
Elaps: An Efficient Location-Aware Pub/Sub System
Long Guo #1, Lu Chen #2, Dongxiang Zhang #3, Guoliang Li †4, Kian-Lee Tan #5, Zhifeng Bao ∗6

National University of Singapore †Tsinghua University ∗University of Tasmania
{1guolong,2chenlu,3zhangdo,5tankl}@comp.nus.edu.sg, 4liguoliang@tsinghua.edu.cn, 6baoz@utas.edu.au

Abstract—The prevalence of social networks and mobile de-
vices has facilitated the real-time dissemination of local events
such as sales, shows and exhibitions. To explore nearby events,
mobile users can query a location based search engine for the
desired data. However, operating under such a pull based model
means that users may miss interesting events (because no explicit
queries are issued) or processing/communication overheads may
be high (because users have to continuously issue queries).

In this demo, we present Elaps, an efficient location-aware
publish/subscribe system that can effectively disseminate inter-
esting events to moving users. Elaps is based on the push
model and notifies mobile users instantly whenever there is a
matching event around their locations. Through the demo, we
will demonstrate that Elaps is scalable to a large number of
subscriptions and events. Moreover, Elaps can effectively monitor
the subscribers without missing any event matching, and incur
low communication overhead.

I. INTRODUCTION

With the prevalence of social networks and map applica-
tions, more and more local events are published and dissem-
inated online. To explore nearby events, users tend to pull
information they are interested from news feed or locational
search engines. However, many local events, such as sales,
shows and exhibitions, have a short life time and the pull
model poses a high chance of missing interesting events.
Another method for users to explore nearby events is to query
locational search engines which support continuously moving
queries [1], [2], [3] until they get some results they want.
However, [1], [2], [3] only deal with existing events and
ignore the arrival of new events. Thus, users may still miss
newly arrived interesting events around them. To handle the
case where new events are published continually, a push model
should be used. Users submit subscriptions representing their
interest and are notified instantly whenever there is an event
matching their interest near them. However, existing push-
based location-aware pub/sub systems [4], [5], [6], [7] cannot
handle the scenario where users are moving all the time, since
they assume users specify a static location and send matching
events that are near to the location to the users.

To improve the effectiveness of interesting event dissemi-
nation to moving users, we build an efficient location-aware
publish/subscribe system, named Elaps. Our system is based
on the push model: mobile users are instantly notified when-
ever there is a matching event near them. Compared to [4], [5],
[6], [7], Elaps has two distinguished features. First, it allows
users to specify their interests with Boolean expressions, which
provides better flexibility and expressiveness in shaping an
interest than keyword subscription [5], [6], [7]. Second,
it continuously monitors users’ locations and sends nearby

name = ochirly

model = dress
$200 < price < $500

service = car maintaining

car model = Porsche
price = $1500

name = museum

category = technology
close time > 6pm

name = museum

category = technology
open time = 8am

close time = 6pm

name = shoes

model = Jordan AJ23
price < $1000

name = shoes

model = Jordan AJ23
limited = yes

price = $899

service = car maintaining

car model = Porsche
price = $1500

name = ochirly

model = dress
price = $489

Fig. 1. A working senario of Elaps

notifications in real time. To the best of our knowledge,
Elaps is the first location-aware pub/sub system that takes into
account moving subscribers as well as dynamic subscriptions
and events.

Fig. 1 illustrates a working scenario of Elaps. In the applica-
tion, the subscribers with mobile devices are moving objects. A
subscription is represented in the form of Boolean expression.
For example, if a user is interested in Jordan basketball shoes,
he can use the following Boolean expression to model his
interest:

(name=shoes ∧ model=Jordan AJ23 ∧ price < $1000)

To specify the locational constraint, a subscriber can set a
notification range1 so that events lying inside the circle are
considered as candidates. For example, the circles in Fig. 1
represent the notification regions of different users. When a
user moves, the notification region moves along. On the pub-
lisher side, an event is published at a location. If a shoe shop is
on sale, then the location of the shop is the event location. Our
system allows any locational event to be published, including
sales, promotions, parties, exhibitions and other social events.
As long as an event matches a subscriber’s interest and within
his notification region, the user will be notified instantly.
In Fig. 1, the user looking for car maintenance receives a
notification because there is a matching car service centered
within his notification region. However, the family interested
in museum will not be notified although there is a museum
within his notification region - the closing time does not match.

In this demo, we showcase Elaps’ scalability with respect to
the number of subscriptions and events. We also demonstrate

1The range can be distance-based (i.e., 1 km) or time-based (i.e., 5 minutes,
which can be translated to distance-based according to the speed). In this
demo, we use distanced-based range for simplicity.

how Elaps can effectively monitor the subscribers without
missing any matching notification and yet incurring low
communication overhead. To improve the matching perfor-
mance, Elaps employs novel indexes for locational subscrip-
tion matching and event matching. To reduce the commmu-
nication overhead, Elaps utilizes a safe region and impact
region for each subscriber. In addition, a cost-based approach
is adopted to minimize communication cost. Based on the
novel cost model, Elaps supports two effective strategies iGM
and idGM for the safe region and impact region construction.

The rest of the paper is organized as follows. Section II
introduces the spatial subscription and event model as well as
spatial subscription/event matching. Section III introduces the
architecture and design of Elaps. Finally, Section IV presents
the demonstration details.

II. PROBLEM DEFINITION

Elaps has two types of roles in the system. A subscriber
represents his interest in the form of spatial subscription and
is modeled as a moving object. A publisher is associated with
a geo-location and publishes spatial events. In the following,
we introduce our spatial subscription and event model as well
as spatial subscription/event matching.

Spatial Subscription. A spatial subscription extends a
boolean expression with a notification region O. In this paper,
we model a boolean expression as a conjunction of predicates.
Each predicate is determined by three elements: an attribute
A, an operator fop and an operand o. It accepts an input value
x and the output is a boolean value indicating whether the
operator constraint is satisfied or not: P (A,fop,ō)(x) → {0, 1}.
SystemPS can support relational operators <,≤,=, >,≥,[] 2

and set operators ∈, /∈. As mentioned, the notification region
O is a circle centered at user’s current location with radius r.
Formally, a spatial subscription s is defined over |s| predicates
and an notification region O:

s : P
A,fop,o
1 (x) ∧ P

A,fop,o
2 (x) ∧ ... ∧ P

A,fop,o

|s| (x) ∧ O
For example, a user interested in Samsung TQ can submit
a subscription like (brand=samsung ∧ size>50)∧ r=1km ∧
lat=1.28 ∧ lng=103.8). Note that the location is detected
automatically. Hereafter, we use spatial subscription and sub-
scription interchangeably.

Spatial Event. A spatial event e contains |e| tuples and a
location loc: e : (A1 = o1)∧(A2 = o2)∧...∧(A|e| = o|e|)∧loc,
where Ai is the attribute and ōi is the associated value or
operand. For example, a Samsung TQ promotion event can
be represented by (brand=samsung ∧ size=55 ∧ 3D=yes ∧
lat=1.28 ∧ lng=103.8).

Spatial Subscription Match. The match between a spatial
boolean expression s and an event e consists of two aspects:
boolean expression match and spatial match, as defined below.

Definition 1 (Boolean Expression Match): A boolean ex-
pression match is satisfied if for each predicate P in s, P
is satisfied by a tuple Ai = oi in e. We use s∼be to denote a
boolean expression match and say s be-matches e.

2In this case, the operand o contains two values: o.l and o.r

Subscription Processor

update

Matching Event

Finder

Subscription

Handler

Safe Region

Constructor

Subscription Processor

upu date

Matching Event

Finder

Subu scription

Handler

Safeff Region

Construr ctor

publish/expire
subscribe/exit

update

update

SubscribersSubscribers

Safe RegionPublishersPublishers

Event Processor

Impact Region

Updator

affected update

Impact Region

Verifier

Event

Handler

Subscription

Index

Impact Region

Index

Event Index

Fig. 2. System architecture of Elaps

Definition 2 (Spatial Match): We say there is a spatial
match between s and e, denoted by s∼se, if the location loc
of e is inside the notification region O of s.

Definition 3 (Match): We say a subscription s matches an
event e, denoted by s∼e, if s∼be and s∼se.

III. SYSTEM ARCHITECTURE

The system architecture of Elaps is shown in Fig. 2. It is
designed to efficiently handle the following messages.

A. Subscription arrival/expiration

In Elaps, subscriptions are continually submitted by the
subscribers. A subscription is associated with a valid life span
and expires when the user is no longer interested in receiving
matching events. Such kind of messages are handled by the
Subscription Processor. When a new subscription arrives, the
Subscription Handler inserts the subscription to the Subscrip-
tion Index. After that, the Matching Event Finder searches
the Event Index for events matching this subscription. The
user will be notified if there is a match within his notification
region.

To guarantee the user be notified in real time, Elaps is
equipped with a novel index named BEQ-Tree used by the
Subscription Index. BEQ-Tree adopts a two-layer partitioning
scheme for efficient Boolean expression matching and spatial
matching. In the first layer, the events are partitioned based on
the spatial attribute. We use a quadtree-like data structure to
organize the locations of events. In the second layer, the events
are partitioned based on the attributes. We use the inverted
list to group the events and each inverted list is sorted by the
attribute value of the event.

B. User location monitoring

In our data model, the subscribers are moving objects and
we need to monitor their locations so as to support instant
notification. To save the communication cost, we construct a
safe region for each subscriber and derive an impact region
from the safe region using the Safe Region Constructor. The
impact region serves as a filtering mechanism so that only
newly published events located within the impact region has
a probability to change the safe region. Then we insert the
impact region into the Impact Region Index and send the safe
region to the user. As long as the subscribers stay within
his safe region and no event appears in the impact region,
the subscribers are safe to disconnect from the server without

missing any matching event. The safe region will be updated
as the user moves out of it or a new event arrives at the impact
region.

The dynamic environment in Elaps where events are pub-
lished rapidly poses a new challenge to the construction of
safe region. Thus, Elaps deploys two effective strategies iGM
and idGM to construct the safe region and impact region
incrementally based on a novel cost model.
Cost Model. Although safe region has been shown to be
effective in reducing communication overhead for location
update, we argue that maximizing the safe region could not
optimize the system performance because a larger safe region
can reduce the communication cost for location update of
subscribers, but it increases the size of impact region and there
is a higher probability that a new event occurs in the impact
region and triggers an update request for a new safe region.
Traditional safe region construction methods do not work
well in the dynamic environment where events are published
rapidly, since they ignore safe region update notification from
server to subscriber. Thus, Elaps employs a new cost model
for safe region construction which can capture the tradeoff
between safe region size and communication overhead and
minimize the communication overhead:

bm(R) =
ts(R)

ti(R)

where ts measures the elapsed time before a subscriber exits
his safe region and ti measures the elapsed time before a
new matching event arrives at his impact region. Our goal
is to minimize the communication overhead which can be
considered as maximizing the expected elapsed time before
next communication occurs. The expected elapsed time is
denoted by fobj(R) and used as the objective function to
maximize.

iGM algorithm. Based on the relation between fobj(R)
and bm(R), to maximize fobj(R), we should build a safe
region that satisfies bm ≤ 1 and has an area as large as
possible. Our incremental grid-based method, or iGM for
brevity, partitions the space into grid cells. To calculate the
safe region for a moving subscriber, the method starts from the
cell containing the subscriber and expands to neighboring cell
with the minimum distance to the subscriber at each iteration.
The expansion terminates when there is no more cell satisfying
bm ≤ 1 when they are included in the safe region.
idGM algorithm. Since most smartphones are equipped with
sensors for direction detection, Elaps also incorporated a
direction-aware iGM, named idGM, to take advantage of such
information and further reduce the communication overhead.
The main idea of idGM is to introduce a preference score τ
composed of the distance preference and direction preference.
Then idGM expands the safe region incrementally based on
the preference score τ rather than the distance only. Thus,
idGM constructs a direction-aware safe region which takes a
longer period before the subscriber exits his safe region.

C. Event arrival/expiration

In Elaps, events are continually published by the publishers
which are also associated with a life span. Such kind of
messages are handled by the Event Processor. When an event
e arrives, the Event Handler first inserts it into the Event Index.
Then, we need to detect which subscriptions are affected by e
using the Impact Region Verifier. The Impact Region Verifier
first uses the subscription index to find the subscriptions that
be-match e, and then uses the impact region index, which
is maintained as a hash table, to find those be-matching
subscriptions whose impact region contains e. Finally, e is
sent to the corresponding affected subscribers. There are two
cases that require actions: (i) e matches a subscription s (e∼s).
Then, the subscriber will be notified of e and its safe region
remains the same. (ii) e be-matches a subscription s (e∼bs).
Then the subscriber updates the safe region himself. And the
server updates the impact region accordingly using the Impact
Region Updater.

To support efficient event matching over a large quantity of
subscriptions, we adopt our OpIndex [8] as the Event Index.
OpIndex adopts a three-level partition mechanism. We first
select a pivot attribute for each subscription. The subscriptions
with the same pivot attribute are grouped. The second and
third level partitions are based on operator and attribute
name respectively. The predicates with the same operator are
clustered so that specifically designed index can be applied
to support various operators and enhance the expressiveness.
The operands in the inverted lists are sorted and the sequential
memory access pattern can facilitate the cache-concious query
processing. More details of OpIndex can be found in [8].

IV. DEMONSTRATION

We demonstrate our Elaps system in four scenarios. We have
implemented a desktop prototype to illustrate the functionality
and performance of Elaps, shown in Fig. 3. We also show the
mobile device interface in the prototype.
Scenario 1 - Subscriber Side

This scenario shows how a subscriber submits a subscrip-
tion. In the mobile device interface for the subscriber, the
subscriber specifies the predicate of the Boolean expression
one by one in the top text box and submits the predicate
to the bottom text area by clicking the “Add” button. The
subscriber can also specify the radius of his notification
region. Finally, the subscriber submits his subscription by
clicking the “Submit” button. The subscriber will be notified
instantly whenever there is a matching event located within
his notification region.

In order to illustrate the functionality of Elaps, the prototype
can simulate the moving behavior of the subscribers. For each
subscriber, we can choose different moving patterns for this
subscriber, such as walking or driving. Each moving pattern
corresponds to a list of speeds to choose from. Then we can
specify the starting location and destination location for this
subscriber by using the text box or clicking on the map.
Finally, the subscriber is simulated on the map by clicking
on the “Submit” button. For example, as shown in Fig. 4,

subscriber

interface

publisher

interface

Fig. 3. Prototype of Elaps Fig. 4. Simulating moving subscribers in Elaps

impact region safe region

Fig. 5. Safe Region and Impact Region Demonstration

we generate three moving subscribers with different moving
speeds and notification regions.
Scenario 2 - Publisher Side

This scenario shows how a publisher publishes an event.
In the mobile device interface for the publisher, the publisher
specifies the event in the top text box and provides the address
of the event. Besides that, we can also add a new event to
Elaps by clicking on the map. With this functionality, we want
to show the scenario when a new matching event arrives at
the notification region of a subscriber and the subscriber is
notified.
Scenario 3 - Safe Region and Impact Region

This scenario illustrates the underlying safe region construc-
tion method of Elaps. In Elaps, subscribers are moving all the
time and can be notified instantly whenever there is a matching
event located within their notification regions. With the help
of the safe region and impact region, the computation and
communication cost can be reduced significantly. For each
subscriber, we can show his safe region and impact region
by clicking on the “Safe Region” button, as shown in Fig. 5.
In addition, before we click on the “Safe Region” button, we
can choose the construction method (i.e., iGM or idGM). As
a result, for each subscriber, we can see different safe regions

and impact regions constructed by different methods. Besides
that, we will show the functionality of impact region by adding
an event into the impact region. In this case, the safe region
and impact region will be reconstructed. By showing the safe
region and impact region, audiences can better understand the
roles of these two kinds of regions.
Scenario 4 - Performance Demonstration

We use two real-world data sets for the demonstration. The
first data set is crawled from Foursquare and the second data
set is collected from Twitter. We consider event locations
within Singapore. The event locations follow the Gaussian
distribution. These two datasets are used as the existing events
in Elaps. The demonstration will show that Elaps is able to
disseminate matching events to users in real-time.

ACKNOWLEDGMENT

This work is funded by the NExT Search Centre (grant
R-252-300- 001-490), which is supported by the Singapore
National Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by the
IDM Program Office.

REFERENCES

[1] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continuously
moving top-k spatial keyword query processing,” in ICDE, 2011, pp.
541–552.

[2] W. Huang, G. Li, K.-L. Tan, and J. Feng, “Efficient safe-region con-
struction for moving top-k spatial keyword queries,” in CIKM, 2012, pp.
932–941.

[3] L. Guo, J. Shao, H. Aung, and K.-L. Tan, “Efficient continuous top-k
spatial keyword queries on road networks,” GeoInformatica, pp. 1–32,
2014.

[4] J. Bao, M. Mokbel, and C.-Y. Chow, “Geofeed: A location aware news
feed system,” in ICDE, 2012, pp. 54–65.

[5] G. Li, Y. Wang, T. Wang, and J. Feng, “Location-aware pub-
lish/subscribe,” in KDD, 2013, pp. 802–810.

[6] L. Chen, G. Cong, and X. Cao, “An efficient query indexing mechanism
for filtering geo-textual data,” in SIGMOD, 2013, pp. 749–760.

[7] L. Chen, Y. Cui, G. Cong, and X. Cao, “Sops: A system for efficient
processing of spatial-keyword publish/subscribe.” 2014, pp. 1601–1604.

[8] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for ecommerce databases,” PVLDB, vol. 7, no. 8, pp. 613–624,
2014.

