
Machine Learning for Data Management: 
A System View 

Guoliang Li, Xuanhe Zhou
Department of Computer Science, 

Tsinghua University, Beijing, China



Revisit database systems: What are the critical requirements

2

Relational Model, SQL

OLTP: rollbacks, triggers, locking, logging, …

OLAP: JIT compilation, vectorized execution, …

NoSQL: data models, indexing, partitioning, …

Distributed OLTP: 2PC, Paxos, Distributed SQL…

High Quality

Unstructured Data; High Scalability

File System

Easy to manipulate data

Atomicity, Consistency, Isolation, Durability

High Scalability; ACID

Cloud-Native: compute-storage disaggregation, …

Flexibility, Cost-Saving

transactions

transactions
+big data 

data analysis

Scale out

DBaaS

Relations

da
ta

ba
se

de
ve

lo
pm

en
t

������	��
������
������

��	��������������� ��

����������
��	����	��
��������

����������
��������������
�������	��
����� ��	��� ��

Learned Database



3

l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency

New Opportunities: What benefits can ML bring for databases?

l Cost Saving: Manual à Autonomous
l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance ������	��

������
������
��	��������������� ��

����������
��	����	��
��������

����������
��������������
�������	��
����� ��	��� ��

Learned Database



4

l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency

New Opportunities: Why Now?

l Cost Saving: Manual à Autonomous
l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance Heuristic à

Intelligent
��������	 �	��
��
���� ������

On-Premise 

àCloud
������	����	��

�	����
����

Experience à

Data-driven
�������� �������������
�������	�������
��	��� ��

Learned Database



l Cost Saving: Manual à Autonomous
l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance

Double-Edged Sword: What are the challenges?

• Feature Selection: Pick 

relevant features from 

numerous query /

database / os metrics ;

• Model Selection: Design 

ML models to solve different 

database problems;

Challenges

• Diverse Targets: Meet 

the SLA requirements 

under different scenarios;

• Training Data

• Adaptivity

l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency

5



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

l Autonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

6



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

l Autonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

7



l Performance (tuning quality, overhead, benefit estimation)
l Adaptivity (queries/codes, datasets, instances)

Automatic Advisor: Technique Development

Index
Advisor Optimize Index Estimation Improve Index Quality Support Index Update

- Deep Neural Networks - Reinforcement Learning - Monte Carlo Tree Search

View
Advisor Optimize MV Selection Optimize MV Estimation

- Reinforcement Learning - Encoder-Decoder + RL

8

[sigmod, 2019] [cikm, 2020] [icde, 2021] [icde, 2022]

[icde, 2020] [icde, 2021]

Knob
Tuner

Utilize 
Historical 

Data

Tuning 
Effect 

Estimation

Optimize 
Tuning 
Quality

Reduce 
Tuning 

Overhead

Improve 
Adaptivity

Spark 
Tuning

- Gaussian Process - Deep Learning - Reinforcement Learning - Meta Learning 
[sigmod, 2021]

- Delayed RL 
[vldb, 2021] 
- DB Manual �
[sigmod, 2022]

[sigmod, 2019] [vldb, 2019][vldb, 2019][sigmod, 2017]
- Contextual GP 
[sigmod, 2020]
- Adaptive Learning 
[icde, 2022]



p Motivation
p Large number of configuration knobs

• Total > 400

• 10-15 are most vital for any workloads

p Knobs control nearly every aspect 

and have complex correlations
• The relations are non-linear

• One-knob-at-a-time is inefficient

Automatic Knob Tuning

9



p Sampling-based: Explore knob-performance relations
p Planner: Adaptively sample some knob settings

p Executor: Get the performance of sampled settings by running workloads

p Estimator: Predict knob-performance relations with Gaussian Process;

p Termination: Terminate if arriving time limit; otherwise repeat above steps

Traditional Knob Tuning Method

Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009.

knob-performance relations

Planner

Executor Estimator
experiments

sampled
settings

knob-performance
relations (GP)Repeat

10



p Challenges
p Sampling configurations from scratch is inefficient

• Utilize historical configuration data

p Knob-performance relations are extremely complex

• Advanced ML techniques (depending on scenarios)

p Important configuration features are not utilized

• Inner metrics; query features; data features

Problems in Traditional Knob Tuning

11



l Performance (tuning quality, overhead, benefit estimation)
l Adaptivity (queries/codes, datasets, instances)

Knob Tuner: Technique Development

Knob Tuner

Utilize 
Historical 

Data

Tuning Effect 
Estimation

Optimize 
Tuning Quality

Reduce 
Tuning 

Overhead

Improve 
Adaptivity

Spark 
Tuning

- Gaussian Process - Deep Learning - Reinforcement Learning - Meta Learning 
[sigmod, 2021]

12

- Delayed RL 
[vldb, 2021] 
- DB Manual �
[sigmod, 2022]

[sigmod, 2019] [vldb, 2019][vldb, 2019][sigmod, 2017]
- Contextual GP 
[sigmod, 2020]
- Adaptive Learning 
[icde, 2022]



Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough Large-scale Machine Learning. SIGMOD, 2017. 

Knob Tuner: Utilize Historical Data 

p Automatically tune knobs with numerous historical data
Ø Characterize workloads with runtime metrics (e.g., #-read-page, #-write-page)

Ø Identify important knobs (rank knobs through knob-performance sampling)

Ø Generate workload-to-identified-knob-settings correlations (data repository)

Ø Given a workload, compute a mapped workload via metric similarity, use corresponding 

knob settings to initialize GP, explore more settings to get better performance

13



Knob Tuner: Tuning Effect Estimation

J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases. VLDB 2019.

p Motivation: Expensive to run workloads to evaluate tuning effects
p Basic Idea: Estimate tuning effects without running workloads
p Challenge: Many metrics affect the performance
p Solution:

p Collect DB metrics: logical-read, QPS, CPU usage, response time;
p Initialize a buffer size using historical workloads with similar metrics;
p Design a neural network to estimate the response time as tuning feedback;
p Greedily reduce the initialized buffer size until arriving safe response time.

14



p Motivation: Traditional methods fall into local optimum
p Basic Idea: Use reinforcement learning (exploration-exploitation)
p Challenge: Map knob tuning into RL
p Solution

Knob Tuner: Optimize Tuning Quality

RL CDBTune
Agent The tuning system
Environment DB instance
State Internal metrics
Reward Performance change
Action Knob configuration
Policy Deep neural network

5BCMF �� /PUBUJPOT

7BSJBCMFT %FTDSJQUJPOT .BQQJOH UP $%#5VOF
s 4UBUF *OUFSOBM NFUSJDT PG %#.4
a "DUJPO 5VOBCMF LOPCT PG %#.4
r 3FXBSE य़F QFSGPSNBODF PG %#.4
st य़F TUBUFT BU UJNF t *OUFSOBM NFUSJDT BU UJNF t
at य़F BDUJPOT BU UJNF t ,OPC TF॒JOHT BU UJNF t

rt

य़F DIBOHF PG SF�
XBSE CFUXFFO UJNF
t − 1 BOE UJNF t

1FSGPSNBODF DIBOHF CF�
UXFFO UJNF t − 1 BOE
UJNF t

α -FBSOJOH SBUF 4FU UP �����
γ %JTDPVOU GBDUPS 4FU UP ����

ω
य़F XFJHIUT PG OFV�
SBM OFUXPSL

*OJUJBMJ[FE
UPUni f orm(−0.1, 0.1)

E
&OWJSPONFOU
UIF UVOJOH UBSHFU

"O JOTUBODF PG $%#

µ 1PMJDZ EFFQ OFVSBM OFUXPSL

θQ
-FBSOBCMF
QBSBNFUFST

*OJUJBMJ[FE
UP Normal(0, 0.01)

θ µ
"DUPS NBQQJOH UIF
TUBUF st UP UIF BDUJPO
at

�

Q µ
$SJUJD VOEFS UIF QPM�
JDZ µ

�

r(st ,at ) 3FXBSE GVODUJPO �
L -PTT GVODUJPO �

y
2 WBMVF MBCFM
UISPVHI 2�MFBSOJOH
BMHPSJUIN

�

JT NPSF JO MJOF XJUI UVOJOH TDFOBSJPT BOE NBLFT PVS BMHP�
SJUIN QFSGPSN FFDUJWFMZ BOE Fਖ਼DJFOUMZ�

��� 3- GPS *."hmM2
य़FNBJO DIBMMFOHF PG VTJOH 3- JO *."hmM2 JT UP NBQ EBUB�
CBTF UVOJOH TDFOBSJPT UP BQQSPQSJBUF BDUJPOT JO 3-� *O 'JH�
VSF � XF EFTDSJCF UIF JOUFSBDUJPO EJBHSBN PG UIF TJY LFZ
FMFNFOUT JO 3- BOE TIPX UIF DPSSFTQPOEFODF CFUXFFO UIF
TJY FMFNFOUT BOE EBUBCBTF DPOHVSBUJPO UVOJOH�
"HFOU� "HFOU DBO CF TFFO BT UIF UVOJOH TZTUFN *."hmM2
XIJDI SFDFJWFT SFXBSE 	J�F� UIF QFSGPSNBODF DIBOHF
 BOE
TUBUF GSPN $%# BOE VQEBUFT UIF QPMJDZ UP HVJEF IPX UP BE�
KVTU UIF LOPCT GPS HF॒JOH IJHIFS SFXBSE 	BDIJFWJOH IJHIFS
$%# QFSGPSNBODF
�
&OWJSPONFOU� &OWJSPONFOU JT UIF UVOJOH UBSHFU TQFDJ�
DBMMZ BO JOTUBODF PG $%#�
4UBUF� 4UBUF NFBOT UIF DVSSFOU TUBUF PG UIF BHFOU J�F� UIF
�� NFUSJDT� 4QFDJDBMMZ XIFO UIF *."hmM2 SFDPNNFOET
B TFU PG LOPC TF॒JOHT BOE $%# QFSGPSNT UIFN UIF JOUFSOBM
NFUSJDT 	TVDI BT DPVOUFST GPS QBHFT SFBE UP PS XSJ॒FO GSPN
EJTL DPMMFDUFE XJUIJO B QFSJPE PG UJNF
 SFQSFTFOU UIF DVSSFOU
TUBUF PG $%#� *O HFOFSBM XF EFTDSJCF UIF TUBUF BU UJNF t BT
st �

<Agent>
CDBTune

<Reward>
6KXLUXSGTIK
)NGTMK <Environment>

CDB

<Policy>

4KZ]UXQ

<Action>

1TUHY

<State>

3KZXOIY

'JHVSF �� Fࢊ DPSSFTQPOEFODF CFUXFFO BCPWF 3- FMFNFOUT
BOE $%# DPO॑HVSBUJPO UVOJOH�

3FXBSE� 3FXBSE JT B TDBMBS EFTDSJCFE BT rt XIJDI NFBOT
UIF EJFSFODF CFUXFFO UIF QFSGPSNBODF BU UJNF t BOE UIBU
BU t − 1 PS UIF JOJUJBM TF॒JOHT J�F� UIF QFSGPSNBODF DIBOHF
BॏFS�CFGPSF $%# QFSGPSNFE UIF OFX LOPC DPOHVSBUJPOT
*."hmM2 SFDPNNFOEFE BU UJNF t �
"DUJPO� "DUJPO DPNFT GSPN UIF TQBDF PG LOPC DPOHVSB�
UJPOT XIJDI JT PॏFO EFTDSJCFE BTat � "DUJPO IFSF DPSSFTQPOET
UP B LOPC UVOJOH PQFSBUJPO� $%# QFSGPSNT UIF DPSSFTQPOE�
JOH BDUJPO BDDPSEJOH UP UIF OFXFTU QPMJDZ VOEFS UIF DPSSF�
TQPOEJOH TUBUF PG $%#� /PUF UIBU BO BDUJPO JT UP JODSFBTF
TPNF LOPC WBMVFT PS EFDSFBTF TPNF LOPC WBMVFT�
1PMJDZ� 1PMJDZ µ(st ) EFOFT UIF CFIBWJPS PG *."hmM2 JO
DFSUBJO TQFDJD UJNF BOE FOWJSPONFOU XIJDI JT B NBQQJOH
GSPN TUBUF UP BDUJPO� *O PUIFS XPSET HJWFO B $%# TUBUF JG
BO BDUJPO 	J�F� B LOPC UVOJOH
 JT DBMMFE UIF QPMJDZ LFFQT UIF
OFYU TUBUF CZ BQQMZJOH UIF BDUJPO PO UIF PSJHJOBM TUBUF� य़F
QPMJDZ IFSF JT UIF EFFQ OFVSBM OFUXPSL XIJDI LFFQT UIF JO�
QVU 	EBUBCBTF TUBUF
 PVUQVU 	LOPCT
 BOE USBOTJUJPOT CFUXFFO
EJFSFOU TUBUFT� य़F HPBM PG 3- JT UP MFBSO UIF CFTU QPMJDZ�
8F XJMM JOUSPEVDF UIF EFUBJMT PG EFFQ OFVSBM OFUXPSL JO TFD�
UJPO ��
3- 8PSLJOH 1SPDFTT� य़F MFBSOJOH QSPDFTT PG %#.4 DPO�
HVSBUJPO UVOJOH JO 3- JT TVNNBSJ[FE BT GPMMPXT� $%# JT UIF
UBSHFU UIBU XF OFFE UP UVOF XIJDI DBO CF SFHBSEFE BT UIF FO�
WJSPONFOU JO 3- XIJMF UIF EFFQ 3- NPEFM JO *."hmM2 JT
DPOTJEFSFE UP CF UIF BHFOU JO 3- XIJDI JT NBJOMZ DPNQPTFE
PG EFFQ OFVSBM OFUXPSL 	QPMJDZ
 XIPTF JOQVU JT UIF EBUBCBTF
TUBUF BOE PVUQVU JT UIF SFDPNNFOEFE DPOHVSBUJPOT DPSSF�
TQPOEJOH UP UIF TUBUF� 8IFO FYFDVUJOH UIF SFDPNNFOEFE
DPOHVSBUJPOT PO $%# UIF DVSSFOU TUBUF PG EBUBCBTF XJMM
DIBOHF XIJDI JT SFFDUFE JO UIF NFUSJDT� *OUFSOBM NFUSJDT
DBO CF VTFE UP NFBTVSF UIF SVOUJNF CFIBWJPS PG EBUBCBTF
DPSSFTQPOEJOH UP UIF TUBUF JO 3- XIJMF FYUFSOBM NFUSJDT DBO
FWBMVBUF UIF QFSGPSNBODF PG EBUBCBTF GPS DBMDVMBUJOH UIF DPS�
SFTQPOEJOH GFFECBDL SFXBSE WBMVF JO 3-� "HFOU XJMM VQEBUF

�

Throughput
Latency
SLAs

effective_cache_size
checkpoint_timeout
io_concurrency

xact_commit
blk_reads/hit

tuple_fetched
conflicts

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 15



p Select proper RL models
• Many continuous system metrics and knobs à

• Value-based method (DQN)

– Replace the Q-table with a neural network

– Input: state metrics; Output: Q-values for all the actions

• Policy-based method (DDPG)

– (actor) Parameterized policy function:

– (critic) Score specific action and state:

Discrete Action ✕

Continuous State/Action ✓

Knob Tuner: Optimize Tuning Quality

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 16



p Select high performance settings with RL (QTune as an Example)

Knob Tuner: Optimize Tuning Quality

Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. VLDB 2019. 17

knobs 



p Problems in RL
p Significant Tuning Overhead
p Require DBAs (select knobs, 

select knob ranges)

p Tuning hints from manual

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022.

!"#"$%&%# = (")*% ∗ ,-.&%$ !#/0%#&- [∗ 2/3.&"3&]

Given in Text RAM/Disk/Cores

Knob Tuner: Reduce Tuning Overhead

Extract hints 
from manual

18

dba.stackexchange.com

Set shared_buffers to 25% 

of RAM and work_mem

to 256MB

Try setting 

random_page_cost

to 1

Set shared_buffers to 25% 

of RAM and work_mem

to 256MB

Set shared_buffers to 25% 

of RAM and work_mem

to 256MB

Utilize up to 6 

workers

Try setting 

random_page_cost

to 1

Utilize up to 6 workers

[max_parallel_workers]



p Tuning hints from texts

!"#"$%&%# = (")*% ∗ ,-.&%$ !#/0%#&- [∗ 2/3.&"3&]

Knob Tuner: Reduce Tuning Overhead

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022.

p Problems in RL
p Significant Tuning Overhead
p Require DBAs (select knobs, 

select knob ranges)

Apply collected hints with reinforcement learning

19



p Historical learned models are hard to migrate to new scenarios

• Migrate to new workloads with meta learning
• Given a workload, generate meta-learner based

on the weighted sum of the base learners;
• Fine-tune the meta-learner by running workload;
• Recommend promising knobs with meta-learner.

Knob Tuner: Improve Tuning Adaptivity

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases. SIGMOD, 2021.

• Characterize the common features of workloads
• Reserved words in the SQLs

• Cluster similar historical workloads
• Cluster with random forest and learn a

base learner for each workload cluster

20



p Spark tuning needs to consider knobs at different levels

• Empirically initialize knob values at resource/APP/VM levels

• Guided Gaussian Process
(1) Input both the execution statistics and initialized knob values;
(2) Use GP to fit existing tuning data.

x: Tested knob setting
Mi: Code overhead value
mc: Required cache storage
mo: GC settings

E.g., Memory Efficiency:

Mayuresh Kunjir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-based Analytics. SIGMOD 2020.

Knob Tuner: Spark Tuning

• Interpretable
• Easy to migrate

21



p Spark code involves complex semantics, and it is expensive to 
migrate tuning models across applications

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive Code Learning for Spark Configuration Tuning. ICDE 2022.

Knob Tuner: Spark Tuning

• Sample candidate knob settings based on the data and code features;

• Conduct code instrumentation to enrich code tokens; then encode the code with CNN;

• Predict the tuning performance (NECS model) with encoded code, data, knob, DAG features;

• Generalize the NECS model to new applications using adaptive learning

candidate 
knobs

NECS Model

22

code
encoding

predicted
performance



Summarization of Learned Knob Tuning

Quality Overhead Training Data Adaptive

Gaussian Process ✓ -- ✓✓ ✓
Deep Learning ✓ ✓ ✓✓ ✓
Reinforcement 

Learning ✓✓ -- No Prepared Data ✓

Manual Learning ✓ -- ✓✓✓ ✓✓

Meta Learning ✓ ✓ ✓✓ ✓✓
Spark Tuning 

(Contextual GP)
✓ ✓ ✓ ✓✓

Spark Tuning
(MLP+ Adaptive Learning) ✓✓ ✓ ✓✓ ✓✓

23



Take-aways of Knob Tuning

• Gradient-based method reduces the tuning complexity by filtering out
unimporant features. However, it heavily relies on training data, and requires 
other migration techniques to adapt to new scenarios

• Deep learning method considers both query performance and resource
utilization. And they can significantly reduce the tuning overhead.

• Reinforcement learning methods take long training time, e.g., hours, from 
scratch. However, it only takes minutes to tune the database after well trained
and gains relatively good performance.

• Learning based methods may recommend bad settings when migrated to a 
new workload. Hence, it is vital to validate the tuning performance.

• Open problems:
Ø One tuning model fits multiple databases

Ø Natively integrate empirical knowledge

24



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

25



p Indexes are essential for efficient execution
Ø SELECT c_discount from bmsql_customer where c_w_id = 10;

Ø CREATE INDEX on bmsql_customer(c_w_id);

p Select from numerous indexable columns
Ø Columns have different access frequencies, data distribution

p Indexes may cause negative effects
Ø Increase maintenance costs for update/delete operations

Ø Performance Degradation (T(hash-index)>T(full-table-scan) T(btree-index)>T(full-table-scan) )

Automatic Index Selection

p Motivation:

26



p Challenge
p The index benefit is hard to evaluate

Ø Multiple evaluation metrics (e.g., index benefit, space cost)

Ø Cost estimation by the optimizer is inaccurate

p Index selection is an NP-hard problem

Ø The set of candidate index combinations is huge

p Index Update

Automatic Index Selection

27



p Two sub-problems
l Index selection

n Select indexes from a large number of possible
combinations to maximize the benefit within a budget

l Benefit estimation
n Estimate the benefit of creating an index

• Cost(q) - Cost(q, index), q is a query

Automatic Index Selection

28



Traditional Index Advisor (Dynamic Programming)

G. Valentin, M. Zuliani, D. C. Zilio, et al. DB2 advisor: An optimizer smart enough to recommend its own indexes. In ICDE 2000.

p Model index selection as a knapsack problem
Ø Candidate index scheme as item

Ø Index size as item weight

Ø Benefit of the item (optimizer) as value

p Use DP to select the highest-benefit indexes

29



Traditional Index Advisor (what-if estimation)

K. Schnaitter, S. Abiteboul, T. Milo and N. Polyzotis. On-Line Index Selection for Shifting Workloads. In ICDE 2007.

p Index selection for dynamic workloads

p Profile candidate indexes for each new query

Ø Index Benefit: average latency reduction 

for the queries within the same epoch 

(time-series)

Ø Estimate the index benefit through a 

what-if call (assume: similar queries have 
similar index benefits)

Ø Update the index set and statistics

p Create indexes with highest index benefit 
at the end of each epoch

30

p Divide a workload into epochs of queries 



l Performance (tuning quality, overhead, benefit estimation)
l Adaptivity (queries/codes, datasets, instances)

Index Advisor: Technique Development

Index
Advisor Optimize Index Estimation Improve Index Quality Support Index Update

- Deep Neural Networks - Reinforcement Learning - Monte Carlo Tree Search

31

[sigmod, 2019] [cikm, 2020] [icde, 2021] [icde, 2022]



Index Advisor: Optimize Index Estimation

Bailu Ding, Sudipto Das, et al. AI meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.

Ø Prepare training data: Workloads + execution feedback from customers

Ø Train the evaluation model: Predict the index benefits (1: performance gains; 0: no)

Ø Solve Classification Problem: Use the model to create indexes with performance gains

p Critical to estimate index benefits by comparing execution 
costs of plans with/without created indexes

32

Training data
Generation

Create Indexes
via Evaluation Model 



Ø Extract candidate indexes

from query predicates with

empirical rules

Ø Map into Markov Decision Process (MDP)

State: Info of current built indexes

Action: Choose an index to build

Reward: Cost reduction ratio after building the index

discrete action space

large state space

DQN Model

H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020.

p How to extract candidate indexes?

p How to choose from candidate indexes?

Index Advisor: Optimize Index Selection

33

p Motivation: Index selection using reinforcement learning



p Core Idea: Incrementally add/remove indexes with MCTS

Xuanhe Zhou, Luyang Liu, et al. AutoIndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022. 

Index Advisor: Support Index Update

34

Ø Generate candidate indexes based on incoming queries
- Merge similar queries into templates
- Extract columns from 
template predicates
- Combine columns into 
candidate indexes

p Motivation: Indexes need to be updated based on workload changes

Ø Update existing indexes 
with candidate indexes
- Initialize a policy tree
- Explore more beneficial 

index sets on the tree



Summarization of Automatic Index Advisor

Optimization 
Targets Overhead Training Data Adaptive

Deep Learning Accurate 
Estimation numerous data much query 

changes

Reinforcement 
Learning

High 
Performance

high computation 
costs

no prepared 
Data

query 
changes

MCTS

High 
Performance 

with index 
update

trade-off (costs, 
performance)

a few prepared 
data

query 
changes

35



Take-aways of Index Advisor

• RL-based index selection works takes much time for model 
training (cold start); while MCTS can gain similar 
performance and better interpretability (or regret bounds)

• Learned estimation models need to be trained periodically
for data or workload update

• Open problems:
Ø Benefit prediction for future workload
Ø Cost for future updates

36



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

37



p Estimate the utility of view candidates:
! = #! − #!!"#$

Ø Make no sense when MVs change the query plan drastically; Hard to 

estimate MV update cost

p Select views to materialize
Ø Greedy/Genetic/other heuristics, Integer Linear Programming

Ø Perform poor when the assumption is not satisfied (e.g. MV with higher 

cost has higher utility)

p Update views based on credits
Ø A view’s credit is the sum of future utility and recreation cost

Ø Cause delay to measure and estimate the credit value

Challenges in Heuristic MV Selection

D. Zilio, C. Zuzarte, S. Lightstone, W. Ma, et al. Recommending Materialized Views and Indexes with IBM DB2 Design Advisor. ICAC, 2004. 38



l Performance (tuning quality, overhead, benefit estimation)
l Adaptivity (queries/codes, datasets, instances)

MV Advisor: Technique Development

View
Advisor Optimize MV Selection Optimize MV Estimation

- Reinforcement Learning - Encoder-Decoder + RL
[VLDB, 2020] [icde, 2021]

- Reinforcement Learning
[icde, 2020]

39



Ahmed, R., Bello, R., Witkowski, A. Kumar. Automated generation of materialized views in Oracle. VLDB 2020.

MV Advisor: Optimize MV Selection 

p Numerous candidate MVs à
Greedily select MVs
Ø� Generate candidate MVs that balance between 

conflict queries (merge MVs)

Ø� Enumerate queries, MVs, and estimate the 

query costs with/without the selected MVs 

Ø� Verify the performance of selected MVs

�

�

�p MV Update à Predict MV usage 
frequency with a neural network

40



41

p Extract candidate MVs from numerous common subqueries
• Cluster equivalent queries and select the least overhead ones

as the candidate;

• (1) Solve MV Selection with
DQN model:

• (2) Estimate the MV benefits

with a deep neural network

H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning and reinforcement learning. In ICDE, 2020.

MV Advisor: Optimize MV Selection 

p Select optimal candidate
MVs with RL (under budget)



42

p Previous MV estimation cannot capture query-MV correlations

• Generate query-MV pairs (queries can utilize multiple MVs)

• Estimate the query-MV benefits with encoder-reducer model

• Encoder-Reducer Model: Encode various number of queries and views with

LSTM network, which captures query-MV correlations with attention
• Select optimal MV combinations with reinforcement learning

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.

MV Advisor: Optimize MV Estimation

p Capture query-MV correlations with Encoder-Reducer Model



Take-aways of MV Advisor

p Learned MV selection gains higher performance than 
heuristic methods 

p Learned MV selection works well for read workloads, and 

cannot efficiently support data update

p Learned MV utility estimation is more accurate than 
traditional empirical methods

p Learned MV utility estimation is also accurate for multiple-

MV optimization
43



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

44



Ø A vital component in distributed database

• Place partitions on different nodes to speedup queries

• Trade-off between data balance & access frequency

Ø Database partition problem is NP-hard

• Combinatorial problem: 61 TPC-H columns, 145 query 

relations, 2.3 x 1018 candidate combinations

p Motivation:

Automatic Database Partition

45



Traditional Database Partition Method
p Select partition keys from foreign-key relations

Ø↑ Data-locality: for each query, select partition keys with Maximum spanning tree

Ø ↓ Data-redundancy: for all the queries, combine selected partition keys 
and take the optimal  combination with DP

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015. 46



P. Parchas, et al. Fast and Effective Distribution-Key Recommendation for Amazon Redshift. Proc. VLDB Endow, 2020.

p Combine exact and heuristic algorithms to find good
partition strategies
• The partitioning performance is affected by the join queries à

• Build a weighted undirected graph, where the nodes are tables and
edges are join relations.

• Key Selection on the graph is a maximum weight matching problem à

• Provide both exact (i.e., each table uses a column, and turn into a
integer programming problem) and heuristic (i.e., select the table
columns whose edge weights are maximal) algorithms; and apply the
appropriate algorithm under the time budget.

47

Traditional Database Partition Method



Challenges in Traditional Database Partition

p Rely on foreign-key relations to select partition keys 
p Other vital columns may be ignored, and cause sub-optimum

p Greedily select partition keys without considering the 

query costs and data distributions

p Cannot learn from historical partitioning data

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015. 48



p Typical OLAP Workloads contain complex and recursive queries

• State Features: [ tables, query frequencies, foreign keys ]

p Select from numerous partition-key combinations and 
support new queries

• (1) Use DQN to partition or
replicate tables;

• (2) Pretrain a cluster of RL

models to support new queries

DRL for Partition-Key Selection

Benjamin Hilprecht, Carsten Binnig, Uwe Röhm. Towards learning a partitioning advisor with deep reinforcement learning. SIGMOD 2019. 49



Takeaways of Database Partition

p Learned key-selection partition outperforms heuristic partition

p Learned key-selection partition has much higher partition 

latency for model training

p Open Problems: 

ØAdaptive partition for relational databases

ØPartition quality prediction

ØImprove partition availability with replicates

50



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

51



Automatic Query Scheduling

p Concurrency Control is Challenging
Ø #-CPU Cores Increase

p Transaction Management Tasks
Ø Transaction Prediction
Ø Transaction Scheduling

p Effective Scheduling can Improve the Performance
Ø Minimize conflicts between read queries

Motivation

52



Learned Query Scheduling

Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. In VLDB, 2020.

Ø Collect requested data blocks 
(buffer hit) from the buffer pool: 

Ø State Features: buffer pool size, 
data block requests;

Ø Schedule Queries to optimize 
global performance with Q-
learning

p Challenge: Keep the most important blocks cached
p Core Idea: Schedule queries to minimize disk access requests with RL

53



Takeaways of Transaction Scheduling

p Learned scheduling can achieve higher performance, but 

takes intolerable long training time

p Learned scheduling requires detailed caching block 

information, which may not be available in some scenarios

p Open Problems: 

Ø Online workload Scheduling

Ø Query Trend Prediction

ØSupport transactions 54



l Automatic Advisor
l Knob Tuner

l Index/View Advisor

l Partitioner/Scheduler

l Learned Generator
lSQL Generator 

lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter

l Plan Enumerator

l Cost Estimator

l Learned Designer
l Learned Index

l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

55



Automatic Query Generation

56

p Motivation
p Companies generally do not release user queries (out of

privacy issues);

p It is vital to generate synthetical workloads (in replace of

real workloads), and release the synthetical workloads to

the public to train the ML models



Automatic Query Generation

57

Ø How to generate queries that meet legality, diversity, and reprsentative�

Definiation Given a scheme and constraints (e.g., cost/ cardinality ranges), we generate k 

SQL queries which can (i) legally execute in the databse and (ii) meet the constraints.

Example Generate 1000 TPC-H SQLs whose cardinality equals 1000.

Ø Challenges & Solutions�

p It is hard to predict the performance of 

generated SQLs, i.e., whether they meet 

the constraints�

p It is hard to generate diverse SQLs�

p Grammar and syntax constraints need to 

be considered to generate legal queries�

p Construct a LSTM-based critic to predict 

the long-term benefits of any intermediate 

queries; utilize actor to explore new tokens�

p Construct a probablistics model to ensure 

the diversity of generated queries�

p Construct a FSM to prune illegal tokens for 

current intermediate queries�

RL

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.



Automatic Query Generation

58

Ø SQL Grammar�

• FSM

Query Legality
Ø Semantic Checks�

S Join Relation

T Type Checking

U Operand Restriction

PARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PART PARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PARTPARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PART

• Aggregation�Aggregate Function

• Predicate��WHERE caluse, HAVING clause

Advantage 

ü Easy to add new grammar

ü Customize SQL queries
• “ people_name =  China ” X

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

59



Automatic Training Data Generation
Motivation

p It is challenging to obtain suitable datasets
Ø Training data is rarely available in public
Ø It is time-consuming to manually generate samples (e.g., over 6 

months for 10,000 jobs with 1T data)

p Machine learning is widely adopted in database 
components

60

p It is hard to measure the dataset quality
Ø The size of training data
Ø The quality of extracted features 
Ø The availability of valuable ground-truth labels



p Challenges in existing workload generators (tpch, sqlsmith)
Ø The workloads have low variance
Ø Fail to label the workloads (e.g, cost, execution time)

61Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.

p Core Idea: Label workloads with adaptive learning
Ø Input a small query workload and sample data;
Ø Create abstract plans (DAGs without actual physical operators) which follow the 

patterns in the input workload;
Ø Instantiate the abstract plans  
based on the data distribution 
in the sample data;
Ø Label the generated plans 
via active learning without 
executing all the plans



Takeaways of Learned Generator

p Generated queries or performance labels are useful to test 

database functions

p Sometimes most real queries have similar structures and 

may not be effective as generated queries

p Open Problems: 

Ø Semantic-aware query generation

Ø Low overhead query generation

62



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

63

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer



64

Learned Optimizer: An Overview

p Query Rewriter: Efficiently optimize query in logical Level

p Plan Enumerator: Powerfully optimize query in physical Level

p Cost Estimator: Accurately estimate the plan execution cost

Input
Query

Syntax
Tree

Query Rewriter Plan Enumerator

,QSXW
4XHU\

������
�������� ������������

������	������� �������������

2SWLPL]HG
3K\VLFDO�3ODQ

/RJLFDO�
3ODQ

(VWLPDWHG�&RVW

������������
���-����

����-������

��-�

�������
���������

����������� ������
��

,QWHUPHGLDWH�3ODQ

VHOHFWHG�MRLQ

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

5HSUHVHQWDWLRQ
/D\HU

	�
�

(VWLPDWHG�&RVW 3K\VLFDO�3ODQ

	�
� 	�
� 	�
�

	�
� 	�
�

	�
� 	�
�

64/
3DUVHU

�����

	���

�����

�����

��������� ���

Learned Cost
Estimator

Search Based
Rewrite

Benefit
Estimation

Rewrite Speedup Techniques

Logical
Query

Environment Tree-LSTM

Intermediate Plan

selected join

Optimized
Physical PlanEstimated costs Estimated costs Physical Plan



l Performance (latency, quality, cost accuracy)
l Adaptivity (queries, datasets)

- SMT+Binary Clasifier

Optimize Join Orders Dynamic Plan 
Adjustment

Optimize Physical 
Operators

- Reinforcement Learning - Learned Hinter 

Improve 
Estimation Quality

Support Multi-
Table

Support String 
Data

Improve 
Adaptivity

- AR; SPNs
- LSTMs; 

- Tree Ensembles
- Joint AR

- Pre-Trained Models

Query
Rewriter

Join
Enumerator

Cost
Estimator

- Monte Carlo Tree Search

- Monte Carlo Tree Search

- Normalizing Flows

Optimize
Predicate Pushdown

Optimize
Rewrite Orders

65

Intelligent Optimizer: Technique Development



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

66



p Many queries are poorly-written
Ø Slow operations (e.g., subqueries/joins, union/union all) ;
Ø Looks pretty to humans, but physically inefficient (e.g., take

subqueries as temporary tables);

p Existing methods are based on heuristic rules
Ø Top-down order may not be optimal (e.g., remove

aggregates before pulling up subqueries)
Ø Available rules are limited

p Trade-off in SQL Rewrite
Ø Best Performance: Enumerate for the best rewrite order
Ø Minimal Latency: SQL Rewrite requires low overhead (milliseconds)

Automatic Query Rewrite

p Motivation:

67



Ø Search rewrite space within time constraints
• Rewrite within milliseconds;

Ø Estimate rewrite benefits by multiple factors
• Case1: Reduced costs by selected rewrites
• Case2: Future reduced costs by further rewriting the query

Learning-based Query Rewrite

p Challenge:

68

Ø Optimize existing rewrite rules, or even generate new rules
• Equivalence verification



- SMT+Binary Clasifier

Query
Rewriter

- Monte Carlo Tree Search

Optimize
Predicate Pushdown

Optimize
Rewrite Order

69

Query Rewrite: Technique Development
l Performance (latency, quality, cost accuracy)
l Adaptivity (queries, datasets)



Query Rewrite: Optimize Predicate Pushdown 

70

pMotivation: Traditional predicate-pushdown is less powerful 
• Core Idea: Predicate à Learn a binary classifier to synthesize
valid and better predicates

• Approach: Generate TRUE/FALSE samples to train the binary classifier
• Classifier: SVM model over the input columns
• Each TRUE sample should be accepted by a valid predicate
• Each FALSE sample should by rejected by an optimal predicate

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021.



“SELECT 
      MAX ( DISTINCT L1.col1 )
FROM   lineitem L1
WHERE  L1.col1 = ANY
       (
          SELECT MAX
                   ( C.col1 ) m_key
          FROM customer C,
                      lineitem L2
          WHERE    C.col1 = L2.col1
              AND      ((
                      C.col2<2
                            AND  C.col3<2 )
                      OR       (
                      C.col2<2
                            AND  L2.col2>5 ))
              GROUP BY 
                             C.col1);”

Input SQL Query
Q

<latexit sha1_base64="DCvj8g5IHu/b8PJHwSfGtqDqWoU=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LIoiMsW7ANqkSSd1qF5MTMRStEfcKvfJv6B/oV3xhTUIjohyZlz7zkz914/DblUjvNasBYWl5ZXiqultfWNza3y9k5bJpkIWCtIwkR0fU+ykMespbgKWTcVzIv8kHX88bmOd+6YkDyJr9QkZf3IG8V8yANPEdVs3pQrTtUxy54Hbg4qyFcjKb/gGgMkCJAhAkMMRTiEB0lPDy4cpMT1MSVOEOImznCPEmkzymKU4RE7pu+Idr2cjWmvPaVRB3RKSK8gpY0D0iSUJwjr02wTz4yzZn/znhpPfbcJ/f3cKyJW4ZbYv3SzzP/qdC0KQ5yaGjjVlBpGVxfkLpnpir65/aUqRQ4pcRoPKC4IB0Y567NtNNLUrnvrmfibydSs3gd5boZ3fUsasPtznPOgXau6R9Va87hSP8tHXcQe9nFI8zxBHZdooGW8H/GEZ+vCCi1pZZ+pViHX7OLbsh4+AA/Kj1o=</latexit>Aggregate

max(distinct(L1.col1))

O
1

Semi Join

L1.col1 = ANY(..)

O
2

Subquery
(select max..)

O
3

Aggregate
max(C.col1)

O
4

Filter
(C.col2<2…)

O
5

lineitem lineitem customer

Join
C.col1=L2.col1

O
6

Filter

Logic Query Tree Rewrite in Top Down Order 

O
2

O
1

lineitem

Inline 
View

Q1
<latexit sha1_base64="+xerqJ1MvW659V+YJDtTgEojB/M=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4Ii2a6JLohiVEQRIkpC0DTihtM51qCDHxB9zqpxn/QP/CO+OQqMToNG3PnHvPmbn3+knIU+k4rzlrYXFpeSW/Wlhb39jcKm7vtNI4EwFrBnEYi7bvpSzkEWtKLkPWTgTzxn7IrvzRuYpf3TKR8ji6lJOEdcfeMOIDHniSqItGz+0VS07Z0cueB64BJZhVj4svuEYfMQJkGIMhgiQcwkNKTwcuHCTEdTElThDiOs5wjwJpM8pilOERO6LvkHYdw0a0V56pVgd0SkivIKWNA9LElCcIq9NsHc+0s2J/855qT3W3Cf194zUmVuKG2L90s8z/6lQtEgOc6ho41ZRoRlUXGJdMd0Xd3P5SlSSHhDiF+xQXhAOtnPXZ1ppU16566+n4m85UrNoHJjfDu7olDdj9Oc550KqU3aNypXFcqp6ZUeexh30c0jxPUEUNdTTJe4hHPOHZqlmRlVl3n6lWzmh28W1ZDx+yXI/+</latexit>

(o3,r2)(o1,r1)
O

2

O
6

O
3

O
5

lineitem

lineitem customer

Aggregate
max((L1.col1))

O
1

O
4

O
6

O
3

O
5

lineitem customer

O
4

Rewrite in Optimal Order 

O
2

O
6

O
3

O
5

lineitem

lineitem customer

O
2

O
1

lineitem

O
6

O
5

lineitem customer

O
2

lineitem

Filter
O

5

customer

O
2

O
1

lineitem

Filter
O

5

customer

Q2
<latexit sha1_base64="jRIH0D5MrcmfGS6dJldi63jdgBY=">AAACxnicjVHLTsJAFD3UF+ILdemmkZi4Ii2a6JLohiVEQRIkpB0GnFDaZjrVEGLiD7jVTzP+gf6Fd8aSqMToNG3PnHvPmbn3+nEgEuU4rzlrYXFpeSW/Wlhb39jcKm7vtJIolYw3WRREsu17CQ9EyJtKqIC3Y8m9sR/wK390ruNXt1wmIgov1STm3bE3DMVAME8RddHoVXrFklN2zLLngZuBErJVj4ovuEYfERhSjMERQhEO4CGhpwMXDmLiupgSJwkJE+e4R4G0KWVxyvCIHdF3SLtOxoa0156JUTM6JaBXktLGAWkiypOE9Wm2iafGWbO/eU+Np77bhP5+5jUmVuGG2L90s8z/6nQtCgOcmhoE1RQbRlfHMpfUdEXf3P5SlSKHmDiN+xSXhJlRzvpsG01iate99Uz8zWRqVu9ZlpviXd+SBuz+HOc8aFXK7lG50jguVc+yUeexh30c0jxPUEUNdTTJe4hHPOHZqlmhlVp3n6lWLtPs4tuyHj4AtLyP/w==</latexit>

Aggregate
max((L1.col1))

O
1

(o4,r1)
O

4

O
3 (o3,r3) OR (… L.lk>10)

(C.ck<2 AND …)  

O
1

(C.col3<2 or 
L2.col2>5)  

(o5,r5)

Filter
C.col2<2

O
7

Planning: 0.341 ms
Execution: > 20 min 

Performance

Planning: 0.172 ms
Execution: 1.941 s

Query Rewrite: Optimize Rewrite Orders

p The Strategies of applying rewrite rules
Given a slow query and a set of rewrite rules, apply the rewrite rules
to the query so as to gain the equivalent one with the minimal cost.

71



72

p A slow query may have various 
rewrite of different benefits 

p To select from numerous
rewrite orders

• (1) Initialize a Policy Tree Model

• C↑(vi): previous cost reduction 

• Node vi: any rewritten query

• C↓(vi): subsequent cost reduction 

0.5 0.2 0.4

0.2 0.1

—

Policy Tree

v1
(o4,r1)

(o1,r1)

v*

v0
C↑(v) = 0.3

C↓(v) = 0.1

maximize
utility

Node Selection Subsequent Cost Estimaiton

0.5 0.2 0.4

0.2 0.1

—

v1
v2

Query 
Encoding

Rule 
Encoding

MetaData 
Encoding

v2
{r1,..,rn}

dataset

Rule Selection

Cost Estimation

Rule Embedding

Utility Update

f(v)+1

To optimal
direction

0.4 0.2

0.10.31

0.3

f(v’)+1

MCTS for Query Rewrite

0.1
0.4 v3

0.3

n⇥m
<latexit sha1_base64="ziU3HwVHmPlIi3ESw1Ga0Fo6q3c=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVdIq6LLoxp0V7ANtkWQ6rUPzYjIRStWtP+BWf0v8A/0L74wpqEV0QpIz595zZu69XuyLRDnOa86amZ2bX8gvFpaWV1bXiusbzSRKJeMNFvmRbHtuwn0R8oYSyuftWHI38Hze8obHOt664TIRUXiuRjHvBu4gFH3BXEXURWh3lAh4YgdXxZJTdsyyp0ElAyVkqx4VX9BBDxEYUgTgCKEI+3CR0HOJChzExHUxJk4SEibOcYcCaVPK4pThEjuk74B2lxkb0l57JkbN6BSfXklKGzukiShPEtan2SaeGmfN/uY9Np76biP6e5lXQKzCNbF/6SaZ/9XpWhT6ODQ1CKopNoyujmUuqemKvrn9pSpFDjFxGvcoLgkzo5z02TaaxNSue+ua+JvJ1Kzesyw3xbu+JQ248nOc06BZLVf2ytWz/VLtKBt1HlvYxi7N8wA1nKCOBnmHeMQTnq1TK7VurfvPVCuXaTbxbVkPHz9pkvw=</latexit>

1⇥ h
<latexit sha1_base64="vFpElqsNttE7jmd3Ez4caJo1u/k=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoxp0V7APbIsl02g7Ni2QilKpbf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe3GkmYxozXWeiFcct1Eu6JgNelkB5vRTF3fNfjTXd0quLNGx4nIgwu5TjiXd8ZBKIvmCOJurLNjhQ+T8zhdbFklS29zFlgZ6CEbNXC4gs66CEEQwofHAEkYQ8OEnrasGEhIq6LCXExIaHjHHcokDalLE4ZDrEj+g5o187YgPbKM9FqRqd49MakNLFHmpDyYsLqNFPHU+2s2N+8J9pT3W1Mfzfz8omVGBL7l26a+V+dqkWij2Ndg6CaIs2o6ljmkuquqJubX6qS5BARp3CP4jFhppXTPptak+jaVW8dHX/TmYpVe5blpnhXt6QB2z/HOQsalbJ9UK5cHJaqJ9mo89jBLvZpnkeo4gw11Mk7wCOe8GycG6lxa9x/phq5TLONb8t4+ACgdZK6</latexit>

n⇥ h
<latexit sha1_base64="7Zl0SEpdAWHXDcrrQ4scnIpkW+U=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoxp0V7APbIsl02g7Ni2QilKpbf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxN7+wuJRfLqysrq1vFDe3GkmYxozXWeiFcct1Eu6JgNelkB5vRTF3fNfjTXd0quLNGx4nIgwu5TjiXd8ZBKIvmCOJugrMjhQ+T8zhdbFklS29zFlgZ6CEbNXC4gs66CEEQwofHAEkYQ8OEnrasGEhIq6LCXExIaHjHHcokDalLE4ZDrEj+g5o187YgPbKM9FqRqd49MakNLFHmpDyYsLqNFPHU+2s2N+8J9pT3W1Mfzfz8omVGBL7l26a+V+dqkWij2Ndg6CaIs2o6ljmkuquqJubX6qS5BARp3CP4jFhppXTPptak+jaVW8dHX/TmYpVe5blpnhXt6QB2z/HOQsalbJ9UK5cHJaqJ9mo89jBLvZpnkeo4gw11Mk7wCOe8GycG6lxa9x/phq5TLONb8t4+AAziZL3</latexit>

• (2) Policy Tree Search Algorithm

• (3) Multiple Node Selection

Xuanhe Zhou, Guoliang Li, Chengliang Chai. A Learned Query Rewrite System using Monte Carlo Tree Search. VLDB, 2022.

Query Rewrite: Optimize Rewrite Orders

• DP Algorithm



Take-aways of Query Rewrite
p Traditional query rewrite method is unaware of rewrite benefits, 

causing redundant or even negative rewrites
p Search-based rewrite works better than traditional rewrite for 

complex queries
p Rewrite benefit estimation improves the performance of simple 

search based rewrite
p Open Problems

Ø Balance Rewrite Latency & Performance

Ø Adapt to different rule sets/datasets

Ø Design new rewrite rules
73



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

74



l Planning cost is hard to estimate

Ø The plan space is huge

l Traditional optimizers have some limitations

Ø DP gains high optimization performance, but causes great 

latency; 

Ø Random picking has poor optimization ability

l Finetuning existing optimiers can gain higher

performance

Plan Enumerator
p Motivation:

75



l Performance (latency, quality, cost accuracy)
l Adaptivity (queries, datasets)

Join Order Selection
before Execution

Join Order Selection
on-the-fly

Physical Operator
Selection

- Reinforcement Learning - Learned Hinter 

Plan Enumerator

- Monte Carlo Tree Search

76

Plan Enumerator: Technique Development



• Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning. CoRR, 2018.  
• Marcus, R., Negi, P., et al. Neo: A Learned query optimizer. VLDB, 2018.

Join Order Selection: Optimize the Performance
p Numerous candidate join orders to select

before execution à Model it as RL
Ø Agent : optimizer

Ø Action: join

Ø Environment: Cost model, database

Ø Reward�Cost ,Latency

Ø State : join order (Neo: encode query structures)

77



X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-lstm for join order selection. In ICDE, 2020.

Join Order Selection: Adapt to Schema Changes

78

p Adaptively assemble the selection model, and adapt to schema
changes (e.g., column, table)

• Encode the operator 
relations and metadata 
features of the query;

• Embed the query features 
with Tree-LSTM;  (the tree 
structure can adapt to 
different tables/columns)

• Decide join orders with RL 
model



p Update execution orders of tuples on the fly and preserve the 
execution state

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000. 
79

• Tuples flows into the Eddy from input relations
(e.g., R, S, T);

• Eddy routes tuples to corresponding operators
(the order is adaptively selected by the operator
costs);

• Eddy sends tuples to the output only when the
tuples have been handled by all the operators.

Join Order Selection On-the-Fly



Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019.

p Improve runtime plan adjustment performance 
à Join reorder with MCTS
Ø Assume executing joins in “depth-first”; 
Ø Split time slices: 0.001s;
Ø Approach
Ø In each slice, reserve complete result tuples, and 

drop under-join intermediate tuples
Ø Evaluate the join order benefits by (1) the table 

coverage and (2) result tuple ratio
Ø Remove duplicate result tuples (based on their 

position vectors)
Ø Judiciously select higher-benefit join orders with 

MCTS (the UCT function)

N way join

80

Join Order Selection On-the-Fly



Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021.

Physical Operator Selection (Plan Hinter)

p Model it as a Multi-armed Bandit Problem

p Model each hint set HSeti as a query optimizer

p For a query q, it aims to generate optimal plan by

selecting proper hint sets, which is dealed as a regret

minimization problem:

81

p Physical operators can significantly affect the performance 

p E.g., improving performance by deactivating the loop join operator



Take-aways of Plan Enumerator
p Learning based algorithm usually can find high efficient plans, especially for 

large queries with multiple joins.
p Offline learning methods use the sampled workload to pretrained the model. It 

will give good plans for the incoming queries. 
p Online-learning methods do not need previous workload and can give good 

plans. But it needs the customized engine and is hard to be applied in existing 
databases.

pOpen Problems
Ø Raise the generalization performance of offline learning methods for unseen queries.
Ø Ensure the plan given by learned model is robust (explicable).
Ø Speed up the model training time, e.g. transferring previous knowledge.
Ø Make the model aware of the data update.

82



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

83



Improve 
Estimation Quality

Support Multi-
Table

Support String 
Data

Improve 
Adaptivity

Cost
Estimator

84

Cost Estimator: Technique Development
l Performance (latency, cost accuracy)
l Adaptivity (queries, datasets)

- AR; SPNs
- LSTMs; 

- Tree Ensembles
- Joint AR

- Pre-Trained Models- Normalizing Flows



Automatic Cardinality/Cost Estimation

p One of the most challenging problems in databases
Ø Achilles Heel of modern query optimizers 

p Traditional methods for cardinality estimation
Ø Sampling (on base tables or joins) 
Ø Kernel-based Methods (Gaussian Model on Samples)
Ø Histogram (on single column or multiple columns)

p Traditional cost models
Ø Data sketching/data histogram based methods 
Ø Sampling based methods

Viktor Leis, Andrey Gubichev, et al. How good are query optimizers, really? In VLDB, 2015.

p Motivation:

85



Categories of Cardinality Estimation

(1) Supervised Query Methods
Ø Multi-set Convolutional network

Ø Tree-based ensemble

(2) Supervised Data Methods
Ø Gaussian kernel

Ø Uniform mixture model

(3) Unsupervised Data Methods
Ø Autoregressive

Ø Sum product network

86



Supervised Query Methods for Cardinality Estimation

A regression problem: learn the mapping function between query
Q and its actual cardinality

Query
Model

Queries Cards

Supervised Model Training

Well-Trained
Query Model

Queries

Online Cardinality Estimation

Optimizer

87

p Problem Definition



A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019. 88

Query-Driven: Deep Learning for Cardinality Estimation

ØLinear Models for different part of
SQL (table, joins, predicates)

ØPooling Varying-sized 
representations (avg pooling)

ØConcatenate different parts

p Motivation: Traditional estimator makes errors
p Core Idea: Use Multi-set Convolutional Neural 

Network to support join queries



Query-Driven: Tree-Ensembling for Cardinality Estimation

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019. 89

Ø Any conjunctive query on columns C can be represented as:

Ø Tree-based ensembles: pass query encoding vectors (e.g., encode ‘>’, ‘5’ for ‘a>5’) 
through the traversal of multiple binary trees

p Traditional estimation methods assume column independency, and
works bad for multi-dimension range queries

query

cardinality



Supervised Data Methods for Cardinality Estimation

Data
Model

Supervised Model Training

Well-Trained
Data Model

Query

Cardinality Estimation

Optimizer

Data
Sampler

tuples

Card

Data
Sampler

(Synthetic)
Queries
+Cards

Dataset

A density estimation problem: learn a joint data
distribution of each data point

p Problem Definition

90



M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

Ø Sample tuples from the table and 
initialize the bandwidth (distance 
from the true distribution) of the
kernel density model.

p Support point queries on single tables 

Ø Compute the optimal bandwidth 
via stochastic gradient descent
(with labeled queries).

91

Supervised Data-Driven: Kernel-Density

Ø Sample some new data tuples
Ø Estimate the cardinality based

on the kernel density model.

Training Phase

Inference Phase



Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020

Ø Sample points within each history queries.
Ø Generating subgroups for the points.

Ø Learn the weights of all the Uniformity Mixture Models for range queries.

92

Supervised Data-Driven: Mixture Model

p Support Range Queries
Training Phase

Inference Phase

Ø Compute the cardinality
by estimating the density
of accessed ranges

Ø Sample tuples within
predicate ranges



Unsupervised Data Methods for Cardinality Estimation

A regression problem: learn a probability function
for each data point

p Problem Definition

Dataset

OptimizerData
Sampler

tuples CardData Model
Training

Well-Trained
Data Model

Model

Query

93



1. S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries. In sigmod, 2020.
2. Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep Unsupervised Cardinality Estimation. PVLDB, 13(3): 279-292, 2019.

p Learn the joint probability distribution over columns 
for range queries 

94

Unsupervised Data-Driven: Autoregressive Model

Ø Use Autoregressive Model to
fit the joint probability of
different columns

Ø Support range query with 
Progressive Sampling
(sample from the estimated
data distribution)



Zongheng Yang, Amog Kamsetty, et al. NeuroCard: One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021

Ø Learn a single autoregressive model for
all the tables (joined)

Ø Join Sampler provides correct training 
data (sampled tuples from join) by using 
unbiased join counts (reduce sampling
time and memory consumption)

Ø To estimate for queries with a subset of
tables, use fanout scaling to down
sample from the joined table

p Deep AR models can only handle single tables, and 
we need to learn from join correlations

95

Unsupervised Data-Driven: Autoregressive for Multiple Tables



Benjamin Hilprecht, Andreas Schmidt, et al . DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020

Ø Split data table into multiple segments and
columns in each segment are near
independent.

Ø SPN: Product for different joins and Sum
for different filters.

Ø Adjust the data partitioning (e.g., column
splits, column region splits) to learn the
accurate SPN models.

p Learn a proper data partitioning strategy to accurately estimate
the cardinaltiy

96

Unsupervised Data-Driven: Sum-Product Network



Summarization of Learned Cardinality Estimation

Quality Training Overhead Training Data Adaptivity

Deep Neural 
Network ✓✓ low many queries ✓✓

Tree-Ensemble ✓ low many queries ✓

Gaussian Kernel ✓ relatively high Data samples ✓✓

Mixture Model ✓ relatively high Data samples ✓✓

Autoregressive ✓✓ high (join tables) Data samples ✓✓✓
Sum-Product 

Network ✓✓ high Data samples ✓✓✓

97



The Relations of Card/Cost Estimation

p Task Target
• Cost estimation is to approximate the execution-time/ resource-

consumption; 

p Correlations
• Cost estimation is based on cardinality

p Estimation Difficulity 
• Cost is harder to estimate than cardinality, which considers multiple 

factors (e.g., seq scan cost, cpu usage)

98



Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

Ø The representation layer learns an embedding of each subquery (global 

vector denotes the subquery, local vector denotes the root operator)

Ø The estimation layer outputs cardinality & cost simultaneously

99

p Traditional cost estimation uses estimated card, which is 
inaccurate without predicate encoding



Take-aways

p Data-driven methods are more effective for single tables.

p Query-driven methods are more effective for multiple tables.

p Query-driven methods are more efficient than Data-drive methods.

p Data-driven methods are more robust than Query-driven methods.

p Training queries are vital to Query-driven methods.

p Samples are crucial to Data-driven methods.

p Estimators based on neural network are more accurate than 
statistic-based estimators.

p Statistic-based query model is the most efficient.

100



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

101



l Learned Designer
l Adaptivity (data update)

l Complex Scenarios (e.g., multi-table, concurrency, persistent storage)

Learned Designer: Technique Development 

Learn from 
Data

Supprt Index 
Update

Support Multi-D 
Tables

Support 
Parallel R/W

Supprt 
PMem

Index Self-
Design

- RMI; - Alex - APex

Learned
Index

- Flood - XIndex - Generic

Single-Table Layout Multi-Table Layout
Learned
Layout

- qd-tree; - MTO; 

102



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

103



l Learned Designer
l Adaptivity (data update)

l Complex Scenarios (e.g., multi-table, concurrency, persistent storage)

Learned Index: Technique Development 

Learn 
from Data

Supprt Index 
Update

Support Multi-D 
Tables

Support 
Parallel R/W

Persistence 
Support

Index Self-
Design

- RMI; - Alex - APex

Learned
Index

- Flood - XIndex - Generic

104



Learned Index
Motivation

p Limitations in Traditional Index 
Ø Unaware of data features
Ø Trade-off between Space and Access Efficiency

p Indexes are essential for database system
Ø Indexes significantly speed up query process
Ø Take up unignorable memory in huge data-scale situation

p Advantages of Learned Index
ØSpace efficient, only store several parameters
ØFurther speed up data access if learning the data distribution well

105



106

p Model cumulative distribution function (CDF)
p Range index: predict approximate location as ! = #(%&') ∗ *, search 

precise location within error-bounded range
p Point index: CDF as hash function to reduce conflict
p Existence index: add a binary classification model to reduce effective keys 

of bloom filter

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD 2018

1-Dimension Immutable Index



1-Dimension Mutable Index

Ding, J., Minhas, U. F., Yu, J., et al. ALEX: An Updatable Adaptive Learned Index. SIGMOD, 2020. 107

p Support data inserts and index structure update
p Use linear model in each node, exponential search in data node
p Gapped array layout: accelerate inserts (gaps among arrays)
p Predict the time to update indexes: predict costs of read queries and write queries, 

expand/split data node if cost deviate (given a threshold) to ensure high efficiency



1-Dimension Concurrent Index

p Handle concurrent updates
p Two update cases

p Update in-place, 
p Insert into buffer (delta index)

p Approach: 2-phase compaction
p Each group has a delta buffer for insertions
p First merge a group’s data and buffer into 

array of pointers;
p Then copy the value
p Similar design for hash index which supports 

non-blocking resize operations

Wang, Z., Chen, H., Wang, Y., et al. The Concurrent Learned Indexes for Multicore Data Storage. ACM Transactions on Storage 2022 108



1-Dimension Auto-generated Index

Dittrich, J., Nix, J., & Schön, C. The next 50 Years in Database Indexing or: The Case for Automatically Generated Index Structures.. VLDB 2022 109

p Use genetic algorithm to optimize indexes from origin data or indexes
p Population: a set of physical indexes
p Mutations: Adjust the data layout (column/row storage) and searching algorithm

(binary/hash …) of a data node; merge/split nodes horizontally and vertically
p Fitness function: optimize indexes for the runtime given a specific workload



Multi-d Immutable Index
p Support multi-D index with learned grid index

p Sorted cells by 1st, 2nd, … column; within cell, points sorted by the last columns
p Gradient descent to find the optimal number of regions for each column using 

sample of dataset and workload
p Learn CDF of each column to predict region and location within cell

Nathan, V., Ding, J., Alizadeh, M., et al. Learning multi-dimensional indexes. SIGMOD 2020 110



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

lAutonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

111



Learned Data Layout
Motivation

p It is challenging to partition data into data blocks
Ø Numerous ways to assign records into blocks

Traditional: assign by arrival time; hash/range parititon

p To reduce the #-data read from disk
Ø Split data into data blocks (main-memory, secondary storage)
Ø in-memory min-max index for each block

112



Learned Data Layout (Qd-tree)

p Qd-tree: Learn the branch predicates
Ø Root Node: The whole data space
Ø Other Nodes: A part of the whole space

113

Example Qd-treep Approach
Ø Constructor: Construct a 

qd-tree based on the 
workload and dataset 
(greedy/RL)

Ø Query Router: Route 
access requests based on 
the constructed qd-tree

Zongheng Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. SIGMOD, 2020.



Learned Data Layout: Consider Join Predicates
p Motivaiton 

Ø Traditonal: either provide rare data skipping (zone maps), 
or require careful manual designs (Z-order)

Ø qd-tree: only optimize singe-table layouts 

114Jialin Ding, et al. Instance-Optimized Data Layouts for Cloud Analytics Workloads. SIGMOD, 2021.

p Qd-Trees for the whole datasets
Ø Step#1: Learn qd-tree for each table ;

Ø Extract simple predicates;
Ø Create join-induced predicates;
Ø Induce relevant tuples based on 

the simple&join-induced predicates

Ø Step#2: Skip useless blocks 
based on the qd-trees



Take-aways of Learned Data Designer
p Learned index opens up a novel idea to replace traditional index, 

and show good performance in small datasets.
p Learned index uses machine learning technology, which provides 

probability of combining new hardware like NVM with database 
system in future.

p Though some research has already verified the benefit of learned 
index, performance in industrial level data scale still needs to be 
studied, especially in updatable and multi-dimension situation. 

p Open problems
Ø Distributed System: Concurrency Control algorithms for Learned Index
Ø Data scale and stability: Make Learned Index applicable to industrial database 

systems.

115



l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

l Autonomous Databases

ML4DB: An Overview

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer

116



Autonomous Database Systems

Motivation
p Traditional Database Design is laborious

Ø Develop databases based on workload/data features
Ø Some general modules may not work well in all the cases

pCommercial Practices of AI4DB Works
Ø Heavy ML models are hard to implement inside kernel
Ø A uniform training platform is required

p Most AI4DB Works Focus on Single Modules
Ø Local optimum with high training overhead

117



Peloton

p Adapt optimization actions based on forecasted workloads
Ø Embedded Monitor: Detect the event stream and extract incoming queries

Ø Workload Forecast: Cluster queries and forecast for each cluster with RNN

Ø Optimization Actions: Physical design, data layouts, and config tuning

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017. 118



SageDB

p Customize DB design via learning the data distribution

Ø Learn Data Distribution by Learned CDF

Ø Design components via learned CDFs,
and utilize cost-saving ML to replace
traditional operators (e.g., seq scans)

• Query optimization and execution
• Data layout design
• Advanced analytics

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019. 119



openGauss
p Implement learned components with model validation

Ø Learned Optimizer
• Query Rewriter
• Cost/Card Estimator
• Plan Enumerator

Ø Learned Advisor
• Self-Monitoring
• Self-Diagnosis
• Self-Configuration
• Self-Optimization

Ø Model Validation
Ø Data/Model Management

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021. 120



Research Challenges



Future Works: Optimization Overhead

l Cold-Start Problems

l Across datasets / instances / hardware / database types

l Lightweight in-kernel components

l Efficient ML models; rare-data/compute-dependency; 

l Online Optimization 

l Workload execution overhead

l Model training overhead

122



Future Works: Adaptivity

l Significant data changes

l Migration from small datasets to large datasets

l Completely new instances

l New dataset, workload, and SLA requirements; 

l Incremental DB module update

l Learned knob tuner for hardware upgrade, learned optimizer for dynamic 

workloads.

123



Future Works: Complex Scenarios

l Hybrid Workloads

l HTAP, dynamic streaming tasks

l Distributed Databases

l Distributed plan optimization 

l Cloud Databases
l Dynamic environment, serverless optimization

124



Future Works: Small Training Data

l Few Training Samples

l Few-shot learning

l Knowledge + Data-driven

l Summarize (interpretable) experience from data 

l Pre-Trained Model

l Train a model for multiple scenarios

125



Future Works: SLA Improvement

l Optimize databases under noisy scenarios

l Training Data Cleaning, Model Robust

l Optimize for extremely complex queries (e.g., nested queries)

l Adaptive cardinality estimation à efficient query plan

l Optimize for OLTP queries

l Multiple query optimization

126



������

���


