
1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

1

An Efficient Ride-Sharing Framework for
Maximizing Shared Route

Na Ta Guoliang Li Tianyu Zhao Jianhua Feng Hanchao Ma Zhiguo Gong

Abstract—Ride-sharing (RS) has great values in saving energy and alleviating traffic pressure. Existing studies can be improved for
better efficiency. Therefore, we propose a new ride-sharing model, where each driver has a requirement that if the driver shares a ride
with a rider, the shared route percentage (i.e., the ratio of the shared route’s distance to the driver’s total travel distance) exceeds an
expectation rate of the driver, e.g., 0.8. We consider two variants of this problem. The first considers multiple drivers and multiple riders
and aims to compute driver-rider pairs to maximize the overall shared route percentage (SRP). We model this problem as the
maximum weighted bigraph matching problem, where the vertices are drivers and riders, edges are driver-rider pairs, and edge
weights are driver-rider’s SRP. However it is rather expensive to compute the SRP values for large numbers of driver-rider pairs on road
networks. To address this problem, we propose an efficient method to prune many unnecessary driver-rider pairs and avoid computing
the SRP values for every pair. To improve the efficiency, we propose an approximate method with error bound guarantee. The basic
idea is that we compute an upper bound and a lower bound for each driver-rider pair in constant time. Then we estimate an upper
bound and a lower bound of the graph matching. Next we select some driver-rider pairs, compute their real shortest-route distance,
and update the lower and upper bounds of the maximum graph matching. We repeat above steps until the ratio of the upper bound to
the lower bound is not larger than a given approximate rate. The second considers multiple drivers and a single rider and aims to find
the top-k drivers for the rider with the largest SRP. We first prune a large number of drivers that cannot meet the SRP requirements.
Then we propose a best-first algorithm that progressively selects the drivers with high probability to be in the top-k results and prunes
the drivers that cannot be in the top-k results. Extensive experiments on real-world datasets demonstrate the superiority of our method.

Index Terms—Ride-sharing, Shared Route Percentage, Bigraph Matching, Join-based Sharing, Search-based Sharing

F

1 INTRODUCTION

The sharing economy is booming with the Internet as the
information carrier[6], [9]. In a sharing economy we aim
to improve resource utilization by sharing the resource for
multiple users. The shared resources include accommoda-
tion (e.g., Airbnb[1]), urban trip (e.g., Uber[3]), etc.

In this paper, we focus on the ride-sharing problem. We
consider a new service called hitch in Uber[3] and Didi[2].
In the hitch service, there are a large number of part-time
drivers, where each driver intends to drive from a source
location to a destination and is willing to share the vehicle
with a rider. If a driver shares the vehicle with a rider, the
driver needs to first drive to the source of the rider from
the driver’s source, then drive to the destination of the rider
from the rider’s source (which is called the shared route
between the driver and the rider), and finally drive to the
destination of the driver from the rider’s destination. The
shared route percentage (SRP) is the ratio of the shared-
route distance to the total route distance (i.e., the sum of the
distances of the three parts). Since the driver must drive on
the road networks, we consider the road-network distance
and we assume that the driver will select the shortest route
between two locations. Usually, the driver has a requirement

• Na Ta is with School of Journalism and Communication, Renmin Univer-
sity. E-mail: tanayun@ruc.edu.cn.

• Guoliang Li, Tianyu Zhao and Jianhua Feng are with the De-
partment of Computing Science, TNList, Tsinghua University, Bei-
jing, China. {dan13, zhaoty17}@mails.tsinghua.edu.cn, {liguoliang,
fengjh}@tsinghua.edu.cn. Guoliang Li is the corresponding author.

• Hanchao Ma is with the Department of Electronic Engineering
and Computer Science, Washington State University. E-mail: mahan-
chao@hotmail.com.

• Zhiguo Gong is with the Department of Computer Science, Macau
University. E-mail: fstzgg@umac.mo.

that the SRP value must exceed an expectation value, e.g.,
0.8, to guarantee a high sharing utility.

There are two variants of the ride-sharing (RS) problem.
(1) Join-basedRS. There are a group of drivers and a group
of riders and it aims to compute the driver-rider pairs that
maximize the overall SRP. The Join-basedRS is suitable for
peak-time traffic, where the numbers of riders and drivers
are large and the join-based matching is a reasonable choice.
(2) Search-basedRS. There are a group of drivers and a
single rider, and it aims to compute the top-k drivers for
the rider with the largest SRP values. The Search-basedRS
can be used in the one-by-one serving mode where each
rider expects instant response.

Search-basedRS optimizes the local matching for an
individual rider while Join-basedRS optimizes the global
matching for all riders. Our problems are different from
traditional full-time driver services in Uber in that (i) those
drivers are hired to complete riders’ trips and drivers them-
selves have no traveling requirements; (ii) those servers aim
to maximize the number of served riders while we aim to
maximize the overall resource being shared by drivers and
riders, because it is reasonable for drivers as resource (i.e.,
vehicles) owners to demand a higher resource sharing rate
according to which they are compensated.

Example 1. Figure 1 presents a running example. There are a
group of drivers, d1 - d3 (source, destination, sharing require-
ment), and a group of riders, r1 - r4 (source, destination) on
an urban road network. Solid lines are road segments and the
numbers indicate road distances. For rider r1, the SRP (0.524)
for d2 and r1 does not meet d2’s requirement(0.6), therefore d2
is an invalid driver for r1. In contrast, the SRP requirements of
both d1 and d3 are met, therefore they are valid drivers for r1. We
use the driver-rider pair 〈d1, r1〉 to denote that driver d1 picks up

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

V1 V2 V3 V4

V5 V6
V7

V8 V9 V10 V11

V12 V13 V14 V15

2 4 2

23

5

1

r3(v1,v4)

r2(v1,v3)

r1(v2,v10)

r4(v13,v14)

d1(v1,v11,0.55)

d3(v1,v6,0.6)

d2(v5,v4,0.6)

2

2

4

3 3

3

34 4

1

Fig. 1. Running Example.

rider r1. For Join-basedRS, we want to find a set of driver-
rider pairs that maximize the overall SRP . 〈d1, r1〉, 〈d2, r3〉
and 〈d3, r2〉 are the optimal matching of drivers and riders that
maximizes the overall SRP value. For Search-basedRS, given
rider r3, d1, d2 and d3 are valid drivers, and d2 is the top-1
driver with the largest SRP value.

The performance is rather crucial in ride sharing because
the riders will not wait for long time and we require to
compute the driver-rider pairs within a minute[3], [2]. To
meet such requirement, we propose an efficient ride-sharing
framework. For Join-basedRS, we model this problem as
the maximum weighted bigraph matching problem, where
the vertices are drivers and riders, edges are driver-rider
pairs, and edge weights are driver-rider’ SRP values. How-
ever it is rather expensive to compute the SRP values for
large numbers of driver-rider pairs on road networks. To
address this problem, we propose an efficient method to
prune many unnecessary driver-rider pairs and avoid com-
puting the SRP values for such pairs. To further improve
the efficiency, we propose an approximate method with any
given approximate rate. The basic idea is that we com-
pute an upper bound and a lower bound for each driver-
rider pair in constant time. Then we estimate an upper
bound and a lower bound of the maximum graph match-
ing. Next we select some driver-rider pairs, compute their
real shortest-route distances, and update the lower bound
and upper bound of the graph matching. We repeat the
above steps until the ratio of the upper bound to the lower
bound is not larger than the given approximate rate. For
Search-basedRS, we first prune a large number of drivers
that cannot meet the SRP requirements. Then we propose
a best-first method that progressively selects the drivers
with high probability to be in the top-k results and prune
the drivers that cannot be in the top-k results. Extensive
experimental results on real-life datasets demonstrate the
efficiency and quality of our method.

To summarize, we make the following contributions.
(1) We formally define the Join-basedRS and
Search-basedRS problems and propose an effective
and efficient ride-sharing framework.
(2) We devise an efficient exact algorithm to compute the
optimal driver-rider pairs. We propose an approximate al-
gorithm that can efficiently compute the driver-rider pairs
with any given approximate rate.
(3) We develop a best-first method for the Search-basedRS
problem to efficiently compute the top-k drivers for a rider.
(4) We have conducted an extensive set of experiments
on real-world datasets. Experimental results show that our

algorithms achieve high quality and efficiency.
The rest of the paper is organized as follows. The prob-

lem is formalized in Section 2. Section 3 introduces an exact
algorithm for Join-basedRS. An approximate solution for
Join-basedRS is developed in Section 4. Section 5 discusses
the solution for Search-basedRS. Experimental results are
reported in Section 6. Related works are reviewed in Sec-
tion 7. Section 8 concludes the paper.

2 PROBLEM FORMULATION

We first introduce the preliminaries (Section 2.1) and then
formally define the problem of ride sharing (Section 2.2).

2.1 Preliminaries
We use a graph G〈V,E〉 to model a road network, where
each vertex v ∈ V denotes a geo-location (e.g., road inter-
section), and each edge (u, v) ∈ E is a road segment with
an associated weight, e.g., road distance or traveling time. A
route in a road network G is a connected path, and the route
distance is the sum of the distance of each edge on the route.
Given two vertices u, v, there are multiple routes between
them and we assume that drivers will take the shortest
route between the two vertices and use δ(u, v) to denote
their shortest-route distance. We use route and distance to
respectively refer to the shortest route and shortest-route
distance for simplicity when the context is clear.

Definition 1 (Rider). A rider rj = (r.j , r
/
j) plans to travel from

source location r.j to destination location r/j by taking a shared
ride with a driver di.

Definition 2 (Driver). A driver di = (d.i , d
/
i , πi) plans to

travel from a source location d.i to a destination location d/i , and
is willing to share the ride with a rider rj if the shared route
percentage π(di, rj) is above πi, where,

π(di, rj) =
δ(r.j , r

/
j)

δ(d.i , r
.
j) + δ(r.j , r

/
j) + δ(r/j , d

/
i)

(1)

Here we assume each driver shares the vehicle with only
one rider, because (i) picking up multiple riders may violate
the driver’s own interest as the driver most likely works in
a part-time basis at his/her own convenience to compensate
the traffic cost, and (ii) it may not be user-friendly to share
between multiple riders due to the detours incurred for
picking up other riders. Suppose driver di shares the ride
with rider rj , they form a driver-rider pair 〈di, rj〉. We want
to quantify how di and rj share the ride. The driver first
drives to the rider’s source location r.j from his/her own
source d.i , then drives to the rider’s destination r/j , and
finally drives to his/her own destination d/j . Thus there
are three sub-routes traveled by di: the first is from d.i to
r.j , the second is the shared route of rj and di, i.e., from
r.j to r/j , and the last is from r/j to d/i . The route from
r.j to r/j is shared by the driver and rider. Intuitively, the
larger δ(r.j , r

/
i) the better. Thus we define the shared route

percentage by Equation 1. A driver di will only share the
ride with a rider when the shared percentage is above di’s
threshold πi, where πi ∈ [0, 1].

We assume the source and destination locations of each
driver and rider are on vertices in the road network. If the
locations are not on vertices, we find their closest vertices.
Since each road segment is very short, e.g., 50 meters, this
method is widely used in existing works[38].

2

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

TABLE 1
Notations.

Symbol Meaning
D = {di} The drivers set, di = (d.i , d

/
i , πi)

R = {rj} The riders set, rj = (r.j , r
/
j)

〈di, rj〉 A driver-rider pair
π(di, rj) The shared route percentage of di and rj

πi The SRP requirement of di
π0 The minimum πi, i.e., π0 = min{πi}
δ(·, ·) The shortest-route distance for two vertices
δπ0
j (1

π0
− 1)δ(r.j , r

/
j)

Px A matching plan for Join-basedRS
P ∗ The optimal plan for Join-basedRS
C {〈di, rj〉|π(di, rj) ≥ πi, ∀di ∈ D, ∀rj ∈ R}
Cj {di|π(di, rj) ≥ πi,∀di ∈ D}

Ckj
Ckj ⊆ Cj , |Ckj | = k,
∀di∗ ∈ Ckj , ∀di ∈ Cj\Ckj , π(di∗ , rj) ≥ π(di, rj)

D.j {di|δ(d.i , r.j) ≤ δ
π0
j } for rj

D/j {di|δ(d/i , r/j) ≤ δ
π0
j } for rj

C̃j D.j ∩D/j
C̃ ∪rj∈R{〈di, rj〉|di ∈ D.j ∩D/j }

Example 2. In Figure 1, the road network G has 15 vertices and
16 edges. There are three drivers: d1 = (v1, v11, 0.55), d2 =
(v5, v4, 0.60) and d3 = (v1, v6, 0.60), and four riders: r1 =
(v2, v10), r2 = (v1, v3), r3 = (v1, v4) and r4 = (v13, v14).
The distance of r1’s route, (v2v3v6v9v10), is 11. For driver-rider
pair 〈d1, r1〉, π(d1, r1) = δ(r.1 , r

/
1)/(δ(d

.
1, r

.
1) + δ(r.1 , r

/
1) +

δ(r/1 , d
/
1)) = 11/(2 + 11 + 1) = 0.786. Since π(d1, r1) > π1,

d1 can share a ride with r1.

2.2 Problem Formulation
Next we formulate the ride sharing problem. Table 1 lists
the notations used in this paper.
Join-based Ride Sharing. Firstly, we consider the case that
there are many available drivers, and multiple riders want
to take shared rides simultaneously. We aim to assign each
rider rj to a valid driver di where π(di, rj) ≥ πi, in order to
maximize the overall shared route percentage. Let D = {di}
and R = {rj} denote the set of drivers and the set of riders
respectively. We use C = {(di, rj)|π(di, rj) ≥ πi} to denote
the set of valid driver-rider pairs, and use Cj to denote the
set of valid drivers for rider rj .

Then we construct a weighted bigraph G(GR,GD,GE)
based on the valid pairs, where GR is the set of riders R and
GD is the set of drivers D. There is an edge between di and
rj if π(di, rj) ≥ πi and the weight is π(di, rj). Then we aim
to find a subgraph from the bigraph, which corresponds to
a set of driver-rider pairs such that one rider is assigned to
at most one driver and one driver is allocated with at most
one rider. We call such subgraph a matching plan.

Definition 3 (Matching Plan). A matching plan Px is a
subgraph of G if no two edges share a common bigraph vertex.

Obviously we aim to find the matching plan with the
largest overall weight, i.e., the sum of weights of edges in
the matching plan. We call such plan the optimal matching
plan. Next we define the join-based ride-sharing problem.

Definition 4 (Join-basedRS). Given a set of drivers D = {di}
and a set of ridersR = {rj} on a road networkG, find the optimal
plan P ∗, among all possible matching plans, that maximizes the
following objective function:

P ∗ = argmaxPx

∑
∀〈di,rj〉∈Px

π(di, rj) (2)

d3
0.786

0.6
d2

d1 r3

r2

r1

0.8

0.647

0.533
0.50

0.60

P1(1.78)

0.667

d3
0.786

0.6
d2

d1 r3

r2

r1

0.8

0.647

0.533
0.50

0.60

0.60

P*(2.253)

0.667

0.615 0.615

0.60

Fig. 2. Bigraph G.

The complexity of join-based ride sharing is polynomial
and we propose an algorithm in cubic time (Section 3). Since
the algorithm cannot scale to large datasets, we propose an
approximate solution in quasi-linear complexity (Section 4).

Example 3. Given the drivers/riders sets in Figure 1,
for Join-basedRS, Figure 2 shows a bigraph with valid pairs
{〈d1, r1〉, 〈d1, r3〉, 〈d2, r2〉, 〈d2, r3〉, 〈d3, r1〉, 〈d3, r2〉, 〈d3, r3〉}.
The numbers on edges are the shared route percentage
values of the driver-rider pairs, and the number to the
left of di is πi. P1 = {〈d1, r3〉, 〈d2, r2〉, 〈d3, r1〉} is a
matching plan, and the sum of the shared route percentages is
π(d1, r3)+π(d2, r2)+π(d3, r1) = 0.533+0.6+0647 = 1.78.
Rider r4 has no valid driver. P ∗ = {〈d1, r1〉, 〈d2, r3〉, 〈d3, r2〉}
is the optimal matching plan with the largest weight, 2.253.

Search-based Ride Sharing. Secondly, we consider the case
that there are many drivers and a rider comes and requires
to find top-k drivers with the largest SRP. The complexity of
search-based ride sharing is polynomial and we propose an
algorithm in quasi-linear complexity (Section 5).

Definition 5 (Search-basedRS). For rider rj on a road network
G, find a k-size valid driver set Ckj = {di∗},where

(1) Ckj ⊆ Cj , |Ckj | = k, and
(2) ∀di∗ ∈ Ckj ,∀di ∈ Cj\Ckj , π(di∗ , rj) ≥ π(di, rj).

Example 4. Given the drivers/riders sets in Figure 1, for
Search-basedRS, the valid driver set for rider r3 is C3 =
{d1, d2, d3}, d2 is the top-1 matching driver for r3 since
π(d2, r3) > π(d3, r3) > π(d1, r3).

3 EXACT METHOD FOR JOIN-BASED RS
For Join-basedRS, a straightforward method enumerates
every driver-rider pair, removes the invalid pairs, constructs
a bigraph with the valid pairs, and utilizes the maximum
weighted bigraph matching algorithm to compute the re-
sults. However it is rather expensive to compute the shortest
route for every pair. Thus we propose an effective algorithm
to prune large numbers of invalid pairs and avoid comput-
ing their shortest routes in Section 3.1. We then introduce
a framework to utilize the bigraph matching algorithms to
compute the optimal matching plan in Section 3.2.

3.1 Invalid Pair Pruning
For each rider rj , a valid driver dj should satisfy that
π(di, rj) =

δ(r.j ,r
/
j)

δ(d.i ,r
.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
i)
≥ πi. After rearranging

the expression, we have

δ(d.i , r
.
j) ≤ (

1

πi
− 1)δ(r.j , r

/
j) (3)

δ(r/j , d
/
i) ≤ (

1

πi
− 1)δ(r.j , r

/
j) (4)

3

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

d3

0.786

d2d1

r2 r3r1

0.8
0.667

0.6

0.533

0.615

r4

0.50 0.60 0.60

0.462

0.25

0.524 0.25

0.647

0.269

Fig. 3. The Driver-rider Pairs.

Therefore, we do not need to iterate over the whole
driver set D, but only consider two much smaller subsets
that satisfy equations 3 and 4 respectively, the intersection
of which is the valid set of drivers for rj . The network
distance of the shared route between di and rj , δ(r.j , r

/
j),

can be calculated using any shortest route algorithm, e.g.,
Dijkstra or G-tree[38]. However, as πi is driver-specific, the
righthand sides of equations 3 and 4 are unknown given
only rider rj . To address this issue, we set a global threshold
π0, which is the minimum value among all drivers, i.e.,
π0 ≤ πi,∀di ∈ D. π0 is practical as a driver is unlikely
to share the trip if the route shared with a rider is only
negligible. Then equations 3 and 4 are loosened into:

δ(d.i , r
.
j) ≤ (

1

π0
− 1)δ(r.j , r

/
j) (5)

δ(r/j , d
/
i) ≤ (

1

π0
− 1)δ(r.j , r

/
j) (6)

We use D.
j and D/

j to denote driver sets that satisfy
equations 5 and 6 for rj respectively. Then we can construct
a candidate set C̃ = {〈di, rj〉|di ∈ D.

j∩D/
j ,∀rj ∈ R}. We can

prove that C̃ is complete, i.e., C ⊆ C̃. Theorem 1 guarantees
the completeness of C̃.

Theorem 1. The candidate driver-rider set C̃ = {〈di, rj〉|
di ∈ D.

j ∩ D/
j ,∀rj ∈ R} is complete, i.e., C ⊆ C̃, where C =

{〈di, rj〉|π(di, rj) ≥ πi}.

Proof. We prove by contradiction. Suppose a rider rj has
a valid driver di′ , it holds that 〈di′ , rj〉 ∈ C. If C̃ did not
contain 〈di′ , rj〉, it follows that δ(d.i′ , r

.
j) > (1

π0
−1)δ(r.j , r/j),

or δ(r/j , d
/
i′) > (1

π0
− 1)δ(r.j , r

/
j).

If it is δ(d.i′ , r
.
j) > (1

π0
− 1)δ(r.j , r

/
j) (the hypothesis),

given π(di′ , rj) =
δ(r.j ,r

/
j)

δ(d.
i′ ,r

.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
i′)
≥ πi′ ≥ π0, it

follows that
δ(r.j ,r

/
j)

δ(d.
i′ ,r

.
j)+δ(r

.
j ,r

/
j)
≥ πi′ ≥ π0, i.e., δ(d.i′ , r

.
j) ≤

(1
π0
− 1)δ(r.j , r

/
j). This is contradictory with the hypothesis.

If it is δ(r/j , d
/
i′) > (1

π0
− 1)δ(r.j , r

/
j) (the hypoth-

esis), given π(di′ , rj) ≥ πi′ ≥ π0, it follows that
δ(r.j ,r

/
j)

δ(r.j ,r
/
j)+δ(r

/
j ,d

/
i′)

> πi > π0. That is, δ(r/j , d
/
i′) ≤ (1

π0
−

1)δ(r.j , r
/
j). This is contradictory with the hypothesis.

Therefore, for any driver-rider pair 〈di′ , rj〉 ∈ C, it holds
that 〈di′ , rj〉 ∈ C̃. Thus, C ⊆ C̃, and C̃ is complete.

Example 5. In our running example, the straightforward
method enumerates all the 3 × 4 driver-rider pairs, i.e.,
{〈d1, r1〉, 〈d1, r2〉, · · · , 〈d3, r3〉, 〈d3, r4〉}, and computes all
the pair-wise SRP to generate the candidate set as illustrated
in Figure 3. Using equations 5 and 6, we get D.

1 = {d1, d3},
D/

1 = {d1, d3} for rider r1; D.
2 = {d2, d3}, D/

2 = {d2, d3} for

r2; D.
3 = {d1, d2, d3}, D/

3 = {d1, d2, d3} for r3; and D.
4 = φ,

D/
4 = φ for r4. So C̃ = (D.

1 ∩ D/
1) ∪ · · · ∪ (D.

4 ∩ D/
4) =

{〈d1, r1〉, 〈d1, r3〉, 〈d2, r2〉, 〈d2, r3〉, 〈d3, r1〉, 〈d3, r2〉, 〈d3, r3〉}.
We only need to compute the shared percentage for the seven
pairs in C̃. The computation cost is greatly reduced as a number
of expensive shortest route calculations are avoided (the pairs
connected with dotted lines in Figure 3).

3.2 The Framework for Join-basedRS
We propose to compute the optimal matching plan.
(1) Candidate Set Generation.
(1.1) Computing D.

j . For each rider rj , we calculate δπ0
j =

(1
π0
− 1)δ(r.j , r

/
j) and compute the drivers whose distances

from source locations to r.j are within δπ0
j , and the set of

these drivers is exactly D.
j , i.e., D.

j = {di|δ(d.i , r.j) ≤ δπ0
j }.

To find such drivers, we can utilize the Dijkstra algorithm
from r.j . We can also utilize an index based method. We first
use the spatial index, e.g., grids or quadtree, to compute the
drivers whose Euclidean distance from source locations to
r.j are within δπ0

j . Then for each of such drivers, we utilize
the road network index, e.g., G-tree, to compute its shortest
route distance to r.j , i.e., δ(d.i , r

.
j), and if the road distance

is not larger than δπ0
j , we add it into D.

j .
(1.2) Computing D/

j . This process is similar to computing
D.
j . For each rider rj , we calculate δπ0

j and compute the
drivers whose distances to destination locations of r/j are
within δπ0

j , and the set of these drivers is exactly D/
j , i.e.,

D/
j = {di|δ(r/j , d/i) ≤ δ

π0
j }.

(1.3) Computing C̃. Next, we compute the candidate driver
set C̃j of rider rj by intersecting the two sets D.

j and D/
j , i.e.

C̃j = D.
j ∩ D/

j . Then we can get the candidate driver-rider
set C̃ = ∪rj∈R{〈di, rj〉|di ∈ C̃j}.
(2) Constructing the bigraph. For each pair 〈di, rj〉 in C̃, we
compute the real SRP π(di, rj) of di and rj . If π(di, rj) ≥ πi,
we add an edge between di and rj in the bigraph.
(3) Computing the optimal matching plan. The
Join-basedRS (see Definition 4) problem is essencially a
maximum weighted bigraph matching problem [33]. We
use the minimal cost network flow algorithm [4], [12] to
compute the optimal matching plan P ∗.

Algorithm 1 shows the pseudo code of the exact al-
gorithm for Join-basedRS. The algorithm first uses func-
tion CANDIDATESETGEN (line 2) to generate the candi-
date set C̃ of driver-rider pairs. For each rider rj , func-
tion CANDIDATESETGEN computes D.

j and D/
j using δπ0

j
(lines 4-5), then intersects D.

j and D/
j to identify candidate

drivers for rj and merges such candidate driver-rider pairs
to produce C̃ (line 6). Next, the algorithm builds the bigraph
G from C̃ (line 3), where an edge between driver di and
rider rj is added if π(di, rj) ≥ πi. Finally, the algorithm
employs graph matching techniques to compute the optimal
matching plan (line 4).

Example 6. Given the drivers/riders sets in Figure 1, the
CANDIDATESETGEN() function first computes D.

1 = {d1, d3},
D/

1 = {d1, d3}, · · · , D.
4 = φ, D/

4 = φ for riders r1 to r4. Then
C̃ = D.

1 ∩D/
1 ∪ · · · ∪D.

4 ∩D/
4 = {〈d1, r1〉, 〈d1, r3〉, 〈d2, r2〉,

〈d2, r3〉, 〈d3, r1〉, 〈d3, r2〉, 〈d3, r3〉}.
Then, the OPTIMALMATCH() function computes the op-

timal matching plan for the bigraph G constructed from C̃.
P ∗ = {〈d1, r1〉, 〈d2, r3〉, 〈d3, r2〉}.

4

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

Algorithm 1: ExactJoin(R,D,G〈V,E〉, π0)
Input: R: the riders set,

D: the drivers set,
G〈V,E〉: the road network,
π0: minimum SRP of all drivers

Output: P ∗: the optimal matching plan
begin1

C̃ = CANDIDATESETGEN(R,D,G〈V,E〉, π0);2

Build bigraph G from C̃;3

P ∗ = OPTIMALMATCH(G);4

return P ∗;5

end6

Function CANDIDATESETGEN(R,D,G〈V,E〉, π0)
Input: R: the riders set, D: the drivers set,

G〈V,E〉: the road network, π0: minimum SRP
Output: C̃: candidate set of driver-rider pairs
begin1

C̃ = {};2

for rj ∈ R do3

Compute D.
j using δπ0

j ;4

Compute D/
j using δπ0

j ;5

C̃ = C̃ ∪ {〈di, rj〉|di ∈ D.
j ∩D/

j };6

return C̃;7

end8

Fig. 4. Exact Algorithm for Join-basedRS.

Driver Grouping. Given two drivers di and di′ , if their
source or destination locations are at the same road vertex,
for each rider, we do not want to compute its shared route
percentage with di and di′ repeatedly. To address this issue,
we employ a list index structure to group drivers based on
road vertices. For each road vertex va we create two lists:
one is the source list L.(va), which contains drivers that
starts from va, the other is the destination list L/(va), which
contains drivers that end their trips at va.

For rider rj , if road vertex va is within δπ0
j distance to

r.j , then all drivers in L.(va) are directly added to D.
j ; if

road vertex va is within δπ0
j distance to r/j , then all drivers

in L/(va) are directly added to D/
j . Therefore, we can avoid

the duplicate computation of δ(d.i , r
.
j) for every driver in

L.(va), or δ(r/j , d
/
i) for every driver in L/(va).

Example 7. Given the drivers/riders sets in Figure 1, for rider
r1, road vertex v1 is within δπ0

1 distance to r.1 , therefore, the two
drivers starting at v1, d1 and d3, are added to D.

1 together. Recall
that in Example 6, we have to compute δ(d.1, r

.
j) and δ(d.3, r

.
j)

and compare them to δπ0
1 separately, which is unnecessary, and

avoided by driver grouping.

Complexity. We first analyze the complexity of computing
C̃. If we utilize the Dijkstra algorithm, the complexity is
O(|E| log(|V |)). If we utilize the index, suppose the candi-
date set that uses the grid index to get the candidates within
Euclidean distance (1

π0
− 1)δ(r.j , r

/
j) is C̃′. The complexity

to generate such candidates is |C̃′|. Suppose we use the
hierarchical structure G-tree to compute the shortest routes,
where the road network is considered as a graph and
partitioned into sub-graphs to store in tree nodes, with as-
sociating shortest inter-sub-graph distances. The assembly-
based method is applied to ensure that the complexity is

O(logf
|V |
l |V |) (where f is the fan-out and l is the number

of vertices in the leaf nodes of G-tree), and the complexity
of computing C̃ is O(logf

|V |
l |V ||C̃|). The complexity of a

bigraph matching algorithm isO(n2m), where n is the num-
ber of vertices, and m is the number of edges of the bigraph.
Thus the complexity to find the optimal matching plan is
O((|R| + |D|)2|C̃|). Accordingly, the overall complexity is
O(|C̃′|+ logf

|V |
l |V ||C̃|+ (|R|+ |D|)2|C̃|).

4 APPROXIMATE METHOD FOR JOIN-BASED RS
The exact method still needs to compute the SRP values
for each valid driver-rider pair 〈di, rj〉. It will be rather
expensive if there are large numbers of valid pairs, because
it requires to compute the shortest routes for these pairs.
To address this issue, we propose an approximate method
in Section 4.1 that uses upper/lower bounds of SRP (Sec-
tion 4.2) to avoid the expensive shortest route computations
and quickly generate the candidate set. It then gradually
computes the real road-network distances for some pairs
and shrinks the difference between the upper and lower
bound until their ratio is not larger than a given threshold.

4.1 The Framework of the Approximate Method
Existing approximation method for maximum weight
matching [11] are mainly designed for graphs with known
edge weights, therefore, they are not suitable for providing
approximate solusions for Join-basedRS, where we would
like to compute as few edge weights as possible. Therefore,
we propose a two-stage approximate method. First, we
construct two bigraphs that bounds the accurate answer
P ∗ within range [LB(P), UB(P)]. Then, we gradually update
certain edges in the bound graphs into exact SRP values,
so that LB(P) and UB(P) can converge to a predefined
threshold τ , i.e., UB(P)

LB(P) ≤ τ . The final LB(P) value is the
bounded approximate answer to P ∗, and P∗

LB(P) ≤ τ .

(1) Constructing bound graphs. For each driver-rider pair
〈di, rj〉 ∈ C̃, we want to avoid the calculation of π(di, rj)
that involves expensive shortest route computation. Instead,
we devise a partition-based road network index to esti-
mate the upper bound UB(π(di, rj)) and the lower bound
LB(π(di, rj)) for each pair 〈di, rj〉 (Section 4.2).

Then we construct two bigraphs using these bounds: the
upper bound bigraph GU (GUR ,GUD,GUE) and the lower bound
bigraph GL(GLR,GLD,GLE), as follows:
(1.1) If UB(π(di, rj)) < πi, di cannot be a valid driver for rj ,
no edge is added to either GU or GL.
(1.2) If LB(π(di, rj)) ≥ πi, di must be a valid driver for rj ,
we add rj to GUR and GLR, add dj to GUD and GLD , and add
an edge 〈di, rj〉 into GUE and GLE , where the weights of the
edges are UB(π(di, rj)) and LB(π(di, rj)) respectively.
(1.3) Otherwise, LB(π(di, rj)) < πi ≤ UB(π(di, rj)), di can
be a valid driver, it should be tested in order not to miss
possible matching results, thus we apply the same logic to
rj , di and 〈di, rj〉 as in case (1.2).
(2) Incremental bounds convergence.
(2.1) Estimating initial upper bound for P ∗.

We first compute the sum of the maximum edge
weight of each rider: UB(PR) =

∑
rj∈GU

R

max
〈di,rj〉∈GU

E

π(di, rj)

using the upper bound graph; then we compute the

5

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

sum of the maximum edge weight of each driver:
UB(PD) =

∑
di∈GU

D

max
〈di,rj〉∈GU

E

π(di, rj) using the upper bound

graph. Then the initial upper bound of P ∗ is: UB(P) =
min{UB(PR), UB(PD)}.

UB(P) is a valid upper bound of P ∗ because when
computing UB(PR) and UB(PD), the maximum edge weight
of each rider and each driver is always used even if some
maximum edges of different riders may have the same
driver, or some maximum edges of different drivers may
have the same rider, while in P ∗ such repetition is not al-
lowed. Therefore, it holds that UB(PR) > P ∗, UB(PD) > P ∗,
therefore, UB(P) > P ∗.

(2.2) Estimating initial lower bound for P ∗.
We perform a greedy algorithm over the riders set GLR.

For each rider rj , we choose the edge between rj and all the
candidate drivers with the maximum weight, say 〈dm, rj〉,
add the weight value LB(π(dm, rj)) to LB(P). Then we
remove rj from GLR and dm from GLD , and their associated
edges. This process is repeated until there is no edge in GLE ,
and the acquired LB(P) is the initial lower bound for P ∗.
LB(P) is a valid lower bound of P ∗ because the best case
result by the greedy algorithm is P ∗, therefore, LB(P) ≤ P ∗.
(2.3) Updating crucial edges. For each edge 〈di, rj〉, we
compute the bounds difference: UB(π(di, rj))−LB(π(di, rj)),
and sort the differences of all edges in a descending order.
Edges with higher bound differences are crucial: if their exact
shared percentage values are computed and updated into
GU and GL, UB(P) and LB(P) can converge faster to each
other. So we incrementally update h edges with the h largest
bound differences each time. For each updated edge 〈di, rj〉,
if π(di, rj) < πi, the corresponding edges are removed
from both GU and GL. Otherwise, the corresponding edge
weights in GU and GL are updated from UB(π(di, rj)) and
LB(π(di, rj)) into π(di, rj).

(2.4) Graph bounds convergence. We re-calculate UB(P)

and LB(P) using the updated edges. If UB(P)
LB(P) ≤ τ , the

process terminates, and LB(P) is the approximate answer
for P ∗. Otherwise, we repeat step (2.3), compute another
h shared percentage values and update the bounds again,
until UB(P)

LB(P) ≤ τ , or all edges in GL are exact values (no
approximate answer), for which the exact matching method
can be applied to compute P ∗.

Algorithm 2 shows the pseudo code of the approximate
algorithm for Join-basedRS. The algorithm first creates a
partition-based road network index (Section 4.2) to facilitate
estimating the upper bounds and lower bounds of shared
route percentage (line 2), then it builds the upper bound
bigraph GU and the lower bound bigraph GL (line 3),
where edges are the upper bounds and lower bounds of
corresponding driver-rider pairs in C̃. Next, the algorithm
assigns the smaller value of UB(PR) and UB(PD) as the
upper bound UB(P) of matching result P ∗, and the greedy
matching result LB(P) as the lower bound of P ∗ (line 4).
During the bound convergence (lines 5-9), weights of h
crucial edges are updated to exact SRP values in both GU
and GL (line 6), UB(P) and LB(P) are updated accordingly
(line 7). If UB(P) and LB(P) can converge to a ratio within
τ , LB(P) is returned as the approximate answer (line 9);
otherwise, the exact matching method is used to compute
P ∗ (line 10).

Algorithm 2: ApprJoin(R,D,G, π0, τ)
Input: R: the riders set, D: the drivers set,

G: the road network,
π0: minimum SRP of all drivers,
τ : bigraph bound threshold

Output: LB(P): the approximate answer of P ∗

begin1

Create the partition-based road network index;2

Build upper/lower bound bigraphs: GU , GL;3

Compute UB(P) and LB(P);4

while UB(P)
LB(P) > τ and GL has not-updated edges do5

Update h crucial edges in GU and GL;6

Compute UB(P) and LB(P);7

if UB(P)
LB(P) ≤ τ then8

return LB(P);9

return ExactJoin(R,D,G〈V,E〉, π0);10

end11

Fig. 5. Approximate Algorithm for Join-basedRS.

Example 8. We demonstrate how Algorithm 2 works given
the drivers/riders sets in Figure 1. We first construct the
lower bound and upper bound bigraph using bounds of each
driver-rider pair in C̃. The edges in GU and GL are the same:
{〈d1, r1〉, 〈d1, r3〉, 〈d2, r2〉, 〈d2, r3〉, 〈d3, r1〉, 〈d3, r2〉, 〈d3, r3〉},
with edge weights being UB(π(di, rj)) and LB(π(di, rj))
respectively. Initially UB(P) = 2.4, LB(P) = 1.6. Suppose
τ = 1.3, h = 1. Since UB(P)

LB(P) = 1.5 > τ , we select h crucial edge
〈d2, r2〉, the real π(d2, r2) = 0.6, and update corresponding edge
weights in GU and GL. Next we re-evaluate the graph bounds
and get UB(P) = 2.3, LB(P) = 1.8. Now UB(P)

LB(P) = 1.28 < τ ,
the process terminates and the approximate answer is 1.8.
P∗

LB(P) =
2.253
1.8 = 1.25 < τ .

Complexity. It takes O(|GUE |) and O(|GLE |) time to build the
upper and lower bound bigraphs. The time consumption
of bound estimation is O(max{|R|, |D|}) for UB(P), and
O(|R|) for LB(P). Suppose the algorithm terminates in
y iterations and the complexity to compute the shortest
route between a pair is O(logf

|V |
l |V |) by the G-tree algo-

rithm [38]. Then the update cost is O(yh logf
|V |
l |V |). The

total complexity is O(yh logf
|V |
l |V |+ y(|R|+ |D|)).

4.2 Bound Estimation

4.2.1 Upper/Lower Bounds of Network Distance
Lower Bound of Distance of δ(r.j , r

/
j). We can utilize the

Euclidean distance to compute the lower bound of δ(r.j , r
/
j),

i.e., LB(δ(r.j , r
/
j)), for any two locations. The time and space

complexities are both O(1).
Upper Bound of Distance of δ(r.j , r

/
j). We first partition the

road networkG into a set of sub-graphs, and each sub-graph
has a pivotal vertex. For each sub-graph, we maintain the
minimum distance from each vertex to the pivotal vertex.
For any two sub-graphs, we keep the distance between
their pivotal vertices. Then given any two vertices, if they
are in the same subgraph, we can utilize the sum of their
distances to the pivotal vertex as the upper bound based
on the triangle inequality. If they are in different subgraphs,
we can utilize the sum of their distances to their pivotal

6

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

vertices and the distance of the two pivotal vertices based
on the triangle inequality. Next we formally introduce how
to estimate an upper bound.
Graph partition. We use existing graph partition technique
(e.g., Metis[21]) to partition the road network G〈V,E〉 into a
set of disjoint sub-graphs: SG = {Gp〈Vp, Ep〉|1 ≤ p ≤ |SG|}
with the following properties: (1) V = ∪1≤p≤|SG|Vp, (2) for
any two sub-graphs Gp and Gq , Vp ∩ Vq = φ, and (3)Ep =
{(u, v)|u, v ∈ Vp, (u, v) ∈ E}.
Sub-graph distance array. We find a pivotal vertex cp for each
sub-graph Gp, whose maximum distance to any other ver-
tices is minimum among all vertices in the sub-graph, i.e.,
cp = argminv∈Vp

maxv′∈Vp,v 6=v′ δ(v, v
′). Then we construct

the |Vp|-sized distance array for Gp, each array element
is the distance from a graph vertex vs in Vp to cp, i.e.,
avs = δ(cp, vs) for vs ∈ Vp.
Inter-sub-graph distance matrix. For all the sub-graphs, we
build a distance matrix M , and each matrix element mpq =
δ(cp, cq) is the distance between the pivotal vertex cp of sub-
graph Gp and the pivotal vertex cq of sub-graph Gq .
Distance upper bound. The upper bound of the network
distance δ(vs, vt) between vertices vs and vt can be esti-
mated as follows.

UB(δ(vs, vt)) =

{
avs + avt vs, vt in same sub-graph

avs +mpq + avt vs ∈ Vp, vt ∈ Vq, p 6= q
(7)

Note the the upper bound can also be used to generate
the candidate sets D.

j and D/
j in equations 5 and 6. We

can use (1
π0
− 1)UB(δ(r.j , r

/
j)) instead of (1

π0
− 1)δ(r.j , r

/
j).

Although the candidate set may be enlarged as the right-
hand sides of equations 5 and 6 are enlarged into (1

π0
−

1)UB(δ(r.j , r
/
j)), the verification time of extra candidate

pairs can be efficiently reduced by avoiding the expensive
shortest route computation, as verified by the experimental
results in Section 6.

Example 9. The road network in our running example can be
partitioned into three sub-graphs G1, G2, and G3, as illustrated
in Figure 6. The pivotal vertices (bold), the distance arrays and
matrix are sequentially established. For vertices v1, v7 ∈ G1,
δ(v1, v7) = 10, UB(δ(v1, v7)) = av1 + av7 = 6 + 5 = 11.
For vertices v2 ∈ G1 and v10 ∈ G3, δ(v2, v10)) = 11,
UB(δ(v2, v10)) = av2 +m13 + av10 = 7 + 5 + 1 = 13.

Complexity of the Index Structure. The distance array and
pivotal vertex of each sub-graph Gp take O(|Vp|) space, and
the distance matrix takesO(|SG|2) where |SG| is the number
of sub-graphs. Therefore, the overall space complexity is∑
Gp∈SG O(|Vp|) +O(|SG|

2) = O(|V |) +O(|SG|2). It takes
O(|Vp|3) time to construct the sub-graph distance array for a
sub-graph Vp, and O(|SG|2) time to construct the inter-sub-
graph distance matrix. Since we focus on the static problem,
there is no maintenance cost for different drivers/riders sets.

4.2.2 Upper/Lower Bounds of SRP of 〈di, rj〉
We discuss how to compute the upper and lower bounds
for SRP of a driver-rider pair 〈di, rj〉.

Firstly, based on the definition of SRP, we have

π(di, rj) =
δ(r.j , r

/
j)

δ(d.i , r
.
j) + δ(r.j , r

/
j) + δ(r/j , d

/
i)

≤
δ(r.j , r

/
j)

LB(δ(d.i , r
.
j)) + δ(r.j , r

/
j) + LB(δ(r/j , d

/
i))

(8)

V1 V2 V3 V4

V5 V6
V7

V8

V9 V10 V11

V12 V13 V14 V15

2 4 2

2

2

3

4
5

3 3

1

G1

G2

G3

c1=v6, A1=[6, 7, 3, 5, 4, 0, 5]

c2=v9, A2=[3, 0, 7, 4, 4]

c3=v11, A3=[1, 0, 2]

5

0

V11

2

3

2

V9

0

M

0

V9

5V11

V6

V6

3

3

3
4

4 2

1

Fig. 6. Index for Upper Bound.

For the righthand side of Equation 8, as LB(δ(d.i , r
.
j)) +

LB(δ(r/j , d
/
i)) ≥ 0, the numerator is no greater than the

denominator. If we enlarge δ(r.j , r
/
j) in the numerator and

the denominator into UB(δ(r.j , r
/
j)) simultaneously, the in-

crement of the numerator is greater than the increment of
the denominator, thus

π(di, rj) ≤
UB(δ(r.j , r

/
j))

LB(δ(d.i , r
.
j)) + UB(δ(r.j , r

/
j)) + LB(δ(r/j , d

/
i))

(9)
Therefore, we can establish an upper bound of π(di, rj):

UB(π(di, rj)) =
UB(δ(r.j , r

/
j))

LB(δ(d.i , r
.
j)) + UB(δ(r.j , r

/
j)) + LB(δ(r/j , d

/
i))

(10)
On the other hand, we have

π(di, rj) ≥
δ(r.j , r

/
j)

UB(δ(d.i , r
.
j)) + δ(r.j , r

/
j) + UB(δ(r/j , d

/
i))

(11)

If we shrink δ(r.j , r
/
j) in the numerator and the denom-

inator of Equation 11 into LB(δ(r.j , r
/
j)) simultaneously, the

reduction of the numerator is smaller than the reduction of
the denominator, thus

π(di, rj) ≥
LB(δ(r.j , r

/
j))

UB(δ(d.i , r
.
j)) + LB(δ(r.j , r

/
j)) + UB(δ(r/j , d

/
i))

(12)
And we can establish a lower bound of π(di, rj):

LB(π(di, rj)) =
LB(δ(r.j , r

/
j))

UB(δ(d.i , r
.
j)) + LB(δ(r.j , r

/
j)) + UB(δ(r/j , d

/
i))

(13)

Example 10. In our running example, π3 = 0.6 for driver d3;
for 〈d3, r1〉, UB(π(d3, r1)) = 0.75, LB(π(d3, r1)) = 0.50. Since
LB(π(d3, r1)) < π3 < UB(π(d3, r1)), d3 is considered as a
candidate driver for r1.

5 EXACT METHOD FOR SEARCH-BASED RS
For Search-basedRS, given a rider rj who posts a search
request, a straightforward method first computes its can-
didate driver set C̃j = D.

j ∩ D/
j , then enumerates every

driver di in C̃j , computes the SRP value and returns the
top-k drivers with the largest SRP values. However, if there
are large numbers of candidate drivers, it is expensive
to compute the shortest-route distances for all candidate
drivers. To address this problem, we propose an expansion-
based method that progressively accesses the candidates in
C̃j and prunes unnecessary drivers (Section 5.1). We then

7

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

propose a best-first method which first accesses the drivers
with large probabilities in the top-k results and prunes the
drivers not in the top-k results (Section 5.2).

5.1 An Expansion-Based Method
Given a rider rj , for each driver di, their SRP only de-
pends on the distance between their sources and the dis-
tance between their destinations, based on the definition of
SRP (

δ(r.j ,r
/
j)

δ(d.i ,r
.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
i)

). Thus the drivers with closer
source and destination to rj ’s source and destination have
larger SRP values. Thus we access the drivers in D.

j and D/
j

sorted by the network distance to r.j and r/j in ascending
order respectively. Obviously, the first accessed drivers have
large probability to be in the top-k results. Suppose D.

j [z]
(D/

j [z]) denotes the zth closest drivers to r.j (r/j).
We utilize the Dijkstra algorithm to progressively access

drivers that are close to r.j and r/j respectively, by expending
from r.j and r/j . Thus we can access D.

j [z] and D/
j [z] in an

ascending order of the network distance. We use a priority
queue Q to keep the current top-k results. Qk denotes the
kth largest SRP value in Q. For d = D.

j [z], d
′ = D/

j [z],
we use δ(d., r.j) and δ(r/j , d

′/) to compute an SRP bound:
δ(r.j ,r

/
j)

δ(d.,r.j)+δ(r
.
j ,r

/
j)+δ(r

/
j ,d
′/) , and compare it with Qk:

(1) if the bound is smaller than Qk, the algorithm terminates
and the results in Q are the final results (Ckj = Q), because
all the drivers after d and d′ cannot be a top-k answer or has
been added into Q;

(2) otherwise, we compute π(d, rj) and π(d′, rj) of d and
d′. If these SRP values are larger than Qk, we use them to
update Q.

Algorithm 3 shows the pseudo code of the expansion-
based method for Search-basedRS. The initial SRP bound
is computed using the driver with the closest source to rj ’s
source locationD.

j [1] and the driver with the closest destina-
tion to rj ’s destination D/

j [1](line 3). During the expansion,
for a newly computed bound value using d = D.

j [z] and
d′ = D/

j [z], if the bound value is smaller than the current
kth largest SRP value in Q, Qk, all the top-k matching
drivers have been found, the algorithm terminates (lines 6-
7); Otherwise, the shared route percentages between d and
rj , and d′ and rj are computed to updateQ (line 8). Then the
algorithm finds the next closest d and d′ to update the SRP
bound (line 9) and compares it with Qk in the next iteration.

We can prove that Ckj computed using the above
expansion-based method is correct, that is, the top-k optimal
matching drivers are contained in Ckj . Theorem 2 guarantees
the completeness of Ckj .

Theorem 2. For rider rj , Ckj generated using the expansion-
based method is correct.

Proof. We prove by contradiction and prove that when the
terminating condition is met, there is no driver inD\Ckj with
a higher SRP value than any of the drivers in Ckj .

Let Qk = dk, π(dk, rj) =
δ(r.j ,r

/
j)

δ(d.k,r
.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
k)

, and

π(dk, rj) =
δ(r.j ,r

/
j)

δ(d.
k
,r.j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
k
) , for any driver dk ∈

D\Ckj .
If dk was one of the top-k drivers for rj , we should have

π(dk, rj) ≤ π(dk, rj), and δ(d.k, r
.
j)+δ(r

/
j , d

/
k) ≥ δ(d.k, r

.
j)+

δ(r/j , d
/
k
), meaning that dk should appear earlier than dk in

Algorithm 3: Expansion(rj , D,G〈V,E〉)
Input: rj : a rider, D: the drivers set,

G〈V,E〉: the road network
Output: Ckj : the top-k matching drivers for rj
begin1

Q = {}, z = 1, d = D.
j [z], d

′ = D/
j [z];2

bound =
δ(r.j ,r

/
j)

δ(d.,r.j)+δ(r
.
j ,r

/
j)+δ(r

/
j ,d
′/) ;3

while true do4

if bound < Qk then5

Break;6

else7

Compute π(d, rj), π(d′, rj); update Q;8

Utilize Dijkstra to compute next d = D.
j [z],9

d′ = D/
j [z]; update bound;

Ckj = Q;10

return Ckj ;11

end12

Fig. 7. Expansion-Based Algorithm for Search-basedRS.

d1

d3

d5

d2

rj
rj d5

d4

d6

d6 d2

d4

d1

d3

1st exp.

2nd exp.

3rd exp.

1st expansion

2nd exp.

3rd exp.

Fig. 8. Expansion-based Example for Search-basedRS.

either D.
j or D/

j , which is contradictory with the real order
of dk and dk.

Therefore, the expansion-based method is correct.

Complexity. We utilize the Dijkstra algorithm to compute
the next closest drivers, and the complexity is O(|E|).
Suppose we use G-tree to compute the shortest routes,
the complexity is O(logf

|V |
l |V |). Suppose the algorithm

terminates in y iterations. The complexity of the expansion-
based method is O(|Cj |+ (|E|+ logf

|V |
l |V |)y).

Example 11. We illustrate the expansion-based method in Fig-
ure 8, where triangles/squares are source/destination locations. Let
k = 2. For rj , D.

j [1] = d1, D/
j [1] = d2, as Q is empty, we

directly enqueue d1 and d2 into Q, Q1 = d1, Q2 = d2. Next,
D.
j [2] = d3, D/

j [2] = d5, the bound
δ(r.j ,r

/
j)

δ(d.3 ,r
.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
5)

is larger than Q2, thus we compute π(d3, rj) and π(d5, rj), and
enqueue them to Q. Now Q1 = d3, Q2 = d5. D.

j [3] = d4,

D/
j [3] = d4, the new bound

δ(r.j ,r
/
j)

δ(d.4 ,r
.
j)+δ(r

.
j ,r

/
j)+δ(r

/
j ,d

/
4)

> Q2,

and the expansion is terminated. Finally Ckj = {d3, d5} are the
top 2 matching drivers for rj . Any other drivers, e.g., d6, can not
be a possible top-k matching, and are effectively excluded.

5.2 A Best-First Method
The expansion-based method requires to utilize the Dijkstra
algorithm in the expansion, which may be expensive. In

8

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

this section, we propose a best-first method which utilizes
bounds to identify the “best” drivers that have high proba-
bilities in the top-k results.
Pre-processing C̃j . First, we generate rj ’s candidate drivers
set C̃j using (1

π0
− 1)δ(r.j , r

/
j) similar to the method in the

Join-basedRS model. For each candidate driver di ∈ C̃j , we
compute

UB(di) = UB(δ(d.i , r
.
j)) + δ(r.j , r

/
j) + UB(δ(r/j , d

/
i)) (14)

and

LB(di) = LB(δ(d.i , r
.
j)) + δ(r.j , r

/
j) + LB(δ(r/j , d

/
i)) (15)

where upper bounds of network distances are computed
using the partition-based index in Section 4.2 and lower
bounds are estimated by Euclidean distances.
Pruning. We order all the UB(di) values ascendantly. Let UBk
denote the kth smallest UB(di). Then we can remove the
drivers(e.g., di′) whose lower bounds are larger than UBk
(LB(di′) > UBk).
Computing the top-k matching drivers. We use a priority
queue Q to keep the current top-k drivers result. Obviously
the driver with smaller lower bounds should have larger
probability to be in the top-k results. Thus for each un-
pruned driver di, we access them in ascending order by
LB(di) and compute π(di, rj), and compare it with Qk. If
π(di, rj) > Qk, we enqueue di to Q to update the top-k
result. Finally the results inQ are the top-k matching drivers
(Ckj = Q).

Algorithm 4 shows the pseudo code of the best-first
method for Search-basedRS. Function CANDIDATESETGEN
first generates the set of candidate drivers C̃j for rider rj
(line 2). Then the upper bounds and lower bounds of total
traveled network distances by drivers in C̃j are computed
(line 3). Any driver d whose lower bound of total traveling
network distance for sharing ride with rider rj that is larger
than the kth smallest upper bound of the total network
distance traveled by another driver d′ can not be the top-
k matching drivers, they can be safely pruned (line 4).
For each unpruned driver di, if the lower bound of di’s
traveled network distance is larger than the total distance
traveled by the driver of Qk, di and drivers with larger
lower bounds of total traveled network distance can not
be the top-k matching drivers, they can be safely pruned
(lines 6-7). Otherwise, if di is a valid driver for rj and the
SRP value π(di, rj) is better than Qk, di is enqueued to Q
(line 10) to produce the final result (line 12).

Complexity. The computations of UB(di) and LB(di) take
O(1) time. Suppose we use G-tree to compute the short-
est routes, the complexity is O(logf

|V |
l |V |). Suppose the

algorithm terminates in y iterations. The complexity of the
best-first method is O(|Cj |+ logf

|V |
l |V |y).

Example 12. Suppose we want to find the top-3 drivers from
Cj = {d1, d2, d3, d4, d5} for a rider rj . The upper bounds UB(di)
and lower bounds LB(di) for 1 ≤ i ≤ 5 are: 13, 15, 10, 11, 19,
and 12, 14, 9, 7, 16. UB3 = UB(d1) = 13. For d2 and d5,
LB(d2) = 14 > UB3, LB(d5) = 16 > UB3, thus d2 and d5 cannot
be one of the top-3 drivers, they are discarded (π(d2, rj) = 13.2,
π(d5, rj) = 17). The remaining drivers are d1, d3 and d4.
We compute their exact SRP values and enqueue them to Q.
Therefore, the result Ckj = {d1, d3, d4}.

Algorithm 4: Best-First(rj , D,G〈V,E〉)
Input: rj : a rider, D: the drivers set,

G〈V,E〉: the road network
Output: Ckj : the top-k matching drivers for rj
begin1

C̃j = CANDIDATESETGEN({rj}, D,G〈V,E〉, π0);2

∀di ∈ C̃j , compute UB(di) and LB(di);3

Prune all drivers di′ having LB(di′) > UBk;4

for each unpruned di by LB(di) ascending order do5

if LB(di) >total distance by driver Qk then6

break;7

else8

if π(di, rj) ≥ Qk and π(di, rj) ≥ πi then9

Enqueue π(di, rj) to Q;10

Ckj = Q;11

return Ckj ;12

end13

Fig. 9. Best-First Algorithm for Search-basedRS.TABLE 2
Test Data Sets

Data Set Num. of Trajectories Average Trajectory Length (km)
Taxi 200, 000 6.128
UCar 1, 267, 000 11.607

6 EXPERIMENTS

In this section, we conduct experiments on real datasets to
evaluate the performance of algorithms and the quality of
our approximate algorithms.
Datasets. We use a real road network of Beijing with
338,024 vertices and 440,525 edges. We use two ride-
sharing datasets, Taxi (www.datatang.com/data/45888)
and UCar (www.zhuanche.zuche.com, a commercial service
like Uber). Taxi contains about 200, 000 trajectories of user
orders generated by more than 8,000 public taxicabs in one
month in Beijing. UCar contains 1, 267, 000 trajectories of
user orders generated by nearly 2,000 private drivers within
one week in Beijing. We extract the pick-up and drop-
off locations from Taxi and UCar and randomly assign
them to a set of drivers and a set of riders. All tests are
performed separately on the drivers/riders sets generated
from Taxi and UCar. We use normal distribution to model
the distribution of the SRP requirement (πi) of each driver,
and π0 ≤ πi ≤ 1. First, given π0, the average of the normal
distribution of random variable x is set to π0, and the vari-
ance is 1− π0. Then we use normal distribution to generate
a value of x. If x ≤ 1, we set πi = x; If x > 1, we set πi = 1.
We also tested other distributions of πi, such as uniform
distribution, and our experimental results indicated that the
distribution of πi had little impact on the performance of our
algorithms on efficiency and effectiveness. Besides, normal
distribution was more practical for such scenario, and thus
we used normal distribution of πi.
Experimental Setting. All of the algorithms are imple-
mented in C++ with -O3 flag. All the experiments are
conducted in a machine with 2.40 GHz Intel Xeon CPU E5-
2630, 48 GB RAM, running Ubuntu 14.04.
Algorithms. Table 3 summarises the complexities of our
proposed algorithms. The approximate guarantee of the
approximate algorithm for Join-basedRS is τ .

9

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

0

50

100

150

200

250

300

350

25k 50k 75k 100k

E
la

p
s
e

d
 T

im
e

(s
)

Number of drivers

Exact
Appr

(a) Taxi, 50000 riders

0

50

100

150

200

250

300

350

25k 50k 75k 100k

E
la

p
s
e

d
 T

im
e

(s
)

Number of riders

Exact
Appr

(b) Taxi, 50000 drivers

0

100

200

300

400

25k 50k 75k 100k

E
la

p
s
e

d
 T

im
e

(s
)

Number of drivers

Exact
Appr

(c) UCar, 50000 riders

0

100

200

300

400

25k 50k 75k 100k

E
la

p
s
e

d
 T

im
e

(s
)

Number of riders

Exact
Appr

(d) UCar, 50000 drivers
Fig. 10. Test1 - Join-basedRS Efficiency by Varying # of Riders/Drivers (π0 = 0.8, τ = 1.5, h = 100).

5000

10000

15000

20000

25000

25k 50k 75k 100k

M
a

tc
h

 R
e

s
u

lt

Number of drivers

Exact
Appr

(a) Taxi, 50000 riders

5000

10000

15000

20000

25000

25k 50k 75k 100k

M
a

tc
h

 R
e

s
u

lt

Number of riders

Exact
Appr

(b) Taxi, 50000 drivers

5000

10000

15000

20000

25000

25k 50k 75k 100k

M
a

tc
h

 R
e

s
u

lt

Number of drivers

Exact
Appr

(c) UCar, 50000 riders

5000

10000

15000

20000

25000

25k 50k 75k 100k

M
a

tc
h

 R
e

s
u

lt

Number of riders

Exact
Appr

(d) UCar, 50000 drivers
Fig. 11. Test2 - Join-basedRS Effectiveness by Varying # of Riders/Drivers (π0 = 0.8, τ = 1.5, h = 100).

0

200

400

600

800

1000

0.70 0.75 0.80 0.85 0.90

E
la

p
s
e

d
 T

im
e

(s
)

π0

Exact
Appr

(a) Taxi

5000

10000

15000

20000

25000

0.70 0.75 0.80 0.85 0.90

M
a

tc
h

 R
e

s
u

lt

π0

Exact
Appr

(b) Taxi

0

200

400

600

800

1000

0.70 0.75 0.80 0.85 0.90

1319.417

E
la

p
s
e

d
 T

im
e

(s
)

π0

Exact
Appr

(c) UCar

5000

10000

15000

20000

25000

0.70 0.75 0.80 0.85 0.90

M
a

tc
h

 R
e

s
u

lt

π0

Exact
Appr

(d) UCar
Fig. 12. Test3 - Join-basedRS by Varying π0 (50000 drivers, 50000 riders, τ = 1.5, h = 100).

0

20

40

60

80

100

1.3 1.4 1.5 1.6 1.7

M
a

tc
h

in
g

 T
im

e
(s

)

τ

Exact Appr

(a) Taxi. Efficiency

10000

15000

20000

1.3 1.4 1.5 1.6 1.7

M
a

tc
h

 R
e

s
u

lt

τ

Exact
Appr

(b) Taxi. Effectiveness

0

20

40

60

80

100

1.3 1.4 1.5 1.6 1.7

M
a

tc
h

in
g

 T
im

e
(s

)

τ

Exact Appr

(c) UCar. Efficiency

10000

15000

20000

1.3 1.4 1.5 1.6 1.7

M
a

tc
h

 r
e

s
u

lt

τ

Exact
Appr

(d) UCar. Effectiveness
Fig. 13. Test4 - Join-basedRS by Varying τ (50000 drivers, 50000 riders, π0 = 0.8, h = 100).

0

20

40

60

80

100

50 100 150 200

M
a
tc

h
in

g
 T

im
e
(s

)

h

Exact Appr

(a) Taxi

0

20

40

60

80

100

50 100 150 200

M
a

tc
h

in
g

 T
im

e
(s

)

h

Exact Appr

(b) UCar
Fig. 14. Test5 - Join-basedRS efficiency by Varying h (50000 drivers,
50000 riders, π0 = 0.8, τ = 1.5).

6.1 Evaluating Join-based RS

In this section, we evaluate the Join-basedRS techniques.
We implemented two strategies: (1) Exact: the exact method
in Section 3 that uses exact shortest routes of riders to gen-
erate candidate driver-rider set and uses bigraph matching
algorithms to compute the precise matching P ∗. (2) Appr:
the approximate solution in Section 4 that uses bounds of

riders’ shortest routes to construct the upper and lower
bound bigraphs GU and GL, and uses the converged LB(P)
as the approximate answer for P ∗. We evaluate the effi-
ciency, effectiveness, and their trends by varying π0 (the
minimal shared route percentage by all drivers), τ (the
bound ratio threshold for UB(P)/LB(P) in Appr iteration)
and h (the number of upper/lower bound bigraph edges
to update into exact shared percentages in each iteration
of Appr). By default, π0 = 0.8, τ = 1.5 and h = 100 for
our Join-basedRS algorithms, and k = 3, π0 = 0.7 for the
Search-basedRS algorithms. We use the G-tree algorithm
when computing shortest routes.

6.1.1 Test1: Efficiency
We evaluate the efficiency by fixing the number of riders and
varying the number of drivers, and vice versa. The running
time is composed of two parts: candidate set generation (i.e.
bigraph construction) and bigraph matching (for Appr the
matching time is the converging time for making UB(P)

LB(P) ≤ τ).

10

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

TABLE 3
Algorithm Complexity (y is the iteration times before an algorithm

terminates, h is the number of edges to update to real SRP)

RS Problem Method Complexity

Join-based Exact O(|C̃′|+ logf
|V |
l |V ||C̃|+ (|R|+ |D|)2|C̃|)

Approximate O(yh logf
|V |
l |V |+ y(|R|+ |D|))

Search-based
Baseline O(logf

|V |
l |V ||Cj |)

Expansion O(|Cj |+ (|E|+ logf
|V |
l |V |)y)

Best-first O(|Cj |+ logf
|V |
l |V |y)

Figures 10(a)-10(b) show the results on Taxi dataset and
Figures 10(c)-10(d) show the results on the UCar dataset.
Each bar in the figures corresponds to a total running time
of a compared strategy for certain number of drivers/riders.
The upper part of a bar is the bigraph construction time,
and the lower part of a bar is the bigraph matching time.
The driver grouping optimazation is applied in the reported
results, and on average its efficiency improvement increases
linearly as the total number of drivers increases.

We have the following observations. Firstly, Appr effec-
tively improves the overall efficiency, it runs 6 times and 5
times faster than Exact for Taxi and UCar respectively. The
efficiency improvement is achieved by avoiding shortest
route computations in the bigraph construction step, and the
upper/lower bounds converging technique in the bigraph
matching step. Secondly, with the increasing of dataset size,
the efficiency improvement by Appr becomes more signif-
icant, because more shortest routes and SRP calculations
are avoided, demonstrating ability to scale to large dataset.
Thirdly, the candidate set generation time takes larger part
in the overall running time on the UCar dataset than on the
Taxi dataset. This is because orders in the UCar dataset has
longer route distances and larger searching area for drivers,
and thus a single rider has more candidate drivers than in
the Taxi dataset and takes the higher ratio of candidate set
generation time in the overall running time. Fourthly, the
matching time is greatly reduced by Appr compared with
that in Exact, because the expensive exact bigraph matching
process is eliminated.

In all, Appr demonstrates notable ability to improve the
efficiency for Join-basedRS.

6.1.2 Test2: Effectiveness
We use the summary of all shared route percentage of
matched driver-rider pairs as matching results to indicate
the effectiveness. The closer LB(P) is to P ∗, the higher the
approximate ratio, the better the approximation methods.
Figures 11(a)-11(b) show the results on Taxi dataset and
Figures 11(c)-11(d) show the results on the UCar dataset,
where the y-axis ”Match Result” is the total shared route
percentage of each matched bigraph.

We have the following observations. Firstly, the approx-
imate answers by Appr are within 93.5%-96.3% and 94.1%-
95.9% to the exact answer on Taxi and UCar respectively.
The approximating ability is attributable to bound conver-
gence technique of Appr. Secondly, the approximate answers
for smaller datasets are closer to the precise answer because
larger portion of bigraph edges are updated to exact SRP
values in each upper/lower bound convergence iteration.
Thirdly, the approximate rate, i.e., P∗

LB(P) , is always bounded
within the predefined threshold τ , and are much smaller as
illustrated by our experimental results.

In all, the approximate answers by Appr are close enough
to accurate answers and can be achieved faster.

6.1.3 Test3: Impact of the minimal SRP value π0
We evaluate how the global shared route percentage con-
straint π0 affects the overall matching result and the run-
ning time. Figures 12(a)-12(b) show the results on Taxi
dataset and Figures 12(c)-12(d) show the results on the UCar
dataset.

We have the following observations. Firstly, as π0 in-
creases, the running time of both Exact and Appr decreases.
This is because larger π0 constraints for drivers correspond
to higher selectivity, i.e., fewer candidate drivers for each
rider and less bigraph edges, and therefore faster candidate
generation and matching. Secondly, the improvement of
runtime efficiency by Appr over Exact is more obvious
with smaller π0 values than with larger π0 values, where
the selectivity of π0 contributes less to improving efficiency,
demonstrating the speeding power of Appr. Thirdly, as
π0 increases, the approximate rate increases for the Taxi
dataset. This is because edge numbers are reduced in both
upper bound bigraph and lower bound bigraph, resulting
in a smaller gap between UB(P) and LB(P), and closer
converged LB(P) to precise answer P ∗. In the meantime, the
overall matching value is reduced as π0 increases, indicating
that the π0 value should be set prudently to achieve overall
requirement.

In all, Appr can achieve high performance (less than 100
seconds) for different π and can be used in practice.

6.1.4 Test4: Impact of the graph bound threshold τ

We evaluate the trends of matching time and approximate
ratio of Appr versus Exact as τ varies. Figures 13(a)-13(b)
and Figures 13(c)-13(d) show the results on the Taxi and
UCar datasets.

We have the following observations. Firstly, the match-
ing time of Appr keeps decreasing as τ increases, while
Exact is not affected as it uses exact bigraph matching
technique. This is because larger τ means larger tolerance
on the approximate answer, and less convergence time for
UB(P)/LB(P) to approach τ . Secondly, the approximate
ratio decreases as τ increases, and the decreasing trend is
more obvious for τ ≤ 1.5 than for τ > 1.5. Again, this is
attributable to the approximation tolerance introduced by
different τ values.

In all, for Appr, for τ between 1 and 2, the matching
quality is similar, around 95%. A larger threshold leads to
higher performance.

6.1.5 Test5: Impact of the edge numbers h between itera-
tions for Appr

We evaluate how the h parameter affects the convergence of
Appr. Figure 14(a) and Figure 14(b) show the results on the
Taxi and UCar datasets.

We observe that the more edges are updated into exact
SRP values in both the upper bound and lower bound
bigraphs, the faster that UB(P)

LB(P) converges to τ . The efficiency
improvement of Appr over Exact is more obvious on the
Taxi dataset than on the UCar dataset because the average
network distance for UCar orders is longer than that of the
Taxi orders, which results in larger candidate sets, and thus
larger bigraphs and longer matching time.

We do not evaluate the quality because different h values
will not affect the quality.

11

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

0

5

10

25k 50k 75 100k

A
v
g
.
S

e
a
rc

h
 T

im
e
(m

s
)

Number of drivers

Baseline
Best-first

Expansion

(a) Taxi

0

5

10

25k 50k 75 100k

A
v
g

.
S

e
a

rc
h

 T
im

e
(m

s
)

Number of drivers

Baseline
Best-first

Expansion

(b) UCar
Fig. 15. Test6 - Search-basedRS Efficiency by Varying # of Drivers (π0 =
0.7, k = 3).

6.2 Evaluating Search-based RS

In this section, we evaluate Search-basedRS techniques.
We implement three strategies: (1) Baseline: the baseline
algorithm that searches all possible candidate drivers, com-
putes all SRP values and selects the top k drivers for
a given rider. (2) Expansion: Algorithm 3 in Section 5,
the expansion-based method that gradually increases the
candidate drivers set for a single passenger. (3) Best-first:
Algorithm 4 in Section 5 that only computes k driver-rider
shared route percentages in the best scenario. We conduct
three groups of tests to evaluate the impact of efficiency by
varying one of the following three parameters while fixing
the other two: number of drivers, k and π0.

6.2.1 Test6: Impact on efficiency by number of drivers

We evaluate the runtime efficiency by varying the number of
drivers (π0 = 0.7, k = 3), and . Figure 15(a) and Figure 15(b)
show the results on the Taxi and UCar datasets.

We have the following observations. Firstly, Best-first
has the highest efficiency, and Expansion runs faster than
Baseline. Best-first runs 6 times faster than Baseline
on the Taxi dataset, and 3 times faster on the UCar dataset.
This is because Best-first does not need to compute all
the π(di, rj) values for each di ∈ Cj of the single rider
rj , drivers whose lower bounds LB(di) are larger than the
kth biggest SRP value (Q(k)) so far are directly discarded.
Expansion beats Baseline because the expansion stops
when the size of the intersection of the candidate driver list
for r.j and the candidate driver list for r/j reaches k, thus
avoiding calculation of SRP values for all the excluded
drivers. Best-first outperforms Expansion because the
expansion process is more expensive than the bound-based
method adopted by Best-first. Secondly, the efficiency
improvements by Best-first and Expansion are more
obvious on the Taxi dataset than on the UCar dataset. For
Best-first this is because on average the UCar dataset has
larger candidate searching area and thus more candidate
drivers, and accordingly, the portion of drivers whose lower
bounds LB(di) are larger than Q(k) in the whole Cj set
is lower than that of the Taxi dataset, introducing more
exact SRP computations and thus higher average running
time. The reason for Expansion is similar, larger candi-
date searching area introduces more must-check candidate
drivers. Thirdly, both Best-first and Expansion have
better scalability than Baseline. As the number of available
drivers increases, the time consumption of Best-first and
Expansion increases slower than Baseline. The reason is
that Baseline always computes all exact SRP values for
all the valid candidate drivers, while the pruning power of
Best-first and Expansion becomes more obvious, i.e., the

0

5

10

1 3 5

A
v
g
.
S

e
a
rc

h
 T

im
e
(m

s
)

k

Baseline
Best-first

Expansion

(a) Taxi

0

5

10

1 3 5

A
v
g

.
S

e
a

rc
h

 T
im

e
(m

s
)

k

Baseline
Best-first

Expansion

(b) UCar
Fig. 16. Test7 - Search-basedRS Efficiency by Varying k (50000 drivers,
π0 = 0.7).

0.1

1

10

100

0.60 0.65 0.70 0.75 0.80 0.85 0.90

A
v
g
.
S

e
a
rc

h
 T

im
e
(m

s
)

π0

Baseline
Best-first

Expansion

(a) Taxi

0.1

1

10

100

0.60 0.65 0.70 0.75 0.80 0.85 0.90

A
v
g

.
S

e
a

rc
h

 T
im

e
(m

s
)

π0

Baseline
Best-first

Expansion

(b) UCar
Fig. 17. Test8 - Search-basedRS Efficiency by Varying π0 (100000
drivers, k = 3).

more avoidance of exact SRP computations, the more time
reduction.

In addition, the answers returned by Best-first and
Expansion methods are always consistent with that of
Baseline, the exact solution, demonstrating the correctness.

6.2.2 Test7: Impact on efficiency by k
We evaluate the search performance by varying k (π0 =
0.7, 50000 drivers). Figure 16(a) and Figure 16(b) show the
results on the Taxi and UCar datasets.

We have the following observations. Firstly, for each
k value, Best-first runs faster than Baseline and
Expansion, because of the pruning power analyzed in
Test6. Secondly, as k increases, the runtime increasing
rates of Best-first and Expansion are much slower than
Baseline, which is also attributed to the effective pruning
power.

6.2.3 Test8: Impact on efficiency by π0
We evaluate the search performance by varying π0 (k =
3, 100000 drivers). Figure 17(a) and Figure 17(b) show the
results on the Taxi and UCar datasets.

We have the following observations. Firstly, for most π0
values, Best-first and Expansion always run faster than
Baseline, because of the effective pruning techniques of
Best-first and Expansion as analyzed in Test6. Secondly,
as π0 increases, the average runtime for all three strategies
decrease because of increased selectivity of larger π0 values
and less number of candidates. Thirdly, the performance
improvement of Best-first and Expansion over Baseline
is more obvious for smaller π0 values (i.e., π0 ≤ 0.85) than
for larger π0 values, because smaller π0 values correspond
to larger searching areas of drivers, thus achieving better
pruning powers of Best-first and Expansion.

In all, the Best-first method is the most efficient and
scalable technique for Search-basedRS.

7 RELATED WORKS

7.1 Ride-sharing
The ride-sharing problem has gained increasing attention in
both the academic and the industrial communities[3], [5],

12

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

[10], [14], [19], [20], [26], [27], where the goal is to match
drivers and riders on a real-time basis, within the riders’
time windows and drivers’ capacities[5], [14], [19], [26], [27].

In the auction-based framework of [5], drivers can auto-
matically bid on nearby riders’ requests, so that the server
assigns each rider to the highest bidder(driver), taking into
consideration both the rider’s and the driver’s constraints,
such as pricing model, vehicle capacity, profits, etc. In [14],
ride requests are prioritized according to their expiration
time. Heuristics such as saving gains and greedy group-
ing are used to group ride requests and assign them to
certain drivers. The grouping problem is solved by con-
tinuous stream query and extended to parallel algorithm
to handle large-scale on-line ride requests. [26] studies a
similar ride-sharing problem, focusing on the satisfaction
rate and approximate routes, among which one greedy route
is provided to meet the ride request. In [20], methods to
generate shared transportation plans are reviewed, and the
problem is then deemed as an agent collaboration model,
where multiple agents and market-based incentives are
coordinated for the key challenges. In [10] a distributed
taxi-sharing system is proposed, and empirically studied.
The service quality is similar to traditional taxis. In [19], to
provide fast response time, trip requests with waiting and
service time constraints are served in a sequential style, i.e.,
the requests are assigned to drivers one by one, such that
for each driver, the total traveling time of the ride-sharing
schedule is bounded in a set range versus the traveling time
without sharing. Valid schedule plans for each driver are
kept in a kinetic tree structure. Given a new ride request,
the matching vehicle is the one with the minimum traveling
cost increase. The matching mechanism is local optimal as
a matched rider is not available to be matched to other
drivers anymore. In [27], riders and drivers arrive and leave
independently. For each sharing schedule, riders pay no
more than without sharing and drivers earn no less than
not sharing. Given a new ride request, the best driver is
assigned with the time and monetary constraints satisfied.
The algorithm can be extended to handle large-scale ride
requests, while it is not necessary to reorder schedules, as
the trade-off between increased time consumption and the
effectiveness is unworthy.

Our solution is different from above works. Firstly,
the contexts are different. Most existing works study how
to allocate vehicle capacities between riders, ignoring the
drivers’ own travel needs; in contrast, we acknowledge that
both riders and drivers have travel needs, and study two
types of such ride-sharing problems to fit into different cir-
cumstances. Secondly, we recognize the economy of sharing,
and propose algorithms to maximize the overall resource
utilization. Thirdly, our algorithms can properly handle
large-scale ride-sharing problems, where we use the bigraph
matching and the top-k models and their approximations to
achieve efficiency.

7.2 Spatial Crowdsourcing
Ride-sharing can be considered as one of spatial crowd-
sourcing applications, where spatial task assignment is
a closely-related topic. For static scenarios, the assign-
ment problem can be regarded as the classical maximum
weighted bipartite graph matching problem [22], while this
is not suitable for dynamic scenarios where tasks and work-
ers appear dynamically and the whole bigraph cannot be

known in advance. Tong et al [30] experimentally study the
online minimum bipartite matching in real time spatial data
(OMBM) problem, where workers are predefined and tasks
arrive on a real-time basis.

In [31], the Global Online Micro-task Allocation in spa-
tial crowdsourcing (GOMA) problem is identified, and a
two-phase framework with 1

4 -competitive ratio assuming
random order model is proposed, to address the need to
immediately match tasks and workers upon their arrival.

The problems in our paper are different from problems
in above works, as each spatial task (rider request) in our
settings has two related locations (source and destination)
to be considered during the driver/rider matching process,
while the tasks of [30] and [31] are characterized by one
location. Moreover, we consider the road-network distance.

7.3 Route Recommendation
Route recommendation is a related topic to ride-sharing,
drivers can adopt the recommended routes instead of the
shortest routes. We review general-purpose route recom-
mendation [7], [8], [16], [34], [17], [25], [32], [23] and rec-
ommender systems for taxis [13], [28], [29], [35], [36], [37].
Popular routes. In [8], path desirability is evaluated by a
popularity function using historical trajectories. The recom-
mended popular routes usually have fewer drivers than
routes provided by other algorithms. In [32], k popular
routes are provided by mining trajectory datasets. The rec-
ommendation routes are of coarse granularity, rather than
exact routes. [7] argues that system-recommended routes
may be different from users’ preference. Therefore, person-
alized popular routes are mined from the user’s own histor-
ical trajectory data, to reflect differentiated preferences. In
[25], the most frequent paths in different time periods are
presented to users according to use-specified time period.
Recommendation for taxi dispatching. Coarse-grained rec-
ommender systems [29], [35], [24], [18], [37] suggest driving
directions for drivers to pick up possible riders. In [15], [13],
[36], multiple drivers take turns to get the recommended
routes. A fair driver recommendation model is proposed
in [28], the goal is to assign routes to a group of compet-
ing drivers on a fair basis. The driving cost per customer
for each taxi is kept constant to ensure the fairness. Each
candidate route is scored according to the probability of
successful custom pick-ups along this route, and a cost
matrix is assembled to fairly assign routes.

8 CONCLUSION

In this paper, we define and study two types of ride-sharing
problem and propose an efficient framework to address
the two problems. We first propose an exact algorithm for
the Join-basedRS which can remove a large number of
invalid pairs and avoid computing their shortest routes. We
then propose an approximate algorithm that estimates an
upper bound and a lower bound, and approaches the two
bounds by computing the shortest routes for some rider-
driver pairs. For Search-basedRS, we propose a best-first
algorithm to compute the top-k results. Experimental study
on two real-world datasets demonstrates the effectiveness
and efficiency of our algorithms. In the future, we want
to extend our method to support dynamic settings where
drivers and riders are dynamically coming.
Acknowledgment. This work was supported by the
973 Program of China (2015CB358700), NSF of China

13

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2760880, IEEE
Transactions on Knowledge and Data Engineering

(61632016, 61373024, 61602488, 61422205, 61472198), ARC
DP170102726, and FDCT/007/2016/AFJ. Guoliang Li is the
corresponding author.

REFERENCES

[1] www.airbnb.com.
[2] www.didi.xin.
[3] www.uber.com.
[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,

algorithms and applications. Prentice Hall, 1993.
[5] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li.

Price-aware real-time ride-sharing at scale: an auction-based ap-
proach. In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS 2016,
Burlingame, California, USA, October 31 - November 3, 2016, pages
3:1–3:10, 2016.

[6] R. Belk. You are what you can access: Sharing and collaborative
consumption online. Journal of Business Research, 67(8):1595–1600,
2014.

[7] V. Ceikute and C. S. Jensen. Routing service quality - local driver
behavior versus routing services. In MDM, pages 97–106, 2013.

[8] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular routes
from trajectories. In ICDE, pages 900–911, 2011.

[9] B. Cohen and J. Kietzmann. Ride onmobility business models for
the sharing economy. Organization & Environment, 27(3):279–296,
2014.

[10] P. M. d’Orey, R. Fernandes, and M. Ferreira. Empirical evalua-
tion of a dynamic and distributed taxi-sharing system. In IEEE
Conference on Intelligent Transportation Systems, pages 140–146, Sept
2012.

[11] R. Duan and S. Pettie. Linear-time approximation for maximum
weight matching. Journal of the ACM (JACM), 61(1):1, 2014.

[12] J. Edmonds and R. M. Karp. Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM,
19(2):248–264, 1972.

[13] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J.
Pazzani. An energy-efficient mobile recommender system. In
SIGKDD, pages 899–908, 2010.

[14] G. Gidófalvi, T. B. Pedersen, T. Risch, and E. Zeitler. Highly scal-
able trip grouping for large-scale collective transportation systems.
In EDBT, pages 678–689, 2008.

[15] H. Hu, G. Li, Z. Bao, J. Feng, Y. Wu, Z. Gong, and Y. Xu. Top-
k spatio-textual similarity join. IEEE Trans. Knowl. Data Eng.,
28(2):551–565, 2016.

[16] H. Hu, Y. Liu, G. Li, J. Feng, and K. Tan. A location-aware
publish/subscribe framework for parameterized spatio-textual
subscriptions. In ICDE, pages 711–722, 2015.

[17] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng. Crowd-
sourced POI labelling: Location-aware result inference and task
assignment. In ICDE, pages 61–72, 2016.

[18] W. Huang, G. Li, K. Tan, and J. Feng. Efficient safe-region
construction for moving top-k spatial keyword queries. In CIKM,
pages 932–941, 2012.

[19] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale real-
time ridesharing with service guarantee on road networks. VLDB,
7(14):2017–2028, 2014.

[20] E. Kamar and E. Horvitz. Collaboration and shared plans in the
open world: Studies of ridesharing. In IJCAI, page 187, 2009.

[21] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[22] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering
with spatial crowdsourcing. In SIGSPATIAL 2012 International
Conference on Advances in Geographic Information Systems (formerly
known as GIS), SIGSPATIAL’12, Redondo Beach, CA, USA, November
7-9, 2012, pages 189–198, 2012.

[23] G. Li, J. Feng, and J. Xu. DESKS: direction-aware spatial keyword
search. In ICDE, pages 474–485, 2012.

[24] Y. Liu, H. Wang, G. Li, J. Gao, H. Hu, and W. Li. ELAN: an efficient
location-aware analytics system. Big Data Research, 5:16–21, 2016.

[25] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data. In SIGMOD, pages 713–
724, 2013.

[26] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic
taxi ridesharing service. In ICDE, pages 410–421, 2013.

[27] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale taxi
ridesharing. IEEE Transactions on Knowledge and Data Engineering,
27(7):1782–1795, 2015.

[28] S. Qian, J. Cao, F. L. Mouël, I. Sahel, and M. Li. SCRAM: A
sharing considered route assignment mechanism for fair taxi route
recommendations. In SIGKDD, pages 955–964, 2015.

[29] S. Qian, Y. Zhu, and M. Li. Smart recommendation by mining
large-scale GPS traces. In WCNC, pages 3267–3272, 2012.

[30] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu. Online
minimum matching in real-time spatial data: Experiments and
analysis. PVLDB, 9(12):1053–1064, 2016.

[31] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen. Online mobile
micro-task allocation in spatial crowdsourcing. In 32nd IEEE
International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016, pages 49–60, 2016.

[32] L. Wei, Y. Zheng, and W. Peng. Constructing popular routes from
uncertain trajectories. In KDD, pages 195–203, 2012.

[33] D. B. West et al. Introduction to graph theory, volume 2. Prentice
hall Upper Saddle River, 2001.

[34] M. Yu, G. Li, T. Wang, J. Feng, and Z. Gong. Efficient filtering
algorithms for location-aware publish/subscribe. IEEE Trans.
Knowl. Data Eng., 27(4):950–963, 2015.

[35] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: driving directions based on taxi trajectories. In GIS, pages
99–108, 2010.

[36] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: A recom-
mender system for finding passengers and vacant taxis. IEEE
Trans. Knowl. Data Eng., 25(10):2390–2403, 2013.

[37] M. Zhang, J. Liu, Y. Liu, Z. Hu, and L. Yi. Recommending pick-
up points for taxi-drivers based on spatio-temporal clustering. In
CGC, pages 67–72, 2012.

[38] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong. G-tree: An efficient
and scalable index for spatial search on road networks. IEEE Trans.
Knowl. Data Eng., 27(8):2175–2189, 2015.

Na Ta is currently working as an assistant pro-
fessor in the School of Journalism and Com-
munication, Renmin University of China, Beijing,
China. She received her PhD degree in Com-
puter Science from Tsinghua University, Beijing,
China in 2017. Her research interests mainly
include computational communication and urban
computing.
Guoliang Li is currently working as an asso-
ciate professor in the Department of Computer
Science, Tsinghua University, Beijing, China. He
received his PhD degree in Computer Science
from Tsinghua University, Beijing, China in 2009.
His research interests mainly include data clean-
ing and integration and crowdsourcing.

Tianyu Zhao is currently a Ph.D student in
the Department of Computer Science, Tsinghua
University. He received his B.E. degree in Soft-
ware Engineering from Beihang University in
2017. His research interests mainly include ur-
ban computing and spatial databases.

Jianhua Feng received his B.S., M.S. and PhD
degrees in Computer Science from Tsinghua
University. He is currently working as a professor
of Department Computer Science in Tsinghua
University. His main research interests include
large-scale data management.

Hanchao Ma is with the Department of Elec-
tronic Engineering and Computer Science,
Washington State University. He received his
M.S. degree in Information Science from the
University of Pittsburgh in 2014. His research
interests mainly include spatial databases.

Zhiguo Gong is an associate professor in Fac-
ulty of Science and Technology, University of
Macau. He obtained his PhD degree in Depart-
ment of Computer Science, Institute of Mathe-
matics, Chinese Academy of Science, China. His
research fields include database systems and
Web mining.

14

