Human-in-the-loop Data Integration

Guoliang Li

Department of Computer Science, Tsinghua University, China

http://dbgroup.cs.tsinghua.edu.cn/ligl

Acknowledgement

Jianhua Feng @Tsinghua

Lizhu Zhou @Tsinghua

Beng Chin Ooi @NUS

Chen Li @UCI

Acknowledgement

Jiannan Wang aP@SFU

Dong Deng PostDoc@MIT On Job Market!

Ju Fan AP@RUC

Yudian Zheng @HKU

Thank everyone who support me! ✓ Collaborators

✓ Students

Data Integration (DI)

Combine data in different sources and provide users with a unified view

Data Science Pipeline: Data Integration \rightarrow Data Analysis

Data Integration (DI)

Data Integration is important and challenging

- New York Times
 - 80% of a data science project is to clean and integrate the data, while 20% is actual data analysis
- Mark Schreiber of Merck
 - data scientists spend 98% of on "grunt work" and
 - only one hour per week on "useful work"

□In many communities – DB, AI, KDD, Web

Entity Matching in DI

Date Integration

 data acquisition, extraction, cleaning, schema matching, entity matching, etc.

DEntity Matching (EM): A core problem

- Find pairs of records referring to the same entity

	Brand	Product	-	Region	Price				
	Apple	iPhone	5S	Beijing	4000				
	Apple	iPhone	6SP	Beijing	5000				
1	Samsung	Galaxy	S7	Beijing	3500				
	Name	Loc		Sales					
	Apple 6S 4	Bei	Jing	40K					
	Apple 6S 5	Bei Jing		30K					
	Samsung S	Bei	Jing	35K					

Data are full of errors and inconsistencies.

Hybrid Human-Machine EM

DIMA System

Similarity-based processing system
Entity Matching
Ease to use

CDB System

- Crowd-powered SQL
- New optimization Model
- **D**Entity Matching
- Cost, Latency, Quality

Hybrid Human-Machine EM

iPhone6S			iPhone 6S 4.7'					
iPhone6SP			iPhone 6S 5.5'					
Galaxy S7			Samsung S7					
			Pruning 4 dissimilar pairs					
i	Phone 6S	iF	iPhone 6S 4.7'		75			
iPhone 6S		iF	Phone 6S 5.5'		75			
iPhone 6SP			Phone 6S 4.7'	0.7	72			
iPhone 6SP		iPhone 6S 5.5'		0.1	72			
Galaxy S7		Samsung S7		0.5	5	alt distance		
iPhone6S		Samsung S7		0.	1	Demantics		
iPhone6S		S	Samsung S7		1			
Galaxy S7		iF	Phone 6S 4.7'	0.1				
Galaxy S7		iF	Phone 6S 5.5'	0.1	1			
Removing 2 non-matched pairs								
	iPhone 6S	i	Phone 6S 4.7'					
	iPhone 6SP	i	Phone 6S 5.5'					
	Galaxy S7	S	Samsung S7			8		

Dima: Distributed In-memory Similarity-based System

Query interface

- ✓ Extended SQL
- ✓ Easy to use

Distributed In-memory Processing Engine

- ✓ Indexing
- Similarity Operations
- ✓ Optimizer

Support similarity-based query processing

Ji Sun, Zeyuan Shang, **Guoliang Li**, Dong Deng, Zhifeng Bao. Dima: A Distributed In-Memory Similarity-Based Query Processing System. **VLDB** 2017

CDB: A Crowd-powered Database

Guoliang Li, Chengliang Chai, Ju Fan, Jian Li, Yudian Zheng. CDB: A Crowd-Powered Database. **SIGMOD** 2017.

DIMA: Rule-Based Matching

Jaccard(Name, Brand) ≥0.8 ∧ ED(Storage, Capacity)<2

Jiannan Wang, **Guoliang Li**, Jeffrey Xu Yu, Jianhua Feng: Entity Matching: How Similar Is Similar. **VLDB**, 2011:622-633.

DIMA: Rule-Based Matching

□ Challenges

- -How to obtain the rules?
 - High-quality rules
 - Explainable, Programmable
- -How to apply the rules?
 - Avoid Cartesian product
 - Fast and Scalable

Attribute pairs
Attribute pairs
Threshold
Similarity Functions

Quantifying Rules

Rule Generation

Rule-Based Matching

□ Challenges

Applying Rules

A Rule: Name is similar to Brand

- It is expensive to enumerate every record pairs!
- ✓ 10million*10million
- **Signature-based Method**
- ✓ If two records do not share a common signature, they cannot be matching

Guoliang Li, Dong Deng, Jiannan Wang, Jianhua Feng: Pass-Join: A Partition-based Method for Similarity Joins. **VLDB**, 2012:253-264.

Dong Deng, **Guoliang Li**, He Wen, Jianhua Feng. An Efficient Partition Based Method for Exact Set Similarity Joins. **VLDB**, 2016 17

Dima: Load Balance

Challenges

DHow to generate signatures?

- Partition-based
- **D**How to select the signatures?
 - Dynamic programming

DHow to balance the workload?

- NP-hard
- Greedy algorithms

$$\begin{split} \mathcal{W}_{j} &= \sum_{i=1}^{\eta_{l}} \left(b_{i} \sum_{g \in pSig_{s,i,l}^{+} \& \mathcal{P}(g) = j} \mathcal{F}^{-}[g] + \\ c_{i} \sum_{g \in pSig_{s,i,l}^{-} \& \mathcal{P}(g) = j} \left(\mathcal{F}^{+}[g] + \sum_{g \in pSig_{s,i,l}^{+} \& \mathcal{P}(g) = j} \mathcal{F}^{-}[g] + \mathcal{F}^{+}[g] \right) \right) \\ b_{i} &= \begin{cases} 1 \quad Z[i] = 1 \\ 0 \quad Z[i] \neq 1 \end{cases} c_{i} = \begin{cases} 1 \quad Z[i] = 2 \\ 0 \quad Z[i] \neq 2 \end{cases} \\ s.t. \sum_{i=1}^{\eta_{l}} Z[i] \geq \theta_{|s|,l}. \end{split}$$

Dima: Indexing

Signature-based partition

- ✓ Local join
- ✓ Avoid join on different nodes
- **Global Indexing**
- ✓ Signature → nodes
- Local Indexing

✓ Signature → records

CLIJDBCScala ProgramEMSQL ParserDataFrame APIEM Query OptimizerEM Query OperationsGlobal IndexingLocal IndexingBalance-Aware Signature GenerationSparkRDBMSHDFSNative RDD

EM Operation

- ✓ Selection
- ✓ Join

✓ Topk

EM Query Processing

- ✓ Global
 - ✓ ZipPartition; Balance-aware

Guoliang Li, Jian He, Deng Dong, Jian Li, Jianhua Feng. Efficient Similarity Search and Join on Multi-Attribute Data. **SIGMOD** 2015.

Hybrid Human-Machine EM

DIMA System

Similarity-based processing system
Entity Matching
Ease to use

CDB System

- Crowd-powered SQL
- New optimization Model
- **D**Entity Matching
- Cost, Latency, Quality

CDB: Selection-Inference-Refine

Next round

Inference - Transitivity

Challenges

- -Labeling order
 - A=B, B \neq C \rightarrow A \neq C
 - $B\neq C$, $A\neq C \rightarrow A$?B
- -Cost
 - Optimal Order
- -Latency
 - Parallel crowdsourcing
- -Quality
 - Transitivity Errors
 - If workers give B=C, then deduce A=C

Inference - Partial Order

DCandidate pairs p_{ii} **D**Partial order

 $-p_{ij} > p_{i'j'}$ if $s_{ij}^{k} > = s_{i'j'}^{k}$ p_{ij}

_	n	e ¹	e ²	_3	e ⁴	n	s^1	s^2	s^3	s^4
- 1	p_{12}	0.72	$\frac{0.1}{0.4}$	$\frac{v_{ij}}{1}$	0.88	$\frac{p v_j}{n_{27}}$	0.28	$\frac{0.1}{0.2}$	0.33	$\frac{-ij}{0}$
. L		0.75	0.75	0.33	0.00	P31 1145	0.92	1	1	1
	p_{13} p_{23}	0.77	0.5	0.33	0.69	p_{43} p_{46}	0.69	0.5	0.33	0
	p_{23}	0.51	0.2	0.33	0	P40 D47	0.65	0.5	0.33	0
	p_{25}	0.53	0.2	0.33	0	p_{56}	0.63	0.5	0.33	0
	p_{26}	0.42	0.2	1	0	p_{57}	0.71	0.5	0.33	0
	p_{27}	0.45	0.2	1	0	p_{67}	0.94	1	1	1
	p_{34}	0.39	0.2	1	0	p_{89}	0.33	0.2	1	0
	p_{35}	0.39	0.2	1	0	P10,11	0.5	0.25	1	0
		6								
		(\mathbf{p}_{e7})	.)							
		(10 0/		→(r	\mathcal{D}_{45}					
	/			X	Ľ,	<				
	1	\frown								
	(p_{12}	K	(n)	`	([) ₂₃)			
	\			(P_{13})		Ľ.	7			
			\backslash	\bigcirc				· \		
	n						n			
	C 10,11)					(P_{57})	7)		
6						(D.	.)	. (n)		
$(\rho$	27)	- (r		X	\sim	40	7	4	1	
		٦) -	26)	()	0 ₂₅	_	\sim	\checkmark	1	
		\sim		(\checkmark		(Dr)	1	
	(p_{3A}	(p.	25)			1- 50	2		
)						
			\prec		>					
		((p_{so})		(p	21)				
		, v			X	シノ				
(P ₃₇)										

Chengliang Chai, Guoliang Li, Jian Li, Dong Deng. Cost-Effective Crowdsourced Entity Resolution: A Partial-Order Approach. SIGMOD 2016.

Selection-Inference-Refine Framework

Selection-Inference-Refine Framework

- Selection: minimize the number of questions
- Inference: infer the answers of no-asked questions
- -Refine: tolerate errors of partial order and crowd

Question Selection

□Serial Algorithms: Ask one question in each iteration

- Comparable Vertices
 - O(log|P|), |P| is length of path
- Incomparable Vertices
 - O(Blog|V|), B is path number
 - |V| is vertex number

Question Selection

Parallel Algorithm

Select multiple vertices and ask them together in each iteration

Multi-Path Algorithm

Topology-Sorting-Based Algorithm

 g_4

Refinement

Overall weighted similarities of pairs							
_	p_{ij}	\hat{s}_{ij}	p_{ij}	\hat{s}_{ij}			
	p_{12}	0.72	p_{37}	0.21			
	p_{13}	0.68	p_{45}	0.97			
	p_{23}	0.60	p_{46}	0.43			
、	p_{24}	0.28	p_{47}	0.42			
)	p_{25}	0.29	p_{56}	0.41			
	p_{26}	0.40	p_{57}	0.44			
	p_{27}	0.41	p_{67}	0.98	_		
	p_{34}	0.39	p_{89}	0.37			
	p_{35}	0.39	$p_{10,11}$	0.44			

$$\omega_k = \frac{\sum_{p_{ij} \in P^g} s_{ij}^k}{\sum_{p_{ij} \in P^g} \sum_{1 \le t \le m} s_{ij}^t} \quad \hat{s}_{ij} = \sum_{k \in [1,m]} \omega_k \cdot s_{ij}^k.$$

Results

Cost 100 ×

Latency 10×

Quality 5%

Crowd-based Method - CDB

□A crowd-powered database system

- Users require to write code to utilize crowdsourcing platforms
- CDB encapsulates the complexities of interacting with the crowd
- Limitations of existing systems
 - Coarse-grained optimization Tree model Table Level
 - Single-goal optimization Cost
- □Highlights of CDB
 - Fine-grained optimization Graph Model Tuple Level
 - Multi-goal optimization Cost, Latency, Quality

Tree Model vs Graph Model □Find connected paths with 3 solid edges

Tree Model vs Graph Model □Find connected paths with 3 solid edges

Optimal Tree Model: 9+5+1=15 tasks Graph Model: 3 tasks

Tree Model vs Graph Model □Find connected paths with 3 solid edges

Optimal Tree Model: 9+5+1=15 tasks Graph Model: 3 tasks

CDB: Graph Model

Graph Model

- -Vertices
 - Tuples
- Edges
 - Join predicate
- -Weight
 - Similarity

SELECT * FROM Paper, Researcher, Citation, University WHERE Paper.Author CROWDEQUAL Researcher.Name AND Paper.Title CROWDEQUAL Citation.Title AND Researcher.Affiliation CROWDEQUAL University.Name

Chengliang Chai, **Guoliang L**i, Jian Li, Dong Deng. Cost-Effective Crowdsourced Entity Resolution: A Partial-Order Approach . **SIGMOD** 2016. 35

CDB: Cost Control

Minimize Cost

 Find all the results with the minimal cost

Budget (pay as you go)

Find the most results with a given budget (B tasks)

DExpectation-based Method

 Pruning ability to cut the graph

$$\mathbb{E}(t,t') = \frac{\prod_{i=1}^{x} (1-\omega(t,t_i))}{x} \alpha + \frac{\prod_{i=1}^{y} (1-\omega(t_i,t'))}{y} \beta$$

37

CDB: Latency Control

Which tasks can be asked in parallel

- Tasks have correlations
- Tradeoff: cost and latency
- Minimize the number of rounds without increasing the cost

Task batching

- Connected components
- Edges containing tuples from the same table

CDB: Quality Control

□Truth Inference

- -A unified inference model
 - Single choice
 - Multiple choice
 - Fill/Collection

Online Task Assignment

- -Worker Model
- -Task Model
- -Worker answer prediction

$$\mathcal{I}(t) = \mathcal{H}(\vec{p}) - \sum_{i=1}^{\ell} \left[p_i \cdot q_w + (1 - p_i) \cdot \frac{1 - q_w}{\ell - 1} \right] \cdot \mathcal{H}(\vec{p'})$$

$$p_{i} = \frac{\prod_{(w,a)\in V_{t}} (q_{w})^{\mathbb{1}\{i=a\}} \cdot (\frac{1-q_{w}}{\ell-1})^{\mathbb{1}\{i\neq a\}}}{\sum_{j=1}^{\ell} \prod_{(w,a)\in V_{t}} (q_{w})^{\mathbb{1}\{j=a\}} \cdot (\frac{1-q_{w}}{\ell-1})^{\mathbb{1}\{j\neq a\}}}$$

$$\mathcal{C}(t) = \sum_{\{(w,a)\in V_t\}\wedge\{(w',a')\in V_t\}\wedge\{w\neq w'\}} \frac{sim(a,a')}{\binom{|V_t|}{2}}$$

Data Integration As A Service

Lessons Learned

Human is important in data integrationMachine step

- Rules are important
- Require high-quality examples

Crowd step

- Crowd is double-edged sword
 - high quality for easy tasks
 - low quality for hard tasks
- -Inference is important
 - Can reduce the cost significantly
 - But may sacrifice quality

All the codes are open-sourced at https://github.com/TsinghuaDatabaseGroup/

Thank You!

