
Crowdsourced Selection on Multi-Attribute Data
Xueping Weng, Guoliang Li, Huiqi Hu, Jianhua Feng

Department of Computer Science, Tsinghua University

wxp15@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn, hqhu@sei.ecnu.edu.cn, fengjh@tsinghua.edu.cn

ABSTRACT
Crowdsourced selection asks the crowd to select entities that sat-

isfy a query condition, e.g., selecting the photos of people wearing

sunglasses from a given set of photos. Existing studies focus on a

single query predicate and in this paper we study the crowdsourced

selection problem on multi-attribute data, e.g., selecting the female

photos with dark eyes and wearing sunglasses. A straightforward

method asks the crowd to answer every entity by checking every

predicate in the query. Obviously, this method involves huge mon-

etary cost. Instead, we can select an optimized predicate order and

ask the crowd to answer the entities following the order. Since

if an entity does not satisfy a predicate, we can prune this entity

without needing to ask other predicates and thus this method can

reduce the cost. There are two challenges in finding the optimized

predicate order. The first is how to detect the predicate order and

the second is to capture correlation among different predicates. To

address this problem, we propose predicate order based framework

to reduce monetary cost. Firstly, we define an expectation tree to

store selectivities on predicates and estimate the best predicate

order. In each iteration, we estimate the best predicate order from

the expectation tree, and then choose a predicate as a question to

ask the crowd. After getting the result of the current predicate, we

choose next predicate to ask until we get the result. We will update

the expectation tree using the answer obtained from the crowd and

continue to the next iteration. We also study the problem of an-

swering multiple queries simultaneously, and reduce its cost using

the correlation between queries. Finally, we propose a confidence

based method to improve the quality. The experiment result shows

that our predicate order based algorithm is effective and can reduce

cost significantly compared with baseline approaches.

1 INTRODUCTION
Crowdsourced selection aims to find entities that satisfy a given

query condition. For example, consider the 8 entities in Figure 1.

Given a queryQ which aims to findmale people withwhite skin and

wearing sunglasses, entities e2 and e4 are the results while e1, e3, e5,

e6, e7, e8 are not because they do not satisfy all the query predicates.

Crowdsourced selection is widely used in many applications, such

as image search and entity matching.

As the machine-based algorithm cannot achieve high quality,

crowdsourced selection solutions are widely studied that leverage

the crowd’s ability to solve this problem [4, 17, 20, 24]. Parameswaran

et al.[20] focused on the single-predicate query selection problem.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00

https://doi.org/10.1145/3132847.3132891

To support multi-predicate query, it needs to enumerate every pred-

icate and involves huge cost. Marcus et al. [17] proposed sample-

based methods to estimate the selectivity of predicates and Fan et

al. [4] proposed a sampling method to minimize the cost. However,

the sampled-based method has several weaknesses. First, if we use

a low sample rate, it will introduce high errors. Second, if we use a

high sample rate, it takes high monetary cost for sampling. Third,

they only consider the independent selectivities and do not consider

the correlation between different predicates.

To address these limitations, we propose a predicate order based

crowdsourced selection framework, called Pows, which can signifi-

cantly reduce the monetary cost while keeping high quality. The

basic idea is that we define a predicate order on query predicates

and use this order to check whether an entity meets predicates by

asking as few questions as possible. Particularly, we first define a

predicate order, and then select predicates in order. Given an entity,

we ask workers to check whether this entity meets a predicate. (1) If

workers give No, we do not need check other predicates and label it

as NEG. (2) If workers give Yes, we keep checking the next predicate
and add it into result set if all predicates are Yes. We build a predi-

cate order expectation tree to compute the conditional selectivities

between predicates. Then in each iteration, we choose the predicate

order with minimal estimated cost as the current predicate order

and use it check an entity. After we get answers from workers, we

update selectivities on the expectation tree. Thus our goal is to

estimate selectivities as precisely as possible and find the optimal

order in each iteration. Because the size of possible predicates order

is too large, we prune the tree with limited height and propose

parallel algorithm to reduce latency. We extend our framework

and expectation tree to answer multiple queries simultaneously.

As workers and the framework may introduce errors, we develop

confidence based error tolerance method to tolerate errors.

To summarize, we make the following contributions in this paper.

(1) We propose a predicate-order based crowdsourced selection

framework. We define a predicate order on query predicates and

utilize it to check entities which can reduce monetary cost. (2) We

build an expectation tree based on the predicates and utilize this

tree to compute predicates’ conditional selectivities. We devise effi-

cient algorithms to estimate the expectation of predicates orders

and choose the best estimate predicates order. (3) We extend the

expectation tree to answer multiple crowdsourced selection queries

effectively. (4) We develop a confidence-based error-tolerance algo-

rithm based on Bayes voting to tolerate errors. (5) We conduct ex-

periments using real-world dataset on CrowdFlower. Experimental

results show that our method saves monetary cost and significantly

outperforms state-of-the-art approaches.

2 PRELIMINARIES
2.1 Problem Formulation
Data Model. Our work focuses on finding all entities that meet

a given query from a set of entities E = {e1, e2, ..., en }. Every en-

tity e ∈ E has k attributes. We denote its attribute set as A =

{A1,A2, ...,Ak }, whereAi (e) denotes the i-th attribute’s value of

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

307

https://doi.org/10.1145/3132847.3132891

{straight, wavy, curvy}

A1 : gender

A2 : race

A3 : glasses

A4 : has necktie

A5 : hair style

A6 : has hat

{male, female}

{white, black, asian}

{eyeglasses, sunglasses, no}

{true, false}

{true, false}

e1 e2 e3 e4

e5 e6 e7 e8

e2 e4

e6

Q2 =

{
A1=female, A2=white,

A3=no, A5=wavy

}
Q2 =

{
A1=female, A2=white,

A3=no, A5=wavy

}

Q1 =

{
A1=male, A2=white,

A3=sunglasses, A4=false

}
Q1 =

{
A1=male, A2=white,

A3=sunglasses, A4=false

}

Q3 =

{
A1=male, A2=black,

A3=eyeglasses, A6=true

}
Q3 =

{
A1=male, A2=black,

A3=eyeglasses, A6=true

}

Figure 1: Eight Entities In LFW Dataset.

entity e . We consider crowdsourced selection query Q that consists

of a set of predicates. Each predicate pi = (Ai = vi) is a pair of
attribute and value, where Ai is the attribute and vi is the value.
We model a crowdsourced selection query as a set of predicates

Q = {p1,p2, ...,pm }.

Definition 2.1 (Crowdsourced Selection Query). Given a set of

entities E and a multi-predicate query Q = {A1 = v1, A2 = v2,...,

Am = vm }. The crowdsourced selection problem aims to find the

result set R ⊆ Ewith the minimum cost C, where each entity e ∈ R
satisfies Q, and those entities e < R do not satisfy the query.

For example, Figure 1 shows 8 entities and 3 queries Q1, Q2,

Q3. Entities e2 and e4 meet all the predicates in Q1, and entities

e1, e3, e5, e6, e7, e8 cannot meet them. Thus the result set R is

{e2, e4}. We label those entities in R as POS, and label others as NEG.
Crowdsourced selection problem asks questions to the crowd for

detecting whether each entity could meet a predicate. As we need

to pay the workers for answering a question, the objective is to

reduce the number of questions while keeping high quality.

Definition 2.2 (Multiple Selection Query). Given a set of selection

queries
¯Q = {Q1,Q2, ...,Qt } and an entity set E, it aims to find

result set Ri for each query Qi .

For example, the result sets for queries Q1, Q2 and Q3 in Figure 1

are R1 = {e2, e4}, R2 = {e6} and R3 = {}. For multiple selection

queries, we aim to share the computation among these queries.

For a crowdsourced selection query, we ask workers to determine

whether an entity ei meets a predicate pi and then label ei as POS
or NEG based on collected answers. If there is at least a predicate

that entity ei cannot meet, we will label ei as NEG. So we aim to

resolve the entity with the minimum number of questions.

A straightforward approach for selection query is to check every

predicate and it takes a lot of monetary cost. For query Q1 and

entity e3, it requires 4 questions. Furthermore, there is no need to

check all predicates since we could stop checking when finding a

NEG predicate. The key point is how to find the optimal predicate

checking order which has significant influence on questions. If

we first check A4 = sunglasses, we will get No result and stop

without checking remained predicates. If we first check “A1 =

male”, it needs to check other predicates. For different predicate

orders, the worst case asks 3 questions and the optimal cost is 1.

2.2 Related Works
2.2.1 CrowdsourcedQuery Optimization. Parameswaran et al.

[20] studied the crowdsourced selection query with a single pred-

icate and proposed heuristics to identify the result with the min-

imum expected cost. They assumed that each worker had false

positive error rate e0 and false negative rate e1 independently, and

aimed to find a strategy with minimum expected cost C under the

error threshold τ and budget thresholdm for each single item. They

discussed their deterministic strategy and probabilistic strategy.

Marcus et al.[17] proposed the basic idea of selectivities estimation

on crowdsourcing, and they set the frequency as the selectivity

using sampling theory. Sarma et al. [24] aimed to find k items sat-

isfying a given boolean predicate from a set of items to optimize

the monetary-cost and latency. They denoted the latency T as the

number of phases and cost C as the questions’ number to find those

k items. In the algorithm process, they maintained a state of knowl-

edge ε to determine the current state and determined how many

questions should be asked in the next phase. Finally, they proposed

OptSeq(a cost-optimal algorithm) and UncOptCost(a cost-optimal,

phase-optimal algorithm) based on the prior probability of selectiv-

ity and error rate. Fan et al.[4] focused on the general crowd query

optimization including selection query and join query. In selection

query, they proposed CSelect algorithm to minimize the cost and

budget-based latency. If without the requirements of latency, they

estimated the selectivities using sample method and sorted those

conditions. Hellerstein et al.[9] proved that sorting those predicates

based on selectivities using rank is the optimal way for selection

query. Different from existing works, we optimize selection queries

with multiple predicates. We compared with existing algorithms

and our method significantly outperforms them.

2.2.2 Other Related Work. There are several crowdsourced dat-

abases developed, like Deco[21–23] from Stanford, CrowdDB[7]

from UC Berkeley and Qurk [19] from MIT and CDB [14] from

Tsinghua. They provide SQL-like query operation and declarative

interfaces, which can implement and optimize a lot of database

operations, like filter, join etc. There are also a lot work on the

crowdsourced database operation, like crowdsourcing selection[4,

14, 17, 20, 24], crowdsourced join[1, 14, 18, 26], crowdsourced sort

or top-k[8, 18, 25, 27]. They focus on implementing those opera-

tions based on monetary-cost and latency. Some works on worker

quality, accuracy[3, 6, 10, 11, 13, 20] and spammer detection[17] are

proposed to improve the quality. Most of their works build model

for workers and analyze the workers’ quality and confidence. Some

of them propose the task assignment method to improve results’

quality [1, 5, 15, 27–30].

3 PREDICATE-ORDER-BASED-FRAMEWORK
We firstly define predicate order (Section 3.1) and then propose

Pows-S framework (Section 3.2). We show how to update the expec-

tation tree (Section 3.3), and estimate the optimal order (Section 3.4).

3.1 Predicate Order
We formally define the predicate order and use it to check entities.

Predicate Order. Given a crowdsourced selection query repre-

sented as Q = {p1,p2, ...,pm }, we denote a permutation of predi-

cates in Q as a predicate order π , where πi = ⟨p
1

i ,p
2

i , ...,p
m
i ⟩.

Conditional Selectivity.Given a predicate orderπi = ⟨p1

i ,p
2

i , ...,p
m
i ⟩,

we denote s
j
i as the conditional selectivity of predicate p

j
i , which is

the probability that an entity meets p
j
i if it also meets all previous

predicates. s
j
i can be represented as:

s
j
i = Pr(p

j
i |p

1

i ,p
2

i , ...,p
j−1

i) (1)

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

308

For example, consider the query Q1 in Figure1. Its predicate set is

{p1,p2,p3,p4}, both permutation ⟨p4,p2,p3,p1⟩ and ⟨p3,p1,p2,p4⟩

are two possible predicate orders of Q.

Predicate Order Cost. Given an entity e and a predicate order πi ,
we denote the predicate order cost as the number of predicates need

to check by πi , which is represented as Cπi (e).
Optimal Predicate Order. Given an entity e and a query Q, the

optimal predicate order π∗ is the order such that Cπ ∗ (e) ≤ Cπi (e)
holds for any other order πi .

For example, consider two predicate orders π1 = ⟨p3,p2,p4,p1⟩,

π2 = ⟨p1,p2,p4,p3⟩. For entity e5, if we use π1 to check it, we

will get No result from workers when checking the first predicate

A3 = sunglasses and label e5 as NEG, thus the cost is Cπ1
(e5) = 1.

If we use π2 to check e5, we will get result ⟨Yes, Yes, No⟩ for first
3 predicates thus the cost is Cπ2

(e5) = 3. Since π1 only needs 1

question (the minimal cost), it is an optimal predicate order for e5.

Estimated Cost of Predicate Order.Given a predicate order πi =
⟨p1

i ,p
2

i , ...,p
m
i ⟩ and each predicate p

j
i ’s selectivity s

j
i , let’s denote

¯Cπi (ei) as the estimated cost if we take order πi to check entity ei .
If we check an entity with the predicate p1

i , it has the probability

1 − s1

i to get No result and we can skip checking, and probability s1

i
to get Yes. For j-th predicate (j ,m), if all previous predicates get

Yes and the j-th predicate gets No, we exactly check j and only j

predicates. Thus the probability is (1 − s
j
i) ∗
∏j−1

k=1
ski . For the last

predicate (j =m), whatever result it will get from workers, we have

checked j predicate and should stop. The probability is

∏m−1

k=1
ski .

Lemma 3.1. The probability we need to check j and only j predicates
with order πi , that is the cost Cπi = j can be computed as:

Pr(Cπi = j) =



(1 − s
j
i) ∗
∏j−1

k=1
ski j < m∏m−1

k=1
ski j =m

(2)

Based on Lemma 3.1, we could compute estimated cost
¯Cπi (e)

of predicate order πi as the expectation of cost.

¯Cπi (e) =
m−1∑
j=1

(j ∗ (1 − s
j
i) ∗

j−1∏
k=1

ski) +m ∗
m−1∏
k=1

ski (3)

Optimal Estimated Predicate Order. Given a predicate order

πi = ⟨p
1

i ,p
2

i , ...,p
m
i ⟩ and every predicate p

j
i ’s conditional selectivity,

let’s denote πo as the optimal estimated predicate order, where

¯Cπ o (e) ≤ ¯Cπi (e) holds for any other order πi .

3.2 Predicate Order Based Algorithm
To choose the optimal predicate order, a native way is to take a

random order in each iteration whom we name as RDM. A further

approach is CSEL[4], which samples a part of entities and sorts

predicates by their selectivities in descending order. Those two

methods both have limitations: the first cannot use selectivities and

the second has large sampling cost. Thus we propose a predicate

order based framework to estimate the optimal order iteratively.

3.2.1 E-Tree. Wemodel the relationship of predicates and their

selectivities as a multiway tree model.

Definition 3.2 (Expectation Tree). Given a query Q, we build a

multiway tree {V, E} named E-Tree.

Node. Each nodev
j
i in E-Tree stores a predicate p

j
i with two fields:

(1) n̂
j
i is the number of times p

j
i has been answered by workers;

(2) n̄
j
i is the number of times p

j
i is labeled as Yes by workers;

Algorithm 1: A Predicate-Order Based Framework

Input: E = {e1, e2, ..., en }, Q = {p1,p2, ...,pm }
Output: Results set R
Construct an empty E-Tree T ;1

for every e ∈ E do2

Estimate the optimal predicate order πo ;3

for every p ji ∈ π
o do4

if majority workers vote it as No then5

Label e as NEG and Break;6

if all predicates are labeled as Yes then7

Label e as POS and put into R;8

Extend and update E-Tree T ;9

return R;10

Edge. For every possible adjoining predicates pair p
j
i and p

j−1

i in

predicate order πi , there is a directed edge e
j
i from v

j−1

i to v
j
i .

Let f
j
i =

n̄ ji
n̂ ji

denote the frequency that p
j
i is labeled as Yes when

all its previous predicates are labeled as Yes. With the growth of n̂
j
i ,

f
j
i is asymptotically close to s

j
i . So we use f

j
i as the estimation of

conditional selectivity s
j
i . Figure 2 shows an example of E-Tree for

query Q1, which is not a complete tree since we dynamically build

it to reduce space. Every node stores a predicate of p1, p2, p3 and p4

and every path from root to leaf is a prefix of predicate order based

on definition of E-Tree.

3.2.2 Pows-S Framework. Based on the definition of E-Tree,
we can estimate a predicate’s conditional selectivity from it. Then

we could compute the estimated cost
¯Cπi if given a predicate order

πi , whom we will use to estimate optimal predicate order πo . So we
propose our Pows-S framework. In each iteration of this framework,

we fetch an entity e and estimate the optimal order πo to check

entity, and then update the E-Tree with results from workers.

Algorithm 1 shows the pseudo code for Pows-S framework. It

firstly constructs an empty E-Tree T (line 1). Then for every entity

e ∈ E, it will estimate the optimal order πo (line 3). In the next step,

it takes predicate from πo one by one to ask workers to answer it.

(1) If majority workers vote it as No, we do not need to check

remained predicates since we could label e as NEG now(line 6).

(2) If majority workers vote Yes, we check the next predicate.

After all predicates have been checked and we label it as POS
and put into result set R if all of them are labeled as Yes (line 7).

Then we take answers got from workers to update E-Tree T
(line 9). Obviously, Pows-S framework can reduce the cost as we

always choose the current optimal predicate order. For example,

considering the example in Figure 1, the worst case needs to ask

3 + 4 + 3 + 4 + 3+3 + 2 + 2 = 24 questions to get the result set. But

in the optimal case, if we always check e with the optimal order,

we only need to check a predicate for those negative entities and

four predicates for positive entities. Thus the number of questions

are 6 ∗ 1 + 2 ∗ 4 = 14. In the next subsection, we will demonstrate

how to construct E-Tree and estimate the optimal order.

3.3 E-Tree Construction and Updating
A straightforward way constructs a complete E-Tree with all pos-

sible predicate orders before the iterations begin. Since some pred-

icate orders will not be updated in early iterations, there is no

need to maintain them at the beginning. Thus we take the dynamic

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

309

Algorithm 2: E-Tree Extending and Updating

Input: E-Tree T , entity result Lπ o
e

Compute the predicate set Py and Pn ;1

Generate S
p
π from Py and Pn ;2

for each predicate order prefix πpi in Spπ do3

Set current node vc as root;4

for every p ji in πi do5

if p ji is not in vc ’s children then6

Create node with p
j
i and append to vc ;7

Update vc as current node;8

if vc has not been updated then9

Increase n̂
j
i by 1;10

if Lπ o
e, j is Yes then Increase n̄

j
i by 1;11

construction strategy and extend the predicate orders only when

needed. In each iteration, we generate potential predicate orders

from acquired answers and append them into E-Tree dynamically.

Entity Result. Given a predicate order πi and an entity e , we use
L
πi
e to denote the entity result got from workers, which can be rep-

resented as L
πi
e = ⟨L

πi
e,1,L

πi
e,2, ...,L

πi
e,m⟩. Each element L

πi
e, j is an

answer or Unknown which means we haven’t checked it. As the do-

main of predicate is {Yes, No}, thusLπi
e, j is one of {Yes, No, Unknown}.

For example, if πo is ⟨p2,p4,p1,p3⟩ and we try to check entity

e3, the entity result will be Lπ o
e3

= ⟨Yes, No, Unknown, Unknown⟩.

PredicateOrder Prefix.Given a predicate orderπi = ⟨p1

i ,p
2

i , ...,p
m
i ⟩,

we denote π
p
i = ⟨p

1

i ,p
2

i , ...,p
k
i ⟩ as the prefix of πi where 0 ≤ k ≤ m.

We generate the prefixes of potential predicate orders that meet

the definition of conditional selectivity from the entity result L
πi
e .

π
p
i is a potential predicate order prefix if it meets those two rules:

(1) First k − 1 predicates are Yes, Lπi
e, j = Yes for 1 ≤ j ≤ k − 1;

(2) The last predicate is Yes or No, Lπi
e,k = No or Yes;

We generate potential predicate order prefixes from L
πi
e , and

take S
p
π as the set of πp produced by L

πi
e . Let Py denote the max-

imum set where all predicates inside are Yes from L
πi
e , and Pn

denote the set where all predicates are No. Since we break checking

process once finding a No answer, Pn has a single predicate at most.

We generate S
p
π from Py and Pn by the following steps:

Step 1:Generate Py ’s permutations of length 1 to |Py | and put them

into S
p
π ;

Step 2: If Pn is empty, skip this step. Let’s take pn as the only

predicate in Pn . (2.1) For every π
p
i ∈ Py , append p

n
to its end; (2.2)

Put ⟨pn⟩ into S
p
π .

For instance, Py is {p2} and Pn is {p4} for L
π o
e3

. In the first step,

we get S
p
π = {⟨p2⟩}. Next, we append p4 to the end of ⟨p2⟩ and put

⟨p4⟩ into S
p
π . Finally, S

p
π is {⟨p4⟩ ⟨p2,p4⟩}.

Algorithm 2 shows the pseudo code for E-Tree extending and
updating. It firstly computes the positive predicate set Py and nega-

tive set Pn (line 1). Then it generates permutations S
p
π with Py and

Pn by the above rules(line 2). We enumerate predicate p
j
i in π

p
i and

traverse E-Tree from top to down. If the current predicate does

not exist, then we create it and append to its parent (line 7). If its

result in L
πi
e is Yes, we will both increase n̂ and n̄ by 1; otherwise,

only increase n̂ by 1(line 10).

Algorithm 3: Predicate Order Selection: Single
Input: E-Tree T , Query Q

Output: Optimal estimated predicate order πo

for every path in T do1

Generate predicate order prefix π
p
i from top to down;2

Append other predicates in Q to π
p
i to get πi ;3

if ¯Cπi <
¯Cπ o then Choose πi as π

o
;4

return πo5

Figure 2 shows the E-Tree extending and updating process with
Q1 as shown in Figure 1. At first, E-Tree is empty, so we generate

random predicate order ⟨p2,p4,p1,p3⟩ and choose entity e3. After

that, we get entity result L
πi
e = ⟨Yes, No, Unknown, Unknown⟩ and

generate Py , Pn as {p2} and {p4} respectively. Thus we generate

permutation set as S
p
π = {⟨p4⟩, ⟨p2,p4⟩}. Firstly we fetch ⟨p4⟩, since

the node with p4 is not a child of root, we create it and set n̂ as 1,

n̄ as 0. Next we take out ⟨p2,p4⟩, since there is no child p2 for root,
no child p4 for p2, we create both nodes with p2 and p4. Then we

update n̂ and n̄ both to 1 for p2 and only set n̂ for p4. The E-Tree
has 3 nodes after that (iteration-1 in Figure 2). Next we continue

the above process and update E-Tree step by step.

3.4 Predicate Order Estimation
3.4.1 Predicate Order Selection. In E-Tree, every root to leaf

path is a possible predicate order prefix. To estimate πo , we traverse

every π
p
i and compute its estimated cost. If the length of π

p
i is

smaller thanm, we randomly append remained predicates to it and

get πi . Since there is no selectivity for appended predicates, we set

it as default value 0.5. After computing its estimated cost
¯Cπi , we

choose the order with minimal estimated cost as πo . Algorithm 3

shows details of E-Tree order selection. For example, consider

E-Tree of iteration-4 in Figure 2. For the left most branch, i.e.,

π
p
i = ⟨p1,p2,p4⟩, we randomly append p3 to it and generate π1 as

⟨p1,p2,p4,p3⟩. Thus the estimated cost is
¯Cπ1
= (1 − 0.33) ∗ 1 +

0.33∗ (1−1.0) ∗2+0.33∗1.0∗ (1−0.0) ∗3+0.33∗1.0∗0.0∗4 = 1.66.

Similarly, we compute
¯Cπ2
= 1.33,

¯Cπ3
= 3,

¯Cπ4
= 2,

¯Cπ5
= 1.5

(number from left to right). Finally, we take π2 as π
o
as its cost is

minimum 1.33.

3.4.2 E-Tree Pruning. Based on Equation 3, those predicates in

the front of πi make more contribution to estimated cost than those

in the behind position. If given a query Q, it has O (m!) possible
predicate orders. The time and space complexity are unacceptable

whenm is large. So we limit the height of E-Tree as ℏ. Now E-Tree
has ℏ layers, and the maximal numbers of possible predicates order

is Aℏm . So the time complexity of E-Tree updating and predicates

order selection isO (Aℏm) ≈ O (mℏ). As we have |E| entities need to

check, Pows-S’s time complexity is O (|E| ∗mℏ). As ℏ is a trade-off
between cost and efficiency, we should choose ℏ carefully.

3.4.3 E-Tree Parallel. We parallel Pows-S by grouping entities.

Grouping. Let B denote a group of entities, where all entities will

be checked with the same predicate order πi . In each iteration,

after estimating the optimal predicate order πo and grouping |B|

entities, we ask workers to answer those predicates in πo in turn

and drop NEG entities until checking all predicates or B becomes

empty. Apparently, the size of B has influence on the numbers of

questions to ask. As in parallel algorithm, we estimate πo for a

set of entities together rather than one by one respectively. And

we update E-Tree after collecting a batch of answers rather than

updating it immediately. Thus we should choose the group size

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

310

0.0
0.01.00.01.0

0.51.00.33

0.00.0

1.0 0.50.0

0.0 0.0

0.01.0

0.0

0.00.01.01.0

0.331.00.5

0.00.0

init iteration-1 iteration-2 iteration-3 iteration-4

p4

p4

p4

p4

p4

p4

p4p1

p1 p1

p2

p2

p1 p1p4

p4

p4

〈p2, p4, p1, p3〉 〈p4, p1, p2, p3〉 〈p1, p2, p4, p3〉 〈p4, p1, p2, p3〉
× × × ×! ! ! !e3 e6 e5 e7

p2

p4

p4 p1

p1

p2

p1

p2

p4

p2 p4

〈p2, p4〉
〈p4〉

〈p4, p1〉

〈p1, p4〉
〈p2, p4〉

〈p2, p1, p4〉
〈p1, p2, p4〉

〈p1〉
〈p4〉

prefix of πo

! Yes

× No

×!

〈p4, p1〉
〈p1〉

0.0

Figure 2: E-Tree Extending and Updating Example.

|B| carefully. Since we estimate πo for every |B| entities, we could

merge those predicate orders’ prefix to update and update them

together. The time complexity can be reduced to O (|E |∗m
ℏ

|B |
).

4 MULTIPLE SELECTION QUERY
We extend our techniques to support multiple queries.

4.1 ME-Tree
A native approach is to apply Pows-S to every query independently.
However, there may be some duplicated attributes in queries, and

it checks them independently which needs to ask a lot of questions.

We name it as RAW. Another approach is to merge those predicates

with the same attribute into a predicate with multiple values and

check them together with a question. Similarly, how to choose

predicate order is important. A baseline approach is to choose the

predicate order randomly whom we name as RAND. However, it
cannot utilize selectivities to reduce cost. Thus we propose our

Pows-M to merge queries and estimate optimal predicate order.

Multi-Value Predicate. We extend our predicate as multi-value

predicate p̂ which can be represented asA = (v1,v2, ...,vm′). Each
vi is a possible value and we need workers to answer a single-choice
question to determine it. We denoteDp̂ as the possible values set of

p̂, that is the domain of p̂. To distinguish with multi-value predicate,

we name predicate in section 3 as single-value predicate.

Merged Query. We denote Q̂ as a merged query for
¯Q, which can

be represented as Q̂ = {p̂1, p̂2, ...}. The attribute of p̂i is a unique
attribute for all predicates of

¯Q, the domain set is a union of all

predicate values for attribute Ai .
Taking the multi-query examples in Figure 1, we have 3 queries

Q1, Q2 and Q3. Thus Q̂ can be represented as Q̂ = {A1 = (male,
female),A2 = (white, black),A3 = (no, eyeglasses, sunglasses),
A4 = false,A5 = wavy,A6 = true}.
Predicate Conflict. We denote predicate conflict on single-value

predicate pairs. Given a set of queries
¯Q and two single-value pred-

icate pi and pj which can be represented as Ai = vi , Aj = vj . If
all the queries containing pj also contain a predicate p′i with Ai
but vi , v

′
i , we call pj is conflicting with pi representing as pi ▷ pj .

Otherwise, pi ⋫ pj . For example, (A1 = male) ▷ (A5 = wavy)
since only Q2 includes (A5 = wavy) and there is a predicate

(A1 = female) in it which has opposite value with (A1 = male).
However, (A5 = wavy) ⋫ (A1 = male), as Q1 and Q3 contain

A1 = male but don’t contain a predicate with A5.

Definition 4.1 (Multiple Expectation Tree). Given a merged query

Q̂, we build a multi-way tree
¨T = {V, E} named ME-Tree.

Node. Every node v̈ ji in ¨T contains a single-value predicate p
j
i with

two fields:

(1) n̂
j
i is the number of times p

j
i has been answered;

(2) n̄
j
i is the number of times p

j
i has been labeled as Yes;

Edge. Given two nodes v̈
j
i and v̈

j′
i′ , if p

j
i ⋫ p

j′
i′ and v̈

j′
i′ is not an

ancestor of v̈
j
i , there is a directed edge from v̈

j
i to v̈

j′
i′ .

Similar with E-Tree, we take

n̄ ji
n̂ ji

to estimate the conditional

selectivity for predicate p
j
i . Based on ME-Tree, we could estimate

cost of multi-value predicate order and choose the optimal one

πo . For a given multi-value predicate p̂i , its truth must be in two

cases: (1) one value vi ∈ Dp̂i (2) None of them. Thus for every

predicate in merged query, we always append a other into domain

representing other values. Figure 3 shows the ME-Tree for queries

in Figure 1. We don’t show all nodes for illustration purpose. For

example, since (A3 = eyeglasses) conflicts with all remained

predicates but (A1 = male), (A2 = black), (A6 = true). Thus,
there are edges from (A3 = eyeglasses) to those 3 predicates.

4.2 Pows-M Framework
RAW and RAND have their limitations and cannot reduce cost ef-

fectively. To address the issue, we propose an effective Pows-M
framework to reduce the number of questions. Algorithm 4 shows

pseudo code for Pows-M. It firstly constructs ME-Tree. For each en-

tity e , it puts all queries into query set SQ and estimates the optimal

predicate order πo . When SQ is not empty and not all predicates

have been checked, we continuously pop predicate from πo and

determine whether or not to check. If all remained queries don’t

contain any attribute Aj of p̂
j
i , we skip it. Otherwise, we ask work-

ers to answer it and update L
πi
e . Then for every query Qi in SQ ,

we remove it from SQ if there is a predicate p
j′
i′ in Qi with the same

attribute but different value compared with p
j
i . If SQ is not empty

finally, we put e into corresponding result sets and update
¨T .

For example, assume we get e6 as the current entity and optimal

estimated predicate order πo = ⟨p̂3, p̂4, p̂1, p̂5, p̂2, p̂6⟩. At the begin-

ning, query set is SQ = {Q1,Q2,Q3}. We pop the first predicate p̂3

(A3 = (sunglasses, eyeglasses, no)) and get no from workers.

Since Q1 and Q3 have attributeA3 but different values, we remove

them and SQ is {Q2} now. In the next step, we pop p̂4 and no need

to check since SQ doesn’t contain a predicate with A4. Then we

continuously pop p̂1, p̂5, p̂2 and check them. Finally e6 passes all

predicates in Q2 and thus we put it into R2. We use 4 single-choice

questions to finish all queries. For RAW, it needs 1+1+4=6 questions
in the best case and 3+4+1=8 questions in the worst case. And

for RAND, it requires 6 questions to finish it (with predicate order

⟨p̂5, p̂6, p̂4, p̂2, p̂1, p̂3⟩). It’s obvious Pows-M can reduce cost.

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

311

…… ……

0.17
0.5

1.0 0.0

0.0 1.0 0.0

1.0 0.0

……

……

…… …… ……

0.83 0.0 0.0 0.25

0.75
0.5

1!"
0.0

0.67 0.25
0.75 0.0 0.0

1.0

0.0
1.0 0.0 1.0 0.0

A3 = n A3 = e A3 = s A3 = o

A1 = f A1 = o

A2 = w

A2 = o

A5 = w

A5 = o

A1 = m

A1 = o

A2 = b
A2 = o

A6 = t

A6 = o

A1 = m

A2 = oA1 = o

A2 = w A4 = f
A4 = o

A1 = f

A2 = w

A5 = w A5 = o A2 = w A5 = o

A2 = o
A5 = wA5 = o

A5 = w A5 = o A4 = f
0.00.00.00.0

Simplified Chars
f: female/false

m: male

w: white/wavy

b: black

n: no

e: eyeglasses

s: sunglasses

t: true

o: other

0.33

nodes starting with A3

Figure 3: ME-Tree Examples

A3 = s A3 = n A3 = e

A3 = o

A4 = f

A4 = o

A1 = o

A1 = m

A2 = w

A2 = o

A2 = w

A2 = o

A5 = w

A5 = o

A1 = o

A1 = m

A2 = b

A6 = t
A6 = o

A2 = o

A1 = o

A1 = f

πo = 〈P̂3, P̂4, P̂1, P̂5, P̂2, P̂6〉

0.17 0.83 0.0
0.0

1.0 0.0 0.0 0.0

0.0
0.0

0.0
0.0

1.0
0.0

1.0
0.0

1.0

0.0
1.0

1.0
0.0

e′6s checking order

e′5s checking order

Figure 4: Possible predicates checking orders.

Algorithm 4: Pows-M Framework

Input: E = {e1, e2, ..., en }, Q̂ = {Q1,Q2, ...,Qt }
Output: Result sets R̄
Construct ME-Tree ¨T ;1

for every e ∈ E do2

Init query set SQ from
¯Q;3

Estimate πo and init entity result Lπ o
e ;4

while there exist queries in SQ and p̂ ji ∈ π
o do5

Pop the first predicate p̂
j
i in πo ;6

if p̂ ji should be checked then7

Get workers’ result with p̂
j
i and update Lπ o

e ;8

Traverse SQ and pop conflicting queries with p̂
j
i ;9

if SQ is not empty then Put e to Ri with Qi ∈ SQ ;10

Update ME-Tree ¨T ;11

return R̄;12

Algorithm 5: ME-Tree Construction

Input: Merged Query Q̂

Output: ME-Tree ¨T

Create root node for
¨T ;1

Init queue Q as Q = {root};2

while Q is not empty do3

Pop current node v̈
j
i from Q;4

for every predicate p j
′

i′ in
¯Q do5

if p ji ⋫ p
j′
i′ and v̈

j′
i′ is not v̈

j
i ’s ancestor then6

Create node v̈
j′
i′ with p

j′
i′ as v̈

j
i ’s child;7

Push v̈
j′
i′ into Q;8

return ¨T9

4.3 ME-Tree Construction and Updating
4.3.1 ME-Tree Construction. Based on definition 4.1, we show

ME-Tree construction in Algorithm 5. It firstly inits the root and

puts into an empty queue (line 2). Then it pops every node in queue

and traverses queries to find non-conflicting predicates. After that, it

will create a new node for every predicate and put into queue.(line 7-

8). Figure 3 shows parts of ME-Tree for 3 example queries after

Algorithm 6: Predicate Order Selection: Mutiple

Input: ME-Tree ¨T , Queries
¯Q

Output: Optimal estimated predicate order πo

for every predicate order πi do1

Extract possible checking paths for πi ;2

for every path do3

Accumulate probability times questions to
¯Cπi ;4

if ¯Cπi is least then Choose πi as π
o
;5

return πo6

checking 8 entities and the subtree in red rectangle is the part with

A3 = (no, eyeglasses, sunglasses) as the first predicate.

4.3.2 ME-Tree Updating. Every value in entity result L
πi
e must

be in {di , other, unknown} where di ∈ Dp ji
. Thus we extract possi-

ble single predicate orders and update them. Let Pl denote the set
of labeled single predicates. We enumerate all possible any-length’s

predicate orders’ prefix and use them to update. For any prefix π
p
i ,

we update it in the samewaywith Pows-S. The only difference is we

always increase n̄
j
i and n̂

j
i by 1 without considering the result label.

For example, taking the predicate order ⟨p̂3, p̂4, p̂1, p̂5, p̂2, p̂6⟩ and e6,

result will be L
πi
e = ⟨no, unknown, female, wavy, white, unknown⟩.

Thus labeled predicate set is {A3 = no,A1 = female,A5 =

wavy,A2 = white}, and we enumerate all possible predicate orders’

prefix as Pl = {⟨A3 = no⟩, ..., ⟨A3 = no,A1 = female⟩, ..., ⟨A3 =

no,A1 = female,A5 = wavy⟩ ..., ⟨A3 = no,A1 = female,A5 =

wavy,A2 = white⟩}. Then we update every predicate order prefix

in Pl . We can limit the ME-Tree height to reduce the complexity.

4.4 Predicate Order Selection
Every path in ME-Tree is a possible real predicate checking order
since we may skip some predicates based on the answers. Taking

the predicate order πo = ⟨p̂3, p̂4, p̂1, p̂5, p̂2, p̂6⟩ as example. If we

get sunglasses from workers for p̂3, we will skip p̂4 because of

conflicting. Thus given a predicate order, we can enumerate all

possible paths of it and collect their probability and cost. After

that, we could use them to estimate the cost of predicate order

πi . Figure 4 shows all possible paths for πo . The path in green

rectangle is the real checking path for e6, and red rectangle is for

e5. Algorithm 6 shows how to estimate the optimal predicate order.

For every predicate order, it firstly extracts possible checking paths

from ME-Tree and computes its estimated cost. It finally chooses

the one with least cost as the optimal order. For example, path

⟨A3 = sunglasses,A4 = false,A1 = male,A2 = white⟩’s
probability is 0.17 ∗ 1.0 ∗ 1.0 ∗ 1.0 = 0.17 and needs 4 questions,

⟨A3 = no,A1 = female,A5 = wavy,A2 = white⟩’s probability
is 0.83 ∗ 1.0 ∗ 1.0 ∗ 1.0 = 0.83 and also needs 4 questions. The

probabilities of all remained paths are 0. The estimated cost for

order πo is 0.17*4+0.83*4=4.

5 TOLERATING ERRORS
In this section, we use Bayes Voting to aggregate answers based

on estimated workers’ weight in 5.1 and tolerate errors in 5.2.

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

312

[
0.6 0.4
0.45 0.55

][
0.65 0.35
0.3 0.7

][
0.75 0.25
0.2 0.8

] [
0.8 0.2
0.3 0.7

] [
0.8 0.2
0.15 0.85

]

w1 w2 w3 w4 w5

Yes NoYes Yes NoL
Workers

M.,P

Figure 5: Workers’ answers and quality matrix.
5.1 Bayes Voting Framework
We assign each predicate to multiple workers and aggregate their

answers. Traditional method uses Majority Voting to aggregate

answers, and we take Bayes Voting [16] to maximize the worker’s

quality utilization. In this paper, we leverage EM algorithm to com-

pute workers weight. We will reassign workers’ weight after finish-

ing a batch of entities represented as τe since it is time-consuming

process. To estimate workers’ weight distribution, we construct

confusion matrix for workers on different predicates.

Confusion Matrix. Confusion matrix is used to model a worker’s

quality for answering single-choice tasks. Suppose predicate p’s
domain set is Dp with size ζ , then the confusion matrixMw,p

is

an ζ × ζ matrix. InMw,p
, the i-th (1 ≤ i ≤ ζ) row, that is[

M
w,p
i,1 ,M

w,p
i,2 , ...,M

w,p
i,ζ

]
, represents the probability distribution

of workerw ’s possible answers when predicatep’s truth is i-th value

in Dp , that is di . Every element inM
w,p
i, j means the probability

that worker w gives j-th domain dj when the truth for task is di .
For example, the domain for crowd selection isDp = {Yes, No}. An

example confusion matrix isMw,p =

[
0.6 0.4
0.45 0.55

]
.M

w,p
1,2 = 0.4

means that if the truth for a task is Yes, the probability is 0.4 that

the worker gives answer No.
Suppose we get workers’ labels set for predicate p and represent

it as Lp = {li , l2, ..., lλ }. It means there are λ workers providing an-

swers for p. For every domain di ∈ Dp , the probability that ground-
truth is di can be computed as blow based on Bayes Voting.

Pr(di |Lp) =
Pr(Lp |di)∑

dj ∈Dp Pr(Lp |dj)
(4)

We have estimated worker’s weight as confusion matrixMw,p
,

therefore, the probability Pr(Lp |di) can be computed as:

Pr(Lp |di) =
∏
lk=di

M
w,p
i,i

∏
lk=dj

M
w,p
i, j (5)

Based on equations 4 and 5, we can compute the probability that

the truth is di from our observed answers Lp .
Figure 5 shows an example of workers’ confusion matrix and

their answers. The domain of predicate is Dp = {Yes, No}, and 5

workers provide answers. By Majority Voting, we aggregate the
truth is Yes since there are 3 Yes s of 5 answers. Based on equation

5, we compute the probabilities Pr(Yes|Lp) = 0.6 ∗ 0.65 ∗ 0.75 ∗

0.2 ∗ 0.2 = 0.0117 and Pr(No|Lp) = 0.7 ∗ 0.85 ∗ 0.45 ∗ 0.3 ∗ 0.2 =

0.0161.We get Pr(Yes|Lp) =
0.0117

0.0117+0.0161
= 0.42 and Pr(No|Lp) =

0.0161

0.0117+0.0161
= 0.58 after normalization. Since Pr(No|Lp) is greater

than Pr(Yes|Lp), we aggregate the result as No.
Algorithm 7 shows details of our Pows-S+ with error tolerance.

5.2 Error Tolerating
Predicate Confidence. Let z

p ji
e denote the confidence that predi-

cate p
j
i has been answered correctly on e . We take the maximum

probability of all domains as it, thus z
p ji
e = max

dk ∈Dpji

Pr(dk |Lp ji
). For

example, as Pr(Yes|Lp) is 0.42 and Pr(No|Lp) is 0.58, z
p ji
e is 0.58.

Algorithm 7: Pows-S+ Framework

Input: E = {e1, e2, ..., en }, Q = {p1,p2, ...,pm }
Output: Results set R
Construct empty E-Tree;1

InitMw,p
for workers on different predicates.2

for each entity e ∈ E do3

if the number of checked entities > τe then4

Conduct EM and updateMw,p
;5

Estimate order πo and check e with Bayes Voting;6

if e meet Q then Append e to R;7

Tolerate errors;8

return R9

Algorithm 8: Error-Tolerance: Pows-S+
Input: Result set R, Q = {p1,p2, ...,pm }, Budget B
Output: Result set R
Sort entities by ze in ascending order;1

while there remain budget B do2

Pop the first entity e and get πo ;3

for p ji in πo do4

if z
p ji
e < 0.8 then5

Ask more questions on p
j
i util z

p ji
e ≥ 0.8;6

Reduce budget B;7

if Lπ o
e changes then Update result set R;8

return R9

We get all answered predicates’ confidence after checking entity

e , thus we compute e’s confidence by every predicate’s confidence.

Entity Confidence. Let ze denote entity e’s confidence, so we

compute it as:

ze =
∏
p ji ∈πi

z
p ji
e (6)

To tolerate errors in crowdsourced selection query, we conduct

extra budget to improve the quality. Our general idea is to let more

workers answer low-confidence entities. Here we propose a greedy

confidence-based approach. Algorithm 8 shows the pseudo code

for our error tolerance approach. Firstly, we sort all entities by its

confidence in ascending order, where low confidence entities are

placed in the front(line 1). Based on Equation 6, there must be some

low confidence predicates in those entities. Every time we take

an entity e from entities set, and ask more questions on its low

confidence predicates until z
p ji
e is greater than given threshold or

reaches the maximal number of questions for a predicate(line 3-6).

We reduce the budget B once finishing a predicate(line 7). If the e’s
answer changes, we will update the result set(line 8).

We take error tolerance strategy on crowd selection query and

it’s similar to extend it to multiple selection queries.

6 EXPERIMENT
6.1 Experimental Setting
Datasets. We use two real-world datasets to evaluate different

algorithms. (1) LFW [12] is a face dataset consisting of 13143 persons’
upper part images. It has 72 binary attributes, and we merge those

attributes with same type (For example, merging is_male, is_female

to sex) and choose 12 attributes. (2) Cloth [2] is a dataset of cloth
attributes, which contains 1814 images and 27 attributes. Similar

to LFW, we merge them and choose 11 attributes. In simulation

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

313

experiments, we use all images with their ground-truth and sample

500 images in real experiments. Table 1 shows the details.

Baselines.We compare Pows-Swith RDM, CSEL(sample rate is 10%)

and two other baselines. (1) OPT. It assumes we always know the real

optimal order which means we only need 1 question if the entity

is NEG; otherwisem questions. It’s the theoretical lower bound. (2)

BOD. It sorts predicates by selectivities (which are assumed to be

known) and takes it as the optimal predicate order.

CrowdFlower Setting.We use CrowdFlower as the crowdsourc-

ing platform. We assign each question to 3 workers and pack every

5 questions into a unit paying 5 cents for it.

Evaluation Metrics. We compare the number of questions and

the quality in different approaches. For quality, we use F-measure.

Let ST denote the exact result set, SP denote the result set of an

algorithm. The precision is p = |ST
⋂
SP |

|SP |
, the recall rate is r =

|ST
⋂
SP |

|ST |
, and the F-measure is

2pr
p+r .

Worker Generation. To show the effectiveness of our method,

we conduct simulation experiments and generate workers with

quality 70%, 80% and 90%. We assume the accuracy of workers fit

Guassian Distribution and generate workers’ accuracy based

on average values of µ = 70%, 80%, 90%, and variance σ = 0.15.

Queries Generation. For single selection problem, we randomly

generate 5 queries with length from 4-8 and take their average

as the final result. For multiple selection problem, we generate 8

queries with length 4 and execute those queries for 5 times.

Tree Height. In the experiments, we limit E-Tree and ME-Tree’s
height to 4 simultaneously.

6.2 Evaluating Single Selection
We compare our algorithm Pows-S with three baseline methods

(OPT, BOD, RDM) and one state-of-the-art approach CSEL in simulation

experiments, and compare with RDM and CSEL in real experiments.

6.2.1 Simulation Exp: Evaluating Worker Accuracy. Taking into
account that workers’ accuracy in real experiments only reflects

their historical accuracy, we conduct simulation experiments with

the exact accuracy. Assuming the ground truth is known, we gen-

erate workers whose accuracy is between 70%-80%, 80%-90% and

above 90%. Figures 6-7 show the simulation results.

#Questions.We compare Pows-Swith OPT and BOD. Firstly, Pows-S
has similar performance with BOD even without knowing selectivi-

ties in advance, and it takes about 25% more monetary cost than

OPT(the theoretical lower bound). Compared with BOD, which is the

best solution with knowing all predicates’ selectivities, Pows-S can

estimate selectivities precisely and take conditional selectivities

into consideration, which is a significant improvement. Compared

with OPT on LFW, both BOD and Pows-S need 25% more cost, but

Pows-S does not need know the selectivities. At the same time,

CSEL needs 52% more cost, and it’s 72% for RDM.
Quality. Firstly, those methods always get the similar performance

with the same workers’ accuracy. That’s because those methods

take the similar way to check entities. Secondly, the F-measure

is not so high when workers’ accuracy is 70% since workers can

not provide accurate answers. Finally, the relationship between F-

measure and workers’ quality is not linear. Although the probability

without errors declines exponentially with the growth of numbers

of questions. As some of those errors has no influence on the final

result, the quality does not decline exponentially.

6.2.2 Real Exp: Evaluating Worker Accuracy. It’s impossible to

know predicates’ selectivities in advance, so we can’t conduct BOD

#Images #Binary Attrs #Attrs #Workers/Pred

LFW 13143 72 12 3

Cloth 1814 27 11 3

Table 1: Two real Datasets.
in real experiments. As we don’t know the optimal predicate order

before asking workers, it’s impossible to evaluate OPT. In Crowd-

Flower, we can specify worker’s quality by choosing worker’s level.

We select three groups of workers, 70%-80%(Level 1), 80%-90%(Level

2) and above 90%(level 3). For every group of workers, we ask them

to answer our questions and compare different approaches. We

make the following observations from Figures 8-9.

#Questions. Our method Pows-S asks fewer questions than the

state-of-the-art method and the baseline method since our method

can make the best of conditional selectivities and does not need to

sample entities which is expensive. CSEL can also utilize selectivities
to sort predicates, but it only uses the independent selectivities and

spends a lot of cost on sampling. RDM does not need sample, but it

cannot maximize the use of selectivities. For example, RDM requires

2671 questions on LFW, and CSEL requires 2313 questions. But the
number of questions for Pows-S is only 1995. Thus our method

saves 25% monetary cost than RDM and saves 14% than CSEL. On
Cloth, our method saves 26% and 16% cost than RDM and CSEL.
Quality. Pows-S, CSEL and RDM get the similar F-measure under the

same worker accuracy as we mentioned in simulation experiments.

All those methods can get over 80% F-measure even workers’ accu-

racy is 70% since workers are able to provide high-quality answers

in real world on those simple judgement questions.

6.3 Evaluating Multiple Selection
6.3.1 Simulation Exp: Evaluating Worker Accuracy. We compare

Pows-M with two baseline methods RAW, RAND in simulation experi-

ments. Figure 10-11 show the results of different approaches.

#Questions. Firstly, Pows-M outperforms RAW and RAND, because
(1) Pows-M utilizes the selectivities to estimate the optimal predi-

cate order; (2) Pows-M also merges several judgement questions to

a single choice question when checking an attribute, which will

reduce cost. For Cloth, Pows-M only needs 31848, 29236 and 26206

questions under workers accuracy 70%, 80%, 90% respectively, and

RAW requires 50044, 48165 and 44440 questions. Compared with RAW,
Pows-M saves 40% monetary cost because it considers integrated se-

lectivities and merges questions. Compared with Pows-M, RAND still
needs 30% more monetary cost although it also merges questions.

Quality. Firstly, those methods all get the similar F-measure un-

der the same worker accuracy, because they always take the same

checking method. Secondly, similar with the crowdsourced selec-

tion problem, the questions we ask workers to answer are simple

single choice questions. So workers provide high quality answers.

6.3.2 Real Exp: Evaluating Worker Accuracy. Figure 12-13 shows
results of real experiments.

#Questions We have similar observation with simulation results.

Quality Since real-world’s workers have high accuracy and our

questions are simple single-choice questions, F-measure in real ex-

periments is higher than simulation experiments. Pows-M, RAW and

RAND methods all get above 80% F-measure when setting workers’

accuracy as 70%. When workers’ accuracy is set as 90%, F-measure

of those methods reaches above 90%.

6.4 Evaluating Error Tolerance
Settings. We evaluate Pows-S and Pows-S+ in simulation experi-

ments and real experiments. We take µB as the percentage of addi-

tional questions to tolerate errors. When we vary the percentage

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

314

0

5e4

1e5

1.5e5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) LFW

Pows-S

BOD

OPT

CSEL

RDM

0

5e3

1e4

1.5e4

2e4

70% 80% 90%
#

 o
f

q
u

e
s
ti
o

n
s

Accuracy of workers

(b) Cloth

Pows-S

BOD

OPT

CSEL

RDM

Figure 6: Selection Query Cost (Simulation Experiments).

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) LFW

Pows-S

BOD

OPT

CSEL

RDM

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-S

BOD

OPT

CSEL

RDM

Figure 7: Selection Query Quality (Simulation Experiments).

0

1e3

2e3

3e3

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) LFW

Pows-S

CSEL

RDM

0

1e3

2e3

3e3

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cloth

Pows-S

CSEL

RDM

Figure 8: Selection Query Cost (Real Experiments).

0.2

0.4

0.6

0.8

1.0

70% 80% 90%
F

-m
e

a
s
u

re

Accuracy of workers

(a) LFW

Pows-S

CSEL

RDM

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-S

CSEL

RDM

Figure 9: Selection Query Quality (Real Experiments).

0

1e5

2e5

3e5

4e5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) LFW

Pows-M

RAND

RAW

0

2e4

4e4

6e4

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cloth

Pows-M

RAND

RAW

Figure 10: Multiple Selection Cost (Simulation Experiments).

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) LFW

Pows-M

RAND

RAW

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-M

RAND

RAW

Figure 11:Multiple SelectionQuality(Simulation Experiments).

0

2e3

4e3

6e3

8e3

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) LFW

Pows-M

RAND

RAW

0

2e3

4e3

6e3

8e3

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cloth

Pows-M

RAND

RAW

Figure 12: Multiple Selection Cost (Real Experiments).

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) LFW

Pows-M

RAND

RAW

0.2

0.4

0.6

0.8

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-M

RAND

RAW

Figure 13: Multiple Selection Quality (Real Experiments).
of budget, we use the workers’ accuracy as 80%. When varying

accuracy of workers, we set budget percentage µB as 6%, which will

be showed as a proper rate in our experiments. Figures 14-17 show

the results. We make the following observations. Firstly, Pows-S+
significantly outperforms Pows-S with various budget percentages

both in simulation and real experiments. In the simulation experi-

ments, when we use 2% additional cost to tolerate errors, Pows-S+
has 3% improvement than Pows-S. With the improvement of µB,
Pows-S+ is more effective. When we set the budget percentage as

10%, the improvement is 9.4%. On Cloth, it has 11% improvement

when we use 10% additional budget. In both datasets, if we use 10%

additional budget to tolerate errors, the final F-measure will reach

95% under workers’ accuracy 80%. Secondly, the improvement with

different budget percentage in the real experiments is not so signif-

icant as the simulation experiments. This is because (1) we always

get the high confidence answers from workers. So the confidence of

every task is always high, we don’t have too many low-confidence

tasks to improve; (2) The quality without error tolerance is already

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

315

0.80

0.85

0.90

0.95

1.0

2% 4% 6% 8% 10%

F
-m

e
a

s
u

re

Budget Percentage

(a) LFW

Pows-S Pows-S+

0.80

0.85

0.90

0.95

1.0

2% 4% 6% 8% 10%
F

-m
e

a
s
u

re

Budget Percentage

(b) Cloth

Pows-S Pows-S+

Figure 14: Error Tolerance (Simulation Experiments).

0.88

0.92

0.96

1.0

2% 4% 6% 8% 10%

F
-m

e
a

s
u

re

Budget Percentage

(a) LFW

Pows-S Pows-S+

0.88

0.92

0.96

1.0

2% 4% 6% 8% 10%

F
-m

e
a

s
u

re

Budget Percentage

(b) Cloth

Pows-S Pows-S+

Figure 15: Error Tolerance (Real Experiments).

0.6

0.7

0.8

0.9

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) LFW

Pows-S Pows-S+

0.6

0.7

0.8

0.9

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-S Pows-S+

Figure 16: Error Tolerance (Simulation Experiments).

0.80

0.85

0.90

0.95

1.0

70% 80% 90%
F

-m
e

a
s
u

re

Accuracy of workers

(a) LFW

Pows-S Pows-S+

0.80

0.85

0.90

0.95

1.0

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cloth

Pows-S Pows-S+

Figure 17: Error Tolerance (Real Experiments).
high, so it’s hard to improve more significantly. Finally, when vary-

ing workers’ quality, the improvement decreases with the growth

of workers quality both in simulation and real experiments. For

Cloth, when workers accuracy is 70%, Pows-S+ is 10% higher than

Pows-S; when workers accuracy is 90%, the improvement becomes

3%, because (1) It’s hard to find the low confidence entities with

high workers quality; (2) The workers accuracy is high, so it’s hard

to improve. Generally, Pows-S+ significantly improves quality.

7 CONCLUSION
We studied the crowdsourced selection problem with multiple pred-

icates. We proposed a predicate-order based crowdsourced selection

framework. We defined a predicate order based on the conditional

selectivities. We proposed an expectation-tree model to estimate

conditional selectivities and predicate orders’s cost. We extended

our framework to answer multiple selection queries and developed

confidence based error-tolerant algorithm. Experimental results

show that our method outperforms existing algorithms.

Acknolwedgement. This work was supported by 973 Program of

China (2015CB358700), NSF of China (61632016,61373024,61602488,

61422205,61472198), and FDCT/007/2016/AFJ.

REFERENCES
[1] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced entity

resolution: A partial-order approach. In SIGMOD, pages 969–984, 2016.
[2] H. Chen, A. Gallagher, and B. Girod. Describing clothing by semantic attributes.

ECCV, pages 609–623, 2012.
[3] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng. icrowd: An adaptive crowdsourcing

framework. In SIGMOD, pages 1015–1030. ACM, 2015.

[4] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop: Query optimization for

declarative crowdsourcing systems. IEEE TKDE, 27(8):2078–2092, 2015.
[5] Y. Fang, H. Sun, G. Li, R. Zhang, and J. Huai. Effective result inference for

context-sensitive tasks in crowdsourcing. In DASFAA, pages 33–48, 2016.
[6] J. Feng, G. Li, H. Wang, and J. Feng. Incremental quality inference in crowdsourc-

ing. In DASFAA, pages 453–467, 2014.
[7] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answer-

ing queries with crowdsourcing. In SIGMOD, pages 61–72. ACM, 2011.

[8] S. Guo, A. Parameswaran, and H. Garcia-Molina. So who won?: dynamic max

discovery with the crowd. In SIGMOD, pages 385–396. ACM, 2012.

[9] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries
with expensive predicates, volume 22. ACM, 1993.

[10] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng. Crowdsourcing-based real-time urban

traffic speed estimation: From trends to speeds. In ICDE, pages 883–894, 2016.
[11] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng. Crowdsourced POI labelling:

Location-aware result inference and task assignment. In ICDE, pages 61–72, 2016.
[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the

wild: A database for studying face recognition in unconstrained environments.

Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[13] G. Li. Human-in-the-loop data integration. PVLDB, 10(12):2006–2017, 2017.
[14] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang, and H. Yuan.

Cdb: Optimizing queries with crowd-based selections and joins. In SIGMOD,
pages 1463–1478. ACM, 2017.

[15] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data management: A

survey. IEEE TKDE., 28(9):2296–2319, 2016.
[16] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a crowdsourcing

data analytics system. VLDB, 5(10):1040–1051, 2012.
[17] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd.

In VLDB, volume 6, pages 109–120. VLDB Endowment, 2012.

[18] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts

and joins. VLDB, 5(1):13–24, 2011.
[19] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Demonstration

of qurk: a query processor for humanoperators. In SIGMOD, pages 1315–1318.
ACM, 2011.

[20] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and

J. Widom. Crowdscreen: Algorithms for filtering data with humans. In SIGMOD,
pages 361–372. ACM, 2012.

[21] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom.

Deco: declarative crowdsourcing. In CIKM, pages 1203–1212. ACM, 2012.

[22] H. Park, H. Garcia-Molina, R. Pang, N. Polyzotis, A. Parameswaran, and J. Widom.

Deco: A system for declarative crowdsourcing. VLDB, 5(12):1990–1993, 2012.
[23] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina, N. Polyzotis, and J. Widom.

An overview of the deco system: data model and query language; query process-

ing and optimization. SIGMOD Record, 41(4):22–27, 2013.
[24] A. D. Sarma, A. Parameswaran, H. Garcia-Molina, and A. Halevy. Crowd-powered

find algorithms. In ICDE, pages 964–975. IEEE, 2014.
[25] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algorithms in

crowdsourcing environments. InWWW, pages 989–998. ACM, 2012.

[26] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive

relations for crowdsourced joins. In SIGMOD, pages 229–240. ACM, 2013.

[27] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms: An experimental

evaluation. PVLDB, 9(8):612–623, 2016.
[28] Y. Zheng, G. Li, and R. Cheng. DOCS: domain-aware crowdsourcing system.

PVLDB, 10(4):361–372, 2016.
[29] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in crowdsourcing:

Is the problem solved? PVLDB, 10(5):541–552, 2017.
[30] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A quality-aware task

assignment system for crowdsourcing applications. In SIGMOD, pages 1031–1046,
2015.

Session 2B: Crowdsourcing 1 CIKM’17, November 6-10, 2017, Singapore

316

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Related Works

	3 Predicate-Order-Based-Framework
	3.1 Predicate Order
	3.2 Predicate Order Based Algorithm
	3.3 E-Tree Construction and Updating
	3.4 Predicate Order Estimation

	4 Multiple Selection Query
	4.1 ME-Tree
	4.2 Pows-M Framework
	4.3 ME-Tree Construction and Updating
	4.4 Predicate Order Selection

	5 Tolerating Errors
	5.1 Bayes Voting Framework
	5.2 Error Tolerating

	6 Experiment
	6.1 Experimental Setting
	6.2 Evaluating Single Selection
	6.3 Evaluating Multiple Selection
	6.4 Evaluating Error Tolerance

	7 Conclusion
	References

