
Effective Keyword Search for Valuable LCAs over XML
Documents

Guoliang Li Jianhua Feng Jianyong Wang Lizhu Zhou
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

{liguoliang,fengjh,jianyong,dcszlz}@tsinghua.edu.cn

ABSTRACT
In this paper, we study the problem of effective keyword search
over XML documents. We begin by introducing the notion of Valu-
able Lowest Common Ancestor (VLCA) to accurately and effec-
tively answer keyword queries over XML documents. We then
propose the concept of Compact VLCA (CVLCA) and compute
the meaningful compact connected trees rooted as CVLCAs as the
answers of keyword queries. To efficiently compute CVLCAs, we
devise an effective optimization strategy for speeding up the com-
putation, and exploit the key properties of CVLCA in the design of
the stack-based algorithm for answering keyword queries. We have
conducted an extensive experimental study and the experimental
results show that our proposed approach achieves both high effi-
ciency and effectiveness when compared with existing proposals.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; H.3.3 [Information
Search and Retrieval]:

General Terms
Algorithms

Keywords
Information Retrieval;XML Keyword Search; LCA; VLCA; CVLCA

1. INTRODUCTION
Keyword search is a proven and widely accepted mechanism for

querying in document systems and World Wide Web. The database
research community has recently recognized the benefits of key-
word search and has been introducing keyword search capability
into relational databases [5, 9, 15, 16, 20, 22, 28, 31, 33, 35], XML
databases [7, 8, 10, 13, 14, 17, 21, 23, 25, 26, 27, 29, 32, 34, 38]
and graphs [19, 24].

Traditional query processing approaches on relational and XML
databases are constrained by the query constructs imposed by the
language such as SQL and XQuery. Firstly, the query language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

themselves are hard to comprehend for non-database users. For ex-
ample, the XQuery is fairly complicated to grasp. Secondly, these
query languages require the queries to be posed against the under-
lying, sometimes complex, database schemas. These traditional
querying methods are powerful but unfriendly for day-to-day users.
Keyword search is proposed as an alternative means of querying the
database, which is simple and yet familiar to most internet users as
it only requires the input of some keywords. Although keyword
search has been proven to be effective for text documents (e.g.
HTML documents), the problem of keyword search on the struc-
tured data (e.g. relational databases) and the semi-structured data
(e.g. XML databases) is not straightforward nor well studied.

Keyword search in text documents take the documents that are
more relevant with the input keywords as the answers, while that
on relational databases will take the correlative records of database
that contain all the keywords as the answers. However, it still re-
mains an open problem that, for XML database, what should be
the answer for keyword search? The notion of Lowest Common
Ancestor (LCA) has been introduced to answer keyword queries
on XML databases [17]. More recently, XRank, Meaningful LCA
(MLCA), Smallest LCA (SLCA), Grouped Distance Minimum Con-
necting Tree (GDMCT) and XSeek have been proposed to improve
the efficiency and effectiveness of keyword search against LCA in
[17, 27, 38, 21, 29], respectively.

However, existing proposals on keyword search over XML databases
suffer from two problems: meaningfulness and completeness of an-
swers, and the scope of the search. First, the existing approaches,
such as SLCA and XRank, return some irrelevant results or false
positives as answers and may also miss some results from answers
(We will give an example to describe the details in Section 2). The
false positive problem renders the results less meaningful while the
false negative problem causes the incompleteness of answers. Sec-
ond, the answer of keyword search should not be limited to just
the LCAs of the keywords, and taking only LCAs as the answer
of keyword search is inaccurate. Although the subtrees proposed
in existing methods [21, 29], which are composed of LCAs and
their relevant keywords, may be more meaningful as the answer
of keyword search on XML databases, these subtrees are not com-
pact and meaningful enough to answer keyword search and cannot
accurately reflect the essence of keyword queries.

In addition, XML documents involve fairly complicated struc-
tures, therefore it is fairly difficult to find the meaningful desired
data, which still preserves the structure relationship and also con-
forms to the documents, for users through limited input keywords.
Existing studies mainly focus on efficiency of keyword search on
XML databases and usually leads to low effectiveness, and accord-
ingly, how to discover the structure clue from the input keywords
so as to improve the effectiveness is urgent to investigate. We em-

1

phasize the effectiveness of keyword search on XML databases in
this paper, which is at least as important as efficiency.

To achieve our goal, we first introduce the notion of elementary
type and propose Valuable LCA (VLCA) to effectively and accu-
rately answer keyword queries, which not only improves the accu-
racy of LCAs by eliminating redundant LCAs that should not con-
tribute to the answer, but also retrieves the false negatives filtered
out wrongly by SLCA. We then introduce a novel concept, called
compact VLCA (CVLCA), and take compact connected trees as
answers of keyword queries. Finally, we propose an effective op-
timization strategy for computing the CVLCAs and devise an ef-
ficient stack-based algorithm as a total solution. To the best of
our knowledge, this is the first paper that improves the effective-
ness of keyword search over XML documents in considering XML
schemas. To summarize, we make the following contributions:

• We introduce the notion of Valuable LCA (VLCA) to answer
keyword queries over XML documents. VLCA not only
eliminates redundant LCAs but also retrieve relevant answers
filtered out wrongly, and thus improves both the accuracy
and completeness of keyword search. To further improve the
performance of keyword search, we introduce the concepts
of compact VLCA (CVLCA) and compact connected trees
to efficiently and effectively answer keyword queries.

• We propose an effective optimization strategy to improve the
efficiency of computing CVLCAs, and devise an efficient
stack-based algorithm, which incurs only one scan of the
content nodes that directly contain some input keywords.

• We conducted an extensive performance study using both
real and synthetic datasets with various characteristics. The
results show that our algorithm achieves high efficiency and
effectiveness, and outperforms the existing proposals in terms
of elapsed time as well as precision and recall.

The remainder of this paper is organized as follows. We discuss
the background and our motivation in Section 2. Section 3 intro-
duces the notion of VLCA. In Section 4, a brute-force algorithm to
compute VLCAs is proposed. We introduce an optimization strat-
egy for computing CVLCAs and design an effective stack-based
algorithm in Section 5. Extensive experimental evaluations are pro-
vided in Section 6. Finally we conclude the paper in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we review existing related proposals about key-

word search, and discuss their weaknesses.

2.1 Notations
We begin first by introducing the XML data model and some

notations. An XML document can be modeled as a rooted, or-
dered, and labeled tree. Nodes in this rooted tree correspond to
elements in the XML document. For any node v, λ(v) denotes the
label/tag of v, u≺v (uÂv) denotes that node u is an ancestor (de-
scendant) of node v, while u¹v denotes that u≺v or u=v. u<v
(u>v) denotes that u precedes (follows) v in the XML document,
that is, u is before (after) v in document order, but not an ances-
tor (descendant) of v. For example, in Figure 1(a), paper(5)¹
author(7), paper(12)Âconf(2), chair(19) <name(21), and
author(26)>year(22).

Given a keyword query K={k1,k2,· · · ,km} and an input XML
documentD, we use Ii to denote the keyword list of ki, i.e., the list
of nodes which directly contain ki, and we call each node in Ii the
content node w.r.t. ki. Ii can be retrieved by using the well-known
inverted indices.

2.2 Motivation
The first area of research related to our work is the computation

of the LCA of two or more nodes, which has been studied in [18,
36]. As an extension of LCA, XRank, MLCA, SLCA, GDMCT
and XSeek have recently been proposed to answer keyword queries
over XML documents respectively in [17], [27], [38], [21] and [29].
We begin by formally introducing the concept of Lowest Common
Ancestor (LCA).

DEFINITION 2.1. (LCA) Given m nodes n1,n2,· · · ,nm, v is
called LCA of these m nodes, iff, ∀1≤i≤m, v is an ancestor of
node ni, and 6 ∃u,v≺u, u is also an ancestor of each ni, denoted
as v=LCA(n1,n2,· · · ,nm).

DEFINITION 2.2. (LCASet) Given a queryK={k1,k2,· · · ,km}
and an XML documentD. The set of LCAs ofK onD is, LCASet=
LCA(I1, I2,· · · ,Im)={v|v=LCA(v1, v2,· · · ,vm), vi∈Ii(1≤i≤m)}.

The basic idea of LCA is that, given a keyword query K={k1,
k2,· · · ,km} and for 1≤i≤m, node ni is a content node w.r.t. ki,
if v=LCA(n1,n2,· · · ,nm), then v contains all the input keywords
and should be an answer of K. For example, a user wants to search
for the paper with the title containing “IR” and one author being
“John” in the XML document in Figure 1(a), and he/she can input
query {“IR”,“John”}. Node paper(15) is a LCA of the two input
keywords, and it should be an answer ∗ of this keyword query.

However, there is a problem of LCA. For example, consider an-
other keyword query {“IR”,“Tom”}, the nodes, conf (2),paper(12)
and paper(15), circled by the rectangle in Figure 1(a), are the LCAs
(especially, conf (2) is the LCA of title(13) and author(17), which
directly contain “IR” and “Tom” respectively). However, it is easy
to figure out that conf (2) should not be an answer of this keyword
query, as title(13) and author(17) do not belong to the same paper.
On the contrary, paper(12) and paper(15) should be the two results.

To address the false positive problem of LCA, Meaningful LCA
(MLCA)[27], Smallest LCA (SLCA) [38] and XRank [17] have
been proposed. There is a difference between MLCA and other
methods. MLCA assumes that the users have some knowledge of
XML structures and incorporates a new function mlcas to com-
pute all the MLCAs into XQuery, and it is not a pure keyword
search method. XSeek [29] studies the problem of how to infer the
return clause for keyword search, however XSeek is orthogonal to
our method as we mainly study the meaningfulness and complete-
ness of keyword search in this paper. XRank and SLCA are much
related to our work, we here only briefly introduce SLCA, which is
defined as follows.

DEFINITION 2.3. (SLCASet) Given a keyword query K={k1,
k2,· · · ,km} and an XML document D, the set of SLCAs of K on D
is, SLCASet=SLCA(I1, I2,· · · ,Im)={v|v∈LCA(I1,I2,· · · ,Im),
and 6 ∃u,v≺u, u∈LCA(I1, I2,· · · , Im).}.

The basic idea behind SLCA is that, if node v contains all the in-
put keywords, its ancestors will be less meaningful than v. Hence,
SLCA introduces the concept of the smallest tree, which is a tree
that contains all the keywords but contains no subtrees which also
contain all the keywords. For example, although conf (2)∈ LCASet
of query {“IR”, “Tom”} on the XML document in Figure 1(a), it is
not in SLCASet, as paper(15)∈LCASet and conf (2)≺paper(15).
Hence, SLCASet={paper(12), paper(15)} of this keyword query.

However, there are still two problems, false positive (i.e., taking
some irrelevant nodes as answers) and false negative (i.e., miss-
ing some correct results from answers), of SLCA. For example, in
∗paper(15) itself cannot be taken as an answer and the compact connected subtree
rooted at this paper should be the answer, which will be introduced in details later.

2

bib

name

conf

year paper paper chair

title author bib author author

conf

papername year

title author

name year paper chair

title author author

conf

VLDB 2006

S I G M O D 2005

XML Bob

IR Tom

IR Tom John

SIGMOD 2006

John Lucy

Mary

XML

Lucy

1

2 20

3 4 5 15 19 21 22 23 27

6 7 16 17 18 24 25 26
8

9

10 11 12

13 14

title

bib

name

conf

year paper paper chair

title authorbib

author

author

conf

papername year

title

author

name year paper chair

titleauthor author

conf

VLDB 2006

S I G M O D 2005

XML Bob

XML Bob

IR Tom John

SIGMOD 2006

John Lucy

Mary

XML

Lucy

1

2 20

3 4 5 15 19 21 22 23 27

6 7 16 17 18 24 25 26
8

9

10 11 12

13 14

title

bib

name

conf

year paper paper chair

titleauthor bib authorauthor

conf

papername year

title author

name year paper chair

title author

author

conf

VLDB 2006

S I G M O D 2005

XML Bob

IR Tom

IR Tom John

SIGMOD 2006

John Lucy

Mary

XML

Lucy

1

2 20

3 4 5 15 19 21 22 23 27

6 7 16 17 18 24 25 26
8

9

10 11 12

13 14

title

(a) False positives of LCA (b) False negatives of SLCA (c) False positives of LCA and SLCA
Figure 1: False positive and false negative problems introduced by LCA and SLCA

Figure 1(b), consider query {“XML”,“Bob”} issued on the XML
document, paper(12) should be an answer, while, paper(5), which
also contains the two keywords, should be another answer. How-
ever, paper(5) is an ancestor of paper(12) (paper(5)≺ paper(12)),
therefore paper(5) will not be a valid SLCA according to Definition
2.3. Hence, paper(5) will not be in SLCASet and will be absent
from the final answers of SLCA. Therefore, SLCA causes a serious
problem, false negative. For another example, suppose a keyword
query, {“XML”, “John”} is issued on the XML document in Figure
1(c), conf (2) and paper(23), the nodes enclosed by rectangles, are
both their SLCAs. It is easy to figure out that conf (2) should not be
the answer of this keyword query, because title(6) and author(18)
do not belong to the same paper. Therefore, SLCA causes another
problem, false positive. We mainly address these two problems in
this paper as accurate answers to keyword queries are vital to the
meaningfulness of keyword search.

2.3 Other Related Work
DISCOVER [22], BANKS [9] and DBXplorer [5] are systems

built on top of relational databases. DISCOVER and DBXplorer
output trees of tuples connected through primary-foreign key rela-
tionships that contain all the keywords of the query, while BANKS
identifies connected trees in a labeled graph by using an approxi-
mation to the Steiner tree problem, which is an NP-hard problem.
Liu et al [28] proposed a novel ranking strategy to solve the effec-
tiveness problem for relational database, which employs phrase-
based and concept-based models to improve search effectiveness.
Luo et al [31] presented a more effective ranking method on re-
lational databases by adopting the concept of virtual document.
More recently, Sayyadian et al [35] introduced schema mapping
into keyword search and proposed a method to answer keyword
search across heterogenous databases. Ding et al [15] employed dy-
namical programming to improve the efficiency of identifying the
Steiner trees, while Guo et al [16] proposed data topology search
to retrieve meaningful structures from much richer structural data –
biological databases. [24] and [19] studied the problem of keyword
search over graphs by employing the techniques of bidirectional
expansion and graph partition respectively.

XRank [17] and XSEarch [14] are systems facilitating keyword
search for XML databases, which return subtrees as answers for the
keyword queries. However, XRank does not return connected trees
to explain how the keywords are connected to each other. Further-
more, only the most specific result is output. They also present a
ranking method which, given a tree T containing all the keywords,
assigns a score to T using an adaptation of PageRank for XML
databases. Their ranking techniques are orthogonal to the retrieval
and, hence, can easily be incorporated in other works. XSEarch

focuses on the semantics and the ranking of the results and, during
execution, it uses an all-pairs interconnection index to check the
connectivity between the nodes, which are very inefficient for large
XML documents. Hristidis et al [21] proposed GDMCT, which
generated the grouped subtrees to answer keyword queries.

In addition, various XML full-text query languages have also
been proposed, such as, [10, 25, 26], and a workshop INEX [2],
INitiative for the Evaluation of XML Retrieval, aiming at evaluat-
ing XML retrieval effectiveness, has also been organized. More re-
cently, two algebras for keyword search over XML documents have
been proposed in [7, 34]. [7] presented the XFT algebra that ac-
counts for element nesting in XML document structure to evaluate
queries with complex full-text predicates, while [34] demonstrated
several optimization techniques that guarantee better efficiency for
keyword search over tree-structured documents.

3. VLCA AND MDC
In this section, we introduce the notion of Valuable Lowest Com-

mon Ancestor (VLCA), and illustrate how to employ this semantics
in effectively answering keyword queries. Moreover, we propose a
novel numbering scheme of Meaningful Dewey Code (MDC) to
accelerate computing VLCAs.

3.1 VLCA
The problem of SLCA is that, it will take SLCA of content nodes

w.r.t. given keywords, even if certain content nodes may be ir-
relevant between each other, as answers, and this will violate the
constraint of the DTD (or schema) w.r.t. an XML document and
lead to some errors. For example, in Figure 2(c), although conf (2)
is SLCA (LCA) of title(6) and author(18), conf (2) should not be
an answer of the keyword query {“XML”, “John”}, because they
are descendants of different papers. Based on above observations,
we propose the concept of Valuable LCA (VLCA) to address this
problem and we begin by introducing two notions as follows.

DEFINITION 3.4. (Elementary Type) An Elementary Type of a
node in an XML document is its label/tag in the DTD (or schema).

DEFINITION 3.5. (Homogenous/Heterogenous) Given two nodes
u,v, and w=LCA(u,v). uSet and vSet are two sets of nodes in
the paths of w→u and w→v respectively. Let wSet=uSet∪vSet.
u and v are heterogenous (denoted as u 6∼v), iff, ∃u′∈wSet, v′∈wSet,
u′ and v′ are of the same elementary type, i.e., λ(u′)=λ(v′), except
u and v maybe having the same elementary type. On the contrary,
u and v are homogenous (denoted as u∼v), iff, there are no two
nodes of the same elementary type, except u and v.

EXAMPLE 3.1. Node paper(5) and node paper(15), in Fig-
ure 1 (c), are of the same elementary type as they have the same

3

bib

name

conf

year paper paper chair

title author bib title author author

conf

papername year

title author

name year paper chair

title author author

conf

VLDB 2006

S I G M O D 2005

XML Bob

IR Tom

IR Tom John

SIGMOD 2006

John Lucy

Mary

XML

Lucy

e

0 1

0.0 0.1 0.2 0.6 0.7 1.0 1.1 1.2 1.3

0.2.0 0.2.1 0.2.2
0.6.0 0.6.1 0.6.4 1.2.0 1.2.1 1.2.4

0.2.2.0.0 0.2.2.0.1 0.2.2.0.2

0.2.2.0.2.0

0.2.2.0

0.2.2.0.2.1

<!ELEMENT bib (conf) >

<! paper (title,author+,bib?)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT conf (name,year,paper*,chair)>
ELEMENT

<!ELEMENT year (#PCDATA)>
<!ELEMENT chair (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>

*

(a) An example XML document (b) DTD of the XML document in (a)
Figure 2: An example XML document and its corresponding DTD

label in DTD. LCA of title(6) and author(18) is conf(2). As
paper(5) and paper (15) are in the paths, conf(2)→title(6)
and conf(2)→author(18) respectively, so title(6) 6∼author(18).
On the contrary, author(17)∼author(18), because there are no
other two nodes in {paper(15), author(17), author(18)} with
the same elementary type, except themselves.

Based on the concept of homogenous/heterogenous, we intro-
duce a novel semantics, Valuable LCA, to answer keyword search.

DEFINITION 3.6. (Valuable LCA) Given m nodes n1,n2,· · · ,
nm, v=LCA(n1,n2,· · · , nm). VLCA(n1,n2,· · · ,nm)=v, iff, these
m nodes are homogenous, that is, ∀1≤i<j≤m, ni∼nj .

DEFINITION 3.7. (VLCASet) Given queryK={k1, k2,· · · ,km}
and an input XML document D. The set of VLCAs w.r.t. K and D,
is, VLCASet=VLCA(I1,· · · ,Im)={v|v=VLCA(v1,· · · ,vm),vi∈Ii}.

LCASet is the set of the nodes, which contain all of the input
keywords. SLCASet is a subset of LCASet, which eliminates
the LCAs that have LCA descendants. VLCASet can avoid the
false positives and false negatives introduced by SLCA, and is a
more accurate subset of LCASet to answer keyword queries. To
describe how each result matches a keyword query, we introduce
a meaningful concept as defined in Definition 3.8. Each result is
represented as a connected subtree, which is rooted at a VLCA and
contains the corresponding content nodes so that each result is self-
explained and can explain how it matches the keyword query.

DEFINITION 3.8. (Answer of keyword search) Given a query
K={k1,k2,· · · ,km} and an XML document D. K(D,(k1,k2,··· ,km))

is the answer of K on D, where K(D,(k1,k2,··· ,km))={(r;λ(v1):c1,
λ(v2):c2,· · · , λ(vm):cm) | ∀vi∈Ii, r=VLCA(v1, v2,· · · , vm), where
ci denotes the text content that vi contains.}.

Existing proposals on keyword search usually focus on effec-
tively computing LCASet or SLCASet, which cannot describe
how each result matches a keyword query. In contrast, the tuple (r;
λ(v1):c1, λ(v2):c2, · · · , λ(vm):cm) in our method, not only pre-
serves the structure information (r and vi), but also reflects the user
desired data (ci). However, to compute VLCAs, we need to deter-
mine whether two nodes are homogeneous, which is cost-efficient
through navigating the XML document, while the all-pairs inter-
connection index proposed in [14] is very expensive for large XML
documents. Therefore, Meaningful Dewey Code (MDC) is intro-
duced to address this issue in next sections.

On=





k if n is the first child of parent(n)
Opresib(n)+k-Opresib(n)%m else if Opresib(n)%m < k

Opresib(n)+m+k-Opresib(n)%m otherwise

(3-1)

Cn =

{
ε if n is the root node

Cparent(n) ◦ On
† otherwise

(3-2)

3.2 MDC
To effectively compute VLCAs, we introduce a novel number-

ing scheme, MDC, which is inspired from Dewey code in [30],
[37]. Generally, there is a corresponding DTD (or schema) associ-
ated with an XML document, which describes the document type
definition. A DTD is typically much smaller than its correspond-
ing XML document, therefore it is easier to be manipulated. Even
if there does not exist a DTD, we can extract one from the XML
document. For example, in Figure 2, (a) is an XML document and
(b) is the DTD extracted from this XML document.

Given an XML document, we number/encode its nodes based on
the corresponding DTD. Let parent(n) denote the parent of n and
presib(n) denote the preceding sibling (neighboring) of n. Sup-
pose the MDC of the root is ε and Cn denotes the MDC of node n,
we can encode each node from the root to the leaf as follows: for
any node n, its MDC is its parent’s MDC, Cparent(n), concatenated
with an assigned and ordered numberOn, i.e., Cn=Cparent(n)◦On.
Without loss of generality, let l0,l1,...,lm−1 denote m distinct labels
of the children of parent(n) in DTD and λ(n) is the k-th label, we
can compute On and Cn through Equations (3-1) and (3-2) respec-
tively. It is obvious that On%m=k, that is, the siblings with the
same label will get the same remainder when divided by the total
number of distinct labels among their siblings. More importantly,
MDC captures the following properties:

i) Node a is an ancestor of node d, iff, Ca is a prefix of Cd. a
is the parent of d, iff, Ca is a prefix of Cd and |Ca|=|Cd|-1,
where |Cv| denotes the length of Cv , i.e., the depth of node v
in the XML document tree.

ii) Node a follows (or precedes) node b iff Ca is greater (or
smaller) than Cd in lexicographical order.

iii) Given the MDC of a node, we can deduce its ancestors’
MDCs and elementary types based on the numbering scheme.

†a ◦ b denotes another code constructed by concatenating a and b with a delimiter
(e.g. a dot) between them.

4

LEMMA 3.1. Given two nodes, u and v, w=LCA(u,v), iff, Cw

=LCP(Cu,Cv), where LCP(Cu,Cv) denotes the longest common pre-
fix of Cu and Cv .

LEMMA 3.2. Given m nodes, v1,· · · ,vm, w=LCA(v1,v2, · · · ,vm),
iff, Cw=LCP(Cv1 , Cv2 ,· · · ,Cvm), where LCP(Cv1 ,Cv2 ,· · · ,Cvm) de-
notes the longest common prefix of Cv1 ,Cv2 , · · · ,Cvm .

i) and ii) are obvious according to the encoding strategy. Based
on them, we introduce Lemma 3.1 and Lemma 3.2 to compute the
LCA of two or more nodes. iii) is the key property of MDC differ-
ent from the general Dewey code. Given the MDC of node n, we
demonstrate how to infer the labels of the ancestors of n as follows.
Since MDC of the root is always ε, we deduce the labels iteratively
form the root, and here we only introduce how to infer the label
of a given node according to its MDC and its parent’s label. Con-
sider the MDC of node n is Cparent(n) ◦On, and its parent’s label,
λ(parent(n)), has been obtained through iteration. Suppose the
distinct labels of parent(n)’s children are, orderly, l0,l1,...,lm−1,
which can be gotten from the corresponding DTD. We can compute
the order of λ(n) among these labels, i.e.,On%m, and accordingly
get its label, i.e., lOn%m. Hence, given the MDC of a node, we can
deduce the labels of its ancestors from the root to itself iteratively.

When checking whether two nodes u,v are homogenous or not,
we first compute their LCA, w, based on LEMMA 3.1, and then de-
duce the labels of nodes on w→u and w→v based on the property
iii) of MDC, finally check whether there are two distinct nodes
with the same elementary type in the two paths. Moreover, we in-
troduce an optimization technique to check whether two nodes are
homogenous or not as stated in LEMMA 3.3.

LEMMA 3.3. Given two nodes u,v, w=LCA(u,v), uSet, vSet
are two sets of the nodes in the paths of w→u and w→v respec-
tively. Let wSet=uSet∪vSet, lSet={λ(u)|u∈wSet}. u and
v are heterogenous, iff, |wSet|-|{λ(u)}∩{λ(v)}|>|lSet|, while
u and v are homogenous, iff, |wSet|-|{λ(u)}∩{λ(v)}|=|lSet|.

PROOF. If u and v have the same elementary type, λ(v)=λ(u),
thus |{λ(u)}∩{λ(v)}|=1; otherwise, |{λ(u)}∩{λ(v)}|=0. Since
|lSet| is the number of the distinct labels in wSet, there are two
same labels in wSet except u and v, iff, |wSet|-|{λ(u)}∩{λ(v)}|
-|lSet|>0. Similarly, u and v are heterogenous, iff, |wSet|-
|{λ(u)}∩{λ(v)}|>|lSet| according to Definition 3.5.

LEMMA 3.4. Given m nodes v1,v2,· · · ,vm, w=LCA(v1,· · · ,vm),
vSeti is the set of nodes in the path w→vi. Let wSet=∪m

i=1vSeti,
lSet={λ(u)|u∈wSet}. The m nodes are heterogenous, iff, |wSet|-
(m-|∪m

i=1{λ(vi)}|)>|lSet|, while these m nodes are homoge-
nous iff |wSet|-(m-|∪m

i=1{λ(vi)}|)=|lSet|.
PROOF. It is easy figure out that |∪m

i=1{λ(vi)}| is the the num-
ber of distinct labels in {v1,v2,· · · ,vm}, m-|∪m

i=1{λ(vi)}| is the
number of duplicate labels in {v1,v2,· · · ,vm}, and |lSet| is the
number of distinct labels in wSet. Hence, there are two same la-
bels except the m nodes, iff, |wSet|-(m-|∪m

i=1{λ(vi)}|)-|lSet|>0.
Similarly, the m nodes are heterogenous, iff, |wSet|-(m-|∪m

i=1{λ(vi)}|)
>|lSet|, according to Definition 3.5.

We can adopt LEMMA 3.3 to check whether two nodes are ho-
mogenous or not. Consider d is the depth of an XML document, the
complexities of computing uSet and vSet are both O(d), while
the complexity of computing wSet through merging them is also
O(d). To compute lSet, we need to eliminate the duplicates and
the complexity is O(dlog(d)). To sum up, the complexity of check-
ing whether two nodes are homogenous or not is O(dlog(d)) as for-
malized in LEMMA 3.3. Consider checking whether m nodes are

Table 1: The inverted index (in part) of the XML document in
Figure 2(a)

Keywords MDC(Ii)
XML 0.2.0;1.2.0
John 0.6.4;1.2.1
IR 0.2.2.0.2.0;0.6.0

Bob 0.2.1

homogenous, we need to check whether any two nodes among them
are homogenous. As there are

(
m
2

)
combinations, the complexity is

O(
(

m
2

)
dlog(d))=O(m2dlog(d)). We can reduce it to O(mdlog(md))

as formalized in LEMMA 3.4, where the complexities of computing
vSeti, wSet and lSet are O(d), O(mlog(m)d) and O(mdlog(md))
respectively. To further illustrate how to compute VLCAs, we give
a running example as shown in Example 3.2.

EXAMPLE 3.2. Consider the XML document in Figure 2(a) and
its DTD in Figure 2(b). MDC of conf, i.e., the first child of the
root node(bib), is 0 according to Equation (3-2). Node conf(0)
has four child labels, name,year,paper,chair, thus m=4.
As name is the first child of conf(0), so Oname=0 according to
Equation (3-1) and Cname=0.0. As year is the second child label
of conf(0) and Oname%m=0<k(1), so Oyear=Oname+k(1)-
Oname%m=1 and Cyear=0.1. Similarly,Opaper1=2 ‡, Cpaper1=0.2.
AsOpaper1%m=k(2),Opaper2=Opaper1+m+k(2)-Opaper1%m=6
based on Equation (3-1), hence Cpaper2=0.6. Accordingly, we can
encode the nodes in the document as illustrated in Figure 2(a).

Given an MDC, 0.6.1, its ancestors’ MDCs are ε, 0, 0.6. As
|0.6|(2)=|0.6.1|(3)−1, 0.6 is the parent of 0.6.1. More impor-
tantly, we can deduce the labels of 0.6.1’s ancestors based on the
DTD. Since the root is bib, the label of 0.6.1’s ancestor at level
0 is bib (the level of the root is 0). bib has only one child label,
i.e.,conf, in the DTD, and as the assigned and ordered number of
0.6.1’s ancestor at level 1 (O1) is 0, andO1%1=0, so the ancestor
of 0.6.1 at level 1 is conf. Node conf(0) has four (m=4) dis-
tinct child labels, orderly name,year,paper,chair accord-
ing to the DTD. As the assigned and ordered number of 0.6.1’s
ancestor at level 2 (O2) is 6, and O2%m=6%4=2, so the ances-
tor of 0.6.1 at level 2 is paper. In the same way, as paper
has three distinct child labels, orderly title,author,bib, and
O3%m=1%3=1, so the label (at level 3) of 0.6.1 is author.
Therefore, the labels of 0.6.1’s ancestors form the root to itself,
are bib,conf,paper,author.

When checking whether u(0.2.0) and v(0.6.4) are homogeneous
or not, we first compute their LCA, w(Cw=0), and then deduce
the labels of the nodes on the paths w→u and w→v, which are
conf,paper,title and conf,paper,author respectively.
Accordingly we can get wSet, {conf(0),paper(0.2),title(0.2.0),
paper(0.6),author(0.6.4)} and lSet={conf,paper,author,
title}. As |wSet|=5, |lSet|=4, and |{λ(u)}∩{λ(v)}|=0, u
and v are heterogenous based on LEMMA 3.3.

4. THE BRUTE-FORCE ALGORITHM
This section presents a brute-force algorithm to compute VLCAs

and the answers of keyword queries. Constructing the inverted in-
dex for the keywords in the XML document is proved to be an effi-
cient way [38]. In our approach, we also employ the inverted index.
The content nodes w.r.t. a keyword are indexed together and sorted
in ascending order by their MDCs, as shown in Table 1. Accord-
ingly, given a keyword query K={k1,k2,· · · km}, we first retrieve
‡
paper1 refers to the first paper of conf(0), while paper2 refers to the second

paper of conf(0).

5

Algorithm 1: Brute-force Algorithm
Input: K={k1,k2,· · · km} and an XML document D
Output: KwRst=K(D,(k1,k2,··· ,km))={(r; λ(v1):c1,

λ(v2):c2,· · · ,λ(vm):cm), · · · }
begin1

KwRst←φ;2
getNodeLists(); /*Ii={vi|vi directly contains keyword ki}*/3
for each combination (v1,v2,· · · ,vm) [vi∈Ii] do4

if v1,v2,· · · ,vm are heterogenous then5
continue;6

else7
r=VLCA(v1,v2,· · · ,vm);8

/*Cr is the longest common prefix of Cv1,Cv2 ,· · · ,Cvm.*/
KwRst←(r; λ(v1):c1,λ(v2):c2,· · · , λ(vm):cm);9

/*ci is the text content that vi contains.*/

end10

Figure 3: The brute-force algorithm to answer keyword search

each content node list, Ii w.r.t. ki, through our inverted index, and
then enumerate all the combinations of the nodes in each Ii, i.e.,
(v1,v2,· · · ,vm), and subsequently compute VLCA of the nodes in
each combination according to Lemma 3.4. Finally, we return the
result set, K(D,(k1,k2,··· ,km)) as described in Definition 3.8.

We devise the brute-force algorithm as shown in Figure 3. It
first retrieves the inverted list Ii for each keyword ki (line 3), then
for each combination of nodes in Ii (line 4), if the nodes in the
current combination are heterogenous, this combination will not
constitute an answer and will be skipped (line 5), otherwise it will
be an answer and added to the result set (lines 8-9). To further
understand the algorithm, we walk through the algorithm with a
running example as described in Example 3.3.

EXAMPLE 3.3. Consider the keyword query {“XML”, “John””}
on the XML document in Figure 2(a). We first retrieve the inverted
lists (as shown in Table 1), i.e., IXML={0.2.0;1.2.0}, IJohn={0.6.4;
1.2.1}. For combinations, (0.2.0;0.6.4), (0.2.0;1.2.1), (1.2.0;0.6.4)
are not results of this keyword search because the two nodes in
these tuples are heterogenous. Only node 1.2 is a VLCA of the
combination (1.2.0;1.2.1), and the three nodes will constitute the
answer of this keyword query.

We analyze the complexity of the brute-force algorithm. There
are

∏m
i=1(|Ii|) combinations for the content nodes, where |Ii| is

the number of content nodes w.r.t. ki. For each combination,
(v1,v2,· · · ,vm), we need to compute their LCA and check whether
these m nodes are homogenous or not, and the complexity of the
former is O(md) according to Lemma 3.2, while that of the latter is
mdlog(md) according to Lemma 3.4. To sum up, the complexity
of our algorithm is O(mdlog(md)

∏m
i=1(|Ii|)). Since m and d are

small integers, mdlog(md) is dominated by
∏m

i=1(|Ii|). When
there are many content nodes w.r.t. the input keywords, the brute-
force algorithm is inefficient, and we will introduce a more efficient
stack-based algorithm to address this issue in Section 5.

5. THE STACK-BASED ALGORITHM
As above observation, if there are a large number of content

nodes associated with the input keywords, the brute-force algo-
rithm based on exhaustive enumeration is inefficient. To improve
the search efficiency, in this section, we propose a stack-based algo-
rithm VLCAStack to address this issue in this section. VLCAStack

is inspired from the stack-based family of algorithms for structure
join and twig join [6, 11, 12], however, our method is orthogonal
to them in that they have to deal with the complicated structure re-
lationships (ancestor-descendant or parent-child relationships). In
addition, our method is different from the existing studies on key-
word search algorithms, such as MLCA [27], SLCA [38], GDMCT
[21] and XRank [17]. The difference is that, SLCA and XRank
employ the general Dewey code and will involve false negatives
and false positives as discussed in Section 2, MLCA requires some
knowledge of XML structures and incorporates keyword search
into XQuery, and GDMCT groups the candidate nodes to compute
LCAs and ranks them through the distances of the connected trees
rooted at their LCAs. MLCA and GDMCT employ the region-
based code, and we will experimentally demonstrate that they are
not so efficient as our algorithm based on MDC.

To speed up computing VLCAs, we introduce the notions of
Compact LCA and Compact VLCA (CVLCA). CVLCA is more
compact than VLCA, and the connected subtree rooted at CVLCA,
called compact connected subtree, is more compact and meaningful
to answer keyword queries.

DEFINITION 5.9. (Compact LCA and Compact VLCA) Given
m nodes, v1∈I1,v2∈I2,· · · ,vm∈Im, w=LCA(v1,v2,· · · ,vm). w is
called to dominate vi, if wºLCA(v′1,v′2,· · · ,v′i−1,vi, v′i+1,· · · ,v′m),
∀v′1∈I1,· · · ,v′i−1∈Ii−1, v′i+1∈Ii+1,· · · ,v′m∈Im. w is a Compact
LCA w.r.t. these m nodes, if w dominates each vi. w is a Compact
VLCA (CVLCA), if w is a compact LCA and also a VLCA.

DEFINITION 5.10. (Compact Answer of keyword search) Given
a keyword query K={k1,k2, · · · ,km} and an input XML document
D. K(D,(k1,k2,··· ,km)) is the compact answer of K on D, where
K(D,(k1,k2,··· ,km)) ={(r; λ(v1):c1, λ(v2):c2,· · · , λ(vm):cm) | r is
the CVLCA of v1, v2,· · · , vm, where ci denotes all the text content
that vi contains. }.

Definition 5.9 presents a more compact and accurate concept
to answer keyword queries, and Definition 5.10 demonstrates that
the compact answer composed of compact connected trees should
be more meaningful to answer keyword queries, where each com-
pact connected tree describes how each result matches the keyword
query. The idea behind the compact connected tree is, since node v
is in a compact connected tree, it will not be in another looser one,
which contain some other irrelevant nodes. Furthermore, CVLCA
is different from and more meaningful than SLCA. For example,
consider the keyword query {“XML”, “Bob”} on the XML docu-
ment in Figure 1(b), paper(5) and paper(12) are both CVLCAs as
paper(5) dominates title(6) and author(7) while paper(12) dom-
inates title(13) and author(14); but paper(5) does not dominate
title(6) and author(14). Moreover, only compact nodes (e.g., ti-
tle(13) and author(14)) share a CVLCA while the loose ones (e.g.,
title(6) and author(14)) cannot. However, paper(5) is not a valid
SLCA since it has a descendant paper(12) which is also a LCA of
this keyword query, and paper(5) will be absent from the answer of
SLCA. Therefore, SLCA causes the false negative problem as they
wrongly discard LCAs which have LCA descendants, and CVLCA
can avoid this problem.

More importantly, CVLCA has a key property that we can effi-
ciently compute CVLCAs through only one scan of the input con-
tent nodes. Observed from Definition 5.9, when detecting that all
the current elements in each input list are larger than the current
LCA, we can assure that those elements in each input list and the
elements before the current LCA (i.e., the elements that have been
popped out from input lists) will not constitute a compact con-
nected tree together, and Lemma 5.5 guarantees the correctness.

6

Algorithm 2: VLCAStack Algorithm
Input: K={k1,k2,· · · km} and an XML document D
Output: KwRst=K(D,(k1,k2,··· ,km))= {(r; λ(v1):c1,

λ(v2):c2,· · · ,λ(vm):cm),· · · }
begin1

KwRst←φ;2
getNodeLists(); /*Ii={vi|vi directly contains keyword ki}*/3
while SV LCA is not empty or Ii is not empty do4

min=minargi(Ii.first());5
nmin=Imin.first();6
Imin.pop front();7
Smin.push(nmin);8
while vlca=SV LCA.top() is not an ancestor of nmin9
do

SV LCA.pop();10
if vlca contains all the keywords then11

if vlca is a CVLCA then12
KwRst←(vlca;λ(v1):c1,· · · ,λ(vm):cm);13
/*vi is the node associated with the pointers of

vlca, and ci is its corresponding text.*/

pop(vlca.Pointers); /*pop elements from stacks*/14

else15
addPointer(SV LCA.top,vlca.Pointers);16

SV LCA.push(nmin);17
addPointer(SV LCA.top(),Smin.top());18

end19

Figure 4: VLCAStack algorithm to answer keyword search

Subsequently, we introduce an effective optimization technique for
computing CVLCAs, and inspired from this optimization, we de-
vise a novel stack-based algorithm, VLCAStack.

LEMMA 5.5. Given m nodes, v1∈I1, v2∈I2,· · · ,vm∈Im, w=
LCA(v1,v2,· · · vm). ∀v′i∈Ii, v′i<w or v′i>w, there does not exist
w′, which dominates both v′i and vj (j 6=i).

PROOF. Suppose node w′ dominates vj . As w=LCA(v1,v2,· · · ,vm),
w′ºw. If v′i>w, then w′<v′i; otherwise, if v′i<w, then w′>v′i, and
thus w′ can not dominate v′i. According to Definition 5.9, there ex-
ists one and only one node, which dominates vj . Hence, there is no
w′, which dominates both v′i and vj(j 6=i).

Optimization Technique: Let r=LCA(v1,v2,· · · ,vm). ∀d, dºr,
d will not share a common Compact LCA with any node n, Cn>Cr .
Hence, when detecting a compact LCA, r, we can discard the de-
scendants of r as they will not constitute other compact LCAs.

Based on the above optimization technique, we can devise an
effective stack-based algorithm. Stack-based algorithms require
that the input elements Ii are sorted in order by their MDCs. In
VLCAStack, MDCs of each inverted list are sorted in ascending
order. Different from traditional stack-based algorithms, besides
maintaining a stack Si for each input list Ii, VLCAStack still
maintains another stack to preserve the current LCA, denoted as
SV LCA. In addition, each node in SV LCA is associated with some
pointers to preserve the nodes that it contains in each current stack
Si. If the node in SV LCA contains all of the input keywords and is
a VLCA, this node and the associated nodes with its pointers that
contain input keywords will constitute a compact connected tree.

The basic idea of our algorithm is to merge the nodes in each Ii

into compact connected trees rooted at their compact LCAs, and
conceptually validate whether each compact LCA is a CVLCA.
More importantly, all the nodes in each Ii will be scanned and
pushed into its corresponding stack Si and SV LCA at most once.

0.6.4

0.2.0 1.2.0

1.2.1 0.6.4

1.2.00.2.0

1.2.1

0

2

0

0.6.4

1.2.00.2.0

1.2.1

0

6

4

1.2.0

1.2.1

1

2

0

1.2.1

1.2.0

1

2

1

(a) (b) (c)

(d) (e) (f)

0.6.4

1.2.00.2.0

1.2.1

0

SVLCA

SXML

S john

SVLCA

SXML

S john

SVLCA

SXML

S john

SVLCA

SXML

S john

SVLCA

SXML

S john

SVLCA

SXML

S john

IXML

I john

IXML IXML

IXMLIXMLIXML

I john I john

I john I john I john

Figure 5: A running example of VLCAStack algorithm for
the keyword query {“XML”,“John”} on the XML document
in Figure 2(a).

In addition, once a node popped out from a stack, it will not con-
tribute any answer in future. Accordingly, we demonstrate how to
devise our algorithm based on the optimization technique.

Now, we introduce how to effectively identify all the compact
connected tress through once scan of each Ii. While Ii is not
empty or SV LCA is not empty, we select the node with minimal
MDC among the first nodes of each current Ii. Without loss of
generality, we assume the minimal node is nmin and from Imin.
We pop nmin from Imin and push it into Smin. If node vlca,
the top element in SV LCA, is an ancestor of nmin, we push nmin

into SV LCA with a pointer to Smin.top(); otherwise, for each ele-
ment vlca in SV LCA, which is not an ancestor of nmin, if vlca
contains all the keywords, it will be a compact LCA, and the nodes
associated with its pointers and itself will constitute a compact con-
nected tree. Subsequently, we need to check whether this compact
LCA is a CVLCA. More importantly, if vlca is not an ancestor of
nmin, nmin>vlca must hold, hence vlca and the nodes associ-
ated with its pointers can be popped out from corresponding stacks
according to Lemma 5.5 and the proposed optimization technique;
on the contrary, vlca does not contain all the input keywords and
will be popped out from SV LCA, since its ancestor also contains
the nodes associated with its pointers and may constitute a com-
pact connected tree in future, and thus all the pointers associated
with it will be transformed to its direct ancestor (i.e., the element
directly below it in SV LCA). We repeat these steps until both each
Ii and SV LCA are empty, and Lemma 5.5 and the proposed opti-
mization technique guarantee the correctness. Accordingly, we can
devise our algorithm, VLCAStack, as shown in Figure 4.
VLCAStack first retrieves the input lists of the keywords (line

3), and then gets the node nmin, which has minimal MDC among
the first nodes of each Ii (lines 5-6). nmin will be popped out
from Imin and pushed into its corresponding stack Smin (lines 7-
8). While the top element of SV LCA, vlca, is not an ancestor of
nmin, VLCAStack pops vlca from SV LCA (line 10). If vlca
contains all the keywords and is a CVLCA, this vlca with the
nodes associated with is pointers must constitute a compact con-
nected tree and be added into the result set, KwRst (line 13), then
VLCAStack pops them from corresponding stacks (line 14); oth-
erwise, transforms the pointers of vlca to its ancestor, i.e., the
current top node of SV LCA (line 16). Finally, VLCAStack pushes
nmin with its pointers into SV LCA (lines 17-18).

To further digest the algorithm for readers, we walk through our
algorithm with a running example as shown in Example 5.4 and
Figure 5.

7

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

QSl5
(6)QSl4

(5)QSl3
(4)QSl2

(3)QSl1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Low Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

QSm5
(6)QSm4

(5)QSm3
(4)QSm2

(3)QSm1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Medium Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

QSh5
(6)QSh4

(5)QSh3
(4)QSh2

(3)QSh1
(2)

E
la

ps
ed

 T
im

e(
m

s)

High Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

Figure 6: Evaluation of Elapsed Time on SIGMOD Record

 0

 5

 10

 15

 20

 25

 30

QDl5
(6)QDl4

(5)QDl3
(4)QDl2

(3)QDl1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Low Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0

 50

 100

 150

 200

 250

 300

QDm5
(6)QDm4

(5)QDm3
(4)QDm2

(3)QDm1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Medium Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0

 10

 20

 30

 40

 50

 60

QDh5
(6)QDh4

(5)QDh3
(4)QDh2

(3)QDh1
(2)

E
la

ps
ed

 T
im

e(
s)

High Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

Figure 7: Evaluation of Elapsed Time on DBLP

EXAMPLE 5.4. Consider the keyword query {“XML”,“John”}
on the XML document in Figure 2(a). VLCAStack first retrieves
the input keyword lists, IXML={0.2.0;1.2.0}, IJohn={0.6.4;1.2.1}
through the inverted index, and then computes the VLCAs and gen-
erates the compact connected trees rooted at these VLCAs as fol-
lows. In the first step, as SVLCA is empty and nmin=0.2.0, whose
MDC is minimal among the first nodes of each Ii, we push it into
SVLCA with a pointer to the top element of SXML (Figure 5(b)). In
step 2, as nmin is 0.6.4 and the top element of SVLCA, vlca=0.2.0,
is not an ancestor of 0.6.4, so VLCAStack pops vlca from SVLCA
and transforms its pointer to its ancestor node 0.2. In the same way,
VLCAStack pops 0.2 and transforms the pointer of 0.2 to its an-
cestor 0, and then pushes node 0.6.4 with its pointer into SVLCA
(Figure 5(c)). In step 3, as nmin is 1.2.0 and vlca=0.6.4 is not an
ancestor of 1.2.0, so we pop 0.6.4, 0.6 from SVLCA and transform
their pointers to their ancestors. As node conf(0) contains all the
keywords (node 0.2.0 and node 0.6.4 are both associated with its
pointers, i.e., they are descendants of conf(0)), we check whether
conf(0) is a VLCA, and then pop it form SVLCA and so do the two
nodes, 0.2.0 and 0.6.4 from SXML and SJohn respectively (Figure
5(d)). Since node conf(0) is not a VLCA as discussed in Example
3.2, it will not be added into the result and skipped. In addition,
VLCAStack pushes node 1.2.0 with its pointer into SVLCA (Figure
5(e)). Accordingly, we can proceed to walk through the algorithm
as shown in Figure 5. Finally, we get the answer of the keyword
query, {(paper(1.2);title:XML(1.2.0),author:John(1.2.1))}.

We analyze the complexity of VLCAStack. According to Lemma
5.5, there are at most |IminSize| compact LCAs, where IminSize

is the input list that has minimal size among each Ii. However,
the number of the compacted connected trees may be larger than
|IminSize|, and VLCAStack will identify all the compact con-
nected trees as the answers. Therefore, VLCAStack needs to scan
each Ii once and for each element, vi in Ii, pops the nodes which is
not its ancestor from SV LCA and pushes vi into SV LCA, and then
for each compact connected tree which contains all the input key-
words, checks whether the root of this tree is a VLCA according
to Lemma 3.4. The complexity of the former is O(d

∑m
i=1|Ii|),

while that of the latter is O(mdlog(md)|CCTrees|), where m
is the number of keywords involved in a keyword query, d is the
depth of the XML document and |CCTrees| is the number of com-
pact connected trees. Thus, the total complexity of VLCAStack is
O(d

∑m
i=1|Ii|+ mdlog(md)*|CCTrees|). |CCTrees| is usually

proportional to |IminSize|, and is much less than
∏m

i=1 |Ii|. There-
fore, this further demonstrates that VLCAStack outperforms our
brute-force algorithm based on exhaustive enumeration.

6. EXPERIMENTAL STUDY
We have designed and performed a comprehensive set of experi-

ments to evaluate the performance of our proposed algorithms. We
used both real and synthetic datasets. The synthetic dataset was
generated using the XMark benchmark [4] with a factor of 1.0
and the raw file was about 115MB. We also used the real dataset
DBLP [1] and SIGMOD Record, TreeBank datasets from Wash-
ington XML Data Repository [3] to explore the performance of our
algorithms. The sizes of DBLP, SIGMOD Record and TreeBank
were respectively about 350MB, 500KB and 82MB.

The experiments were conducted on an Intel(R) Pentium(R) 2.4GHz
computer with 512MB of RAM running Windows XP Professional.
The algorithms were implemented in Java and the parsing of the
XML files was performed using the SAX API of the Xerces Java
Parser. We compared our approach with the state-of-art proposals,
XSEarch [14], SLCA [38]§, and GDMCT [21].

We employed four metrics, elapsed time, precision, recall and
F -measure to evaluate the efficiency and effectiveness of these
algorithms. To compute precision and recall, we manually refor-
mulated the keyword queries into schema-aware XQuery queries
according to the schemas of datasets and took the results of these
corresponding transformed queries as a baseline, and then com-
puted precision and recall of given queries according to the base-
line as follows. Given a keyword query K and its corresponding
transformed XQuery X , the accurate result set of K, i.e., the result
of X , is denoted as AR, and the approximate result set, i.e., the re-
sult of a specified algorithm on K, is denoted as PR. Accordingly,
we can defined the precision and recall of this algorithm as follows.
Precision of the specified algorithm is the ratio between |AR∩PR|
and |PR|, while Recall is the ration between |AR∩PR| and |AR|.
For F -measure, F= 2∗P∗R

P+R , where F ,P and R are F -measure,
precision and recall of the specified algorithm respectively.

To better understand the performance of our algorithms for vari-
ous keyword queries with different selectivities, we performed our
experiments using various sets of keywords with different frequen-
cies, namely, low, medium and high, respectively corresponding to
keywords with frequency between 1-50, 51-500, and above 500.

6.1 Efficiency
We evaluated the efficiency of VLCAStack, our brute-force al-

gorithm, XSEarch, SLCA and GDMCT on SIGMOD Record, DBLP,
XMark and TreeBank datasets respectively in this section, and com-
pared their elapsed time on various queries.

For each dataset, we selected fifteen keyword queries. Each one
of the first five queries has at least one keyword with low frequency,
each of the medium five queries has no keywords with low fre-
quency and has at least one keyword with medium frequency, and
for the last five queries, all the keywords of each query have high
frequencies. In addition, every keyword query contains 2-6 key-
words, for example, in Figure 6, QSl2

(3) means that QSl2
is a

selected query on SIGMOD Record dataset, which contains 3 key-
words and has at least one keyword with low frequency. Figure
6, 7, 8 and 9 describe the experiment results on SIGMOD Record,
DBLP and XMark and TreeBank datasets respectively.

Besides inverted indices associated with keywords, XSEarch still
has to maintain an all-pairs interconnection index, which is very
expensive to compute whatever online or offline. The brute-force
algorithm is also inefficient when some input keywords have high
frequencies in that it has to exhaustively enumerate all the combi-
nations of content nodes in each Ii. Therefore, VLCAStack out-
performs XSEarch and the brute-force algorithm. Especially, on
§In this paper, we adopted Indexed Lookup Eager algorithm of SLCA for comparison
as it achieves better performance.

8

 40

 50

 60

 70

 80

 90

 100

65432

Pr
ec

is
io

n(
%

)

|K| (SIGMOD Record)

XSEarch
SLCA

GDMCT
VLCAStack

 40

 50

 60

 70

 80

 90

 100

65432

Pr
ec

is
io

n(
%

)

|K| (DBLP)

XSEarch
SLCA

GDMCT
VLCAStack

 40

 50

 60

 70

 80

 90

 100

65432

Pr
ec

is
io

n(
%

)

|K| (XMark)

XSEarch
SLCA

GDMCT
VLCAStack

 40

 50

 60

 70

 80

 90

 100

65432

Pr
ec

is
io

n(
%

)

|K| (TreeBank)

XSEarch
SLCA

GDMCT
VLCAStack

Figure 10: Comparison on Precision

 0

 10

 20

 30

 40

 50

QXl5
(6)QXl4

(5)QXl3
(4)QXl2

(3)QXl1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Low Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

QXm5
(6)QXm4

(5)QXm3
(4)QXm2

(3)QXm1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Medium Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0

 10

 20

 30

 40

 50

 60

 70

 80

QXh5
(6)QXh4

(5)QXh3
(4)QXh2

(3)QXh1
(2)

E
la

ps
ed

 T
im

e(
s)

High Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

Figure 8: Evaluation of Elapsed Time on XMark

 0

 10

 20

 30

 40

 50

 60

QTl5
(6)QTl4

(5)QTl3
(4)QTl2

(3)QTl1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Low Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

QTm5
(6)QTm4

(5)QTm3
(4)QTm2

(3)QTm1
(2)

E
la

ps
ed

 T
im

e(
m

s)

Medium Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

 0

 10

 20

 30

 40

 50

 60

QTh5
(6)QTh4

(5)QTh3
(4)QTh2

(3)QTh1
(2)

E
la

ps
ed

 T
im

e(
s)

High Frequency Queries

Brute-force
XSEarch

SLCA
GDMCT

VLCAStack

Figure 9: Evaluation of Elapsed Time on TreeBank

QSh5
, VLCAStack costs less than 200ms, while the brute-force

algorithm costs 700ms and XSEarch costs more than 800ms as
shown in Figure 6. While, on QXh5

, the speedup ¶ of VLCAStack
over the brute-force algorithm and XSEarch are 8 and 12 respec-
tively as illustrated in Figure 8.
VLCAStack is also superior to GDMCT, and the reason is that,

GDMCT employs the region-based code, which is not as efficient
as MDC to compute LCAs of various nodes. Especially, on QDm4

,
VLCAStack only costs 50ms, while GDMCT costs 80ms as shown
in Figure 7. In addition, we can see SLCA is more efficient than
the other ones when a keyword has a low frequency, e.g., QSl5

(6),
QSl2

(3) and QTl1
(2). However when the frequencies of all key-

words have no distinct differences, VLCAStack is as good as SLCA
and even better than it. For example, on QSh3

(4), QDl5
(6) and

QXl4
(5), the speedup of VLCAStack against SLCAs are about

1.2, 1.4 and 1.5 respectively. Furthermore, SLCA is efficient in that
it only retrieves SLCASet instead of the compact connected tree
as our method, so that it leads to low effectiveness when compared
with other methods, which will be further discussed in Section 6.2.

6.2 Effectiveness
This section evaluates the effectiveness of those algorithms based

on three good metrics borrowed from IR literature, precision, recall
and F -measure, and reports the experimental result. We selected
six keyword queries for each dataset and performed the five algo-
rithms on them, and computed precision, recall and F -measure
of the five algorithms on the selected keyword queries.

SLCA will cause false positive and false negative problems, while
XSEarch, GDMCT and the brute-force algorithm will cause the
false positive problem as discussed in above sections. VLCAStack
achieves higher precision than the other approaches, and the brute-
force algorithm has the same precision as XSEarch, which in turn

¶The speedup of algorithm X over algorithm Y is the ratio between TY and TX ,
where TY and TX are the elapsed time of Y and X respectively.

outperforms GDMCT and SLCA. In addition, VLCAStack is as
good as the brute-force algorithm, XSEarch, and GDMCT in terms
of completeness, and they achieve higher recall than SLCA, as
SLCA will miss results from the answer in the case that their de-
scendants are also LCAs. The experimental results are illustrated
in Figure 10, Table 2 and Table 3.

Precision. We can see, in Figure 10, VLCAStack outperforms
the other three algorithms in term of precision (we omit the brute-
force algorithm since it has the same precision as XSEarch) on
whatever datasets. More importantly, the precision of VLCAStack
is nearly 90% on all the selected datasets, and thus it works well
in practice. Although XSEarch also achieves high precision, it is
inefficient since it is very expensive to compute an all-pairs inter-
connection index. For example, on QT5 (the keyword query with
5 keywords on TreeBank), the precision of VLCAStack nearly
reaches 90%, while those of XSEarch, GDMCT and SLCA are only
73%, 70% and 68% respectively as shown in Figure 10. This com-
parison further reflects the effectiveness of our method. In addition,
VLCAStack returns compact connected trees as answers, which
are more compact and meaningful than the answers of SLCA, GDMCT
and XSEarch.

Recall. Based on the discussion in above sections, VLCAStack,
XSEarch, GDMCT and the brute-force algorithm should achieve
higher recall than SLCA as only SLCA causes the false negative
problem. However, there is no difference between the former four
algorithms, hence we here mainly compare VLCAStackwith SLCA
as shown in Table 2. Since only if there are some nested labels/tags
in the XML documents, SLCA involves false negatives, thus we
compared them on TreeBank and our synthetic dataset generated
according to the DTD in Figure 2(b) using IBM XML Generator.
We can see VLCAStack achieves higher recall on all the keyword
queries, and is superior to SLCA about 20 percent. This compari-
son reflects that our method outperforms SLCA significantly.

F -measure. To further compare those algorithms, we employed
another good metric F -measure. We selected six queries for each
dataset and compared the average of their F -measure. We can
see VLCAStack beats the other algorithms and achieves the best
F -measure as shown in Table 3. For example, on TreeBank, F -
measure of VLCAStack reaches 90.1%, while those of the other
ones are less than 70%, and especially that of SLCA is only 62.1%.

In summary, in terms of efficiency, VLCAStack is always better
than GDMCT, which in turn is superior to the brute-force algorithm
and XSEarch on whatever datasets and keyword queries. When
the input keywords have no distinct frequencies, VLCAStack is
as good as SLCA and even better than SLCA. On the other hand,
VLCAStack outperforms the brute-force algorithm and XSEarch,
which in turn are better than GDMCT and SLCA in terms of effec-
tiveness. Hence, VLCAStack achieves both higher efficiency and
effectiveness when compared with other methods.

9

Table 2: Comparison on Recall
The generated dataset TreeBank

Recall(%)
QG1 QG2 QG3 QG4 QT1 QT2 QT3 QT4

SLCA 74.4 71.5 75.3 66.1 75.4 70.2 73.1 66.5
VLCAStack 100 100 100 100 96.4 93.1 95.4 92.3

Table 3: Comparison on F -measure
F -measure(%) SLCA XSEarch Brute-force GDMCT VLCAStack

SIGMOD Record 78.1 82.3 82.3 82.1 97.1
DBLP 77.4 81.5 81.5 81.2 96.3
XMark 76.1 79.2 79.2 77.6 93.9

TreeBank 62.1 68.5 68.5 66.5 90.1
Generated dataset 69.8 79.9 79.9 78.2 100

7. CONCLUSION
In this paper, we have investigated the problem of keyword search

over XML documents, with the aim of identifying the most mean-
ingful content elements that contain all the input keywords, along
with a compact connected tree to describe how each result matches
a given keyword query.

To obtain more meaningful results of keyword queries, we pro-
pose the notions of Valuable LCA and Compact VLCA to accu-
rately and efficiently answer XML keyword queries. Based on
the two concepts, we propose the compact connected trees rooted
CVLCAs as the answers of keyword queries. Moreover, we present
an optimization technique for accelerating the computation of CVL-
CAs and devise an efficient stack-based algorithm to identify the
meaningful compact connected trees.

We have implemented the proposed method and the extensive ex-
periment results showed that our method achieved high efficiency
and effectiveness on both synthetic and real datasets.

Acknowledgement
This work is partly supported by the National Natural Science Foun-
dation of China under Grant No. 60573094, the National High
Technology Development 863 Program of China under Grant No.
2007AA01Z152, the National Grand Fundamental Research 973
Program of China under Grant No. 2006CB303103, Basic Re-
search Foundation of Tsinghua National Laboratory for Informa-
tion Science and Technology (TNList), and Tsinghua Basic Re-
search Foundation under Grant No. JCqn2005022.

8. REFERENCES
[1] http://dblp.uni-trier.de/xml/.
[2] http://inex.is.informatik.uni-duisburg.de/2006/index.html.
[3] http://www.cs.washington.edu/research/xmldatasets/.
[4] http://www.xml-benchmark.org/.
[5] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for

keyword-based search over relational databases. In ICDE, pages
5–16, 2002.

[6] S. Al-Khalifa, H. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and
Y. Wu. Structural joins: A primitive for efficient xml query pattern
matching. In ICDE, pages 141–152, 2002.

[7] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible and efficient
xml search with complex full-text predicates. In SIGMOD, pages
575–586, 2006.

[8] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman.
Structure and content scoring for xml. In VLDB, pages 361–372,
2005.

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In ICDE,
pages 431–440, 2002.

[10] C. Botev, S. Amer-Yahia, and J. Shanmugasundaram. Expressiveness
and performance of full-text search languages. In EDBT, pages
349–367, 2006.

[11] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:optimal
xml pattern matching. In SIGMOD, pages 310–321, 2002.

[12] S. Chen, H. Li, et al. Twig2stack: Bottom-up processing of
generalized-tree-pattern queries over xml documents. In VLDB, 2006.

[13] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnection
semantics for keyword search in xml. In CIKM, pages 389–396,
2005.

[14] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A semantic
search engine for xml. In VLDB, pages 45–56, 2003.

[15] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding
top-k min-cost connected trees in databases. In ICDE, 2007.

[16] L. Guo, J. Shanmugasundaram, and G. Yona. Topology search over
biological databases. In ICDE, 2007.

[17] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank:
Ranked keyword search over xml documents. In SIGMOD, pages
16–27, 2003.

[18] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest
common ancestors. In SIAM J. Comput. 13(2), pages 338–355, 1984.

[19] H. He, H. Wang, J. Yang, and P. Yu. Blinks : Ranked keyword
searches on graphs. In SIDMOD, 2007.

[20] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style
keyword search over relational databases. In VLDB, pages 850–861,
2003.

[21] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava.
Keyword proximity search in xml trees. In IEEE Trans. Knowl. Data
Eng. 18(4), pages 525–539, 2006.

[22] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB, pages 670–681, 2002.

[23] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on xml graphs. In ICDE, pages 367–378, 2003.

[24] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on
graph databases. In VLDB, pages 505–516, 2005.

[25] Y. Li, H. Yang, and H. V. Jagadish. Nalix: an interactive natural
language interface for querying xml. In SIGMOD, pages 900–902,
2005.

[26] Y. Li, H. Yang, and H. V. Jagadish. Constructing a generic natural
language interface for an xml database. In EDBT, pages 737–754,
2006.

[27] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In VLDB,
pages 72–84, 2004.

[28] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword
search in relational databases. In SIGMOD, pages 563–574, 2006.

[29] Z. Liu and Y. Chen. Identifying meaningful return information for
xml keyword search. In SIGMOD, 2007.

[30] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen. From region encoding to
extended dewey: On efficient processing of xml twig pattern
matching. In VLDB, pages 193–204, 2005.

[31] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: Top-k keyword query
in relational databases. In SIDMOD, 2007.

[32] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive
processing of top-k queries in xml. In ICDE, pages 162–173, 2005.

[33] A. Markowetz, Y. Yang, and D. Papadias. Keyword search on
relational data streams. In SIDMOD, 2007.

[34] S. Pradhan. An algebraic query model for effective and efficient
retrieval of xml fragments. In VLDB, pages 295–306, 2006.

[35] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient
keyword search across heterogeneous relational databases. In ICDE,
2007.

[36] B. Schieber and U. Vishkin. On finding lowest common ancestors:
Simplification and parallelization. In SIAM J. Comput. 17(6), pages
1253–1262, 1988.

[37] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.
Shekita, and C. Zhang. Storing and querying ordered xml using a
relational database system. In SIGMOD, pages 204–215, 2002.

[38] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest
lcas in xml databases. In SIGMOD, pages 527–538, 2005.

10

