
Human-in-the-loop
Data Integration

Guoliang Li
Department of Computer Science, Tsinghua University, China

http://dbgroup.cs.tsinghua.edu.cn/ligl



Acknowledgement

2

Jianhua Feng
@Tsinghua

Lizhu Zhou
@Tsinghua

Chen Li
@UCI

Beng Chin Ooi
@NUS



Acknowledgement

3

Jiannan Wang
aP@SFU

Dong Deng
PostDoc@MIT
On Job Market!

Yudian Zheng
@HKU

Ju Fan
AP@RUC

Thank everyone who support me!
üCollaborators
üStudents
üFriends
ü ......



Data Integration (DI)
Combine data in different sources and 

provide users with a unified view

4

Brand Product Region Price

Apple iPhone6S Beijing 4000

Apple iPhone6SP Beijing 5000

Samsung Galaxy S7 Beijing 3500

Name Loc Sales

6S 4.7’ Bei Jing 40K

6S 5.5’ Bei Jing 30K
S7 Bei Jing 35K

Brand Product Loc Price Sales
Apple iPhone6S Beijing 4000 40K
Apple iPhone6SP Beijing 5000 30K
Samsung Galaxy S7 Beijing 3500 35K

Data Analysis

Data Integration

Is there any correlation
between location and revenue?

Data Science Pipeline: Data Integration à Data Analysis



Data Integration (DI)
pData Integration is important and challenging

– New York Times
• 80% of a data science project is to clean and integrate

the data, while 20% is actual data analysis
– Mark Schreiber of Merck

• data scientists spend 98% of 
on “grunt work” and 

• only one hour per week 
on “useful work”

pIn many communities
– DB, AI, KDD, Web

5



Entity Matching in DI
pDate Integration

– data acquisition, extraction, cleaning, schema matching, 
entity matching, etc.

pEntity Matching (EM): A core problem
– Find pairs of records referring to the same entity
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Brand Product Region Price

Apple iPhone6S Beijing 4000

Apple iPhone6SP Beijing 5000

Samsung Galaxy S7 Beijing 3500

Name Loc Sales

Apple 6S 4.7’ Bei Jing 40K

Apple 6S 5.5’ Bei Jing 30K
Samsung S7 Bei Jing 35K

17 8 30 3:30Word Art

 1  1 about:blank

Data are full of errors
and inconsistencies.



Hybrid Human-Machine EM

DIMA System
pSimilarity-based

processing system
pEntity Matching
pEase to use
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CDB System
pCrowd-powered SQL
pNew optimization Model
pEntity Matching
pCost, Latency, Quality

Name Model Size
6S iPhone 5.7
S7 Samsung 5.7

Product Type Color
iPhone6 6th red
Samsung 7gen white

R

S

Rule-based 
Candidate Generation

Rule 
Generation

Signature-based 
Filtering Verification

Rules

Candidate
pairs

Crowd-based Refinement

Graph Model

Tuple-Level 
Cost Control

Round-based
Latency Control

Unified
Quality Control

Matching
pairs



Hybrid Human-Machine EM
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iPhone6S
iPhone6SP
Galaxy S7

iPhone 6S 4.7’
iPhone 6S 5.5’
Samsung S7

iPhone 6S iPhone 6S 4.7’ 0.75
iPhone 6S iPhone 6S 5.5’ 0.75
iPhone 6SP iPhone 6S 4.7’ 0.72
iPhone 6SP iPhone 6S 5.5’ 0.72
Galaxy S7 Samsung S7 0.5
iPhone6S Samsung S7 0.1
iPhone6S Samsung S7 0.1
Galaxy S7 iPhone 6S 4.7’ 0.1
Galaxy S7 iPhone 6S 5.5’ 0.1

Machine-Based
Algorithms

Pruning dissimilar pairs

Crowd-Based
Algorithms

Asking crowd to label some pairs

iPhone 6S iPhone 6S 4.7’
iPhone 6SP iPhone 6S 5.5’
Galaxy S7 Samsung S7

Pruning 4 dissimilar pairs

Removing 2 non-matched pairs

Two tables of records

candidate record pairs

matching record pairs

Jaccard
Edit distance
Semantics



Dima: Distributed In-memory
Similarity-based System

9

Query interface
ü Extended SQL
ü Easy to use
Distributed In-memory
Processing Engine 
ü Indexing
ü Similarity Operations
ü Optimizer
Support similarity-based
query processing

Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, Zhifeng Bao. Dima: A Distributed In-Memory 
Similarity-Based Query Processing System. VLDB 2017

workload in distributed computing (Section 3).
(3) We propose global index and local index, on top of which
e�cient algorithms are proposed to support similarity selec-
tion (Section 4) and similarity join (Section 5).
(4) We develop cost-based query optimization techniques to
further enhance the performance (Section 6).
(5) We have implemented Dima on top of Spark and con-
ducted extensive experiments on four real-world datasets
(Section 7). The results show that Dima outperforms existing
studies by 1-3 orders of magnitude. Our source code is publi-
cized at https://github.com/TsinghuaDatabaseGroup/dima.

2. SIMILARITY-BASED QUERY PROCESS-
ING FRAMEWORK

We first define the similarity-based query operations (Sec-
tion 2.1) and then introduce our framework (Section 2.2).
Finally we review the related work (Section 2.3).

2.1 Similarity-Based Query Operations
Given two records r and s, we use a similarity function to

compute their similarity. There are many similarity func-
tions, e.g., Jaccard and Edit distance. In this paper we
focus on Jaccard and the details for edit distance are re-
ferred to our technical report [23]. We first tokenize records
as sets of tokens and the Jaccard similarity between r and
s is Jac(r, s) = |r\s|

|r[s| , where r \ s and r [ s are the overlap
and union of r and s respectively. Two records are similar
w.r.t. Jaccard if their Jaccard similarity is not smaller than
a threshold ⌧ . For example, the Jaccard similarity between
{VLDB, 2017, Germany} and {SIGMOD, 2017, US} is 1/5.

Next we formally define two similarity-based operations
based on the similarity functions.

Definition 1 (Similarity Selection). Given a col-

lection of records R, a query s, a similarity function f and

a threshold ⌧ , the similarity search problem aims to find all

similar records from the set, i.e., {r 2 R|f(r, s, ⌧) = true}.
For Jaccard, f(r, s, ⌧) = true i↵. Jac(r, s) � ⌧ ; For edit

distance, f(r, s, ⌧) = true i↵. ED(r, s)  ⌧ .

Definition 2 (Similarity-Based Join). Given two col-

lections of records R and S, the similarity join problem

aims to find all similar record pairs from the two sets, i.e.,

{(r, s)|r 2 R & s 2 S & f(r, s, ⌧) = true}.
Our goal is to support these two operations in distributed

in-memory systems.

2.2 Our Framework
Extended SQL. We extend SQL and define simSQL by
adding two operations to support similarity selection/join.

(1) Similarity Selection. Users utilize the following simSQL
query to find records in table T whose S column is similar
to query q w.r.t. a similarity function f and a threshold ⌧ .

SELECT * FROM T WHERE f(T.S, q) � ⌧

(2) Similarity Join. Users utilize the following simSQL query
to find the records in tables T1 and T2 where table T1’s S
column is similar to table T2’s R column w.r.t. a similarity
function f and a threshold ⌧ .

SELECT * FROM T1 SIMJOIN T2 ON f(T1.S, T2.R) � ⌧

DataFrame. In addition to simSQL, users can also perform
special operations over DataFrame objects using a domain-
specific language similar to data frames in R. Similar to

RDBMS HDFS Native RDD

Spark

Local IndexingGlobal Indexing

Similarity-based Query Optimizer

simSQL Parser DataFrame API

CLI JDBC Scala Program

Similarity-based Query Operations 

Figure 1: The Framework of Dima.

the aforementioned extended simSQL, we also extend Spark’s
DataFrame API to support similarity selection and join.

Index. Users can create index to support similarity selec-
tion and join. Users can utilize the following simSQL query
to create an index (including global index and local index)
on the column S of table T using our segment based indexing
scheme SEGINDEX, which will be introduced in Section 3.
CREATE Index SegIndex ON T.S USE SEGINDEX.

Similarity-Based Query Processing. We utilize the
above signature-based index to process similarity queries.
For a selection query, we utilize the global index to prune
irrelevant partitions and send the query request to relevant
partitions. In each local partition, we utilize the local in-
dex to compute local answers. For a join query, we utilize
the global index to make similar pairs be in the same par-
tition so as to avoid expensive data transmission. In each
partition, we utilize the local index to compute local join
answers. The details are discussed in Sections 4 and 5.

Query Optimization. Dima extends the Catalyst opti-
mizer of Spark SQL and introduces a cost-based optimiza-
tion (CBO) module to optimize the similarity-based queries.
The CBO module leverages the (global and local) index to
optimize complex simSQL queries. Query optimization in
Dima is discussed in Section 6.

Dima Workflow. Figure 1 shows the architecture of our
Dima framework. Next we describe the query processing
workflow of Dima. Given a simSQL query or a DataFrame
object, Dima first constructs a tree model by the simSQL
parser or a DataFrame object by the DataFrame API. Then
Dima builds a logical plan using Catalyst rules. Next, the
logical optimizer applies standard rule-based optimization
to optimize the logical plan. Based on the logical plan, Dima
applies cost-based optimizations based on signature-based
indexes and statistics to generate the most e�cient physical
execution plan. Dima supports analytical jobs on various
data sources such as CVS, JSON and Parquet.

2.3 Related Work
Similarity Selection. There are many studies on similarity-
based selection [8, 31, 17, 16, 12, 5]. Most of them utilized
a count-based framework where the data records are simi-
lar to the query if they share enough common elements, e.g.,
tokens, q-grams (q-length substring), with the query [16, 31,
17, 12, 5, 8]. They utilized the inverted lists to e�ciently
count the number.

2



CDB: A Crowd-powered Database
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MetaData

Task

Worker

Crowdsourcing
Platforms

Relational
Database

Graph-Based Query Model

Assignment

CQL Parser Result Collection

Query Optimization

Cost Control

Latency Control

Quality Control
!"#$ %##&'()*(+ !,-+. /(0*,*(1*

Crowd UI Designer Statistics

Figure 2: CDB Framework
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [42], Deco [45], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [45, 42, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for di↵erent
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for di↵erent orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-o↵s among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-
supported × × × × √

Task
Deployment Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

etc., is not desirable. As shown in Figure 3, most of the exist-
ing systems only considered monetary cost in their optimiza-
tion. The only system considering latency is CrowdOP [23]
that optimized latency by simply considering data depen-
dencies. In contrast, our CDB system develops techniques
based on data inference to reduce latency in a more e↵ec-
tive way. Considering the quality concern, existing studies
leverage existing majority voting or its variants, which is
only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Crowd-powered operators. We examine the supported
crowd-powered operators in the existing systems, as shown
in Figure 3. CrowdDB [24] covered all of the crowd-powered
operators except GROUP. Although GROUP can be trivially im-
plemented by self-join, this simple implementation is not ef-
fective and missing optimization chances like using transitiv-
ity. Qurk [42] focused on crowd-powered SELECT, JOIN, and
ORDER. Deco [45] considered more on FILL and COLLECT (i.e.,
the fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL
operators. Compared with these systems, CDB supports all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems usually published
human-intelligence tasks (HITs) on one individual crowd-
sourcing market, such as Amazon Mechanical Turk (AMT) [2],
and thus the results may be a↵ected by the bias of the mar-
ket. In contrast, CDB has the flexibility of cross-market HITs
deployment by simultaneously publishing HITs to AMT [2],
CrowdFlower [3], etc.
We discuss more related works (e.g., quality control) in

Appendix E.

3. CROWD SQL IN CDB: CQL
This section presents CQL, an extended SQL that supports

management of crowdsourcing data in our CDB system. CQL
provides a declarative programming interface for requesters
to define the crowdsourced data and invoke crowd-powered
manipulations over the data. This section highlights the
di↵erence between CQL and declarative languages of existing
systems CrowdDB [24], Qurk [42], Deco [45], and Crow-
dOP [23]. The details of CQL are introduced in Appendix A.
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Guoliang Li, Chengliang Chai, Ju Fan, Jian Li, Yudian Zheng. CDB: A Crowd-
Powered Database. SIGMOD 2017.

Fine-grained
Tuple-level
Graph model

Multi-goal
optimization

EaseCrowd

ChinaCrowd



DIMA: Rule-Based Matching

Jaccard(Name, Brand) ≥0.8∧ ED(Storage, Capacity)<2

11

Brand Capacity Price

Apple iPhone6S 64 4000

Apple iPhone6SP 128G 5000

Samsung Galaxy S7 64G 3500

Name Storage Sales

Apple 6S 4.7’ 64GB 40K

Apple 6S 5.5’ 128GB 30K
Samsung S7 64GB 35K

Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, Jianhua Feng: Entity Matching: How Similar Is 
Similar. VLDB, 2011:622-633.

Name is similar to Brand Storage is similar to Capacity



DIMA: Rule-Based Matching
p Challenges

– How to obtain the rules?
• High-quality rules
• Explainable, Programmable

– How to apply the rules?
• Avoid Cartesian product
• Fast and Scalable

12

Threshold

Similarity Functions

Attribute pairs



Quantifying Rules

Objective function: |MΨ∩M|- |MΨ∩N|

Goal: Find a rule set Ψ to maximize |MΨ∩M|-|MΨ∩N|
13

M: positive examples N: negative examples

Mφ : record pairs that satisfy a rule φ

MΨ: record pairs that satisfy a rule set Ψ={φ}

MΨ∩M MΨ∩N



Venue

Computer Science Chemical Sciences…

Chemical Sciences (general) …Database …

VLDBSIGMOD … RSC Advances …

System

ICPADS …

Figure 4: Google Scholar Metrics

if any of the predicates returns false, indicating we do not
know whether they should be in di↵erent groups.

We will simply write '` (resp. �´) as a positive (resp. a
negative) rule, when pe, e1q is clear from the context.

Similarity Functions. Without loss of generality, we con-
sider three types of similarity functions f to quantify the
similarity between two values on attribute A.

(i) Set-based. It first splits each value into a set of tokens
and then utilizes the set-based similarity to quantify the
similarity, such as overlap and Jaccard similarity.

(ii) Character-based. It measures the similarity between two
values based on character transformations, like edit distance.

The above similarity functions have a common limitation
that they mainly use the symbolic (or textual) information,
while ignoring the semantics, which is important to the en-
tity categorization problem. To this purpose, we propose to
use ontology to capture the semantics-aware similarity.

(iii) Ontology-based. Ontology is usually modeled by a tree
structure, e.g., the ontology for venues of publications pro-
vided by Google Scholar Metric1 is shown in Figure 4.

We use a tree structure to define the ontology similarity.
Given two entities, we map them to tree nodes2, and the on-
tology similarity is computed based on their lowest common
ancestor (LCA), which is formally defined as follows.

Ontology Similarity. Given two entities e and e1,
suppose their mapping nodes on the ontology tree are n
and n1, respectively. Their ontology similarity is defined as:
2|LCApn,n

1q|
|n|`|n1| , where LCApn, n1q is the lowest common ancestor

of n and n1, and |n| is the depth of node n in the tree. (The
depth of the root is 1.) Two entities are similar if their
similarity is larger than a threshold ⌧ .

Example 4: [Ontology Similarity.] Consider the tree struc-
ture of venues in Figure 4, and two nodes SIGMOD and
VLDB. They have rather small string similarity. However,
they have a large ontology similarity 3

4 , because their depth
is 4 and their LCA is Database with depth 3. l

The rules in Example 2 can be formulated as follows.

'`
1 : f

ov

pAuthorsq • 2

'`
2 : f

ov

pAuthorsq • 1 ^ f
on

pVenueq • 0.75
�´
1 : f

ov

pAuthorsq “ 0

�´
2 : f

ov

pAuthorsq § 1 ^ f
on

pVenueq § 0.25

where f
ov

denotes overlap similarity and f
on

denotes ontol-
ogy similarity.

1
https://scholar.google.com/citations?view_op=top_

venues.

2Here we use exact string matching for example. We can also
use approximate matching based on similarity functions.

Algorithm 1: Basic Algorithm

Input: a group G “ te1, ..., enu, a set of positive rules

t'`
1 , . . .'

x̀

u, a set of negative rules t�´
1 , . . .�

ý

u
Output: mis-categorized entities G´
// Step 1: Computing Disjoint Partition Set P

1 Construct a graph G “ pV, Eq, where V “ G, E “ H;

2 for each entity pair pe, e1q P G ˆ G do

3 if D'`
i

such that '`
i

pe, e1q returns true then
4 E – E Y tpe, e1qu;
5 Compute the connected components of G;
6 Let P denote the set of connected components in G;

// Step 2: Identifying The Pivot Partition P˚
7 Let P˚ PP (the one with the largest size) be pivot partition;

// Step 3: Discovering Mis-Categorized Entities G´
8 for each partition P P PztP˚u do
9 if DpePP, e˚ PP˚,�´ P⌃´q, �´pe, e˚q returns true then

10 G´ – G´ Y P ;

11 Return G´

3. A RULE-BASED FRAMEWORK
The solution overview is described in Algorithm 1 and

depicted in Figure 5. In a nutshell, it first uses a set of
positive rules ⌃` “ t'`

1 , ¨ ¨ ¨ ,'`
x

u as a disjunction (i.e.,
'`

1 _ ¨ ¨ ¨ _ '`
x

) on a group of entities G “ te1, . . . , enu to
compute disjoint partitions (step 1; lines 2-6). The partition
with the largest size is the pivot partition (line 7). Given a
set of negative rules ⌃´ “ t�´

1 , ¨ ¨ ¨ ,�´
y

u, we either apply
the first rule �´

1 , or jointly use �´
1 with the other negative

rules in sequence as �´
1 _ �´

2 , �
´
1 _ �´

2 _ �´
3 , and so on, to

discover mis-categorized entities (lines 8-11).

Step 1: Computing Disjoint Partitions. Positive rules
are used to group entities into partitions. Two cases are
considered to put entities e and e1 in the same partition. (i)
e and e1 satisfy a positive rule, i.e., there exists a positive
rule '` such that '`pe, e1q returns true. (ii) e and e1 satisfy
transitivity – there exists an entity e2 such that both pe, e2q
and pe1, e2q satisfy some positive rule.
For case (i), we enumerate every entity pair pe, e1q and

every rule '`, and check whether '`pe, e1q returns true. For
case (ii), we first construct a graph, where the vertices are
entities and edges are entity pairs that satisfy a positive rule
(computed from case (i)), and then compute its connected
components. Clearly, the entities in the same connected
component satisfy the transitivity and form a partition.
The complexity of checking whether an entity pair satis-

fies a positive rule depends on the similarity functions used
in the rule. For overlap, the complexity of computing the
similarity is Op|e| ` |e1|q, where |e| is the size of e. For
edit distance, the complexity of computing the similarity is
Op✓minp|e|, |e1|q, where ✓ is the similarity threshold and |e|
is the length of e. For ontology, the complexity of comput-
ing the similarity is Op|e| ` |e1|q, where |e| is the depth of
e’s corresponding node in the tree structure. For ease of
presentation, suppose the complexity of checking whether
an entity pair satisfies a positive rule is Op�q. The time
complexity of checking every entity pair and every positive
rule is Opn2�|⌃`|q, where n is the number of entities and
|⌃`| is the number of positive rules. The time complexity
of computing connected components (e.g., by a depth-first
traversal) is the number of vertices and edges in the graph.
Thus the overall complexity is Opn2�|⌃`|q.

3

Rule Generation

14

Threshold

Similarity 
Functions

Attribute pairs
a,b; Attributes

NP-hard
Effective Algorithm

F String: edit distance
Set: Jaccard
Knowledge

δ: [0,1]
Infinite à Finite
ü F(a,b) on attribute pairs



Rule-Based Matching

p Challenges
– How to obtain the rules?

• High-quality rules
• Explainable, Programmable

– How to apply the rules?
• Avoid Cartesian product
• Fast and Scalable

15

Threshold

Similarity Functions

Attribute pairs



Applying Rules
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It is expensive to enumerate every record pairs!
ü 10million*10million
Signature-based Method
ü If two records do not share a common signature,

they cannot be matching

1

2

3

1
2

1
3

1
2

3 1

Guoliang Li, Dong Deng, Jiannan Wang, Jianhua Feng: Pass-Join: A Partition-based 
Method for Similarity Joins. VLDB, 2012:253-264.

A Rule: Name is similar to Brand



Dima - Signature
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RDBMS HDFS Native RDD

Spark

Local IndexingGlobal Indexing

EM Query Optimizer

EMSQL Parser DataFrame API

CLI JDBC Scala Program

EM Query Operations 

Balance-Aware Signature Generation

Signature-based Method
ü If two records do not share a common

signature, they cannot be matching

Balance-Aware Signature
ü The signatures are selectable
ü Balance the workload

1

2

3 1
2

1
3

2 3 1

4

Dong Deng, Guoliang Li, He Wen, Jianhua Feng. An Efficient Partition Based Method for 
Exact Set Similarity Joins. VLDB, 2016



Dima: Load Balance
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Challenges
pHow to generate signatures?

– Partition-based
pHow to select the signatures?

– Dynamic programming
pHow to balance the workload?

– NP-hard
– Greedy algorithms

Algorithm 1: Dima-ApproximateSelection

Input: Dataset R; Query s with threshold ⌧

Output: Answer set A
Build index for R o✏ine;1

// Global Search

for l 2 [l�|s|, l
+
|s|] do2

Z=OptimalSignatureSelection(q, l);3

for each Z

i

6= 0 do4

if Z

i

= 1 then5

for g

+ 2 pSig+
q,i,l

do6

P(g+).LocalSearch(s, ⌧,L+
, g

+);7

if Z

i

= 2 then8

for g

� 2 pSig�
q,i,l

do9

P(g�).LocalSearch(s, ⌧,L+
, g

�);10

for g

+ 2 pSig+
q,i,l

do11

P(g+).LocalSearch(s, ⌧,L+
, g

+);12

P(g+).LocalSearch(s, ⌧,L�
, g

+);13

// LocalSearch Method

for g

+ has a L+ request in local search do14

for r 2 L+[g+] do15

if Verify(r, s)=true then A = A [ {r};16

if g

� has a L� request in local search then17

for r 2 L�[g�] do18

if Verify(r, s)=true then A = A [ {r};19

return A;20

Function OptimalSignatureSelection

Input: Query s, length l, Frequency Tables F�,F+

Output: Selection Vector Z
for i 2 [0, ⌘

l

] do M [i][0] = 0|P |;1

for j 2 [1, ✓|s|,l] do M [0][j] = 1|P |;2

for i 2 [1, ⌘
l

] do3

for j 2 [1, ✓|s|,l] do Compute M [i][j]; Set Z[i];4

return Z;5

Note that the verification cost on di↵erent records is nearly
the same, and we can utilize the candidate size to quantify
the e�ciency. We only need to select x segment signatures
and y deletion signatures of s such that x+2y � ✓|s|,l. Intu-
itively, we want to select the probing signatures to minimize
the number of candidates, i.e.,

minimize

⌘lX

i=1

(b
i

X

g2pSig+s,l

F+[g]+

c

i

(
X

g2pSig�s,l

F+[g] +
X

g2pSig+s,l

(F�[g] + F+[g])))

b

i

=

(
1 Z[i] = 1

0 Z[i] 6= 1
c

i

=

(
1 Z[i] = 2

0 Z[i] 6= 2

s.t.

⌘lX

i=1

Z[i] � ✓|s|,l.

However, in a distributed setting, we want to balance the
workload on di↵erent partitions. Thus we want to minimize
the maximal workload on every partition. To address this
problem, we propose a balance-aware probing signature se-
lection method as below.

P2

{0,0,0}

{∞,∞,∞}{∞,∞,∞}

{0,0,0}

{0,0,2}

0

{∞,∞,∞}

21
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0 {∞,∞,∞}
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1
{∞,∞,∞} {0,1,0}2 {0,0,0}

P0 P1

F+({b,d},2,5):1

F-({a,e},1,5):2F-({c,e},1,5): 2
F-({d},2,5): 1
F+({f,h},2,5): 1

F-({h},2,5):1

!"={a,b,c,d,e,f}

({a,c,e},1,5)

({a,c},1,5)
({a,e},1,5)
({c,e},1,5)

segment W(0,0,2)

deletion W(0,0,2)
({b,d,f},2,5)

({b,d},2,5)
({b,f},2,5)
({d,f},2,5)

segment W(0,0,0)

deletion W(0,1,0)

Z(0,2)

F-({b},2,5): 1
F-({f},2,5):1
F-({a,c},1,5):2
F+({a,c,e},1,5):2

Figure 5: Example of Optimal Signature Selection.

4.2 Balance-Aware Signature Selection
4.2.1 Problem Formulation
Given |P| partitions, let W

j

denote the workload on the j-
th partition, we want to minimize the maximal workload on
every partition, i.e., minmizemax(W1,W2, · · ·W|P|), where
W

j

is computed as below:

W
j

=
⌘lX

i=1

⇣
b

i

X

g2pSig+s,i,l&P(g)=j

F�[g]+

c

i

X

g2pSig�s,i,l&P(g)=j

�F+[g] +
X

g2pSig+s,i,l&P(g)=j

F�[g] + F+[g]
�⌘

b

i

=

(
1 Z[i] = 1

0 Z[i] 6= 1
c

i

=

(
1 Z[i] = 2

0 Z[i] 6= 2

s.t.

⌘lX

i=1

Z[i] � ✓|s|,l.

where W
j

can be computed by summing the size of the in-
verted list of each selected signature in the j-th partition.
We can utilize the global search function P to e�ciently
check whether a signature is in the j-th partition.

A naive method enumerates every possible case and selects
the case with the balance workload. As each segment has 3
cases, this method has a time complexity of 3⌘l . To improve
the performance, we propose a greedy algorithm to select the
best probing signatures to minimize the maximal workload.

4.2.2 Optimal Signature Selection
To minimize the maximal workload of |P| partitions, we

devise a dynamic programming algorithm to select the prob-
ing signatures. Let M denote a matrix with ⌘

l

columns and
✓|s|,l rows. Each cellM [i][j] is a vectorW = [W1,W2, · · · ,W|P|]
which denotes the optimal workload by selecting probing
signatures in the first j segments with threshold i. Then
we discuss how to compute M [i][j] based on cells M [i0][j0]
where i

0  i and j

0  j. We have three cases.
Case 1: If we do not select any signature for the i-th seg-
ment, then M [i][j] = M [i� 1][j].
Case 2: If we select the probing segment signature for the
i-th segment, then M [i][j] = M [i� 1][j � 1] +�

S

[i], where
�

S

is the vector of the increased workload on each parti-
tion by selecting the probing segment signatures. �

S

[i] =P
g2pSig+s,i,l&P(g)=i

F+[g].

Case 3: If we select the probing deletion signature for the
i-th segment, then M [i][j] = M [i� 1][j � 2] +�

D

[i], where
�

D

is the vector of the increased workload on each parti-
tion by selecting the probing deletion signatures. �

D

[i] =P
g2pSig�s,i,l&P(g)=i

F+[g]+
P

g2pSig+s,i,l&P(g)=i

F�[g]+F+[g].
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Global 

Mapping
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sig=(seg/del,i,l)
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1

n

0
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n
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Index HashMap
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-

+

Data Array

record

record

1

2

record…

recordn

Figure 3: Indexing Structure.

probing signatures of s, utilize the global index to locate
the partitions that contain s’s probing signatures, and send
the probing signature to such partitions. The executor that
monitors such partitions does a local search to compute the
local results. Next we present how to build the indexes.
Figure 3 shows the index structure.

O✏ine Indexing. Note that di↵erent queries may have dif-
ferent thresholds and we require to support queries with any
choice of threshold. To achieve this goal, we utilize a thresh-
old bound to generate the index. For example, the threshold
bound for Jaccard is the smallest threshold for all queries
that the system can support, e.g., 0.6. Using this threshold
bound, we can select the indexing segment/deletion signa-
tures and build a local index. In addition, we also keep the
frequency table of each signature to keep each signature’s fre-
quency and build a global index that keeps a mapping from
the signature to partitions that contain this signature.

Frequency Table. For each RDD R
i

, for each record
r 2 R

i

, we compute its indexing segment number ⌘|r| us-
ing the threshold bound. Then we generate the indexing
segment signature set of each record r, iSig+

r

and indexing
deletion signature set iSig�

r

. For each segment signature
g 2 iSig+

r

, we collect its global frequency F+[g] and for
each deletion signature g0 2 iSig�

r

, we also collect its global
frequency F�[g0]. If we keep the frequency of all signatures,
the frequency table will be too large. Thus we only keep
the signatures whose frequencies exceed 2. In this way the
frequency table is very small, and the frequency table can
be easily distributed into every node.

Local Index. Next we shu✏e the indexing signatures such
that (1) each signature and its inverted list of records that
contain this signature are shu✏ed to one and only one par-
tition, i.e., the same signature will be in the same partition
and (2) the same partition may contain multiple signatures
and their corresponding records. For each partition, we con-
struct an IndexRDD IR

i

for indexing signatures in this par-
tition. Each IndexRDD IR

i

contains several signatures and
the corresponding records, which includes two parts. The
first part is a hash-map which keeps the mapping from a sig-
nature to two lists of records: L+[g] keeps the records whose
indexing segment signatures contain g and L�[g] keeps the
records whose indexing deletion signatures contain g. We
use L[g] to denote L+[g].[L�[g]. The second part is all the
records in this RDD, i.e., D

i

= [
g2IR

i
L[g]. Note that the

records are stored in the data list D
i

and L+[g] and L�[g]
only keep a list of pointers to the data list D

i

. For example,
Figure 4 shows the local index for two records.

Global Index. Then for each signature, we keep the map-
ping from the signature to the partitions that contain this
signature. Note that we do not need to utilize a hash table
to keep the mapping. Instead, we only maintain a global
function P that maps a signature g to a partition p, i.e.,
P(g) = p. Thus the global index is rather small.

DataRDD

                                     

Global Order
<a,c,e,g>, <b,d,f,h>

({c,e},1,5): L+[]; L-[1,2]
({d},2,5): L+[]; L-[1]
({f,h},2,5): L+ [2]; L-[]
({h},2,5):L+[]; L-[2]

({a,c,e},1,5):L+[1,2];L-[]

({b,d},2,5):L+[1]; L-[]
({a,e},1,5):L+[]; L-[1,2]

({b},2,5): L+[]; L-[1]
({f},2,5):L+[]; L-[2]
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({f},2,5)
({h},2,5)

r1: 
{a,b,c,d

,e}

r2: 
{a,c,e,f,

h}

({a,c},1,5):L+[];L-[1,2]

P0
P0

P1

P2

({a,c,e},1,5)
({b,d},2, 5)

({a,c},1,5)
({a,e},1,5)
({c,e},1,5)
({b},2,5)
({d},2,5)

1
2

r
r
1
2

IndexRDDFrequency Table

({a,c,e},1,5): 2

({a,c},1,5): 2
({a,e},1,5): 2
({c,e},1,5): 2

F +

F -

Global Mapping 
P(sig)

1
2

r
r
1
2

1
2

r
r
1
2

P1

segment signature iSig+ 

segment signature iSig+ 

deletion signature iSig- 

deletion signature iSig-

Figure 4: An Example of Local Index.

4. APPROXIMATE SELECTION OPERATION
Algorithm Overview. Given an online query s, Algo-
rithm 1 shows how to utilize the proposed indexes to support
approximate selection operation in three steps. (1) It first
conducts a global search by utilizing the frequency tables to
select the probing signatures of s. Specifically, we propose
an optimal signature selection method to achieve a balance-
aware selection. (2) For each selected probing signature, it
utilizes the global hash function to compute the partition
that contains the signature and sends the search request to
the corresponding partition (lines 3-13). (3) Each partition
further exploits a local search to retrieve the inverted lists
of probing signatures and verify the records on the inverted
lists to get local answers (lines 14-19). Finally, it returns
the local answers to the master node.

4.1 Probing Signature Selection
Given an online query s we compute the maximal length

l

max

(minimal length l

min

) of records that are similar to s

(see Table 1). Then for each length l in this range, we gen-
erate s’s probing signatures. We first compute the number
of segments ⌘

l

for length l. For each segment at position
i 2 [1, ⌘

l

], we generate a probing segment (deletion) signa-
ture pSig+

s,i,l

(pSig�
s,i,l

). Then we compute the bound of
mismatched tokens ✓|s|,l between s and a record r of length
l, above which r could not be similar to s.
Next we discuss how to select the probing signatures. Let

Z denote a list where each element Z[i] 2 {0, 1, 2} for 1 
i  ⌘

l

. Z[i] = 0 denotes that the probing signature on
the i-th segment is not selected. Z[i] = 1 denotes that the
probing segment signature on the i-th segment is selected.
Z[i] = 2 denotes that the probing deletion signature on the
i-th segment is selected.
If we select the probing segment signature in pSig+

s,i,l

, it
can only match the indexing segment signature, and thus the
candidate size is

P
g2pSig+s,i,l

F+[g], which is the total size of

the inverted lists of segment signatures in pSig+
s,i,l

. If there
is no signature matching, there exists at least 1 mismatched
token. If we select the probing deletion signature in pSig�

s,i,l

,
then its probing deletion signature can match the indexing
segment signature, and its probing segment signature can
match the indexing deletion/segment signature. Thus, the
candidate size is

P
g2pSig�s,i,l

F+[g] +
P

g2pSig+s,i,l
(F�[g] +

F+[g]). If there is no signature matching, there exist at
least 2 mismatched tokens.
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Figure 6: Running Example of Greedy Selection.
Theorem 1. The balance-aware probing signature selec-

tion problem is NP-complete.

Proof. The decision problem of the balance-aware prob-
ing signature selection problem is that given a set of sets of
vectors, is there a way to choose one vector from each set
of vectors such that the maximum component of their sum
is no larger than k. Next we prove the theorem by reduc-
ing the 3-partition problem to the decision problem. Given
a multi-set of 3n integers x1, x2, · · · , x3n whose sum is nB

where n and B are both integers, the 3-partition problem
finds if there is a way to partition the multi-set to n sub-
sets where each subset has a sum of exactly B. Next we
create a set of sets of w = 4n dimensional vectors based on
a 3-partition problem instance. For each 1  i  3n and
1  j  n, we build a set of two 4n-dimensional vectors.
The first one has all zero entries except the j

th component,
whose value is (n � 1)x

i

. The second one has all zero en-
tries except the n+ i

th component, whose value is B. Thus
we have an instance of the balance-aware probing signature
selection problem, which has a set of 3n2 sets of vectors. If
there is a solution S1, S2, · · · , Sn

for the 3-partition prob-
lem, we can also find a solution to the balance-aware prob-
ing signature selection problem. We choose the first vector
if x

i

2 S

j

. Otherwise, x
i

62 S

j

, we choose the second vec-
tor. As the sum of the elements in each subset S

i

is exactly
B, the value of the maximum component of the sum of the
selected vectors is exactly (n� 1)B, which is the minimum
that is achievable.

5.2.2 Greedy Algorithm for Workload Balancing
We propose a greedy algorithm to solve the balance-aware

signature selection problem. We process each record s in
S separately. For each record s, we can select its optimal
probing signatures. However the selection process is costly
especially for large numbers of records in S. To avoid this
issue, we propose a greedy algorithm.

Suppose the current workload is W. For each of its i-th
segment of record s, we compute the workload if we select
the i-th probing segment signature, denoted by W+i, where

W+i

j

= W
j

+
X

g2pSig+s,i,l&P(g)=j

F+[g]

Thus for each probing segment signature, we aim to select
the i-th segment signature such that i = argmin

i

max{Wi+}
for i 2 [1, ⌘

l

], where max{W+i} = max{W+i

1 ,W+i

2 , · · · ,W+i

|P|}.
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<signature>

Global 
Mapping

P(sig)

segment/deletion
(seg,i,l)

……

0

1

n

!"#$%$%&'

!"#$%$%&'

!"#$%$%&'
'

0

ZipPartition

1… …

-
.
/0
.
;-
1
/0
1

-
.
/0
.
;-
1
/0
1

-
.
/0
.
;-
1
/0
1

2*#%34

Figure 7: Approximate Join Workflow.

Algorithm 2: Dima-ApproximateJoin

Input: Two datasets R, S, threshold ⌧

Output: Answer set A
// Global Join
Build Index for R;1

for s 2 S do2

for l 2 [l�|s|, l
+
|s|] do3

Z=GreedySignatuerSelection(s, l);4

for Z

i

6= 0 do5

if Z

i

= 1 then6

for g

+ 2 pSig+
s,i,l

do7

Shu✏e g

+ and J+[g+] s ;8

if Z

i

= 2 then9

for g

� 2 pSig�
s,i,l

do10

Shu✏e g

� and J+[g�] s ;11

for g

+ 2 pSig+
s,i,l

do12

Shu✏e g

+ and J+[g+] s ;13

Shu✏e g

+ and J�[g+] s ;14

// Local Join
for g in each partition do15

for (r, s) 2 L+[g]⇥ J+[g] do16

if Verify(r, s)=true then A = A [ {(r, s)};17

for (r, s) 2 L�[g]⇥ J�[g] do18

if Verify(r, s)=true then A = A [ {(r, s)};19

return A;20

Function GreedySignatureSelection

Input: Query s, length l, Frequency Tables F�,F+

Output: Selection Vector Z
for i 2 [1, ⌘

l

] do1

Compute W+i;2

Insert (i,maxW+i) into MinHeap M ;3

for x 2 [1, ⌘
l

] do4

Pop min element (i, maxW+i) from M ;5

if Z[i] = 0 then Z[i]=1; Insert(i,maxW�i) into M ;6

else Z[i] = 2;7

return Z;8

If we select the i-th segment signature, we also need to
consider whether we replace the segment signature with i-
th deletion signature. Thus for each of its i-th segment, we
compute the workload if we select the i-th probing deletion
signature, denoted by W�i, where

W�i

j

= W
j

+
X

g2pSig+s,i,l&P(g)=j

F�[g]+
X

g2pSig�s,i,l&P(g)=j

F+[g]

Here we do not add
P

g2pSig+s,i,l&P(g)=j

F+[g], because we

have added it when selecting the segment signature. Next
we give the greedy signature selection algorithm.

8



Name Country

e11 e12 e13 e14 e15 e16 ...

an do ef en er fe ...

e31 e32

ENG USA

Address

e21 e22 e23 e24 e25 e26

Berkeley CA CS EE Stanford UCLA

Prefix Table for R and S
Name Address Country

r1 {e11, e
1
3, e

1
5} {e24, e

2
6} {e32}

r2 {e12, e
1
4, e

1
5} {e22, e

2
3, e

2
5} {e32}

r3 {e11, e
1
5, e

1
11} {e21, e

2
3} {e31}

r4 {e11, e
1
3, e

1
5} {e22, e

2
3, e

2
5} {e32}

r5 {e11, e
1
2, e

1
4} {e22, e

2
3, e

2
5} {e32}

s1 {e11, e
1
3, e

1
5} {e25, e

2
2} {e32}

s2 {e11, e
1
5, e

1
10} {e21, e

2
2} {e31}

s3 {e12, e
1
4, e

1
5} {e21, e

2
3} {e31}

Figure 2: Prefix Tokens for R and S in
Figure 1 (Use Dictionary Order).
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Figure 3: Complete Prefix Tree for R in Figure 2.

• If JAC(r, s) � ⌧ then o = d⌧ |r|e.
• If ED(r, s)  ⌧ then o = |r|� q⌧ .

• If ES(r, s) � ⌧ , then o = d|r|� (|r|+ q � 1) (1�⌧)

⌧

|r|)e.
where |r| is the size of r(for ED/ES, r is the q-gram set).

For simplicity, we use string and set interchangeably if the
context is clear and each element in the set is called a token.
The prefix filter fixes a global order for the tokens and sorts
tokens of each set by this global order. Finally for each set
r, it selects the first |r|� o+ 1 tokens as its prefix, denoted
as pre(r). It is easy to prove that if two strings r and s are
similar, pre(r) \ pre(s) 6= � [29].

For example, given two multi-attribute tables R and S in

Figure 1 and a complex similarity operation R1

ED,1⇠ S1 ^
R2

JAC,0.3⇠ S2 ^ R3

OLP,1⇠ S3. For attributes R1 and S1, we
generate 2-gram set. For simplicity, we use the dictionary
order as a global order. For each attribute of each record, we
compute its prefix and generate a table of prefixes as shown

in Figure 2. We use R2

JAC,0.3⇠ S2 to demonstrate how to
compute the prefix. The prefix length for JAC(r2

p

, s

2

q

) � 0.3
is |pre(r2

p

)| = |r2
p

|� d|r2
p

|⌧e+1. So for r
2

, |pre(r2
1

)| = 2 and
pre(r2

1

) = {EE, UCLA} = {e24, e26}.

2.3 Related Works
Similarity Join on Single Attribute. Since the prefix
filter is e↵ective, many methods are proposed to optimize it
for di↵erent similarity operators [6,16,20,24,26,28,29]. ED-
join [12,28] proposed a location-based mismatch filter to re-
duce prefix length and a content-based mismatch filter to
reduce the number of candidates for ED. Pivotal prefix fil-
ter [4] reduced the prefix length for ED. PassJoin [17] pro-
posed segment filter to improve pruning power. PPJoin [29]
used the positions of prefix and su�x to improve pruning
power for token-based similarities. Length filter was pro-
posed to prune dissimilar answers based on length di↵er-
ence [8]. TrieJoin [23] used a di↵erent framework that di-
rectly computed real similarity using the trie structure.
Similarity Search on Single Attribute. Li et al. [14]
proposed a list-merge framework that converts other similar-
ities to overlap, builds inverted index, and merges inverted
lists of the query tokens to identify answers. Li et al. [15]
proposed variable length q-grams (VGram) to improve the
pruning power. Zhang et al. [30] proposed B

ed-tree which
uses q-grams as signatures and indexes the q-grams using
the B-tree. Deng et al. [5] addressed the top-k similarity
search problem with the trie structure. Hadjieleftheriou et
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Figure 4: Partial Prefix Tree for R.
al. [9] devised a technique to support data updates in sim-
ilarity search. Wang et al. [25] proposed a dynamic prefix
length scheme for e↵ective filtering in similarity search.
Blocking-based Join Algorithm. There are many blocking-
based join algorithms on entity resolution [11,13,19,27]. To
link the records, they defined some rules (e.g., the same zip
code leads to the same entity), utilized the rules to gener-
ate blocks (e.g., records with the same zip code will be in
the same block), and took records in the same block as can-
didates. Di↵erent from the blocking-based algorithms [3,18]
that focused on learning blocking schemes to improve the re-
call, our paper emphasizes on devising e↵ective indexes and
e�cient algorithms to improve the performance for given
fuzzy-matching rules. Sarma et al. [21] proposed a blocking-
tree structure and devised a bottom-up algorithm to improve
the recall. Our method on similarity joins has the following
di↵erences. First, the objectives are di↵erent. They merged
blocks by enumerating every pair of leaf nodes to improve
the recall while we merged leaf nodes with the same parent
to reduce the candidate sizes to improve the e�ciency. The
high enumeration overhead is not acceptable in our prob-
lem. Second, the strategies of building tree structures are
di↵erent. The inverted lists on our tree have overlaps while
their blocks are disjoint. Third, the bottom-up algorithm is
still expensive for our problem, because it checks many tree
nodes to determine whether to combine. To further improve
the performance, we devise a greedy top-down algorithm.

3. SIMILARITY JOIN WITH PREFIX TREE
Given a complex similarity operation � = Ri1 ⇠ Sj1 ^

Ri2 ⇠ Sj2 ^ · · · ^ Rik ⇠ Sjk , we devise a filter-verification
framework to answer the join query. The filter step identifies
the candidate pairs hr, si such that pre(rit)\pre(sjt) 6= � for
every t 2 [1, k] and the verification step verifies the candidate
paris by computing the real similarity on each attribute Rit

and Sjt . We study the filter step in this section and the
verification algorithm will be discussed in Section 5.

Dima: Query Optimization
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Guoliang Li, Jian He, Deng Dong, Jian Li, Jianhua Feng. Efficient Similarity Search 
and Join on Multi-Attribute Data. SIGMOD 2015.

φ=∧λ where λ: F(a,b) ≥ δ
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CDB System
pCrowd-powered SQL
pNew optimization Model
pEntity Matching
pCost, Latency, Quality

Name Model Size
6S iPhone 5.7
S7 Samsung 5.7

Product Type Color
iPhone6 6th red
Samsung 7gen white
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pairs
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Inference - Transitivity

p Challenges 
– Labeling order

• A=B, B≠C à A≠C
• B≠C, A≠C à A?B

– Cost
• Optimal Order

– Latency
• Parallel crowdsourcing

– Quality
• Transitivity Errors
• If workers give B=C, then deduce A=C
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Inference - Partial Order
pCandidate pairs pij
pPartial order

– pij>pi’j’ if sij >= si’j’
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pSerial Algorithms: Ask one question in
each iteration
– Comparable Vertices

• O(log|P|), |P| is length of path
– Incomparable Vertices

• O(Blog|V|), B is path number
• |V| is vertex number

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6



Question Selection

28

Parallel Algorithm

Multi-Path Algorithm

g9

g2

g1

g8

g3
g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

Topology-Sorting-Based Algorithm

L1

L2

L3

L4

g9

g2

g1

g8

g3 g4

g5

g7

g6

L5

L1

L2

g9

g2

g1

g8

g3 g4

g5

g7

g6

L1

g9

g2

g1

g8

g3 g4

g5

g7

g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

Select multiple vertices and ask them together in each iteration



Refinement

29

Equi-depth histogramsOverall weighted similarities of pairs



Results

30

Cost 100✖               Latency 10✖      Quality 5%



Crowd-based Method - CDB
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pA crowd-powered database system
– Users require to write code to utilize crowdsourcing

platforms
– CDB encapsulates the complexities of interacting with the 

crowd 
pLimitations of existing systems

– Coarse-grained optimization - Tree model – Table Level
– Single-goal optimization - Cost

pHighlights of CDB
– Fine-grained optimization - Graph Model – Tuple Level
– Multi-goal optimization – Cost, Latency, Quality
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Figure 1: An example of tuple-level optimization.

dencies. Thus it calls for a new crowd-powered system to
enable the multi-goal optimization.

To address these limitations, we have developed a crowd-
powered database system CDB, which provides a declarative
query language CQL (an extended SQL) that supports crowd-
based data definition and manipulation. CDB has the follow-
ing fundamental di↵erences compared with existing systems.

(1) Fine-Grained Query Model. We propose a graph-
based query model that supports crowd-based query opti-
mizations. Given a CQL query, we build a graph based on
the query and the data (e.g., Figure 1). This graph model
has the advantage of making the tuple-level optimization
applicable and providing the potential of the multi-goal op-
timization at the same time.

(2) Multi-Goal Optimization in One Framework. We
devise a unified framework to perform the multi-goal opti-
mization based on the graph model. (i) For cost control,
our goal is to minimize the number of tasks to find all the
answers. For example, our method targets at selecting the
three Red edges to ask the crowd. We prove that this prob-
lem is NP-hard and propose an expectation-based method
to select tasks. (ii) For latency control, we adopt the round-
based model which aims to reduce the number of rounds for
interacting with crowdsourcing platforms. We identify the
most “beneficial” tasks which can be used to prune other
tasks, and ask such tasks in parallel to reduce the latency.
For example, the three Red edges can be asked in paral-
lel. (iii) We optimize the quality by devising quality-control
strategies (i.e., truth inference and task assignment) for dif-
ferent types of tasks, i.e., single-choice, multi-choice, fill-in-
blank and collection tasks.

To summarize, we make the following contributions.
(1) We develop a crowd-powered database CDB (Section 2)
and define a declarative query language CQL (Section 3).
(2) We propose a graph-based query model that supports
tuple-level optimization, which can save a large amount of
cost than the traditional tree model (Section 4).
(3) We introduce a unified multi-goal optimization frame-
work for e↵ectively balancing monetary cost, latency and
quality (Section 5).
(4) We have implemented and deployed our system on AMT
and CrowdFlower. We have also created a benchmark for
evaluating crowd-powered databases. We have conducted
both simulated and real experiments, and the experimental
results demonstrate the performance superiority of CDB on
cost, latency and quality (Section 6).

2. OVERVIEW OF CDB
This section presents an overview of CDB. We first intro-

duce our CDB framework in Section 2.1, and then discuss the
di↵erences of CDB from existing systems in Section 2.2.

2.1 CDB Framework
Declarative Query Language. We extend SQL by adding
crowd-powered operations and propose crowd SQL (CQL).
CQL contains both data definition language (DDL) and data
manipulation language (DML). A requester can use CQLDDL
to define her data by asking the crowd to collect or fill the
data, or use CQL DML to manipulate the data based on
crowdsourced operations, e.g., crowdsourced selection, join,
sort and group (see Section 3 for more details of CQL).

Graph Query Model. A requester can submit her tasks
and collect the answers using relational tables. To provide a
fine-grained optimization on the relational data, we define a
graph-based query model. Given a CQL query, we construct a
graph, where each vertex is a tuple of a table in the CQL and
each edge connects two tuples based on the join/selection
predicates in the CQL. We utilize the graph model to provide
the tuple-level optimization. We formally define the graph
model in Section 4.

Query Optimization. Query optimization includes cost
control, latency control and quality control. (i) Cost control
aims to optimize the monetary cost by reducing the numbers
of tasks to ask the crowd. We formulate the task selection
problem using the graph model, prove that this problem
is NP-hard, and propose e↵ective algorithms to reduce the
cost. (ii) Latency control focuses on reducing the latency.
We utilize the number of rounds to model the latency and
aim to reduce the number of rounds. Note to reduce the cost,
we need to utilize the answers of some tasks to infer those of
the others, and the inference will lead to more rounds. Thus
there is a tradeo↵ between cost and latency. Our goal is
to simultaneously ask the tasked that cannot be inferred by
others in the same round. (iii) Quality control is to improve
the quality, which includes two main components: truth in-
ference and task assignment. Task assignment assigns each
task to multiple workers and truth inference infers task an-
swers based on the results from multiple assigned workers.
We propose a holistic framework for task assignment and
truth inference for di↵erent types of tasks. The details on
query optimization will be presented in Section 5.

Crowd UI Designer. Our system supports four types
of UIs. (1) Fill-in-the-blank task: it asks the crowd to fill
missing information, e.g., the a�liation of a professor. (2)
Collection task: it asks the crowd to collect new informa-
tion, e.g., the top-100 universities. (3) Single-choice task:
it asks the crowd to select a single answer from multiple
choices, e.g, selecting the country of a university from 100
given countries. (4) Multiple-choice task: it asks the crowd
to select multiple answers from multiple choices, e.g., select-
ing the research topics of a professor from 20 given topics.
Another goal is to automatically publish the tasks to crowd-
sourcing platforms. We have deployed our system on top of
AMT and CrowdFlower. There is a main di↵erence between
AMT and CrowdFlower. In CrowdFlower, it does not allow
a requester to control the task assignment while AMT has
a development model in which the requester can control the
task assignment. Thus in AMT, we utilize the development
model and enable the online tasks assignment.

MetaData & Statistics. We maintain three types of
metadata. (1) Task. We utilize relational tables to maintain
tasks, where there may exist empty columns which need to
be crowdsourced. (2) Worker. We maintain worker’s qual-
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dencies. Thus it calls for a new crowd-powered system to
enable the multi-goal optimization.

To address these limitations, we have developed a crowd-
powered database system CDB, which provides a declarative
query language CQL (an extended SQL) that supports crowd-
based data definition and manipulation. CDB has the follow-
ing fundamental di↵erences compared with existing systems.

(1) Fine-Grained Query Model. We propose a graph-
based query model that supports crowd-based query opti-
mizations. Given a CQL query, we build a graph based on
the query and the data (e.g., Figure 1). This graph model
has the advantage of making the tuple-level optimization
applicable and providing the potential of the multi-goal op-
timization at the same time.

(2) Multi-Goal Optimization in One Framework. We
devise a unified framework to perform the multi-goal opti-
mization based on the graph model. (i) For cost control,
our goal is to minimize the number of tasks to find all the
answers. For example, our method targets at selecting the
three Red edges to ask the crowd. We prove that this prob-
lem is NP-hard and propose an expectation-based method
to select tasks. (ii) For latency control, we adopt the round-
based model which aims to reduce the number of rounds for
interacting with crowdsourcing platforms. We identify the
most “beneficial” tasks which can be used to prune other
tasks, and ask such tasks in parallel to reduce the latency.
For example, the three Red edges can be asked in paral-
lel. (iii) We optimize the quality by devising quality-control
strategies (i.e., truth inference and task assignment) for dif-
ferent types of tasks, i.e., single-choice, multi-choice, fill-in-
blank and collection tasks.

To summarize, we make the following contributions.
(1) We develop a crowd-powered database CDB (Section 2)
and define a declarative query language CQL (Section 3).
(2) We propose a graph-based query model that supports
tuple-level optimization, which can save a large amount of
cost than the traditional tree model (Section 4).
(3) We introduce a unified multi-goal optimization frame-
work for e↵ectively balancing monetary cost, latency and
quality (Section 5).
(4) We have implemented and deployed our system on AMT
and CrowdFlower. We have also created a benchmark for
evaluating crowd-powered databases. We have conducted
both simulated and real experiments, and the experimental
results demonstrate the performance superiority of CDB on
cost, latency and quality (Section 6).

2. OVERVIEW OF CDB
This section presents an overview of CDB. We first intro-

duce our CDB framework in Section 2.1, and then discuss the
di↵erences of CDB from existing systems in Section 2.2.

2.1 CDB Framework
Declarative Query Language. We extend SQL by adding
crowd-powered operations and propose crowd SQL (CQL).
CQL contains both data definition language (DDL) and data
manipulation language (DML). A requester can use CQLDDL
to define her data by asking the crowd to collect or fill the
data, or use CQL DML to manipulate the data based on
crowdsourced operations, e.g., crowdsourced selection, join,
sort and group (see Section 3 for more details of CQL).

Graph Query Model. A requester can submit her tasks
and collect the answers using relational tables. To provide a
fine-grained optimization on the relational data, we define a
graph-based query model. Given a CQL query, we construct a
graph, where each vertex is a tuple of a table in the CQL and
each edge connects two tuples based on the join/selection
predicates in the CQL. We utilize the graph model to provide
the tuple-level optimization. We formally define the graph
model in Section 4.

Query Optimization. Query optimization includes cost
control, latency control and quality control. (i) Cost control
aims to optimize the monetary cost by reducing the numbers
of tasks to ask the crowd. We formulate the task selection
problem using the graph model, prove that this problem
is NP-hard, and propose e↵ective algorithms to reduce the
cost. (ii) Latency control focuses on reducing the latency.
We utilize the number of rounds to model the latency and
aim to reduce the number of rounds. Note to reduce the cost,
we need to utilize the answers of some tasks to infer those of
the others, and the inference will lead to more rounds. Thus
there is a tradeo↵ between cost and latency. Our goal is
to simultaneously ask the tasked that cannot be inferred by
others in the same round. (iii) Quality control is to improve
the quality, which includes two main components: truth in-
ference and task assignment. Task assignment assigns each
task to multiple workers and truth inference infers task an-
swers based on the results from multiple assigned workers.
We propose a holistic framework for task assignment and
truth inference for di↵erent types of tasks. The details on
query optimization will be presented in Section 5.

Crowd UI Designer. Our system supports four types
of UIs. (1) Fill-in-the-blank task: it asks the crowd to fill
missing information, e.g., the a�liation of a professor. (2)
Collection task: it asks the crowd to collect new informa-
tion, e.g., the top-100 universities. (3) Single-choice task:
it asks the crowd to select a single answer from multiple
choices, e.g, selecting the country of a university from 100
given countries. (4) Multiple-choice task: it asks the crowd
to select multiple answers from multiple choices, e.g., select-
ing the research topics of a professor from 20 given topics.
Another goal is to automatically publish the tasks to crowd-
sourcing platforms. We have deployed our system on top of
AMT and CrowdFlower. There is a main di↵erence between
AMT and CrowdFlower. In CrowdFlower, it does not allow
a requester to control the task assignment while AMT has
a development model in which the requester can control the
task assignment. Thus in AMT, we utilize the development
model and enable the online tasks assignment.

MetaData & Statistics. We maintain three types of
metadata. (1) Task. We utilize relational tables to maintain
tasks, where there may exist empty columns which need to
be crowdsourced. (2) Worker. We maintain worker’s qual-
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dencies. Thus it calls for a new crowd-powered system to
enable the multi-goal optimization.

To address these limitations, we have developed a crowd-
powered database system CDB, which provides a declarative
query language CQL (an extended SQL) that supports crowd-
based data definition and manipulation. CDB has the follow-
ing fundamental di↵erences compared with existing systems.

(1) Fine-Grained Query Model. We propose a graph-
based query model that supports crowd-based query opti-
mizations. Given a CQL query, we build a graph based on
the query and the data (e.g., Figure 1). This graph model
has the advantage of making the tuple-level optimization
applicable and providing the potential of the multi-goal op-
timization at the same time.

(2) Multi-Goal Optimization in One Framework. We
devise a unified framework to perform the multi-goal opti-
mization based on the graph model. (i) For cost control,
our goal is to minimize the number of tasks to find all the
answers. For example, our method targets at selecting the
three Red edges to ask the crowd. We prove that this prob-
lem is NP-hard and propose an expectation-based method
to select tasks. (ii) For latency control, we adopt the round-
based model which aims to reduce the number of rounds for
interacting with crowdsourcing platforms. We identify the
most “beneficial” tasks which can be used to prune other
tasks, and ask such tasks in parallel to reduce the latency.
For example, the three Red edges can be asked in paral-
lel. (iii) We optimize the quality by devising quality-control
strategies (i.e., truth inference and task assignment) for dif-
ferent types of tasks, i.e., single-choice, multi-choice, fill-in-
blank and collection tasks.

To summarize, we make the following contributions.
(1) We develop a crowd-powered database CDB (Section 2)
and define a declarative query language CQL (Section 3).
(2) We propose a graph-based query model that supports
tuple-level optimization, which can save a large amount of
cost than the traditional tree model (Section 4).
(3) We introduce a unified multi-goal optimization frame-
work for e↵ectively balancing monetary cost, latency and
quality (Section 5).
(4) We have implemented and deployed our system on AMT
and CrowdFlower. We have also created a benchmark for
evaluating crowd-powered databases. We have conducted
both simulated and real experiments, and the experimental
results demonstrate the performance superiority of CDB on
cost, latency and quality (Section 6).

2. OVERVIEW OF CDB
This section presents an overview of CDB. We first intro-

duce our CDB framework in Section 2.1, and then discuss the
di↵erences of CDB from existing systems in Section 2.2.

2.1 CDB Framework
Declarative Query Language. We extend SQL by adding
crowd-powered operations and propose crowd SQL (CQL).
CQL contains both data definition language (DDL) and data
manipulation language (DML). A requester can use CQLDDL
to define her data by asking the crowd to collect or fill the
data, or use CQL DML to manipulate the data based on
crowdsourced operations, e.g., crowdsourced selection, join,
sort and group (see Section 3 for more details of CQL).

Graph Query Model. A requester can submit her tasks
and collect the answers using relational tables. To provide a
fine-grained optimization on the relational data, we define a
graph-based query model. Given a CQL query, we construct a
graph, where each vertex is a tuple of a table in the CQL and
each edge connects two tuples based on the join/selection
predicates in the CQL. We utilize the graph model to provide
the tuple-level optimization. We formally define the graph
model in Section 4.

Query Optimization. Query optimization includes cost
control, latency control and quality control. (i) Cost control
aims to optimize the monetary cost by reducing the numbers
of tasks to ask the crowd. We formulate the task selection
problem using the graph model, prove that this problem
is NP-hard, and propose e↵ective algorithms to reduce the
cost. (ii) Latency control focuses on reducing the latency.
We utilize the number of rounds to model the latency and
aim to reduce the number of rounds. Note to reduce the cost,
we need to utilize the answers of some tasks to infer those of
the others, and the inference will lead to more rounds. Thus
there is a tradeo↵ between cost and latency. Our goal is
to simultaneously ask the tasked that cannot be inferred by
others in the same round. (iii) Quality control is to improve
the quality, which includes two main components: truth in-
ference and task assignment. Task assignment assigns each
task to multiple workers and truth inference infers task an-
swers based on the results from multiple assigned workers.
We propose a holistic framework for task assignment and
truth inference for di↵erent types of tasks. The details on
query optimization will be presented in Section 5.

Crowd UI Designer. Our system supports four types
of UIs. (1) Fill-in-the-blank task: it asks the crowd to fill
missing information, e.g., the a�liation of a professor. (2)
Collection task: it asks the crowd to collect new informa-
tion, e.g., the top-100 universities. (3) Single-choice task:
it asks the crowd to select a single answer from multiple
choices, e.g, selecting the country of a university from 100
given countries. (4) Multiple-choice task: it asks the crowd
to select multiple answers from multiple choices, e.g., select-
ing the research topics of a professor from 20 given topics.
Another goal is to automatically publish the tasks to crowd-
sourcing platforms. We have deployed our system on top of
AMT and CrowdFlower. There is a main di↵erence between
AMT and CrowdFlower. In CrowdFlower, it does not allow
a requester to control the task assignment while AMT has
a development model in which the requester can control the
task assignment. Thus in AMT, we utilize the development
model and enable the online tasks assignment.

MetaData & Statistics. We maintain three types of
metadata. (1) Task. We utilize relational tables to maintain
tasks, where there may exist empty columns which need to
be crowdsourced. (2) Worker. We maintain worker’s qual-
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pGraph Model
– Vertices

• Tuples
– Edges

• Join predicate
– Weight

• Similarity

Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US
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Figure 4: A Graph Model for the Above CQL.

Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u
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To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue

edges disconnected, and we do not need to ask such Blue

edges. For example, if we first ask (p
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) and it is Red,
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ing (p
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), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C

i

CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C

i

], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C

i

], value).
For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p

1

, p

2

, · · · , p
8

, we add an edge to this new vertex.
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US
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Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u
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To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue
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) become invalid edges after remov-
ing (p

1
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), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C

i

CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C

i

], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C

i

], value).
For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p
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, · · · , p
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, we add an edge to this new vertex.
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Figure 2: CDB Framework
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [42], Deco [45], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [45, 42, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for di↵erent
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for di↵erent orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-o↵s among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-
supported × × × × √

Task
Deployment Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

etc., is not desirable. As shown in Figure 3, most of the exist-
ing systems only considered monetary cost in their optimiza-
tion. The only system considering latency is CrowdOP [23]
that optimized latency by simply considering data depen-
dencies. In contrast, our CDB system develops techniques
based on data inference to reduce latency in a more e↵ec-
tive way. Considering the quality concern, existing studies
leverage existing majority voting or its variants, which is
only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Crowd-powered operators. We examine the supported
crowd-powered operators in the existing systems, as shown
in Figure 3. CrowdDB [24] covered all of the crowd-powered
operators except GROUP. Although GROUP can be trivially im-
plemented by self-join, this simple implementation is not ef-
fective and missing optimization chances like using transitiv-
ity. Qurk [42] focused on crowd-powered SELECT, JOIN, and
ORDER. Deco [45] considered more on FILL and COLLECT (i.e.,
the fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL
operators. Compared with these systems, CDB supports all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems usually published
human-intelligence tasks (HITs) on one individual crowd-
sourcing market, such as Amazon Mechanical Turk (AMT) [2],
and thus the results may be a↵ected by the bias of the mar-
ket. In contrast, CDB has the flexibility of cross-market HITs
deployment by simultaneously publishing HITs to AMT [2],
CrowdFlower [3], etc.
We discuss more related works (e.g., quality control) in

Appendix E.

3. CROWD SQL IN CDB: CQL
This section presents CQL, an extended SQL that supports

management of crowdsourcing data in our CDB system. CQL
provides a declarative programming interface for requesters
to define the crowdsourced data and invoke crowd-powered
manipulations over the data. This section highlights the
di↵erence between CQL and declarative languages of existing
systems CrowdDB [24], Qurk [42], Deco [45], and Crow-
dOP [23]. The details of CQL are introduced in Appendix A.
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US
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Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.
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To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue
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), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C
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CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C
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], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C
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For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
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, we add an edge to this new vertex.
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Figure 6: An example of star join structure.

For simplicity, we assume the edges are independent and ran-
domly sample the edges as follows. To generate a sample,
we check each edge e and set the color of the edge as Blue

with probability being the weight of this edge, i.e., !(e) (and
Red with probability 1-!(e)). Now, we consider the follow-
ing problem: given S sample graphs, select the minimum
number of edges that can resolve all sample graphs. Unfor-
tunately, this problem is NP-hard, which can be proven by
a reduction from the set cover problem.

Lemma 2. The problem of selecting the minimum edges
that cover S sample graphs is NP-hard.

Greedy Algorithm. To address this problem, we propose
a greedy algorithm. For each sample graph, we select its
edges using the above algorithms. Then we compute the
union of these edges and sort the edges by the number of
occurrences in the samples. We ask the edges in this order.

For example, consider the graph in Figure 7(a), and sup-
pose we sample 5 graphs. Then we compute the min-cut
of each graph. Edges (u
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). This method asks an unnecessary edge (c
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).
Note that this method is expensive since it requires to gen-

erate many samples and selects the edges in every sample.
Moreover, it may select many unnecessary edges. To address
this problem, we propose an expectation-based method.

Expectation-Based Method. Consider an edge e = (t, t0)
where t and t

0 are from tables T and T

0 respectively. If cut-
ting the edge can make some edges invalid, we can compute
its pruning expectation by the probability to cut the edge
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Figure 7: Min-cut Greedy Algorithm.

(1� !(e)) times the number of invalid edges introduced by
this cutting. However cutting an edge may not make the
any edge invalid. Thus this method will take the expecta-
tion as 0. To address this issue, we can consider the edges
(t, t0

1

), (t, t0
2

), · · · , (t, t0
x

) that from t to all tuples in T

0. If we
cut all such edges, this must make some edges invalid, i.e.,
edges from tuples in other tables to t. The probability to cut
all of these edges is

Q
x

i=1

(1� !(t, t0
i

)) and thus the pruning
expectation is

Q
x

i=1

(1�!(t, t
i

)) times the number of invalid
edges (e.g., ↵). As the graph is cut by these x edges, the ex-

pectation of each edge should be
Q

x

i=1(1�!(t,t

i

))

x

↵. Similarly,
we consider edges (t

1

, t), (t
2

, t

0), · · · , (t
y

, t

0) that from t

0 to
all tuples in T . The pruning expectation is

Q
y

i=1

(1�!(t
i

, t

0))
times the number of invalid edges (e.g., �) dividing x. Al-
though the edge can cut the graph by combining with other
edges, it is expensive to enumerate all such edges. Thus we
only use the above two types of edges. Next we formally
define the pruning expectation:

E(t, t0) =
Q

x

i=1

(1� !(t, t
i

))

x

↵+

Q
y

i=1

(1� !(t
i

, t

0))

y

�. (1)

Then we compute the pruning expectation for every edge,
sort them by the expectation in descending order, and select
the edge in order. Note we can e�ciently compute ↵ and �

by a depth-first algorithm starting from the cut edges.
For example, we discuss how to compute E(p

1

, c

1

). We
can see from Figure 4 that there is only one edge (r

1

, p

1

)
from r

1

to all tuples in table Paper and there are three
edges (p
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, r

1

), (p
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, r

2

) and (p
1

, r

3

) from p
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to all tuples in
table Researcher. Therefore, E(p
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1

) = (1 � 0.42) ⇤ 2 +
(1�0.42)(1�0.41)(1�0.83)⇤6

3

= 1.27. Then we compute the ex-
pectation for every edge and sort them in descending or-
der: (p
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· · · . Then we select the edge in order. After we ask (p
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)
and get a red color, edges (p
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) are unnecessary to ask.
Finally, we ask 15 edges: (p
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, c
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2
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, u

10

), · · · . Note if we use traditional tree-based
method, which selects a table join order to ask, there are 3
join orders, which ask 24, 23 and 33 tasks respectively.

5.1.3 Budget-Aware Task Selection
In many applications, there is a hard budget constraint.

Hence, we consider the following problem: given a budget
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US

SELECT * FROM Paper, Researcher, Citation, University
WHERE Paper.Author CROWDEQUAL Researcher.Name AND
Paper.Title CROWDEQUAL Citation.Title AND
Researcher.Affiliation CROWDEQUAL University.Name
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Figure 4: A Graph Model for the Above CQL.

Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u
1

, r

1

, p

1

, c

1

) is not an answer as
(p

1

, c

1

) isRed. There are three answers, i.e.,(u
12

, r

12

, p

8

, c

12

),
(u

8

, r

8

, p

4

, c

6

) and (u
9

, r

9

, p

5

, c

7

) in Figure 4.
To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue

edges disconnected, and we do not need to ask such Blue

edges. For example, if we first ask (p
1

, c

1

) and it is Red,
thus the edges (u

1

, r

1

), (u
2

, r

1

), (u
1

, r

2

), (u
2

, r

2

), (u
3

, r

3

),
(r

1

, p

1

), (r
2

, p

1

), (r
3

, p

1

) become invalid edges after remov-
ing (p

1

, c

1

), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C

i

CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C

i

], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C

i

], value).
For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p

1

, p

2

, · · · , p
8

, we add an edge to this new vertex.
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Figure 2: CDB Framework
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [42], Deco [45], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [45, 42, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for di↵erent
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for di↵erent orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-o↵s among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-
supported × × × × √

Task
Deployment Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

etc., is not desirable. As shown in Figure 3, most of the exist-
ing systems only considered monetary cost in their optimiza-
tion. The only system considering latency is CrowdOP [23]
that optimized latency by simply considering data depen-
dencies. In contrast, our CDB system develops techniques
based on data inference to reduce latency in a more e↵ec-
tive way. Considering the quality concern, existing studies
leverage existing majority voting or its variants, which is
only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Crowd-powered operators. We examine the supported
crowd-powered operators in the existing systems, as shown
in Figure 3. CrowdDB [24] covered all of the crowd-powered
operators except GROUP. Although GROUP can be trivially im-
plemented by self-join, this simple implementation is not ef-
fective and missing optimization chances like using transitiv-
ity. Qurk [42] focused on crowd-powered SELECT, JOIN, and
ORDER. Deco [45] considered more on FILL and COLLECT (i.e.,
the fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL
operators. Compared with these systems, CDB supports all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems usually published
human-intelligence tasks (HITs) on one individual crowd-
sourcing market, such as Amazon Mechanical Turk (AMT) [2],
and thus the results may be a↵ected by the bias of the mar-
ket. In contrast, CDB has the flexibility of cross-market HITs
deployment by simultaneously publishing HITs to AMT [2],
CrowdFlower [3], etc.
We discuss more related works (e.g., quality control) in

Appendix E.

3. CROWD SQL IN CDB: CQL
This section presents CQL, an extended SQL that supports

management of crowdsourcing data in our CDB system. CQL
provides a declarative programming interface for requesters
to define the crowdsourced data and invoke crowd-powered
manipulations over the data. This section highlights the
di↵erence between CQL and declarative languages of existing
systems CrowdDB [24], Qurk [42], Deco [45], and Crow-
dOP [23]. The details of CQL are introduced in Appendix A.
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US

SELECT * FROM Paper, Researcher, Citation, University
WHERE Paper.Author CROWDEQUAL Researcher.Name AND
Paper.Title CROWDEQUAL Citation.Title AND
Researcher.Affiliation CROWDEQUAL University.Name
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Figure 4: A Graph Model for the Above CQL.

Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u
1

, r

1

, p

1

, c

1

) is not an answer as
(p

1

, c

1

) isRed. There are three answers, i.e.,(u
12
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),
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, p

4
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) and (u
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, p
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) in Figure 4.
To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue

edges disconnected, and we do not need to ask such Blue

edges. For example, if we first ask (p
1

, c

1

) and it is Red,
thus the edges (u

1

, r

1

), (u
2

, r

1

), (u
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, r

2

), (u
2

, r

2

), (u
3
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),
(r

1
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1

), (r
2

, p

1

), (r
3

, p

1

) become invalid edges after remov-
ing (p

1

, c

1

), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C

i

CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C

i

], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C

i

], value).
For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p

1

, p

2

, · · · , p
8

, we add an edge to this new vertex.

5

MetaData

Task

Worker

Crowdsourcing
Platforms

Relational
Database

Graph-Based Query Model

Assignment

CQL Parser Result Collection

Query Optimization

Cost Control

Latency Control

Quality Control
!"#$ %##&'()*(+ !,-+. /(0*,*(1*

Crowd UI Designer Statistics

Figure 2: CDB Framework
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [42], Deco [45], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [45, 42, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for di↵erent
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for di↵erent orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-o↵s among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-
supported × × × × √

Task
Deployment Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

etc., is not desirable. As shown in Figure 3, most of the exist-
ing systems only considered monetary cost in their optimiza-
tion. The only system considering latency is CrowdOP [23]
that optimized latency by simply considering data depen-
dencies. In contrast, our CDB system develops techniques
based on data inference to reduce latency in a more e↵ec-
tive way. Considering the quality concern, existing studies
leverage existing majority voting or its variants, which is
only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Crowd-powered operators. We examine the supported
crowd-powered operators in the existing systems, as shown
in Figure 3. CrowdDB [24] covered all of the crowd-powered
operators except GROUP. Although GROUP can be trivially im-
plemented by self-join, this simple implementation is not ef-
fective and missing optimization chances like using transitiv-
ity. Qurk [42] focused on crowd-powered SELECT, JOIN, and
ORDER. Deco [45] considered more on FILL and COLLECT (i.e.,
the fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL
operators. Compared with these systems, CDB supports all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems usually published
human-intelligence tasks (HITs) on one individual crowd-
sourcing market, such as Amazon Mechanical Turk (AMT) [2],
and thus the results may be a↵ected by the bias of the mar-
ket. In contrast, CDB has the flexibility of cross-market HITs
deployment by simultaneously publishing HITs to AMT [2],
CrowdFlower [3], etc.
We discuss more related works (e.g., quality control) in

Appendix E.

3. CROWD SQL IN CDB: CQL
This section presents CQL, an extended SQL that supports

management of crowdsourcing data in our CDB system. CQL
provides a declarative programming interface for requesters
to define the crowdsourced data and invoke crowd-powered
manipulations over the data. This section highlights the
di↵erence between CQL and declarative languages of existing
systems CrowdDB [24], Qurk [42], Deco [45], and Crow-
dOP [23]. The details of CQL are introduced in Appendix A.
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Di↵erential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

A�liation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University
Title Number

c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for E�cient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US

SELECT * FROM Paper, Researcher, Citation, University
WHERE Paper.Author CROWDEQUAL Researcher.Name AND
Paper.Title CROWDEQUAL Citation.Title AND
Researcher.Affiliation CROWDEQUAL University.Name

u1

u2

u3

u4

u5

u6

u7

u11

r1

r2

r3

r4

r5

r6

r7

r11

p1

p2

p3

p7

c1

c2

c3

c4

c5

c9

c10

c11

0.63

0.61

0.70

0.63

0.65

0.74

0.63

0.42
0.41

0.83

0.30

0.79
0.40

0.40

0.37

0.88
0.33

0.33

0.50

0.43
0.64
0.31

u12 r12 p8 c120.50 0.53 0.89

0.53 0.50
0.70

u8

u9

u10

r8

r9

r10

p4

p5

p6

c6

c7

c80.65

0.61

0.35

0.75

0.83

0.70

0.71

0.91

0.89

0.40

0.46
0.40

Figure 4: A Graph Model for the Above CQL.

Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values

satisfy the predicate. If yes, it is connected and we mark it
Blue (solid line); otherwise it is disconnected and we mark
it Red (dotted line). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u
1

, r

1

, p

1

, c

1

) is not an answer as
(p

1

, c

1

) isRed. There are three answers, i.e.,(u
12

, r

12

, p

8

, c

12

),
(u

8

, r

8

, p

4

, c

6

) and (u
9

, r

9

, p

5

, c

7

) in Figure 4.
To find all the answers, a straightforward method ran-

domly asks the edges until all the edges are colored as Blue

or Red. However some Red edges may make the Blue

edges disconnected, and we do not need to ask such Blue

edges. For example, if we first ask (p
1

, c

1

) and it is Red,
thus the edges (u

1

, r

1

), (u
2

, r

1

), (u
1

, r

2

), (u
2

, r

2

), (u
3

, r

3

),
(r

1

, p

1

), (r
2

, p

1

), (r
3

, p

1

) become invalid edges after remov-
ing (p

1

, c

1

), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Extension to Support Selection Predicates
For each CROWDSELECT operation T .C

i

CROWDEQUAL value,
we add a new vertex into the graph. For each tuple t 2 T ,
if Sim(t[C

i

], value) � ", we add an edge between this vertex
and t where the weight of edge e(t, value) is Sim(t[C

i

], value).
For a traditional selection predicate, we add the edge if they
satisfy the predicate and the weight is 1. In this way, we
can use the graph model to support the selection opera-
tion. For example, in the above query, if we want to se-
lect the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL SIGMOD.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p

1

, p

2

, · · · , p
8

, we add an edge to this new vertex.
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B, how to select B tasks to maximize the number of found
answers. This problem is a variant of the previous problem
which aims to minimize the number of tasks to find all the
answers, hence is likely to be intractable as well. We propose
a greedy heuristic. Di↵erent from computing the pruning
expectation of each edge, we should ask the edge that has
large probability to be in an answer. To achieve this goal, we
compute the answer expectation of becoming an answer for
each edge. We first find all the candidate and compute the
probability of each candidate C that can become an answer,
which is the product of edge similarity in the candidate:
Pr(C) =

Q
e2C

w(e).
Next we discuss how to select B tasks based on the ex-

pectation. Firstly, we select the candidate with the largest
expectation and add each edge e in the candidate into the
selected set S. Then we ask the edges in S by their weights
in descending order, because for a small weight, we have
larger probability to prune unnecessary edges. For example
consider a chain. If we ask the edge with smaller similarity,
it has large probability to be Red and in this way we can
prune other edges in the chain. After asking the edges in
S, we update the graph with the answers of these edges, re-
compute the expectation, and repeat the above steps until
we ask B tasks. For example, suppose that B = 6, can-
didate (u

9

, r

9

, p

5

, c

7

) has the largest product of the edge
similarity:0.61 ⇤ 0.83 ⇤ 0.91 = 0.46. So we ask these three
edges in a descending order of their similarity and we obtain
a true answer. Then we ask (u

9

, r

9

), (r
9

, p

5

) and (p
5

, c

7

)
because the product of their similarities is the largest in the
remainder candidates. Now we have used the budget and
obtain two answers without wasting any task.
It is hard to fully utilize the budget to get as many an-

swers as possible in the tree model. For example suppose
it finds a join order, e.g., University, Researcher, Paper
and Conference. Then it selects the edge with the largest
weight based on this order. It first selects edge (u

7

, r

7

) and
then selects edges (r

7

, p

3

) that has the largest weight from
r

7

to tuples in Paper. Next it asks (p
3

, c

5

). We can see
that it cannot find any answer. Thus our graph model has
significant superiority than the tree model.

5.2 Latency Control: Reducing #Rounds
Given two edges e and e

0, we check whether they are in
the same candidate. If they are in the same candidate, we
call that they are conflict, because asking an edge may prune
the other edges; otherwise we call that they are non-conflict.
Obviously we can ask non-conflict edges simultaneously but
cannot ask conflict edges. For example, consider two conflict
edges. If an edge is colored Red, then the other edge does
not need to be asked. To check whether two edges are in a
some candidate, we can enumerate all the candidates of an
edge, e.g., e, and check whether they contain e

0. If yes, they
are in a same candidate; no otherwise. However this method
is rather expensive. Next we propose several e↵ective rules
to detect whether two edges can be asked simultaneously.

Connected Components. We first compute the connected
components in the graph. Obviously, the tasks in di↵erent
connect components can be asked simultaneously, because
they are non-conflict. For example, (p

1

, c

1

) and (p
2

, c

2

) are
in di↵erent connected components and they are non-conflict.

Edges Containing Tuples from the Same Table. The
edges that contain two di↵erent tuples from the same table
can be asked simultaneously, because they cannot be in the

same candidate. For example, (p
1

, r

1

) and (p
1

, r

2

) are non-
conflict as they contain tuples in the same table.

Overall Algorithm. We first compute the connected com-
ponents. For each component, we selected an ordered list of
tasks sorted by the expectation in descending order. Next
we select the longest “prefix” of this list such that every two
edges in the prefix are non-conflict. Then all of these non-
conflict edges in the prefixes of these components can be
asked simultaneously. Suppose S is the current prefix (ini-
tialized as empty). We access the next edge with the largest
expectation and check whether e has conflict edges in S as
follows. For each edge e

0 2 S, if e and e

0 contain di↵erent
tuples from the same table, e0 is not conflict with e; other-
wise, we check whether they are in the same candidate. If e0

is not conflict with any edge in S, we add e

0 to S and check
the next edge with the largest expectation. If e has conflict
edges in S, we terminate and S is the longest prefix.
In Figure 4, (p

1

, c

1

) is a non-conflict edge of the first com-
ponent and (p

2

, r

4

) and (p
3

, c

5

) are the non-conflict edges
of the second component. Therefore, at the first round, we
select (p

1

, c

1

), (p
2

, r

4

), (p
3

, c

5

), (r
8

, u

8

), (r
9

, u

9

), (r
10

, u

10

),
(r

11

, p

7

) and (r
12

, p

8

) in parallel. Then, we select (p
4

, c

6

),
(p

5

, r

9

), (r
12

, u

11

) and (r
12

, u

12

) to ask at the second round.
At last, we ask (p

4

, r

8

), (p
5

, c

7

) and (p
8

, c

12

) in parallel.
Compared with the serial algorithm, we ask the same num-
ber of questions but only take 3 rounds.

5.3 Quality Control
In order to derive high-quality results based on workers’

answers, it is important to do quality control. CDB controls
quality at two timestamps: (1) when a worker answers task,
we estimate the worker’s quality and infer the truth of the
answered task, called “truth inference”; (2) when a worker
comes and requests for new tasks, we consider the worker’s
quality and assign tasks with the highest improvement in
quality to the worker, called “task assignment”. CDB sup-
ports four types of tasks: single-choice, multiple-choice, fill-
in-blank and collection tasks. Next we illustrate how CDB ad-
dresses truth inference (Section 5.3.1) and task assignment
(Section 5.3.2) on di↵erent types of tasks, respectively.

5.3.1 Truth Inference
Let us denote W = {w} as a set of workers, T = {t} as a

set of tasks, and V

t

= {(w, a)} as a set of workers’ answers for
task t 2 T where each tuple (w, a) 2 V

t

means that worker
w provides answer a for task t. Note that truth inference has
been proven to be an e↵ective way to do quality control [64,
22, 32, 34, 66, 48, 11].

Single-Choice Task. Similar to [38, 19, 61, 33], we model
each worker w 2 W as a quality q

w

2 [0, 1], which indi-
cates the probability that w answers a task correctly. Based
on workers’ answers for all tasks, we compute each worker’s
quality via the Expectation-Maximization (EM) algorithm [20],
which iteratively updates those parameters until convergence.
Assume task t 2 T has ` choices, labeled as 1, 2, . . . , `, then
based on each worker w’s computed quality q

w

, we adopt
the Bayesian Voting to derive the truth of task t, which has
been proven to be optimal in [64] with known workers’ qual-
ities. That is, the probability of the i-th choice being the
truth for task t is computed as

p

i

=

Q
(w,a)2V

t

(q
w

)1{i=a} · ( 1�q

w

`�1

)1{i 6=a}

P
`

j=1

Q
(w,a)2V

t

(q
w

)1{j=a} · ( 1�q

w

`�1

)1{j 6=a}
, (2)
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where 1{·} is an indicator function, which returns 1 if the
argument is true; 0, otherwise. For example, 1{5=3} = 0 and
1{5=5} = 1. Then the truth for t can be estimated as the
choice with the highest probability, i.e., argmax

1i`

p

i

.

Multiple-Choice Task. Since a task is possible to have
multiple choices as truth, we can apply the above method
that deals with single-choice task to multiple choice task,
by decomposing each multiple-choice task (with ` choices)
into a set of ` single-choice tasks, where each one addresses
whether a specific choice is true or not. Then we can esti-
mate the truth of a multiple-choice task as all the choices
that are estimated as the truth in each single-choice task.

Fill-in-blank Task. It is hard to model a worker’s quality
in such kind of open task. Thus we do not model a worker’s
quality in this task. Alternatively, given workers’ answers
for a task, we estimate its truth by considering which an-
swer is the “pivot”, i.e., closest to all workers’ answers. To
implement this idea, we first define the similarity between
two answers, i.e., sim(a, a0), which we resort to string sim-
ilarity measures [60], e.g., Jaccard, Edit Distance, Cosine.
Then for each answer a, we compute its aggregated simi-
larity w.r.t. other answers, i.e., s

a

=
P

(w,a

0
)2V

t

sim(a, a0).
Finally we estimate the truth of t as the answer that attains
the highest aggregated similarity, i.e., argmax

(⇤,a)2V

t

s

a

.

Collection Task. Collection tasks can be implemented
using fill-in-blank tasks, and we perform quality control with
two phases: (1) while workers type in the user interface, we
provide the auto-completion feature, which gives suggestions
as the workers may type. This may help workers know what
similar information has been recorded in CDB by other work-
ers. (2) After workers give inputs to CDB, we can either
leverage existing machine-based [13] or crowd-based [26, 56,
55, 54] entity resolution methods to do disambiguation.

5.3.2 Task Assignment
When a worker comes and requests for new tasks, existing

platforms provide interfaces for programmers to dynamically
assign tasks to the coming worker. For example, AMT [2]
identifies each worker via a string of 14-length characters,
and it provides the functionality of External Questions [6],
that is, we can embed the web page (i.e., HTML) generated
by our server into AMT [2]; when a worker comes, AMT
passes the unique worker ID to our sever, which dynamically
assigns a set of tasks to the coming worker. Following this
way, we can record the worker’s information in CDB, and
when the worker comes again, CDB leverages the worker’s
information and dynamically assigns a set of (say k) tasks
to the worker, such that the quality will be improved the
most. Note that there are existing works [65, 30, 22, 30, 47,
31, 12] that study task assignment. However, they mainly
focus on a limited number of task types, and we are more
general in handling multiple task types, as shown below.

Single-Choice Task. Recall that we model each worker
w as q

w

2 [0, 1], and we already store the worker’s esti-
mated quality if the worker answered tasks before (for a
new worker, we can set its quality as the default value, say
0.7). Then when a worker w comes with quality q

w

, our ob-
jective is to “assign a set of k tasks to worker w, such that
the quality can be improved the most after the worker w an-
swers the assigned tasks”. However, there are two problems:
(i) we do not know the ground truth of each task, thus the
quality is hard to know; (ii) we have no idea about how the

worker can answer each task. We first focus on assigning
k = 1 task, and then generalize it to k > 1 tasks.
For problem (i), despite the unknown ground truth, we

obtain a distribution of choices being true for each task t

based on workers’ answers, i.e., ~p = (p
1

, p

2

, . . . , p

`

). Intu-
itively, the more consistent the distribution is (e.g., p

i

ap-
proximates 1 while others p

j

approximates 0 for j 6= i),
the higher the quality will be achieved. In order to cap-
ture such consistency, we use the entropy function [51], i.e.,
H(~p) = �P

`

i=1

p

i

· log p
i

, which quantifies the amount of
inconsistency, i.e., the lower H(~p) is, the more consistent ~p

is, the higher quality will be achieved. For problem (ii), we
can leverage the coming worker w’s quality and the task t’s
distribution ~p to estimate the probability that the i-th choice
will be answered by w, i.e., p

i

·q
w

+(1�p

i

)· 1�q

w

`�1

. Then after
worker w answers task t with the i-th choice, the distribution

~p becomes ~

p

0 = (
p1· 1�q

w

`�1

�

, . . . ,

p

i

·q
w

�

, . . . ,

p

`

· 1�q

w

`�1

�

), where �
is the normalization factor, i.e., � = p

i

· q
w

+(1�p

i

) · 1�q

w

`�1

.
Based on the above solutions to problems (i) and (ii), we

now can estimate the expected quality of improvement (or
the expected decrease of inconsistency) if worker w answers
task t, denoted as I(t), which is shown below:

I(t) = H(~p)�
X

`

i=1

⇥
p
i

· q
w

+ (1� p
i

) · 1� q
w

`� 1

⇤ · H(~p0). (3)

Thus we can select the task with the highest improvement
in quality, i.e., argmax

t2T

I(t). In the above approach, we
focus on assigning k = 1 task. It can be generalized to as-
sign multiple (k > 1) tasks, where we can adopt a greedy
approach, which selects top-k tasks with the highest im-
provement in quality I(t).
Multiple-Choice Task. Similar to the method in truth in-
ference, we can decompose each multiple choice task (with
` choices) into a set of ` single-choice tasks, where each one
asks whether the i-th choice is correct or not. In this way, we
can define the quality (or consistency) of the multiple-choice
task as the summation of all the consistencies (captured by
entropy) in each decomposed single-choice task. Then fol-
lowing the above approach for single-choice task, we can
generalize it to assigning top k tasks to the coming worker.
Fill-in-blank Task. As it is hard to model a worker’s qual-
ity in answering fill-in-blank task, we define the quality in
each task as the consistency of workers’ answers for the task.
To be specific, suppose task t obtains a set of answers V

t

,
then we define the consistency of task t, i.e., C(t), as the
normalized similarities of all its obtained pairwise answers:

C(t) =
X

{(w,a)2V

t

}^{(w0
,a

0
)2V

t

}^{w 6=w

0}

sim(a, a0)
�|V

t

|
2

� . (4)

Then we can select the task t with the least consistency, i.e.,
argmin

t2T

C(t). We can also generalize it to selecting k > 1
tasks, by assigning top-k tasks with the least consistencies.
Collection Task. To assign collection tasks, there are two
factors to consider: (1) although we have developed au-
tocomplete features, we have to disambiguate workers’ an-
swers, which we refer to the entity resolution technique [56];
(2) we also need to estimate the cardinality of results as
workers gradually give answers, which we refer to the tech-
niques that address crowd enumeration queries [52]. Sup-
pose the number of distinct tuples collected is denoted as
M [56], and the number of estimated cardinality is denoted
as N [52], then the completeness score is defined as N�M

N

,
where we assign the collection tasks with the least complete-
ness score, i.e., the tasks that are far from complete.
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where 1{·} is an indicator function, which returns 1 if the
argument is true; 0, otherwise. For example, 1{5=3} = 0 and
1{5=5} = 1. Then the truth for t can be estimated as the
choice with the highest probability, i.e., argmax

1i`

p

i

.

Multiple-Choice Task. Since a task is possible to have
multiple choices as truth, we can apply the above method
that deals with single-choice task to multiple choice task,
by decomposing each multiple-choice task (with ` choices)
into a set of ` single-choice tasks, where each one addresses
whether a specific choice is true or not. Then we can esti-
mate the truth of a multiple-choice task as all the choices
that are estimated as the truth in each single-choice task.

Fill-in-blank Task. It is hard to model a worker’s quality
in such kind of open task. Thus we do not model a worker’s
quality in this task. Alternatively, given workers’ answers
for a task, we estimate its truth by considering which an-
swer is the “pivot”, i.e., closest to all workers’ answers. To
implement this idea, we first define the similarity between
two answers, i.e., sim(a, a0), which we resort to string sim-
ilarity measures [60], e.g., Jaccard, Edit Distance, Cosine.
Then for each answer a, we compute its aggregated simi-
larity w.r.t. other answers, i.e., s

a

=
P

(w,a

0
)2V

t

sim(a, a0).
Finally we estimate the truth of t as the answer that attains
the highest aggregated similarity, i.e., argmax

(⇤,a)2V

t

s

a

.

Collection Task. Collection tasks can be implemented
using fill-in-blank tasks, and we perform quality control with
two phases: (1) while workers type in the user interface, we
provide the auto-completion feature, which gives suggestions
as the workers may type. This may help workers know what
similar information has been recorded in CDB by other work-
ers. (2) After workers give inputs to CDB, we can either
leverage existing machine-based [13] or crowd-based [26, 56,
55, 54] entity resolution methods to do disambiguation.

5.3.2 Task Assignment
When a worker comes and requests for new tasks, existing

platforms provide interfaces for programmers to dynamically
assign tasks to the coming worker. For example, AMT [2]
identifies each worker via a string of 14-length characters,
and it provides the functionality of External Questions [6],
that is, we can embed the web page (i.e., HTML) generated
by our server into AMT [2]; when a worker comes, AMT
passes the unique worker ID to our sever, which dynamically
assigns a set of tasks to the coming worker. Following this
way, we can record the worker’s information in CDB, and
when the worker comes again, CDB leverages the worker’s
information and dynamically assigns a set of (say k) tasks
to the worker, such that the quality will be improved the
most. Note that there are existing works [65, 30, 22, 30, 47,
31, 12] that study task assignment. However, they mainly
focus on a limited number of task types, and we are more
general in handling multiple task types, as shown below.

Single-Choice Task. Recall that we model each worker
w as q

w

2 [0, 1], and we already store the worker’s esti-
mated quality if the worker answered tasks before (for a
new worker, we can set its quality as the default value, say
0.7). Then when a worker w comes with quality q

w

, our ob-
jective is to “assign a set of k tasks to worker w, such that
the quality can be improved the most after the worker w an-
swers the assigned tasks”. However, there are two problems:
(i) we do not know the ground truth of each task, thus the
quality is hard to know; (ii) we have no idea about how the

worker can answer each task. We first focus on assigning
k = 1 task, and then generalize it to k > 1 tasks.
For problem (i), despite the unknown ground truth, we

obtain a distribution of choices being true for each task t

based on workers’ answers, i.e., ~p = (p
1

, p

2

, . . . , p

`

). Intu-
itively, the more consistent the distribution is (e.g., p

i

ap-
proximates 1 while others p

j

approximates 0 for j 6= i),
the higher the quality will be achieved. In order to cap-
ture such consistency, we use the entropy function [51], i.e.,
H(~p) = �P

`

i=1

p

i

· log p
i

, which quantifies the amount of
inconsistency, i.e., the lower H(~p) is, the more consistent ~p

is, the higher quality will be achieved. For problem (ii), we
can leverage the coming worker w’s quality and the task t’s
distribution ~p to estimate the probability that the i-th choice
will be answered by w, i.e., p

i

·q
w

+(1�p

i

)· 1�q

w

`�1

. Then after
worker w answers task t with the i-th choice, the distribution

~p becomes ~

p

0 = (
p1· 1�q

w

`�1

�

, . . . ,

p

i

·q
w

�

, . . . ,

p

`

· 1�q

w

`�1

�

), where �
is the normalization factor, i.e., � = p

i

· q
w

+(1�p

i

) · 1�q

w

`�1

.
Based on the above solutions to problems (i) and (ii), we

now can estimate the expected quality of improvement (or
the expected decrease of inconsistency) if worker w answers
task t, denoted as I(t), which is shown below:

I(t) = H(~p)�
X

`

i=1

⇥
p
i

· q
w

+ (1� p
i

) · 1� q
w

`� 1

⇤ · H(~p0). (3)

Thus we can select the task with the highest improvement
in quality, i.e., argmax

t2T

I(t). In the above approach, we
focus on assigning k = 1 task. It can be generalized to as-
sign multiple (k > 1) tasks, where we can adopt a greedy
approach, which selects top-k tasks with the highest im-
provement in quality I(t).
Multiple-Choice Task. Similar to the method in truth in-
ference, we can decompose each multiple choice task (with
` choices) into a set of ` single-choice tasks, where each one
asks whether the i-th choice is correct or not. In this way, we
can define the quality (or consistency) of the multiple-choice
task as the summation of all the consistencies (captured by
entropy) in each decomposed single-choice task. Then fol-
lowing the above approach for single-choice task, we can
generalize it to assigning top k tasks to the coming worker.
Fill-in-blank Task. As it is hard to model a worker’s qual-
ity in answering fill-in-blank task, we define the quality in
each task as the consistency of workers’ answers for the task.
To be specific, suppose task t obtains a set of answers V

t

,
then we define the consistency of task t, i.e., C(t), as the
normalized similarities of all its obtained pairwise answers:

C(t) =
X

{(w,a)2V

t

}^{(w0
,a

0
)2V

t

}^{w 6=w

0}

sim(a, a0)
�|V

t

|
2

� . (4)

Then we can select the task t with the least consistency, i.e.,
argmin

t2T

C(t). We can also generalize it to selecting k > 1
tasks, by assigning top-k tasks with the least consistencies.
Collection Task. To assign collection tasks, there are two
factors to consider: (1) although we have developed au-
tocomplete features, we have to disambiguate workers’ an-
swers, which we refer to the entity resolution technique [56];
(2) we also need to estimate the cardinality of results as
workers gradually give answers, which we refer to the tech-
niques that address crowd enumeration queries [52]. Sup-
pose the number of distinct tuples collected is denoted as
M [56], and the number of estimated cardinality is denoted
as N [52], then the completeness score is defined as N�M

N

,
where we assign the collection tasks with the least complete-
ness score, i.e., the tasks that are far from complete.
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Figure 2: CDB Framework
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [42], Deco [45], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [45, 42, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for di↵erent
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for di↵erent orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-o↵s among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-
supported × × × × √

Task
Deployment Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

etc., is not desirable. As shown in Figure 3, most of the exist-
ing systems only considered monetary cost in their optimiza-
tion. The only system considering latency is CrowdOP [23]
that optimized latency by simply considering data depen-
dencies. In contrast, our CDB system develops techniques
based on data inference to reduce latency in a more e↵ec-
tive way. Considering the quality concern, existing studies
leverage existing majority voting or its variants, which is
only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Crowd-powered operators. We examine the supported
crowd-powered operators in the existing systems, as shown
in Figure 3. CrowdDB [24] covered all of the crowd-powered
operators except GROUP. Although GROUP can be trivially im-
plemented by self-join, this simple implementation is not ef-
fective and missing optimization chances like using transitiv-
ity. Qurk [42] focused on crowd-powered SELECT, JOIN, and
ORDER. Deco [45] considered more on FILL and COLLECT (i.e.,
the fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL
operators. Compared with these systems, CDB supports all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems usually published
human-intelligence tasks (HITs) on one individual crowd-
sourcing market, such as Amazon Mechanical Turk (AMT) [2],
and thus the results may be a↵ected by the bias of the mar-
ket. In contrast, CDB has the flexibility of cross-market HITs
deployment by simultaneously publishing HITs to AMT [2],
CrowdFlower [3], etc.
We discuss more related works (e.g., quality control) in

Appendix E.

3. CROWD SQL IN CDB: CQL
This section presents CQL, an extended SQL that supports

management of crowdsourcing data in our CDB system. CQL
provides a declarative programming interface for requesters
to define the crowdsourced data and invoke crowd-powered
manipulations over the data. This section highlights the
di↵erence between CQL and declarative languages of existing
systems CrowdDB [24], Qurk [42], Deco [45], and Crow-
dOP [23]. The details of CQL are introduced in Appendix A.
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Lessons Learned
pHuman is important in data integration
pMachine step

– Rules are important
– Require high-quality examples

pCrowd step
– Crowd is double-edged sword

• high quality for easy tasks
• low quality for hard tasks

– Inference is important
• Can reduce the cost significantly
• But may sacrifice quality
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Thank You!

All the codes are open-sourced at 
https://github.com/TsinghuaDatabaseGroup/ 


