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[10], [14], [19], [20], [26], [27], where the goal is to match
drivers and riders on a real-time basis, within the riders’
time windows and drivers’ capacities[5], [14], [19], [26], [27].

In the auction-based framework of [5], drivers can auto-
matically bid on nearby riders’ requests, so that the server
assigns each rider to the highest bidder(driver), taking into
consideration both the rider’s and the driver’s constraints,
such as pricing model, vehicle capacity, profits, etc. In [14],
ride requests are prioritized according to their expiration
time. Heuristics such as saving gains and greedy group-
ing are used to group ride requests and assign them to
certain drivers. The grouping problem is solved by con-
tinuous stream query and extended to parallel algorithm
to handle large-scale on-line ride requests. [26] studies a
similar ride-sharing problem, focusing on the satisfaction
rate and approximate routes, among which one greedy route
is provided to meet the ride request. In [20], methods to
generate shared transportation plans are reviewed, and the
problem is then deemed as an agent collaboration model,
where multiple agents and market-based incentives are
coordinated for the key challenges. In [10] a distributed
taxi-sharing system is proposed, and empirically studied.
The service quality is similar to traditional taxis. In [19], to
provide fast response time, trip requests with waiting and
service time constraints are served in a sequential style, i.e.,
the requests are assigned to drivers one by one, such that
for each driver, the total traveling time of the ride-sharing
schedule is bounded in a set range versus the traveling time
without sharing. Valid schedule plans for each driver are
kept in a kinetic tree structure. Given a new ride request,
the matching vehicle is the one with the minimum traveling
cost increase. The matching mechanism is local optimal as
a matched rider is not available to be matched to other
drivers anymore. In [27], riders and drivers arrive and leave
independently. For each sharing schedule, riders pay no
more than without sharing and drivers earn no less than
not sharing. Given a new ride request, the best driver is
assigned with the time and monetary constraints satisfied.
The algorithm can be extended to handle large-scale ride
requests, while it is not necessary to reorder schedules, as
the trade-off between increased time consumption and the
effectiveness is unworthy.

Our solution is different from above works. Firstly,
the contexts are different. Most existing works study how
to allocate vehicle capacities between riders, ignoring the
drivers’ own travel needs; in contrast, we acknowledge that
both riders and drivers have travel needs, and study two
types of such ride-sharing problems to fit into different cir-
cumstances. Secondly, we recognize the economy of sharing,
and propose algorithms to maximize the overall resource
utilization. Thirdly, our algorithms can properly handle
large-scale ride-sharing problems, where we use the bigraph
matching and the top-k models and their approximations to
achieve efficiency.

7.2 Spatial Crowdsourcing
Ride-sharing can be considered as one of spatial crowd-
sourcing applications, where spatial task assignment is
a closely-related topic. For static scenarios, the assign-
ment problem can be regarded as the classical maximum
weighted bipartite graph matching problem [22], while this
is not suitable for dynamic scenarios where tasks and work-
ers appear dynamically and the whole bigraph cannot be

known in advance. Tong et al [30] experimentally study the
online minimum bipartite matching in real time spatial data
(OMBM) problem, where workers are predefined and tasks
arrive on a real-time basis.

In [31], the Global Online Micro-task Allocation in spa-
tial crowdsourcing (GOMA) problem is identified, and a
two-phase framework with 1

4 -competitive ratio assuming
random order model is proposed, to address the need to
immediately match tasks and workers upon their arrival.

The problems in our paper are different from problems
in above works, as each spatial task (rider request) in our
settings has two related locations (source and destination)
to be considered during the driver/rider matching process,
while the tasks of [30] and [31] are characterized by one
location. Moreover, we consider the road-network distance.

7.3 Route Recommendation
Route recommendation is a related topic to ride-sharing,
drivers can adopt the recommended routes instead of the
shortest routes. We review general-purpose route recom-
mendation [7], [8], [16], [34], [17], [25], [32], [23] and rec-
ommender systems for taxis [13], [28], [29], [35], [36], [37].
Popular routes. In [8], path desirability is evaluated by a
popularity function using historical trajectories. The recom-
mended popular routes usually have fewer drivers than
routes provided by other algorithms. In [32], k popular
routes are provided by mining trajectory datasets. The rec-
ommendation routes are of coarse granularity, rather than
exact routes. [7] argues that system-recommended routes
may be different from users’ preference. Therefore, person-
alized popular routes are mined from the user’s own histor-
ical trajectory data, to reflect differentiated preferences. In
[25], the most frequent paths in different time periods are
presented to users according to use-specified time period.
Recommendation for taxi dispatching. Coarse-grained rec-
ommender systems [29], [35], [24], [18], [37] suggest driving
directions for drivers to pick up possible riders. In [15], [13],
[36], multiple drivers take turns to get the recommended
routes. A fair driver recommendation model is proposed
in [28], the goal is to assign routes to a group of compet-
ing drivers on a fair basis. The driving cost per customer
for each taxi is kept constant to ensure the fairness. Each
candidate route is scored according to the probability of
successful custom pick-ups along this route, and a cost
matrix is assembled to fairly assign routes.

8 CONCLUSION

In this paper, we define and study two types of ride-sharing
problem and propose an efficient framework to address
the two problems. We first propose an exact algorithm for
the Join-basedRS which can remove a large number of
invalid pairs and avoid computing their shortest routes. We
then propose an approximate algorithm that estimates an
upper bound and a lower bound, and approaches the two
bounds by computing the shortest routes for some rider-
driver pairs. For Search-basedRS, we propose a best-first
algorithm to compute the top-k results. Experimental study
on two real-world datasets demonstrates the effectiveness
and efficiency of our algorithms. In the future, we want
to extend our method to support dynamic settings where
drivers and riders are dynamically coming.
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