi j are all unmatched, and
these pairs can also be inferred. Based on this idea, we can devise
an algorithm, which asks a question and then infers the answers



of other questions. Then the problem is question selection, which
selectsB questions tomaximize the number of inferred pairs given
(P ,≺).
Offline Problem. We first consider the offline problem. That is,
when we ask a question, we know whether it is a matched pair or
unmatched pair. Thus for amatched pair, we can infer its preceding
pairs; and for an unmatched pair, we can infer its succeeding pairs.
Then we prove that the question selection problem is NP-hard by a
reduction from the maximum coverage problem by setting a pair’s
inferred pairs as its covered elements.

Theorem 1. The question selection problem is NP-hard.
Proof. We prove that the question selection problem is NP-

hard by a reduction from the Maximum Coverage Problem. For-
mally, given a universe of elements U = {e1, e2, ..., en } and a col-
lection of subsets S = {S1, S2, ..., Sm } of U , and a number k. the
Maximum Coverage Problem is to find a subset S ′ ⊆ S , s.t. |S ′ | ≤ k
and the number of covered elements | ∪Si ∈S ′ Si | is maximized. In
our problem, we construct a partial order set (P ,≺) and use P to
correspond to the universeU . Each pair in P has a set of inference
pairs if it has been taken as the query. The sets of the inference
pairs of each pair correspond to the elements of S , and sets of the
inference pairs of the query set correspond to the elements of S ′. To
find the maximum inferred pairs corresponds to find S ′ with B ele-
ments such that the number of covered elements |∪Si ∈S ′Si | is max-
imized. Obviously, the reduction can be done in polynomial-time,
and this implies theMaximumCoverage Problem is no harder than
the question selection problem. So the question selection problem
is NP-hard. !
Online Problem.Next we consider the online problem - when we
ask a question, we do not know whether it is a matched pair or un-
matched pair. In the crowdsourcing setting, we should consider the
online problem, because for each pair, we do not know whether it
is matched or unmatched before we ask the crowd and we need to
ask the crowd to answer each question. Note that online problem
is not easier than the offline problem. Since the online problem is
NP-hard, the computation becomes intractable with the increase
of the number of the questions. Therefore, we design greedy al-
gorithms to address this problem. To address this issue, we com-
pute inference expectation of each entity pair to measure the pair’
inference power, and the question selection algorithms can be de-
veloped based on the inference expectation. As each partition has
distinct predicate pairs and different partitions are incomparable
with each other, the question selection algorithms can be applied
in all the partitions simultaneously in order to reduce the latency.
InferenceExpectation. Each entity pair has inference power based
on the partial order. The inference power can be defined as the
number of the inferred pairs. As entity pairs can be seen as the
random variables on the set 2P , we use the mathematical expecta-
tion of the number of the inferred pairs to measure the inference
power. Therefore, the problem is converted into how to select B
entity pairs that maximize the inference expectation.

Consider a pair pi j . Let pre(pi j ) (suc(pi j )) denote the set of
pairs preceding (succeeding)pi j . The probability thatpi j ismatched
is si j and thus if we ask pi j , we have si j probability to infer its
preceding pairs. Similarly, the probability that pi j is unmatched is
1−si j and thus if we ask pi j , we have 1−si j probability to infer its

Algorithm 2: Sqs : simple qestion selection
Input: (P ,≺) : Partial order set;
Output: Q: Query set

1 begin
2 for each entity pair pi j ∈ P do
3 compute E (pi j );
4 for x = 1 to B do
5 Select entity pair q with maximal E (pi j ) into Q;
6 Assign q to the crowds and collect the answers;
7 Refresh E (pi j ) according to the answers;
8 return Q;

succeeding pairs. Based on this idea, next we define the inference
expectation of an entity pair as below.

E (pi j ) = si j · |pre(pi j ) | + (1 − si j ) · |suc(pi j ) | (6)

Given a set of questions Q, we want to compute the inference
expectation of the set, i.e., E (Q). Note that we cannot simply sum
up E (pi j ∈ Q), because the inference expectation of them has over-
lap. For example a pair may be preceding/succeeding two question
pairs in Q. To address this issue, we define an aggregated inference
expectation to calculate their inference expectation.

Note that we can assume that the pairs in Q have no preced-
ing/succeeding relationships, because if two pairs have such rela-
tionships, we can remove one of them as one can be inferred by
another. Given a pairp′i j , next we discuss how to compute the prob-
ability thatp′i j can be inferred based on questions in Q, i.e., E (p′i j |Q).
There are three cases shown as below.
• Case 1: p′i j precedes Q (i.e., p′i j precedes one of the questions in
Q. Note that p′i j cannot precede a question and succeed a question
because the questions in Q have no preceding/succeeding relation-
ships). Let Qp denote the set of questions in Q that are preceded by
p′i j . The probability that p′i j can be inferred by Q is

E (p′i j |Q) = E(p′ij |Qp) = 1 −
∏

pij∈Qp
(1 − sij). (7)

• Case 2: p′i j succeeds Q (i.e., p′i j succeeds one of the questions in
Q. Note that p′i j cannot precede a question and succeed a question
because the questions in Q have no preceding/succeeding relation-
ships). Let Qw denote the set of questions in Q that are succeeded
by p′i j . The probability that p′i j can be inferred by Q is

E (p′i j |Q) = E(p′ij |Qw) = 1 −
∏

pij∈Qw
(sij). (8)

• Case 3: p′i j cannot be inferred by Q (i.e., there is no question in Q

that succeeds or precedesp′i j ), then E (p′i j |Q) = 0. Based on E (p′i j |Q),
we can compute E (Q) as below.

E (Q) =
∑

p′ij
E(p′ij |Q). (9)

With the aggregated inference expectation, we can selectB ques-
tions. However this problem is still NP-hard and we propose two
greedy algorithms in next section.

6.2 Two Greedy Algorithms
Given the inference mode, we propose two greedy question se-
lection algorithms. The first is single question selection(SQS) al-
gorithm, which selects one question with the maximum inference



expectation. The second is multiple question selection(MQS) algo-
rithm, which selects multiple questions with the maximum aggre-
gated inference expectation. The first can iteratively select ques-
tions and utilize them to infer more pairs. The second selects ques-
tions in a batch and can reduce the latency.
Single Question Selection. Intuitively, in order to maximize the
matching result under a given budget, we should select the pair
withmaximal inference expectation as the question to ask the crowd
in each round. Inspired by this motivation, we propose SQS algo-
rithm and the pseudo code is shown in Algorithm 8. The algorithm
takes a partial set (P ,≺) as input, and outputs a set of entity pairs
as queries. It first computes each entity pair’s inference expecta-
tion E (pi j ) (lines 2-3). Next, for each round of B, we select the
most beneficial question (e.g. the pair with the maximal inference
expectation) into the query set Q. Then, we publish the pair as the
question to the crowdsourcing platform and collect the answers
from different workers. We remove and restore each pair affected
by the answers and re-compute the E (pi j ) (lines 4-7). After B iter-
ations, we get B questions. (line 8).

The time complexity of SQS is O (Bn), where n is the number of
pairs. This algorithm can adaptively produce the questions accord-
ing to the response from the crowdsourcing platform effectively.
However, thismethodmay incur high the latency, becausewemust
wait for the feedback from the crowd in each iteration. Therefore
we introduce a multiple question selection algorithm.
Multiple Question Selection. Based on the definition of ques-
tion selection and aggregated inference expectation, MQS aims to
select a set of queries Q from P simultaneously. As the aggregated
inference expectation satisfies monotonicity and submodularity as
stated in Lemma 1, we can design a greedy-based algorithm with
the approximation ratio of 1 − 1/e as proved in [29] and [8].

Lemma 1. The aggregated inference expectation is monotone and
submodular.

Proof. Because linear combination of monotone and submod-
ular functions is also monotone and submodular, we only need to
show that the term E (Qp) in case 1 is monotone and submodular.

We first prove monotonicity property. Consider two query sets
Qp1 and Qp2, where Q

p
1 ⊆ Qp2. For each entity pair pi j in P , we have∏

pi j ∈Qp1 (1 − si j ) ≥
∏

pi j ∈Qp2 (1 − si j ). Then 1 −∏pi j ∈Qp1 (1 − si j ) ≤
1 −∏pi j ∈Qp2 (1 − si j ). Since |Q

p
1 | ≤ |Q

p
2 |, the entity pairs affected by

Qp2 is no smaller than Qp1. Therefore we have
∑
p′i j (1 −

∏
pi j ∈Qp1 (1 −

si j )) ≤
∑
p′i j (1 −

∏
pi j ∈Qp2 (1 − si j )). Thus, E (Qp1) ≤ E(Qp2) and the

aggregated inference expectation is monotone.
Next, we prove the submodularity property. Consider two query

sets Qp1 and Qp2, where Qp1 ⊆ Qp2. According to the monotonicity,
E (Qp1) ≤E (Q

p
2). If we add q0 into the query set, it is easy to prove

that E (Qp1 ∪ q0) ≤ E(Qp2 ∪ q0) and ∆E (Qp1) ≥∆E (Q
p
2). Let s0 denote

the pair similarity of q0, we have E (Qp1∪q0) − E (Qp1) =
∑
p′i j (1 −

(1 − s0)
∏

pi j ∈Qp1 (1 − si j )) −
∑
p′i j (1 −

∏
pi j ∈Qp1 (1 − si j )) = ∆E (Qp1) +∑

p′i j s0
∏

pi j ∈Qp1 (1−si j ). Aswe know
∏

pi j ∈Qp1 (1−si j ) ≥
∏

pi j ∈Qp2 (1−
si j ) and∆E (Qp1) ≥∆E (Q

p
2), thenE (Q

p
1∪q0)−E (Q

p
1) ≥E (Q

p
2∪q0)−E (Q

p
2).

Thus, the aggregated inference expectation is submodular. !

Based on Lemma 1, we develop a greedy-based approximation
algorithm and the pseudo code is shown in Algorithm 18. MQS uses

Algorithm 3: Mqs : multiple qestion selection
Input: (P ,≺) : Partial order set;
Output: Q: Query set

1 begin
2 for each entity pair pi j ∈ P do
3 compute E (pi j );
4 Insert each node into a queue Que in descended order wrt.

E (pi j );
5 Q← Que.popup;
6 δ = 0;
7 for x = 1 to B do
8 for each pi j in Que do
9 if E (pi j ) ≤ δ then

10 break;
11 △E (Q) = E(Q ∪ {pij }) − E(Q);
12 if △E (Q) ≥ δ then
13 δ = △E (Q);
14 emax = pi j ;
15 Q← emax ;
16 Que.delete(emax );
17 Que.refresh();
18 return Q;
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Figure 4: Question selection process.
a queue to store E (pi j ) (lines 2-5), and δ is the max gap of inference
expectation between two questions (line 6). For each iteration, the
algorithm examines every pair in queue and computes the delta
aggregated inference expectation. Then, the algorithm selects the
entity pair with the maximum △E (Q) and inserts it into the output
set. Finally, the algorithm refreshes the queue and continues to the
next iteration until it reaches the given budget B (lines 7-18).

The most costly step in the MQS algorithm is the computation of
the △E (Q) in B iterations. The total computational complexity is
O (B|Que | |E |). Here |Que | denotes to the length of the queue and
|E | denotes the number of entity pairs affected by the queries. The
worst-case complexity of this algorithm is also O (Bn2). However,
this method has better performance in practice, because the |Que |
can be truncated by the parameter δ and the affected entity pairs
are usually a small part of P .

Proposition 1. The approximation ratio of MQS is 1 − 1/e .
Proof. Based on Lemma 1, the aggregated inference expecta-

tion satisfies monotonicity and submodularity. Then the approxi-
mation ratio of MQS algorithm is 1 − 1/e as shown in [29]. !

Example 3. Given the partial order set as shown in Fig. 3, we get
the pair similarity si j . According to the Equation 6, we can calcu-
late the inference expectation of each pair in the figure. For example,



E (p55) = 0.52 × 3 + 0.48 × 1 = 2.04, and E (p22) = 0.52 × 1 + 0.48 ×
2 = 1.48. In the same way, we have E (p11) = 0.54, E (p33) = 1.2,
E (p44) = 1.29, E (p25) = 1.31, E (p45) = 1.8. Given B = 2 for SQS,
in the first round, we select p55 as the query. We suppose the answer
from the crowdsourcing platform is yes, then we prune p11, p33, p44.
p45 is the descendant of p55. We re-compute the inference expectation
for the rest pairs E (p22) = 0.96, E (p25) = 1. In the second round, we
choose p25 to ask the crowds for E (p25) > E (p22). After two round of
question selection, we choose p55 and p25 as the questions and find
6 alignment results. For MQS under the same settings, we also select
p55 as the query at first, and p11, p33, p44, and p45 can be inferred by
p55. Then, we compute the △E (Q) for each node. We have △E (p22) =
(1−0.48×0.48)+0.52×2+0.48×1+ (1−0.52×0.52)−2.04 = 0.98,
△E (p25) = 2.86 − 2.04 = 0.82. Thus, we choose p22. The process is
shown in Fig. 4. After question selection in one round, we choose p55,
p22 as the questions to ask the crowd together. Suppose the feedbacks
from workers are all yes, then we can find 5 alignment results.

7 ERROR TOLERANCE
As crowd workers are error-prone, we propose a quality-control
strategy to overcome the bias produced by workers. We also dis-
cuss how to control the error propagation by the wrong inference.
Worker Quality Control. The most commonly used strategy is
majority voting [4, 16] which is to assign each task to multiple
workers, and compute the most probable result by exploiting all
of its answers. Here we adopt a weighted majority voting method
[12, 26] to combine the workers quality into the majority voting.
First, we model the workers by the approval rate which is provided
from the crowdsourcing platform or qualification test that consists
of golden tasks should be accomplished by the worker before they
can answer the real questions.We use the approval rate or accuracy
rate to denote theworker’s quality. After that, wewill eliminate the
low-quality workers (e.g., Worker quality < 0.7). Then, we assign
the questions to qualified workers and collect the answers. A high
quality worker will be assigned with a higher voting weight, and
the answer with the highest weighted sum will be returned as the
result. Formally, in our model, for an alignment query q and a set
of workersW , a worker w ∈W answers the question with Aw,q :
Aw,q = 1, if Aw,q = Yes; Aw,q = −1, if Aw,q = No. Then, the
final result of q is r̂q =

∑
w ∈W ωw,qAw,q . If r̂q > 0, the answer is

Yes, otherwise, the answer is No.
Error-Propagation Reduction. To reduce the error propagation,
we first define the indeterministic query. A query qi is an inde-
terministic query when (1) r̂q is less than a specified value (e.g.
r̂q < 0.1), or (2) error is costly (e.g. si j < 0.4 while r̂i j > 0),
or (3) there exists one-many mapping between two KBs whereas
the similarity of different pairs are similar (e.g. for pi j and pik ,
|si j − sik | < 0.1). The rules can be added according to different
KBs. In our framework, we propose a heuristic method, called the
second review, to address the indeterministic queries. This method
will produce two additional questionswhen encounters the answer
of an indeterministic query. One is the most similar ancestor of qi
(denoted by qa ) and another is the most similar descendant of qi
(denoted by qd ). When the answer of qi is Yes, there are four pos-
sible cases. The first one is both qa and qd are Yes, then we still
adopt the answer of qi to infer the partial order set. The second

Table 1: Datasets.

Dataset #Instance #Classes #Properties
YAGO 3.03M 360K 70
DBPedia 2.49M 0.32K 1.2K

Table 2: Evaluation for Partition and pruning.

RR (%) PC (%) F (%)
99.99 39.2 56.3

one, where qa is Yes and qd is No, is the same with the first case.
The third one is both qa and qd are No, then we adopt the answer
of qd to infer the partial order set. The last one, where qa is No
and qd is Yes, will be discarded or thrown out for the specified
workers. When the answer of qi is No, it goes in the similar way.
By specifying appropriate thresholds, the method can effectively
reduce the influence of errors. We use SQS∗ and MQS∗ to denote the
improved question selection algorithms with error tolerance, and
the alignment result is shown in the experiment section.

8 EXPERIMENTS
This section evaluates the performance of our approach. We first
introduce our experiment settings (Section 8.1), and then conduct
experiments on real-world datasets (Section 8.2).We take two state-
of-the-art holistic probabilistic algorithms Paris and Pba as the
machine algorithms.

8.1 Experiment Setup
Datasets. We evaluate our method on two large-scale real-world
datasets Yago andDBPedia. The statistics of the datasets are shown
in Table 1. The datasets and the ground truth of the alignment
result can be obtained from the url: http://webdam.inria.fr/paris
which were opened by the authors of Paris.
Competitors.We compare with the state-of-the-art machine algo-
rithms Paris [33] and Pba [42] to show the improvement of align-
ment quality. For the human-machine comparison methods, be-
cause Power [42] can reduce the budget with 1-2 orders of magni-
tude without sacrificing alignment quality than other crowdsourc-
ing methods, we choose it as the baseline. We evaluate the align-
ment quality using the standard metrics of precision(P), recall(R),
and F1-score(F ).
Crowdsourcing Platform.Weuse a real crowdsourcing platform
ChinaCrowds2 and publish the human-intelligence tasks (HITs) on
it. Each task is a decision question, which asks workers to check
whether two entities refer to the same entity. We use qualifica-
tion tests to estimate worker’s accuracy and eliminate low-quality
workers. Each HIT contains 5 tasks and we pay each HIT 0.1$. We
combine their answers via our error tolerance strategy.

8.2 Evaluation on Real-World Datasets
Evaluating Partition and Pruning. We first evaluate the effec-
tiveness of partition and pruning process. Here we use reduction
ratio(RR) and pairs completeness(PC) as evaluating indicators. RR
measures the ratio of entity pairs pruned by our partition and prun-
ing process among all possible pairs. Pairs completeness is the ratio
2http://www.chinacrowds.com/



of true matches after our partition and pruning process among all
true matches which is corresponding to the upper bound of recall.
The result is shown in Table 2. Our partition and pruning methods
show nearly perfect RR, whereas the PC is relatively low. This is
because in order to reduce the matching scale, we should prune
the entity pairs as many as possible. Then, the PC is inevitably re-
duced. When evaluate the question selection algorithms, we take
all the matching pairs after partition and pruning process as the
total matches in the following experiments.
Evaluating Question Selection Algorithms. We compare our
question selection algorithms SQS and MQSwith Power (POW) and
random selection(RAND) algorithms. We rewrite the serial algo-
rithm of Power based on our partition and partial order meth-
ods. To evaluate the question selection algorithms, we take all the
matching pairs after partition and pruning process as the total
matches in the following experiments. Figures 5(a) and 5(b)(under
500 questions) show the results. We see that with the increase of
the number of questions, all the four algorithms can find more
alignment pairs, because all the algorithms can infer alignment
pairs on the partial order set. The alignment pairs and the qual-
ity of Power is even lower than the random algorithm because
the number of unmatched pairs is much more larger than matched
pairs, and the binary-search method adopted by Power will find
more unmatched pairs as questions than the other methods at the
beginning of the question selection. Our methods can infer more
alignment pairs than the other two methods, because we can se-
lect high-quality pairs to do the inference. MQS and SQS infer nearly
the same number of alignment pairs and quality because they are
based on the same inference model and MQS can select as high qual-
ity pairs as SQS.
Varying Similarity Threshold θ . Parameter θ is the threshold to
cluster entity pair. We evaluate the quality by varying θ and the
results are shown in Figures 6(a) and (b). We can see that with the
increase of θ , the precision is increased and the recall is decreased.
This is because a larger θ leads to larger numbers of blocks (each
block is small) and the possible alignment pairs may not be parti-
tioned into the same block. A smaller θ leads to smaller numbers
of blocks (each block is large) and many dissimilar pairs are par-
titioned into the same block. To make a tradeoff, we use θ = 0.3
whichmaximizes the f1-score. θ = 0.3 can also prune large amount
of dissimilar entity pairs. Another observation is that SQS and MQS
achieve similar quality, because MQS will not affect the quality.
Varying The Number of Questions. We evaluate our methods
by varying the number of questions and the results are shown in
Figures 7. We can see in Figures 7 that with the increase of the
number of questions, the recall is increased whereas the precision
does not change obviously. This is because if we ask more ques-
tions, we can find more similar pairs. The recall increases by about
1% when the number of questions change from 400 to 500, and the
increment is less than 2%& in the next 500 questions, because with
the increase of the number of questions, the inference power is be-
coming lower and lower. The F1-score of SQS is a little higher than
that of MQS after 200 questions, because SQS can select high-quality
questions which can infer more similar pairs.
Evaluating Error-Tolerant Techniques. We evaluate our error-
tolerant techniques. As shown in Figure 8, it is easy to compare two
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Figure 5: Evaluating question selection algorithms.
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Figure 6: Alignment quality by varying the threshold θ .
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Figure 7: Alignment quality by varying #questions.

Wiki pages and thus workers from our crowdsourcing platform
achieve more than 90% accuracy. To evaluate the performance of
our error tolerance, we conduct a simulation experiment. We ran-
domly generate workers with quality in 75%, 85%, and 95% based
on the ground truth respectively. In order to save time and money,
we only test the MQS (without error-tolerant techniques) and MQS∗

(with error-tolerant techniques) under 200 questions. The result is
shown in Figure 8. We can see that the improved MQS algorithm
with error tolerance significantly outperforms the original one un-
der the same worker quality especially in the low worker accu-
racy. This is because our error-tolerant techniques can tolerate
both worker errors and partial-order errors.
Comparition with state-of-the-arts. We compare with Paris,
Pba, and Power. The final alignment results are shown in Table 3.
It can be seen thatHike achieve as high precision as Paris and Pba
because (1) Paris and Pba already achieve high precision and (2)
processing unmatched pairs alignment will decrease the precision
by about 1% and this part will be compensated by the process of
matched pairs alignment. What is more important is that the recall
is improved by about 8% under 500 questions, which means our
hybrid framework will find additional 100k matched entity pairs
with little cost. Since comprehensive considering classes, proper-
ties, and relations of entities, Paris or Pba improve about 15% recall
compared to exact matching (the bottom line in the Table 3 which
calculates the similarity only based on entity names), and our al-
gorithm obtains a satisfiable quality on large-scale KBs. Power is
3% lower in recall than Hike under 500 questions because it will
find more unmatched pairs as questions. All the elapsed time of
human-machine methods in the last column exclude the latency of
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Figure 8: Quality Comparison: MQS vs MQS∗.
Table 3: Alignment results.

Method P (%) R (%) F (%) Time (s)
PBA 94.8 72.1 81.9 2987
PARIS 93.4 71.5 80.9 44880

POWER(500) 93.9 76.5 84.3 4384
Hike(SQS500) 94.5 79.9 86.6 3472
Hike(MQS500) 94.7 79.5 86.4 36690
Exact Matching 95.5 56.2 70.8 59

the crowd, and they are larger thanmachine methods because they
include these machine methods in their framework. Although the
SQS algorithm is more efficient, the latency of the workers makes
MQS more applicable in practice.

9 CONCLUSION
In this paper, we propose a hybrid human-machine framework
for entity alignment in large-scale knowledge bases. We devise a
predicate-based entity partition method to partition the entities
into different blocks such that we can prune the entity pairs from
different blocks. To align the entities in the same block, we define
a partial order set on the entities., and utilize the partial order to
infer many unnecessary pairs. We formulate the question selection
problem which selects B pairs to maximize the number of inferred
pairs. We prove the question selection problem is NP-hard and pro-
pose two greedy algorithms. We develop error-tolerant techniques
to tolerate errors. The experiment results on real datasets show
that our framework achieves high quality and outperforms state-
of-the-art approaches.
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