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Artificial Intelligence Meets Database
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AI4DB
Manual à Automatic
pSelf-optimization
pSelf-configuration
pSelf-monitoring
pSelf-healing
pSelf-security
pSelf-design

DB4AI
AI à as easy as DB
pDeclarative AI
pAI optimization
pData governance
pModel management
pAI+DB hybrid model
pAI+DB hybrid inference

AI

AI4DB

DB4AI4



Revisit DB Systems: Driving Factors
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Relational Model, SQL

OLTP: rollbacks, triggers, locking, logging, …

OLAP: JIT compilation, vectorized execution, …

NoSQL: data models, indexing, partitioning, …

Distributed OLTP: 2PC, Paxos, Distributed SQL…

High Quality

Unstructured Data; High Scalability

File System
Easy to manipulate data

Atomicity, Consistency, Isolation, Durability

High Scalability; ACID

Cloud-Native: compute-storage disaggregation, …

Flexibility, Cost-Saving

transactions

transactions
+big data 

data analysis

Scale out

DBaaS

Relations
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High SLAs
(throughput, 

latency, scalability, …)

Cost Saving
(resource, 
DBAs, …)

Adaptivity
(applications, 

hardware, 
data, query, …)

Learned Database
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l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency

New Opportunities: What Can AI Bring for DB?

l Cost Saving: Manual à Autonomous
l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance High SLAs

(throughput, 
latency, scalability, …)

Cost Saving
(resource, 
DBAs, …)

Adaptivity
(applications, 

hardware, 
data, query, …)

Learned Database
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l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency

New Opportunities: Why Now?
l Cost Saving: Manual à Autonomous

l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance Heuristic à

Intelligent
(database design,

data layout)

On-Premise 
àCloud

(maintenance, 

setting, …)

Experience à
Data-driven

(various applications, 
hardware, data,

query, …)

Learned Database



l Cost Saving: Manual à Autonomous
l Auto Knob Tuner: ↓ Maintenance cost
l Auto Index Advisor: ↓ Optimization latency

l High SLAs: Heuristic à Intelligent
l Intelligent Optimizer:  ↓ Query plan costs
l Intelligent Scheduler: ↑ Workload performance

Double-Edged Sword: Challenges

• Feature Selection: Pick 
relevant features from 
numerous query /
database / os metrics ;

• Model Selection: Design 
ML models to solve different 
database problems;

Challenges

• Diverse Targets: Meet 
the SLA requirements 
under different scenarios;

• Training Data
• Adaptivity

l Adaptivity: Empirical à Data-Driven
l Learned Index:   ↑ Data access efficiency
l Learned Layout: ↑ Data manipulation efficiency
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AI4DB Techniques: Motivation
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p Learned Database Kernel
• Cardinality/Cost Estimation, Query Rewrite, Plan Generation

lEmpirical à Data-Driven

lManual à Autonomous

lHeuristic à Intelligent



AI4DB Techniques: Motivation
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p Learned Database Configuration
• Automate database configurations, e.g., DRL for knob tuning, binary

classifier for index selection.

Labor-intensive tuning Automatic tuning

Rich tuning experience Adaptivity for different DBs 

Time-consuming tuning Low tuning latency

✔

✔

✔

✖

✖

✖



AI4DB Problems
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l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

l Autonomous Databases

Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer



DB4AI Motivation
p Online Inference: T+1 à T+0
p Data Security: ETL à In-DB
p Resource Utilization: data duplicates à one data
p Optimization: DB optimization on learning models 
p DB usability: easy to use 
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DB4AI Motivation

p One Data
– Unstructured
– Structured
– Semi-structured

p One Analytics
– SQL
– Machine Learning
– Data Science
– Business Intelligence (BI)
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DB4AI
pDeclarative AI

– AI to SQL
– SQL completeness
– SQL advisor

pAI optimizations
– Cost estimation
– Auto parameter
– Auto model
– Parallel computing

pLightweight In-DB Model
– Training
– Inference

13



Autonomous DB System Architecture
p Learned Optimizer

• Cost Estimation (Tree-LSTM)

• Logical Optimization (Tree Search)

• Physical Optimization (RL)

p Learned Advisor
• Monitoring/Diagnosis (LSTM)

• Configuration (DRL)

• Optimization (DRL)

p Model Validator (GNN)

p Training-Data/Model Platform
14Guoliang Li. openGauss: An Autonomous Database System. VLDB 2021



Category of AI4DB Problems
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l Automatic Advisor
l Knob Tuner
l Index/View Advisor
l Partitioner/Scheduler

l Learned Generator
lSQL Generator 
lAdaptive Benchmark

l Intelligent Optimizer
l Query Rewriter
l Plan Enumerator
l Cost Estimator

l Learned Designer
l Learned Index
l Learned Data Layout

l Autonomous Databases

AI4DB: An Overview
Intelligent Optimizer

Query 
Rewriter

Automatic Advisor

Autonomous Data Management System

Paloton SageDB openGauss

…

Knob TunerSelf-
Configuration

Index
Advisor

Self-
Optimization

MV
Advisor

Partition
Advisor

Self-
Organization

Learned
Scheduler

Learned Designer

Learned
Indexes

Learned
Layout

Learned Generator

Adaptive
Benchmark

SQL
Generator

Plan 
Enumerator

…

Cost
Estimator

End-to-End
Optimizer
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Problem Description DB Tasks

Offline NP
Optimization

Optimize an NP-hard problem
with large search space

Knob Tuning
Index/View Selection
Partition-key Selection

Online NP
Optimization

Optimize an NP-hard problem
with large search space (instant

feedback)

Query rewrite

Plan Enumeration

Regression
Determine the relationship 

between one dependent 
variable and a series of other 

independent variables

Cost/Cardinality Estimation

Index/View Benefit Estimation

Latency Estimation

Prediction Forecast the likelihood of a 
particular outcome

Trend Forecast
Workload Prediction & Scheduling

Overview of AI4DB
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Method Strategy Search
Space

Training
Data

Offline Optimization
(knob tuning, view

selection, index selection,
partition-key selection)

Gradient
based Local search Small Huge

Deep Learning (DL) Continuous space
approximation Large Huge

Meta Learning Share common 
model weights

Various 
spaces Huge

Reinforcement
Learning (RL) Multi-step search Large --

Online Optimization
(query rewrite, plan

enumeration)

MCTS(Monte Carlo 
Tree Search)+DL Multi-step search Large Huge

Multi-armed Multi-step search Small Small

Overview of NP-hard Problems



Overview of Regression Problems
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Method Task Feature 
Space

Feature 
Type

Training 
Data

Classic ML (e.g., tree-
ensemble, gaussian,
autoregressive)

cost estimation, 
view/index benefit 
estimation

Small Continuous Huge

Sum-Product
Network

cost estimation Small Discrete Small

Deep Learning cost estimation, 
benefit estimation, 
latency estimation

Large Continuous Huge

Graph Embedding benefit estimation, 
latency estimation

Large Continuous Huge



Overview of Prediction Problems
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Method Task Target Training Data

Clustering Algorithm Trend
Forecast

High accuracy Huge

Reinforcement Learning Workload
Scheduling

High
performance

--



Learning-based Cardinality/Cost Estimation



Query Optimizer

SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100 
AND S.rating > 5

SQL Query

Query Parser ΠS.name(σbid=100⋀rating>5(
Reserves ⋈R.sid=S.sid Sailors))

Relational Algebra

Π S.name

σ R.bid=100 ⋀ S.rating > 5

⋈ R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Query Optimizer
⋈R.sid=S.sid

ΠS.name

σR.bid=100

Reserves

Sailors

σS.rating>5

Optimized (Physical) Query Plan:
On-the-fly

Project Iterator

On-the-fly
Select Iterator

Indexed Nested 
Loop Join Iterator

Heap Scan 
IteratorB+-Tree

Indexed Scan 
Iterator

Operator Code 
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Query Optimizer

Query Optimizer

Query Executor

Query Rewriter

Catalog Manager

Select *
From R
Where R.A = 20

Schema
& Stats

Query Parser

Plan 
Generator

Cost 
Estimator

23



p B,D [[sR.A=“c”(R)] ⨝ S]

pB,D

sR.A = “c”

R

S

pB,D

sR.A = “c”

X

R

S

sR.C = S.C
Natural join

Logical Optimization – Query Rewrite

24



p B,D [[sR.A=“c”(R)] ⨝ S]

pB,D

sR.A = “c”

R

S

Natural join

Physical Optimization 

Index
Scan

pB,D

sR.A = “c”

R

S

Natural join

Sequential
Scan

Hash Join

25



Cardinality Estimation: Selection
Selectivity Factor (SF) = Cardinality / #tuples 
Assumptions:
• Uniformity

• σA=c(R) à SF = 1/V(R,A)
• σA<c(R)à SF = (c - Low(R, A))/(High(R,A) - Low(R,A)) 

• Independence
• Cond1 and Cond2 à SF = SF(Cond1) * SF(Cond2)
• Cond1 or Cond2 à SF = SF(Cond1)+SF(Cond2) -SF(Cond1)* SF(Cond2)
• Not Cond1 à SF = 1- SF(Cond1)

• Containment of values
• R⨝A=B S à SF = 1 / max(V(R,A),V(S,B))

• Preservation of values
• V(R⨝A=BS, C) = V(R, C) 26



Cardinality Estimation: Selection
Q = SELECT list
FROM R1, ..., Rn
WHERE cond1 AND cond2 AND . . . AND condk

• Estimate the number of results of Q: T(Q)

• Obtain number of tuples in each table: T(R1), T(R2), …, T(Rn)

• Also need the selectivity of each condition

• Selectivity factor (SF) of selection and joins

• SF(R1.A=v)=T(R1)/V(R1,A)

• SF(R1.A=R2.B)=T(R1) T(R2)/ max(V(R1,A), V(R2,B))

• e.g., selectivity(A=3) = 0.01

• e.g., selective (R1.A=R2.B) = 0.001

T(Q) = T(R1) × ... × T(Rn) × SF(cond1) × ... × SF(condk)
Remark: T(Q) ≤ T(R1) × T(R2) × ... × T(Rn) 

27



Cardinality Estimation: Predicate
• The selectivity (sel) of a predicate P is the fraction/probability of 

tuples that qualify. 

• Formula depends on type of predicate: 
• Equality(=): sel(P(c=x))=count(c=x)/count(all)

• Range(>=): sel(P(c>=x))=(max–x+1) / (max–min+1) 

• Negation (!=) : sel(P(c!=x))=1-sel(P(c=x))

• Conjunction (and)

• Independent assumption

• sel(P1 & P2) = sel(P1) * sel(P2)

• Disjunction (or)

• sel(P1 or P2) = sel(P1) + sel(P2) - sel(P1) * sel(P2)

28



Cardinality Estimation: Join

Q= SELECT * FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A=40 

T(R) = 30k, T(S) = 200k, T(T) = 10k 
Selectivity of R.B = S.B is 1/3 
Selectivity of S.C = T.C is 1/10 
Selectivity of R.A = 40 is 1/200

T(Q)=30k*200k*10k*1/3*1/10*1/200 =1010

R(A,B) 
S(B,C) 
T(C,D 

R ⨝A=B S: Selectivity = 1 / max(V(R,A),V(S,A))

29



Histograms
pFor better estimation, use a histogram

equiwidth
No. of Values 2 3 3 1 8 2 1
Value 0-.99 1-1.99 2-2.99 3-3.994-4.99 5-5.99 6-6.99

No. of Values 2 3 3 3 3 2 4
Value 0-.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

equidepth

Note: 10-bucket equidepth histogram divides the data into deciles
- akin to quantiles, median, etc.

Common trick: “end-biased” histogram
- very frequent values in their own buckets

30



Sketch

l How to count the number of values in a column?
l E.g., Age = 20?

l Sketch: a cost-model can replace histograms with sketches to improve its 
selectivity estimate accuracy. 

l Probabilistic data structures that generate approximate statistics about a data set. 
l Most common examples:

l Count-Min Sketch (1988): Approximate frequency count of  elements in a set.
l HyperLogLog (2007): Approximate the number of  distinct elements in a set. 

31



Sketch

l Given a column with a set of values, build a hash function H, and a sketch M
with w entries.
l M[i] is initialized as 0 for 0≤i≤w-1
l For each value v in the set,

- M[H[v]%w] ++;

l Given a value x, use M[H[x]%w] to estimate its account.

Overestimate! Because of collisions!

32



Count-min Sketch
l How about use d hash functions to reduce collisions?
l A matrix M with d rows and w columns, initialized with 0 for each cell value; d

hash functions
l For each value v, each hash function hi:

l M[i][hi(v)]=M[i][hi(v)]+1; hi(v) in [0, w)

l Given x, the frequency f(x) can be estimated as
l f(x)=mini in [0,d-1] M[i][hi(v)]

0 1 2 3 4 … w-1
h0(v) 1 0 0 2 0 0 1
h1(v) 1 0 0 1 0 0 0
… 0 0 0 0 2 0 0
Hd-1(v) 3 0 0 1 0 0 1

33



Count-min Sketch
l d=4 hash functions, w=7 columns
l Given values {2, 3, 2, 4, 3, 2,5}

l h0(v)=v % w; h1(v)=v2 % w; h2(v)=(2v+1) % w; h2(v)=(3v2+1) % w;

l Add 2,
0 1 2 3 4 5 6

h0(v) 0 0 1 0 0 0 0
h1(v) 0 0 0 0 1 0 0
h2(v) 0 0 0 0 0 1 0
h3(v) 0 0 0 0 0 0 1

34



Count-min Sketch
l d=4 hash functions, w=7 columns
l Given values {2, 3, 2, 4, 3, 2,5}

l h0(v)=v % w; h1(v)=v2 % w; h2(v)=(2v+1) % w; h2(v)=(3v2+1) % w;

l Add 2, 3
0 1 2 3 4 5 6

h0(v) 0 0 1 1 0 0 0
h1(v) 0 0 1 0 1 0 0
h2(v) 1 0 0 0 0 1 0
h3(v) 1 0 0 0 0 0 1

35



Count-min Sketch
l d=4 hash functions, w=7 columns
l Given values {2, 3, 2, 4, 3, 2,5}

l h0(v)=v % w; h1(v)=v2 % w; h2(v)=(2v+1) % w; h2(v)=(3v2+1) % w;

l Add 2, 3, 2
0 1 2 3 4 5 6

h0(v) 0 0 2 1 0 0 0
h1(v) 0 0 1 0 2 0 0
h2(v) 1 0 0 0 0 2 0
h3(v) 1 0 0 0 0 0 2

36



Count-min Sketch
l d=4 hash functions, w=7 columns
l Given values {2, 3, 2, 4, 3, 2,5}

l h0(v)=v % w; h1(v)=v2 % w; h2(v)=(2v+1) % w; h2(v)=(3v2+1) % w;

l Add 2, 3, 2, 4
0 1 2 3 4 5 6

h0(v) 0 0 2 1 1 0 0
h1(v) 0 0 1+1 0 2 0 0
h2(v) 1 0 1 0 0 2 0
h3(v) 1+1 0 0 0 0 0 2

37



Count-min Sketch
l d=4 hash functions, w=7 columns
l Given values {2, 3, 2, 4, 5}

l h0(v)=v % w; h1(v)=v2 % w; h2(v)=(2v+1) % w; h2(v)=(3v2+1) % w;

l Add 2, 3, 2, 4, 5
0 1 2 3 4 5 6

h0(v) 0 0 2 1 1 1 0
h1(v) 0 0 1+1 0 2+1 0 0
h2(v) 1 0 1 1 0 2 0
h3(v) 1+1 0 0 0 0 0 2+1

count(2)=2; count(3)=1; count(4)=1; count(5)=1

38



Loglog

Crucial insight: suppose we have a perfect hash function h taking an 
integer from [1,r] and reporting an integer [0, n)

h(x) in [0, n) for x in [1,r]

The probability that the hash contains:
0 leading zeroes: 1/2
1 leading zero: 1/4
2 leading zeroes: 1/8
3 leading zeroes: 1/16
…
w<log n leading zeroes 1/2w 39



LogLog

l Estimate the number of distinct values in a column
l Linear Counting: inefficient
l Hash: large space
l Log Counting: n=2max(leading 0s)

l dv=0: initial distinct number
l For each element v in the column

l Hash(v) to 0/1 values

l C0=count leading 0s
l dv=max(dv, 2C0)

n times

40



Loglog

pCrucial insight: maintaining the 
largest number of leading zeroes 
across all hashes allows us to get a 
(very) rough estimate of the number 
of distinct elements.

ptake multiple independent hashes for 
each element, average them out?

7 à 11101100
6 à 11010101

15 à 10110100
8 à 11100110

15 à 10110100
2 à 00100010
2 à 00100010
9 à 01100100

11 à 00011000
8 à 11100110

14 à 10110111
16 à 01001101
12 à 00110110
6 à 11010101
2 à 00100010

Estimate:
Actual:

23 = 8
10

41



Loglog
Estimate:

Actual:

00 stream
2 à 00100010
2 à 00100010

11 à 00000010
12 à 00110110
2 à 00100010

01 stream
9 à 01100100

16 à 01001101

10 stream
15 à 10110100
15 à 10110100
14 à 10110111

11 stream
7 à 11101100
6 à 11010101
8 à 11100110
8 à 11100110
6 à 11010101

4

2

0

1

24 + 22 + 20 + 21 = 23
10

∑2w

42



Loglog
Estimate:

Actual:

00 stream
2 à 00100010
2 à 00100010

11 à 00000010
12 à 00110110
2 à 00100010

01 stream
9 à 01100100

16 à 01001101

10 stream
15 à 10110100
15 à 10110100
14 à 10110111

11 stream
7 à 11101100
6 à 11010101
8 à 11100110
8 à 11100110
6 à 11010101

4

2

0

1

4 • 2(4+2+0+1)/4 ≈ 13.45
10

(∑w)/m
m×2

43



HyperLoglog
LogLog uses the arithmetic mean

HyperLogLog uses an alternative, the harmonic mean

where 𝛂m is a constant.

(∑w)/m
𝛂m×m×2

𝛂m×m×m/(∑2-w) 

!" =

0.673,
0.697,
0.709,

	 0.7213
1 + 1.079/

,

/ = 16
/ = 32
/ = 64

/ ≥ 128

44



Loglog
Thus the LogLog algorithm can be succinctly described. We need a 
hash function h from [1,r] to [0, n)
1. Initialize an array w with size m=2b. Let wi =0 for all i
2. For each element x, compute its hash h(x)

– Split h(x) to its first b bits and remaining m-b bits.
– Let c be the number represented by the first b bits and w0 be the number 

of leading zeroes in the m-b bits.
– Set wc = max (wc, w0)

3. Output
(∑wc)/m

𝛂m×m×2

45



HyperLogLog

l Estimate the number of distinct values in a column
l m buckets, 𝛼m : a constant; Mj: # of leading 0s
l LogLog：
l HyperLoglog：

46



Sampling

l Modern DBMSs also collect samples from tables to estimate selectivity. 
l Update samples when the underlying tables changes significantly. 

47



Traditional Cost Model Summary

l Sampling-based
l Histogram
l Sketch

48



Cardinality Estimation

p Cardinality: The result size of a query. 
p Input: A SQL Query.
p Output: An Estimated Cardinality.

p Problem Formulation:

Cardinality Estimation Example

orData table

 C (*)
From 
Select ount

! SQL query Model estimated 
cardinality 130

，132
 C (*)

From  
Select ount

!
SQL with true cardinality

49



Traditional Cardinality Estimation

p Sampling
p Core idea: Estimating selectivity of target query by sampling.
p Limitation: Inference is slow and inaccurate when the amount of 
data is large.

p Histogram
p Core idea: Store the value distribution of each attribute, and 
calculate the selectivity according to the independence assumption.

p Limitation: Strong independence assumption makes it inaccurate 
when the data distribution is complex.

p Sketch: Estimate the number of distinct elements of a set.

50



Database estimation problems can be modeled as regression
problems, which fit the high-dimension input variables into target features
(e.g., cost, utility) and estimate the value of another variable.

Regression Problems

p Cardinality/Cost Estimation aims to estimate the cardinality of a 
query and a regression model (e.g., deep learning model) can be used.

p Index/View Benefit Estimation aims to estimate the benefit of 
creating an index (or a view), and a regression model can be used to 
estimate the benefit.

p Query Latency Estimation aims to estimate the execution time of a 
query and a regression model can be used to estimate the performance 
based on query and concurrency features.
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Learned Cardinality Estimation

p Motivation
p Due to the attribute value independence assumption as well as the 
assumption of uniform distribution, traditional cardinality estimation 
methods tend to fail when the data distribution is complex.

p Challenge
p Correlation between data columns and columns.
p Multi-table join increases data volume and query types.

p Optimization Goal
p Accuracy, Inference Latency, Model Size, Training Cost

52



Automatic Cardinality/Cost Estimation

p One of the most challenging problems in databases
Ø Achilles Heel of modern query optimizers 

p Traditional methods for cardinality estimation
Ø Sampling (on base tables or joins) 
Ø Kernel-based Methods (Gaussian Model on Samples)
Ø Histogram (on single column or multiple columns)

p Traditional cost models
Ø Data sketching/data histogram based methods 
Ø Sampling based methods

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How 
good are query optimizers, really? In VLDB, 2015.

p Motivation:

53



Categories of Learned Cardinality Estimation

(1) Supervised Query Methods
Ø Neural Network

Ø XGBoost

Ø Multi-set Convolutional network

(2) Supervised Data Methods
ØKernel-density model

Ø Uniform mixture model

Ø Pre-training summarization model

(3) Unsupervised Data Methods
Ø Sum product network 

Ø Autoregressive (AR) model 

Ø Normalizing Flow (NF) model

54



1 Supervised Query Methods for Cardinality 
Estimation

A regression problem: learn the mapping function between query
Q and its actual cardinality

Supervised Model Training Online Cardinality Estimation

p Problem Definition

Query
Model

Queries Cardinalities

Well-Trained
Query Model

Queries

Optimizer

Cardinalities

55



1.1 Query-Driven: Neural Network on Single Tables

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019.

p Motivation: Traditional estimation methods assume column independence.

p Solution:
Ø Training 

• Represent a query (𝑙𝑏! < 𝐴! < 𝑢𝑏!, … , 𝑙𝑏_𝑑 < 𝐴" <
𝑢𝑏_𝑑) on a table 𝑇 with d attributes 𝐴!, …𝐴_𝑑 as <
𝑙𝑏!, 𝑢𝑏!, … , 𝑙𝑏" , 𝑢𝑏" >.

• A neural network with two hidden layers is used to fit 
the mapping between the representation of the query 
and its cardinality.

Ø Inference
• Answer a query by the trained network.
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1.2 Query-Driven: XGBoost for Cardinality Estimation

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019.

p Solution: 
p The query is represented in the same way as 

the neural network based approach.
p Use XGBoost, a decision tree-based 

ensemble model to fit a mapping between a 
query's representation and its cardinality.

p Comparison with Neural Network: 
p Neural Network-based method are better 

when training data is sufficient.
p XGBoost is better when the training data is 

insufficient.
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A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.

1.3 Query-Driven: Deep Learning for Multi-tables

p Motivation: It’s difficult for traditional methods to capture join-crossing 
correlations.

p Solution:
• For table set and join set in the input, encode 

each table, join with one-hot encoding.
• For predicates of the form (col, op, val), 

encode columns col and operators op with 
one-hot encoding, and represent val as a 
normalized value in [0, 1].

• Use some samples to address 0-tuple problem
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A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.

1.3 Query-Driven: Deep Learning for Multi-tables

p Training:
• The three parts of the input are spliced together 

after going through the linear layer, activation 
layer, and the dimensionality reduction layer.

• Then go through the linear and activation layer
again to get the estimated cardinality.

• Tuning model parameters by backpropagating 
gradients.

p Inference 
• Answer a query by the trained network.
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2 Supervised Data Methods for Cardinality 
Estimation

Data
Model

Supervised Model Training

Well-Trained
Data ModelQueries

Cardinality Estimation

Optimizer

Cardinalities

Data
Sampler

(Queries
with true 

cardinalities)

Dataset

A density estimation problem: learn a joint data distribution of
each data point. (except for the pre-training summarization model)

p Problem Definition
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M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.1 Supervised Data-Driven: Kernel-Density Model 
on Single Table

p Motivation: Multi-dimensional histograms are complex to construct and 
hard to maintain.

p Key-idea: Fit the probability density distribution of a data table by kernel 
density model.

Ø Kernel-Density Model

• s is sample size; K is Gaussian function; 
• 𝒕⃗ is sampled point; H is a parameter that needs to be learned.,

• Ω is the space represented by a query.

Model:

Ø Inference:
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M. Heimel, M. Kiefer, and V. Markl. Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.1 Supervised Data-Driven: Kernel-Density Model 
on Single Table

p Kernel-Density Estimation

pi: probability
ni: number of points
N: total number of points
Δ: bandwidth

i

i
i N

np
D

=
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M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.1 Supervised Data-Driven: Kernel-Density Model 
on Single Table

p Solution
p Training

• Get a lot of queries with true cardinalities.
• Sample points (rows) from the table and 

initialize the parameter H. 
• Adjust the parameter H by stochastic 

gradient descent according to estimated 
cardinalities by Kernel-Density Model and 
the true cardinalities.

p Inference
• Answer queries by accumulating kernel 

density based on the kernel-density model. 

Get Training Data

Sample Points and initialize 
parameter H

To get a Kernel-Density Model

Adjust the parameter H by 
stochastic gradient descent

Answer query by integrating 
over the probability density 

function

Training Phase

Inference Phase
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Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020

2.2 Supervised Data-Driven: Uniform Mixture Model 
on Single Table

p Motivation: Traditional methods need to be populated in advance by 
performing costly table scans.

p Key-idea: Fit the probability density distribution of a data table by uniform 
mixture model.

p Uniform Mixture Model:

• 𝑤# is the weight for a subpopulation z
• 𝑔# 𝑥 = 1/|G$| is uniform distribution function
• 𝐺# is area of subpopulation z

Model: Inference:

• 𝐵% is the space represented by a query.
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Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020

2.2 Supervised Data-Driven: Uniform Mixture Model 
on Single Table

p Solution:
p Training 

• Sample some points within queries with true cardinalities.
• Generate subgroups for the points.
• Learn the weights 𝑤# of the uniformity mixture model.

p Inference
• Answer a query by calculating the cumulative probability density (i.e., 

selectivity) according to the mixture density function.
• overlap area between query rectangle and data rectangle
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Lu Y, Kandula S, König A C, et al. Pre-training summarization models of structured datasets for cardinality estimation. PVLDB, 15(3): 414-426, 2021

2.3 Supervised Data-Driven: Pre-training 
Summarization Model on Single Table

p Motivation: Pre-training models avoid per-dataset training.

p Solution:
p Pre-train encoder and decoder with 

large data tables via gradient descent 

(Loss function is 𝑙𝑜𝑔 $%&' ()%*
'+$.()%*

).
p Encode a table with the pretrained 

encoder.
p Input a query and the encoded result 

of the table into the pre-trained 
decoder to get the cardinality.
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Lu Y, Kandula S, König A C, et al. Pre-training summarization models of structured datasets for cardinality estimation. PVLDB, 15(3): 414-426, 2021

2.3 Supervised Data-Driven: Pre-training 
Summarization Model on Single Table

p Data Encoder
p Query Decoder
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3 Unsupervised Data Methods for Cardinality 
Estimation

A regression problem: learn a probability function for each
data point.

p Problem Definition

Data
Model

Unsupervised Model Training

Well-Trained
Data Model

Cardinality Estimation

Optimizer

Queries

Cardinalities

Data
Sampler

Dataset
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Benjamin Hilprecht, Andreas Schmidt, et al . DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020

3.1 Unsupervised Data-Driven: Sum-Product 
Network for Multi-tables

p Motivation: Most of the existing estimators require SQL queries.
p Base-idea: Learn the joint probability distribution by Sum-Product 

Network .

p Relational Sum Product Network (RSPN)
p RSPN consists of three types of node:

p product node: split the columns of a table.
p sum node: split the rows of a table.
p leaf node: represent probability 

distributions for individual variables. 
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Benjamin Hilprecht, Andreas Schmidt, et al . DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020

3.1 Unsupervised Data-Driven: Sum-Product 
Network for Multi-tables

p Solution:
p Training

• Generate some queries and their cardinalities.
• Build a RSPN by recursively partitioning

• Row: K-means clustering
• Column: randomized dependency coefficient.

p Inference
• Estimate cardinality in bottom-up.
• Supports multi-table queries via join sampling, 

and supports queries on sub-schemas based on 
fanout scaling.
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Fanout scaling for multi-tables
Fanout scaling is to support sub-schema queries on a full outer 
join table. (full outer join table contains duplicate tuples)

p Example:

p True answer is 2, but there are 3
tuples in the outer join table.

p Fanout scaling result:
=

p Solution: for each 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑘𝑒𝑦 → 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑘𝑒𝑦 relationship, add a column 
denoting how many corresponding join partners a tuple has.
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Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep Unsupervised Cardinality Estimation. PVLDB, 13(3): 279-292, 2019.

3.2 Unsupervised Data-Driven: Autoregressive 
Model on Single Table

p Motivation: Existing estimators struggle to capture the rich multivariate 
distributions of relational tables.

p Solution:
p Training: Use Autoregressive (AR) Model to fit 

the joint probability of different columns.
p Inference: Estimate the cardinality of the 

equivalent query based on the AR model.
p Monte Carlo sampling

p Range queries are supported by progressive 
sampling (sampling by learned probability distribution).
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Zongheng Yang, Amog Kamsetty, et al. NeuroCard: One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021

p Motivation: Previous AR models do not support multi-table queries.

p Solution:
p Learn an autoregressive model for the 

outer join of all tables.
p Supports multi-table queries via join 

sampling, and supports queries on 
sub-schemas through fanout scaling.

3.2 Unsupervised Data-Driven: Autoregressive Model 
on Single Table
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Wang J, Chai C, Liu J, et al. FACE: a normalizing flow based cardinality estimator[J]. Proceedings of the VLDB Endowment, 15(1): 72-84, 2021

3.3 Unsupervised Data-Driven: Normalizing Flow 
(NF) model for Multi-tables 

p Motivation: Previous data-driven approaches do not handle tables with 
large domain sizes well.

p Solution:
p Dequantize and normalize discrete variables to 

continuous variables.
p Use Normalizing Flow (NF) model to learn the 

joint probability distribution of data points.
p Accumulating continuous normalized flow 

distribution function by adaptive importance 
sampling to answer a query.

p Support multi-table query through fanout scaling.
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Wang J, Chai C, Liu J, et al. FACE: a normalizing flow based cardinality estimator. Proceedings of the VLDB Endowment, 15(1): 72-84, 2021

3.3 Unsupervised Data-Driven: Normalizing Flow 
(NF) model for Multi-tables 
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Summarization of Learned Cardinality Estimation
Method Quality Training 

overhead
Training

Data Adaptive Model 
Size

Inference 
Latency

Lightweight Neural 
Network & XGBoost ✓ low many 

queries ✓ small fast

Convolutional Neural 
Network ✓✓ low many 

queries ✓✓ small fast

Kernel-Density Model ✓ medium Data 
samples ✓ small medium

Uniform Mixture Model ✓ medium Data 
samples ✓ small medium

Autoregressive (AR) 
Model ✓✓ high Data 

samples ✓✓✓ high slow

Sum-Product Network ✓✓ high Data 
samples ✓✓✓ medium medium

Normalizing Flow (NF) 
model ✓✓ high Data 

samples ✓✓✓ medium medium

Pre-training 
summarization model ✓ high Lots of 

tables ✓✓ very small fast
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Cost Estimation

p Cost: Execution cost of a query plan.
p Input: A SQL Query Plan.
p Output: An Estimated Cost.

p Problem Formulation:

Estimator 
model Estimated Cost
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Relations of Cardinality/Cost Estimation

p Task Target
p Cost estimation is to approximate the execution-time/ 

resource-consumption.

p Correlations
p Cost estimation is based on cardinality.

p Estimation Difficulity 
p Cost is harder to estimate than cardinality, which considers 

multiple factors (e.g., seq scan cost, CPU usage).
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Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

p Motivation: Traditional cost estimation is inaccurate without learned 
plan representation.

p Solution:
p Generate many query plans and true costs as training data.
p Encode the query plan via one-hot encoding.
p Representation layer learns an embedding of each query plan by Tree-LSTM.
p Estimation layer outputs estimated cost based on the representation layer’s 

output. 
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Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

• Traditional cost estimation uses estimated card, which is inaccurate 
without predicate encoding à

p Model Construction

80



Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

• The representation layer learns an embedding of each subquery (global 

vector denotes the subquery, local vector denotes the root operator)

• The estimation layer outputs cardinality & cost simultaneously
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Take-aways of Cardinality Estimation
p Cardinality Estimation

l Data-driven methods are more effective for single tables.
l Query-driven methods are more efficient than Data-driven methods.
l Data-driven methods are more robust than Query-driven methods.
l Samples are crucial to most Data-driven methods.

p Cost Estimation
l Accurate cost estimation requires better plan embedding.

p Open Problems
lHigh Accuracy with small model size and inference latency
lAdaptivity
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Deep Learning for Query Latency Estimation

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction. VLDB, 2019. 83

p Motivation
p Statistical methods fail to estimate based on query structures, and cause great errors;
p Compared with cost estimation, latency estimation is more complex because (1) it relies on

system resources and (2) Cost is one important factor of latency estimation.

p Core Idea: Utilize deep learning to capture the relations between input tables, operators, and
the final performance

p Solution
Ø Represent each operator qi with a neural unit



Deep Learning for Query Latency Estimation

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction. VLDB, 2019. 84

p Motivation
p Statistical methods fail to estimate based on query structures, and cause great errors;
p Compared with cost estimation, latency estimation is more complex because (1) it relies on

system resources and (2) Cost is one important factor of latency estimation.
p Core Idea: Utilize deep learning to capture the relations between input tables, operators, and

the final performance
p Solution

Ø Represent each operator qi with a neural unit
Ø Concatenate neural units by following the query structures

• Example Query Q (2 Scans, 1 Join)
• Tree-structured Network for Q: 

– The outputs of the scan units (N𝜎 + Ns) 
– Input of the join operator (N⨝) 
– The final predicted query latency.

• Matches the query structure to predict the query latency



X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

pdata-sharing 
pdata-conflict 
presource-competition 
pparent-child relationship

p Latency Estimation for Concurrent Queries

p Graph-based method
• Workload2Graph: graph modeling
• Graph prediction: GNN to predict the latency
• Graph update: on-the-fly update the model

85

Graph Embedding for Query Latency Estimation



X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

Graph Embedding for Query Latency Estimation
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X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

• Performance prediction of concurrent queries
Ø Represent concurrent queries with a graph model

Ø Embed the graph with graph convolution network and predict the latency of all the 

operators with a simple dense network

Graph Embedding for Query Latency Estimation

p Model Construction
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p Challenge

p The index/view benefit is hard to evaluate

Ø Multiple evaluation metrics (e.g., index benefit, space cost)

Ø Cost estimation by the optimizer is inaccurate

p Interactions between existing data structures

Ø Multiple column access, Data refresh

Ø Conflicts between MVs

Deep Learning for Index Benefit Estimation
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Deep Learning for Index Benefit Estimation

89

p Motivation: Critical to estimate index benefits by comparing execution 
costs of plans with/without created indexes

p Core Idea: Take benefit estimation as an ML classification task.
p Challenge: It is hard to accurately estimate the index benefits
p Solution:

• Prepare training data
• Query Plans + Costs under different indexes

• Train the classification model
• Input: Two query plans with/without indexes
• Output: 1 denotes performance gains; 0 denotes no gains

• Solve the index selection problem
• Use the model to create indexes with performance gains

Bailu Ding, Sudipto Das, et al. AI meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.



Encoder-Decoder for View Benefit Estimation

p Feature Extraction
• Previous work take candidate views as fixed length à

• Encode various number and length of queries and views with an
encoder-reducer model, which captures correlations with attention

p Model Construction
• It is hard to jointly consider

MVs thatmay have conflicts à

• (1) Split the problem into sub-
steps that select one MV;

• (2) Use attention-based model
to estimate the MV benefit

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system 
with deep reinforcement learning. In ICDE, 2021. 90



Take-aways of Benefit Estimation

pLearned utility estimation is more accurate than 
traditional empirical methods

pLearned utility estimation is also accurate for multiple-MV 
optimization

pQuery encoding models need to be trained periodically
when data update

pOpen problems:
Ø Benefit prediction for future workload
Ø Cost of initialization and future updates
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Thanks
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Learned Optimizer
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Query Optimizer

SELECT S.name
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100 
AND S.rating > 5

SQL Query

Query Parser ΠS.name(σbid=100⋀rating>5(
Reserves ⋈R.sid=S.sid Sailors))

Relational Algebra

Π S.name

σ R.bid=100 ⋀ S.rating > 5

⋈ R.sid=S.sid

Reserves Sailors

(Logical) Query Plan:

Query Optimizer
⋈R.sid=S.sid

ΠS.name

σR.bid=100

Reserves

Sailors

σS.rating>5

Optimized (Physical) Query Plan:
On-the-fly

Project Iterator

On-the-fly
Select Iterator

Indexed Nested 
Loop Join Iterator

Heap Scan 
IteratorB+-Tree

Indexed Scan 
Iterator

Operator Code 
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Query Optimizer

Query Optimizer

Query Executor

Query Rewriter

Catalog Manager

Select *
From R
Where R.A = 20

Schema
& Stats

Query Parser

Plan 
Generator

Cost 
Estimator
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p B,D [[sR.A=“c”(R)] ⨝ S]

pB,D

sR.A = “c”

R

S

pB,D

sR.A = “c”

X

R

S

sR.C = S.C
Natural join

Logical Optimization – Query Rewrite
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Query Rewrite
pTransform one logical plan into another equivalent plan

(usually with lower cost)
pTheory Guarantee: Equivalences in relational algebra
pRule-based: Applying rewrite rules

– Push-down predicates
– Do projects early
– Avoid cross-products if possible
– Use left-deep trees
– Use of constraints, e.g., uniqueness
– Subqueries à Joins (we will study this rewrite rule after we do 

physical plan selection)

Query Rewrite is important to achieve high performance!
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Query Rewrite Rules
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Query Rewrite Rules
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Phases of Logical Query Optimization 
1. break up conjunctive selection predicates (equivalence (1) →) 

2. push selections down (equivalence (2) →, (14) →) 

3. introduce joins (equivalence (13) →) 

4. determine join order (equivalence (9), (10), (11), (12)) 

5. push down projections (equivalence (3) ←, (4) ←, (16) →) 
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Step 1: Break up conjunctive selection 
predicates 

select distinct s.sname
from student s, attend a, lecture l, professor p 
where s.sno = a.asno and a.alno = l.lno and l.lpno = p.pno and p.pname =ʹʹ Sokratesʹʹ 

selection with simple predicates can be moved around easier 
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Step 1: Break up conjunctive selection predicates 
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Step 2: Push Selections Down 
reduce the number of tuples early, reduces the work for later operators 
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Step 2: Push Selections Down 
reduce the number of tuples early, reduces the work for later operators 
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Step 3: Introduce Joins 
joins are cheaper than cross products 
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Step 3: Introduce Joins 
Cartesian Product to Natural Join

σstarName=name ( MovieStar × StarsIn ) ≡ MovieStar ⋈starName=name StarsIn

106



Step 3: Introduce Joins 
Replace σ + × with ⋈:
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Step 4: Determine Join Order 
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Step 4: Determine Join Order 
smaller input relation as the left input relation in a join (⋈) operator
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Step 5: Introduce and Push Down Projections 

l eliminate redundant attributes

l only before pipeline breakers 
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Step 5: Introduce and Push Down Projections 

Remove the unused attributes by inserting projection (π):
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p B,D [[sR.A=“c”(R)] ⨝ S]

pB,D

sR.A = “c”

R

S

Natural join

Physical Optimization 

Index
Scan

pB,D

sR.A = “c”

R

S

Natural join

Sequential
Scan

Hash Join
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Join Order Selection
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Dynamic Programming
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Selinger Algorithm 

pStep 1: Enumerate all access paths for a single relation 
– File scan or index scan
– Keep the cheapest for each interesting order 

pStep 2: Consider all ways to join two relations
– Use result from step 1 as the outer relation
– Consider every other possible relation as inner relation
– Estimate cost when using sort-merge or nested-loop join
– Keep the cheapest for each interesting order 

pSteps 3 and later: Repeat for three relations, etc. 
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Learning-based Query Rewrite

116

Manual

WeTune

Equivalent
 Pattern Pairs

Sia

Finetune
Predicate Rules

Rewrite Rule Generation

Equivalence
Verification
SMT Solver

LearnedRewrite

Apply rules 
with MCTS

Rewrite Strategy

Top-down
Heuristic
Arbitrary



p Motivation: Identify new rules to gain performance improvement
p Basic Idea: Extract relatively simple query pattern pairs from the public

datasets and synthesize new rewrite rules
p Challenge: (1) How to generate new rewrite rules; (2) How to verify the

rewrite equivalence

117

Learning New Rewrite Rules

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.



p Motivation: Identify new rules to gain performance improvement
p Basic Idea: Extract relatively simple query pattern pairs from the public

datasets and synthesize new rewrite rules
p Challenge: (1) How to generate new rewrite rules; (2) How to verify the

rewrite equivalence
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Learning New Rewrite Rules

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.



p Motivation: Identify new rules to gain performance improvement
p Basic Idea: Extract relatively simple query pattern pairs from the public

datasets and synthesize new rewrite rules
p Challenge: (1) How to generate new rewrite rules; (2) How to verify the

rewrite equivalence
p Solution

Ø Generate rules via rule enumerator
• Rule: (source pattern, destination pattern, constraints)

Ø Verify rule equivalence via SMT solver
• Only queries with no more than 4 operators

Ø Use verified rules to greedily rewrite queries

119

Learning New Rewrite Rules

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.



Ø Generate rules via rule enumerator
• Rule: (source pattern, destination pattern, constraints)

Ø Verify rule equivalence via SMT solver
• Only queries with no more than 4 operators

• Transform: SQL Query à U-expression à FOL Formula

• Q(X) and Q(Y) are equivalent iff,
• 𝒒𝒖𝒆𝒓𝒚𝑭𝑶𝑳 𝑿 → 𝒒𝒖𝒆𝒓𝒚𝑭𝑶𝑳 𝒀 &&𝒒𝒖𝒆𝒓𝒚𝑭𝑶𝑳 𝒀 → 𝒒𝒖𝒆𝒓𝒚𝑭𝑶𝑳 𝑿

Ø Use verified rules to greedily rewrite queries
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Learning New Rewrite Rules

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

node0

node1

node2

node0

node1

node2



Finetune Predicate Rules

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021. 121

p Motivation: Traditional predicate-pushdown is less powerful in many cases
p Core Idea: Synthesize new predicates that are both valid (semantic

equivalence) and optimal (performance gain)
p Challenge: (1) How to generate new predicates; (2) How to verify the

predicates are valid and optimal.
p Solution

• Build a classification model (SVM)
• Classification Model ó 0/1 ó New Predicate

• Use true/false samples to finetune the model
• Valid: if the model filters out samples in origin predicate, it is not valid (true samples);

• Optimal: if the model accepts samples not in origin predicate, it is not optimal (false samples).



Finetune Predicate Pushdown Rules

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021. 122

pBuild a classification model (SVM)
Ø Classification Model ó 0/1 ó New Predicate

Ø Use true/false samples to finetune the model
Ø Valid: if the model filters out samples in origin predicate,

it is not valid (true samples);

Ø Optimal: if the model accepts samples not in origin

predicate, it is not optimal (false samples).

x > y and y > 100
origin predicate

x > y and y > 100 
and x > 9999

Not 
Valid

new predicate
Counter e.g.

(x,y)=(500,101)

x > y and y > 100 
and x > 10

Not
Optimal Counter e.g.

(x,y)=(11,101)



Learning-based Query Rewrite
p Why Heuristics à Learning-based?

p Many real-world queries are not well-written
Ø Terrible operations (e.g., subqueries/joins, union/union all) ;
Ø Look pretty to humans, but physically inefficient

(e.g., take subqueries as temporary tables);

p Existing methods are based on heuristic rules
Ø Top-down rewrite order may not lead to optimal rewrites

(e.g., remove aggregates before pulling up subqueries)
Ø Some cases may not be covered by existing rules

p Trade-off in SQL Rewrite
Ø Best Performance: Enumerate for the best rewrite order
Ø Minimal Latency: SQL Rewrite requires low overhead (milliseconds)
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Learning-based Query Rewrite
p Challenge:

Ø Equivalence verification for new rules

Ø Search rewrite space within time constraints
• Rewrite within milliseconds;

Ø Estimate rewrite benefits by multiple factors
• Reduced costs after rewriting
• Future cost reduction if further rewriting the query
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Automatic Query Rewrite

125

“SELECT 
      MAX ( DISTINCT L1.col1 )
FROM   lineitem L1
WHERE  L1.col1 = ANY
       (
          SELECT MAX
                   ( C.col1 ) m_key
          FROM customer C,
                      lineitem L2
          WHERE    C.col1 = L2.col1
              AND      ((
                      C.col2<2
                            AND  C.col3<2 )
                      OR       (
                      C.col2<2
                            AND  L2.col2>5 ))
              GROUP BY 
                             C.col1);”

Input SQL Query
Q

<latexit sha1_base64="DCvj8g5IHu/b8PJHwSfGtqDqWoU=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LIoiMsW7ANqkSSd1qF5MTMRStEfcKvfJv6B/oV3xhTUIjohyZlz7zkz914/DblUjvNasBYWl5ZXiqultfWNza3y9k5bJpkIWCtIwkR0fU+ykMespbgKWTcVzIv8kHX88bmOd+6YkDyJr9QkZf3IG8V8yANPEdVs3pQrTtUxy54Hbg4qyFcjKb/gGgMkCJAhAkMMRTiEB0lPDy4cpMT1MSVOEOImznCPEmkzymKU4RE7pu+Idr2cjWmvPaVRB3RKSK8gpY0D0iSUJwjr02wTz4yzZn/znhpPfbcJ/f3cKyJW4ZbYv3SzzP/qdC0KQ5yaGjjVlBpGVxfkLpnpir65/aUqRQ4pcRoPKC4IB0Y567NtNNLUrnvrmfibydSs3gd5boZ3fUsasPtznPOgXau6R9Va87hSP8tHXcQe9nFI8zxBHZdooGW8H/GEZ+vCCi1pZZ+pViHX7OLbsh4+AA/Kj1o=</latexit>Aggregate
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p Problem Definition
p Given a slow query 𝑄 and a set of rewrite rules 𝑅, apply the rules 𝑅 to 

the query 𝑄 so as to gain (a) the equivalent one and (b) the minimal cost.
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Adaptively Apply Rewrite Rules

126

p Motivation: A slow query may have various rewrite sequences (different benefits)
p Core Idea: Explore optimal rewrite sequences with tree search algorithm
p Challenge: (1) How to represent candidate rewrite sequences; (2) How to efficiently find

optimal rewrite sequence.
p Solution

Ø Initialize policy tree for a new query
• Node vi: any rewritten query; C↑(vi): previous cost reduction; C↓(vi): subsequent cost reduction 

Ø Explore rewrite sequences on the policy tree (MCTS)
• Node Value Computation (Node Selection):

Xuanhe Zhou, Guoliang Li, Chengliang Chai. A Learned Query Rewrite System using Monte Carlo Tree Search. VLDB, 2022.



Summarization of Query Rewrite
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Methods Granularity Equivalence Supported
Rules

Rule
Strategy

Rewrite
Overhead

Rewrite
Performance

WeTune Logical 
Plan

√ (within 4
operators) Generated heuristic

High for 
Verify
(383*50 ms).

More than 
30%~90%

Sia Predicate √ (simple
queries)

Predicate
Rules only heuristic High

(3s) More than 2x

Learned 
Rewrite

Logical 
Plan √ Rules from

Calcite MCTS Medium
(6.1-69.8 ms) More than 2x



Take-aways of Query Rewrite
p Traditional query rewrite method is unaware of cost, causing 

redundant or even negative rewrites
p Search-based rewrite works better than traditional rewrite for 

complex queries
p Rewrite benefit estimation improves the performance of simple 

search based rewrite
p Open Problems

Ø Further reduce the rewrite overhead
Ø Adapt to different rule sets/datasets
Ø Design new rewrite rules
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p Planning cost is hard to estimate
Ø The plan space is huge

p Traditional optimizers have some limitations
Ø DP gains high optimization performance, but causes great 

latency; 

Ø Random picking has poor optimization ability

p Steer existing optimiers can gain higher performance
Ø Hint join orders; Hint operator types

Join Order Selection
p Motivation:
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Join Order Selection
Problem Definition: Given an SQL query, select the “cheapest” 
join ordering (according to the cost model). 

• Cost, Latency
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p Offline Optimization Methods.
Ø Characteristic: given Workload，RL based.

Ø Key idea: Use existing workload to train a learned optimizer, which predicts
the plan for future queries.

p Online Optimization Methods.
Ø Characteristic: No workload, but rely on customized Database.

Ø Key idea: The plan of a query can be changed during execution. The query
can switch to another better plan. It learns when the database executes the
query.

Join Order Selection
p Method Classification
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Why Learned Join Order
• Why learned join order selection?

• Learned Cost Model

• Learned from latency when cost estimation is inaccurate.

• Learned Plan Enumeration

• not only to estimate the execution time of the complete plan, 
but also to estimate the generation direction of a good plan

• guide the direction of plan generation, and reduce the number of enumerated plans.

T1 T2 T3 T4

Cost Latency

T1 T2 T3 T4 T1 T2 T3 T4T1 T2 T3 T4

T1 T2 T3 T4Now

Next Join ….

Value-based
Policy-based

100 200 400
0.8 0.1 0.05

….
….
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Learned Join Order Selection
• Challenges

• Learning models need to be able to accurately predict execution times.

• The latency of plan generation should be low enough.

• Optimization Goals

• Quality: Latency

• Adaptivity: Adapt to different DB instances, workloads

• Update: Join graph, Schema, Data

• Training Cost
133



Learned Join Order Selection
• Method Classification  

• Offline learning methods  
• Characteristic : Learn before use  - given workload

• Key idea : Use existing workload to train a learned optimizer, which will 
predict the plan for future workload.  

• Online learning methods  
• Characteristic: Learn runtime - no workload  

• Key idea :  The model can quickly learn from the execution feedback during 
or after query execution to improve the next plan generation.  

• Key difference:  Online learning methods can handle update easily 
and the performance will not be limited by the given training data. 
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Learned Join Order Selection

DQ,ReJoin

Learned Methods

Offline Learning Online Learning

RTOS NEO Bao

Skinner-DB

RL
Learn cost

Tree-LSTM(Leaf to root) Tree-CNN(father,child)
End2end

(operator, index selection, etc)Schema Change

Learn operator hint 

Need workload No workload

Learn during execution

Learn after executionLearn latency Learn latency
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Marcus, Ryan, and Olga Papaemmanouil. “Deep reinforcement learning for join order enumeration.” ,aiDM 2018
Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018

1 Offline Join Order Selection: ReJoin & DQ 
pMotivation

– The search space for join order is huge.
– Traditional optimizer did not learn from previous

bad or good choice.
pChallenges

– How to reduce the search space of join order.
– How to select the best join order.

pDifference：
– ReJoin uses a policy based method (PPO) to guide the plan

search.
– DQ uses a value based method (DQN) to guide the plan search.

It uses the DP’s plan to pretrain the value neural network. 136



1 Offline Join Order Selection: ReJoin & DQ 

pMap into RL Models (DQ, ReJOIN) [1,2]

Ø Agent : optimizer

Ø Action: join
Ø Environment: Cost model, database

Ø Reward：Cost, Latency
Ø State : join order

137
Marcus, Ryan, and Olga Papaemmanouil. “Deep reinforcement learning for join order enumeration.” ,aiDM 2018

Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018



1 Offline Learned Join Order Selection: ReJoin

• RL model
• Agent : optimizer;

• Action: join;

• Environment: Cost model, database

• Reward：Cost ;

• State : join order

• Long-term reward:

• Policy-based : Output all-join probability

• Neural network : A three-layer MLP.
138Marcus, Ryan, and Olga Papaemmanouil. “Deep reinforcement learning for join order enumeration.” ,aiDM 2018



1 Offline Learned Join Order Selection: DQ

• RL model
• Agent : optimizer
• Action: join
• Environment: Cost model, database
• Reward：Cost 
• State : join order
• Long term reward:

• Value-based : Predict the possible cost of the 
best terminal state that each state can reach.

• Neural network : A two-layer MLP.

139Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018



2 Offline Learned Join Order Selection:
RTOS

140

• Motivation
• Previous learning based optimizers give good 

cost, but they do not give good latency on test 
queries.

• Schema often changes in real-world database.

• Challenges
• The intermediate state is a forest, which cannot be 

represented by a simple feature vector.
• The training time is huge when collecting latency

as feedback.
• The schema change leads to the retraining.

Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection. ICDE 2020



2 Offline Learned Join Order Selection:
RTOS

141
Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection. ICDE 2020

• TreeLSTM based Q network 
• Use n-ary to represent the sub-trees  
• Use child-sum to represent the forest  

• Two step training  
• Cost pretrain  
• Latency fine-tuning  

• Dynamic neural network  
• DFS to build neural network   
• Multi-Alias: Parameter sharing  
• Schema change: Local fine-tuning 



X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-lstm for join order selection. In ICDE, 2020.

2 Offline Learned Join Order Selection: RTOS

142

p Feature Extraction

• Encode the operator relations 
and metadata features of the 
query

• Embed the query features with 
Tree-LSTM; 

• Decide join orders with RL 
model

• The structural information of the execution plan is vital to join 
order selection  à



3 Offline Learned Join Order Selection: NEO

143Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• Motivation
• Previous traditional optimizer relies on cost models 
• Previous methods solve join ordering only but cannot support

physical operator selection.  
• Challenges  

• How to build a learn cost model automatically to capture intuitive 
patterns in tree-structured query plans and predict the latency.  

• How to represent query predicate semantics (supporting strings
– word2vector) automatically.  

• How to overcome reinforcement learning’s sample inefficiency
(with optimizer guide) 



3 Offline Learned Join Order Selection: NEO

144Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• It uses Tree-CNN to design a value network to 
represent the query plan (join order, operator).          

• It uses row vectors to represent predicates.  Each 
row is a sentence. 

• It learns from the expert optimizer learning from 
demonstration.  

• Normalize plan’s cost by cost of optimizer’s plan 



4 Online Learned Join Order Selection: Bao

145Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• Motivation  

• Long training time

• Cannot adjust to data and workload changes

• Tail latency of worse plans

• The choice of physical operator affects the quality of the plan

• Challenges

• How to enumerate the plan?

• How to study plan latency and choose a high-quality plan?



4 Online Learned Join Order Selection: Bao

146Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• Use operator hint to generate candidate plans.

• Enable/disable hash join,… 

• Use Tree-CNN to predict the latency and guide 

the plan selection.

• Latency prediction

• Encode each plan into a vectorized tree.

• Contextual multi-armed bandits.

• Each hint set is an arm

• Use Thompson sampling to update the 

model parameter.



Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021.

4 Online Learned Join Order Selection: Bao

p Enhance query optimization with minor changes
p E.g., Activate/Deactivate loop join for different queries

p Model Plan Hinter as a Multi-armed Bandit Problem
p Model each hint set HSeti as a query optimizer

p For a query q, it aims to generate optimal plan by

selecting proper hint sets, which is dealed as a regret

minimization problem:
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5 Online Learned Join Order Selection:
SkinnerDB

148Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• Motivation

• Previous works relied on learning from cost models or expert optimizers.

• Previous learning based optimizers need to give training queries and are hard 

to provide good plans to different workload.

• The executor can detect estimation errors during query execution.

• Challenges

• How to design a new working mechanism that allows the optimizer to learn and 

switch between different join orders online.

• How to evaluate and choose different join orders online.



5 Online Learned Join Order Selection:
SkinnerDB

149Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

• Eddies-style

• Divide the execution process into several time slices.

• N way join can support the plan switch.

• Select the plan for the next time slice based on the 

previous time slice

• MCTS For JOS

• Learn and generate a plan in each time slice

• Rely on Customize Database

• Switch plan in low latency



Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019.

Monte Carlo tree search (MCTS).

� Support online reorder with MCTS à

Ø Do not require pre-training
Ø Time Slides: 0.001s

Ø Learn during runtime
Ø Customize Database

Ø Switch Plan in Low Latency

N way join

5 Online Learned Join Order Selection: SkinnerDB

150



p Update execution orders of tuples on the fly
– Update the plan on the fly and preserve the execution state à

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000. 

5 Online Learned Join Order Selection: SkinnerDB

151

• Tuples flows into the Eddy from input relations
(e.g., R, S, T);

• Eddy routes tuples to corresponding operators
(the order is adaptively selected by the
operator costs);

• Eddy sends tuples to the output only when the
tuples have been handled by all the operators.



Learned Join Order Selection
Quality Training

Cost
Adaptive  

(workload)
Adaptive 

(DB Instance)
Learned
Operator Methods

Traditional
[Genetic algorithms] 

[Dynamic Programming]
Low Low High High ✓ Cost model

DQ Medium High Low High ✕ Value-based DRL

ReJoin Medium High Low High ✕ Policy-based DRL

RTOS High High Medium High ✕ Value-based DRL, 
Tree-LSTM

NEO High High Low High ✓ Value-based DRL, 
Tree-CNN

Bao High- Medium High High ✓
CMAB, Thompson 

sampling, Value-based,
Tree-CNN

Skinner-DB High Low High Low ✕ Eddies-style, Value-
based, MCTS
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Learned Join Order Selection: Take-away

• Not easy to be applied in real DBMS
• Open problems

• Low latency plan generation
• Neural networks bring delays that cannot be ignored. How to apply 

learning algorithms to low-latency OLTP services.

• Support complex queries
• Nested queries.

• Learning metrics
• The planned latency will vary with the system state and network delay.
• Some faster plans may consume more resources. For example, use two-

core CPU in parallel to reduce the execution time by 20%.
153



Autonomous Database Systems

Motivation
p Traditional Database Design is laborious

Ø Develop databases based on workload/data features
Ø Some general modules may not work well in all the cases

• Commercial Practices of AI4DB Works
Ø Heavy ML models are hard to implement inside kernel
Ø A uniform training platform is required

• Most AI4DB Works Focus on Single Modules
Ø Local optimum with high training overhead

154



Peloton

p Schedule optimization actions via workload forecasting
Ø Embedded Monitor: Detect the event stream

Ø Workload Forecast Model: Future workload type

Ø Optimization Actions: Tuning, Planning

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017. 155



SageDB

p Customize DB design via learning the Data Distribution

Ø Learn Data Distribution by Learned CDF

Ø Design Components based on the 
learned CDFs

Ø Query optimization and execution
Ø Data layout design
Ø Advanced analytics

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019. 156



openGauss

p Implement, validate, and manage learning-based modules
Ø Learned Optimizer

• Query Rewriter
• Cost/Card Estimator
• Plan Enumerator

Ø Learned Advisor
• Self-Monitoring
• Self-Diagnosis
• Self-Configuration
• Self-Optimization

Ø Model Validation
Ø Data/Model Management

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021. 157



Learned Advisor

158



p Learned Knob Tuning
p Learned Index Advisor

p Learned View Advisor

p Learned Partition Advisor

p Learned Data Generation

Learned Advisors
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p A Constrained Optimization Problem

• Given a suite of knobs B and a target T, knob tuning aims to find the

optimal values of B, so as to meet T for the incoming workload.

p Knobs

• concurrency control, optimizer settings

• memory management, background processes

p Targets

• Performance (throughput, latency)

• Resource Usage (e.g., CPU utilization)

Knob Tuning

160

3. Read Metrics  

1.Request
   Workload

Target DBMS Tuner 

5. Set Knobs

2.Execute 
 Workload

4. Knob Tuning

Workload



Problem Definition: Consider a database with different workloads,
the target is to find the optimal knob settings to meet required
SLA (service-level agreement).

Offline Optimization for Knob Tuning

161

knobs

agent

knobs

Value?
Knob Tuning

Value?

Value?

… …

… …



p Motivation:

p DBMSs have numerous runtime metrics. Classic ML models

cannot efficiently select knobs based on the metrics.

p DBMSs have numerous system knobs with continuous

values, which makes it harder to find optimal knobs.

Offline Optimization for Knob Tuning

162

p DBMSs have different optimal knob settings, which significantly

affect the query performance and resource utilization.



Traditional Knob Tuning Methods

163Yuqing Zhu et al. BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning. In SoCC, 2017. 

p Motivation: Most users only utilize default knob settings and cause
performance regression

p Basic Idea: Greedily select local-optimal knob settings with bound-and-
search algorithm

p Challenge: Optimal settings change with tuning goals and workloads
p Solutions:

Ø Sample Phase: Divide each knob range into k intervals 

and sample k settings that cover all the value ranges 

Ø Search Phase: Select the best sampled setting and 

build search space around the best setting

Random Sampling: Some important settings may not be sampled



p Why heuristics à Machine Learning ?

p A large number of configuration knobs
• Total > 400

• Heuristic Method: waste much time in search

from huge knob space

p Knobs control nearly every aspect and 

have complex correlations
• One-knob-at-a-time is inefficient

• Heuristic: The relations are non-monotonic

p Learn from the historical tuning 
• Heuristic: Restart tuning from scratch each time

164

Learning-based Knob Tuning
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Learning-based Knob Tuning
iTune

OtterTune

Historical
Data

ReIM CGPTuner ResTune

Query
Features 

Empirical
Experience

Pre-trained
Models

CDBTune

QTune

Workload
Features

UDO

Delayed RL
for heavy knobs

DBBert

Tuning
hints from 
manual

Bayesian Optimization Reinforcement Learning

DNN
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Code
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UDO

Resource
Constraint

Deep Learning



p Motivation: Only a few knobs have significant effects to the performance
p Basic Idea: Explore the knob-performance relations by experiments
p Challenge: Identify important knobs and their values efficiently
p Solution:

• Planner: Adaptively sample some knob settings
• Executor: Get the performance of sampled settings by running workloads
• Estimator: Predict knob-performance relations with Gaussian Process
• Termination: Terminate if arriving time limit; otherwise repeat above steps

Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009.
knob-performance relations
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Planner

Executor Estimator
experiments

sampled
settings

knob-performance
relations (GP)Repeat

(1.1) Bayesian Optimization for Knob Tuning



p Motivation: Only a few knobs have significant effects to the performance
p Basic Idea: Explore the knob-performance relations by experiments
p Challenge: Identify important knobs and their values within hours
p Solution:

• Planner: Adaptively sample some knob settings
• Executor: Get the performance of sampled settings by running workloads
• Estimator: Predict knob-performance relations with Gaussian Process
• Termination: Terminate if arriving time limit; otherwise repeat above steps

Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009. 167

p Limitations
p Sampling configurations from scratch is inefficient
p Knob-performance relations are extremely complex
p Important workload features are not utilized

(1.1) Bayesian Optimization for Knob Tuning



Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough Large-scale Machine Learning. SIGMOD, 2017. 

p Data-driven: Optimize tuning performance with numerous historical data
Ø Characterize workloads with runtime metrics (e.g., #-read-page, #-write-page)

Ø Identify important knobs (rank knobs through knob-performance sampling)

Ø Generate workload-to-identified-knob-settings correlations (data repository)

Ø Given a workload, compute a mapped workload via metric similarity, use corresponding 

knob settings to initialize GP, explore more settings to get better performance

168

(1.2) Bayesian Optimization + Historical Data



p Motivation: Expert experience can make learned tuning more robust
• e.g., limit the minimal shard buffer size

p Basic Idea: Utilize expert experience to optimize tuning
p Solution

Ø Empirically compute input features at resource/APP/VM levels

Ø Rely on empirical features to estimate tuning performance
(1) Input: Empirical features, 

Initialized knob values;
(2) Model: Gaussian Process;
(3) Target: Tuning Performance.

x: Tested knob setting
Mi: Code overhead value
mc: Required cache storage
mo: GC settings

e.g., Memory Efficiency:

Mayuresh Kunjir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-based Analytics. SIGMOD 2020. 169

(1.3) Bayesian Optimization + Empirical Experience



p Motivation: Learning-based tuning is hard to migrate to new scenarios
p Basic Idea: Improve migration capability with pre-trained tuning models
p Solution:

• Characterize the common workload features
• Reserved SQL words (e.g., SELECT, DISTINCT)

• Cluster tuning models on historical workloads to generate Base Leaners;
• For a New Task, generate Meta Learner based on the Base Leaners (similarity weight: gi);

• The Meta Learner M is a gaussian process model:

• Fine-tune the Meta Learner by running the new workload;
• Recommend promising knobs with Meta Learner.

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases. SIGMOD, 2021. 170

(1.4) Bayesian Optimization + Pretrained Models

mean value variance



J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases. VLDB 2019.

p Motivation: Expensive to run workloads for evaluating tuning effects
p Basic Idea: Estimate tuning effects without running workloads
p Challenge: Many metrics affect the performance
p Solution:

p Collect DB metrics: [logical-read, QPS, CPU usage, response time];
p Initialize a buffer size using historical workloads with similar metrics;
p Design a neural network to estimate the response time as tuning feedback;
p Greedily reduce the initialized buffer size until arriving safe response time.

171

(2.1) Deep Learning for Knob Tuning



p Motivation: Spark code involves complex semantics, and it is costly 
to migrate tuning models from small datasets to large datasets

p Basic Idea: Restrict the tuning region by predicting the performance
• Knob Sampling: Sample candidate knob settings based on the data and code features;

• Code Instrumentation: Enrich semantic features by adding the Spark API;
• Performance Prediction: Predict the performance with encoded code, data, knob, DAG. 

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022.

(2.2) Deep Learning + Code Encoding

candidate 
knobs
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p Motivation: Spark code involves complex semantics, and it is costly 
to migrate tuning models from small datasets to large datasets

p Basic Idea: Restrict the tuning region by predicting the performance
• Knob Sampling: Sample candidate knob settings based on the data and code features;

• Code Instrumentation: Enrich the code features by adding the Spark API tokens;
• Performance Prediction: Predict the performance with encoded code, data, knob, DAG features;

• Generalization to Big Datasets: When dataset changes, utilize adversarial learning to capture the

domain-invariant features and update the performance model with newly collected samples.

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022. 173

(2.2) Deep Learning + Code Encoding



p Motivation: Traditional methods fall into local optimum

p Basic Idea: Use reinforcement learning (exploration-exploitation)

p Challenge: Map knob tuning into RL

p Solution: DRL

RL CDBTune
Agent The tuning system
Environment DB instance
State Internal metrics
Reward Performance change
Action Knob configuration
Policy Deep neural network
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p Issue1: How to choose an appropriate RL approach

p Challenge: Many continuous runtime metrics and knobs

• Value-based method (DQN)

– Replace the Q-table with a neural network

– Input: state metrics; Output: Q-values for all the actions

• Policy-based method (DDPG)

– (actor) Parameterized policy function:

– (critic) Score specific action and state:

Discrete Action ✕

Continuous State/Action ✓

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 175

(3.1) Reinforcement Learning for Knob Tuning



p Issue2: How to train an RL-based Model (e.g., DDPG)
p Challenge: Optimize the tuning strategy with execution rewards

• Design effective reward function r (current benefit):

• Actor Network Training: Update with the score estimated by the Critic

• Critic Network Training: Update with accumulated long-term benefit:

Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. VLDB 2019. 176

(3.1) Reinforcement Learning for Knob Tuning

Improvement over
default setting

Improvement over
(t-1) setting

à The output of Critic

à Long-term benefit based on the reward



p Limitations in RL-based tuning

p High tuning overhead

p Require DBAs (e.g., decide

the knob ranges)

p Basic Idea: Tuning hints from manual
(1) Collect tuning hints from website

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022.

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑉𝑎𝑙𝑢𝑒 ∗ 𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 [∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡]

Given in Text RAM/Disk/Cores

Extract hints 
from manual
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(3.2) Reinforcement Learning + Tuning Hints



Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022. 178

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑉𝑎𝑙𝑢𝑒 ∗ 𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 [∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡]

(3.2) Reinforcement Learning + Tuning Hints

p Basic Idea: Tuning hints from manual
(2) Apply the tuning hints with the
reinforcement learning model

p Limitations in RL-based tuning

p High tuning overhead

p Require DBAs (e.g., decide

the knob ranges)



Summarization of Learned Knob Tuning

Quality Training Efficiency Training Data Adaptivity

Gaussian Process
(historical data) ✓ -- ✓✓ ✓

Gaussian Process
(+ empirical features) ✓ ✓ ✓ ✓✓

Gaussian Process
(pre-trained models) ✓ ✓ ✓✓ ✓✓

Deep Learning
(resource issues) ✓ ✓ ✓✓ ✓

Deep Learning
(+ code encoding) ✓✓ ✓ ✓✓ ✓✓

Reinforcement Learning
(from scratch) ✓✓ -- No 

Prepared Data ✓

Reinforcement Learning
(+ tuning hints) ✓ -- ✓✓✓ ✓✓
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Take-aways of Knob Tuning
p Gradient-based GP methods reduce the tuning complexity by filtering out

unimporant features. However, it heavily relies on training data, and requires 
other migration techniques to adapt to new scenarios

p Deep learning method considers both query performance and resource
utilization. And they can significantly reduce the tuning overhead.

p Reinforcement learning methods take longest training time, e.g., hours, 
from scratch. It takes minutes to tune the database after well trained and gains
relatively good performance.

p Learning based methods may recommend bad settings when migrated to 
a new workload. Hence, it is vital to validate the tuning performance.

p Open problems:
Ø One tuning model fits multiple databases
Ø Natively integrate empirical knowledge
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p Learned Knob Tuning
p Learned Index Advisor

p Learned View Advisor

p Learned Partition Advisor

p Learned Data Generation

Learned Advisors

181



182

Problem Definition: Given a set of queries W and resource constraint D (e.g., disk
limit), create a collection of indexes so as to optimize the execution of these
queries under the constraint D. à NP-hard

Queries

Create?Index Selection

Create?

Create?

…

…

Candidate Indexes

…

…

Indexes

…

…
Create?

Index Management



Index Management

p Index Benefit Estimation

– The benefit of building an index on a column

p Index Selection

– Column selection

– Index-type selection, e.g., B-tree, Hash, bitmap

p Index Update

– Adding or removing an index



G. Valentin, M. Zuliani, D. C. Zilio, et al. DB2 advisor: An optimizer smart enough to recommend its own indexes. In ICDE 2000.

Heuristic Index Selection
p Motivation: Proper indexes can significantly improve the performance
p Basic Idea: Model index selection as a knapsack problem and

heuristically find the best indexes under disk limit
p Challenge: There are correlations between indexes (e.g., index sizes)
p Solution:

• Model index selection as a knapsack problem
• Item: Candidate index
• Item weight: Index size
• Value: Cost reduced by the index

• Heuristically select the highest-benefit indexes
• Benefit: Cost Reduction / Index Size

by optimizer
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Heuristic Index Selection for Dynamic Workloads
p Motivation: Performance gets unstable for dynamic workloads
p Basic Idea: Split workloads into epochs and finetune indexes for each epoch
p Challenge: Online index update for new queries
p Solution:

• Divide a workload into epochs of queries 
• Generate candidate indexes for each new query

• Index Benefit: average latency reduction for the queries 
within the same epoch

• Benefit Estimation: Estimate the index benefit through 
what-if call (similar queries have similar index benefits)

• Update the index set and statistics
• Create indexes with highest index benefit at each epoch

K. Schnaitter, S. Abiteboul, T. Milo and N. Polyzotis. On-Line Index Selection for Shifting Workloads. In ICDE 2007. 185
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p Why heuristics à learned index selection?
• Indexes are essential for efficient execution

Ø SELECT c_discount from bmsql_customer where c_w_id = 10;

Ø CREATE INDEX on bmsql_customer(c_w_id);

• Find better solutions from numerous candidate indexes
Ø Columns have different access frequencies, data distribution

• Redundant indexes may cause negative effects

Ø Increase maintenance costs for update/delete operations

Learning-based Index Selection
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Learning-based Index Recommendation

Cost Estimator

What-if Calls

Index
Templates

DeepLearning

Plans
with/without Index

Greedy

DB2

Index
Benefits

DBA Bandits

DeepRL

Time-series
Workloads

Benefit Estimation Index Selection

RLAdvisor

Empirical
Rules

Index
Update

Greedy

OnlinIndex

Index Update

RLAdvisor



p Challenge

• The index benefit is hard to evaluate

Ø Multiple evaluation metrics (e.g., index benefit, space cost)

Ø Cost estimation by the optimizer is inaccurate

• Correlations with other components

Ø Multiple column access, data refresh

Ø Conflicts between Indexes

Index Benefit Estimation
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Deep learning for Index Benefit Estimation
p Motivation: Critical to estimate index benefits by comparing execution 

costs of plans with/without created indexes
p Core Idea: Model benefit estimation as an ML classification task
p Challenge: Hard to accurately estimate the index benefits
p Solution:

• Prepare training data
• Query Plans + Costs under different indexes

• Train the classification model
• Input: Two query plans with/without indexes
• Output: 1 denotes performance gains; 0 denotes no gains

• Solve the index selection problem
• Use the model to create indexes with performance gains

Bailu Ding, Sudipto Das, et al. AI meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019. 189



p Challenges

p The index benefit is hard to evaluate
Ø Multiple evaluation metrics (e.g., index benefit, space cost)

Ø Cost estimation by the optimizer is inaccurate

p Index selection is an NP-hard problem

Ø The set of candidate index combinations is huge

p Index update is expensive
Ø Hard to estimate the number of involved pages

190

Learning-based Index Selection



Ø Extract candidate indexes
from query predicates with
empirical rules

Ø Map into Markov Decision Process (MDP)

State: Info of current built indexes

Action: Choose an index to build

Reward: Cost reduction ratio after building the index

discrete action space

large state space

DQN Model

H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020.

p Challenge 1: How to extract candidate indexes?

p Challenge 2: How to choose from candidate indexes?
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p Motivation: Index selection using reinforcement learning

Reinforcement Learning for Index Selection



MCTS for Index Update
p Motivation: Existing methods cannot incrementally update indexes
p Basic Idea: Incrementally add/remove indexes with MCTS
p Challenge: Consider both the read and write queries
p Solution:

• Index Diagnosis (anomaly detection)
• Incremental Index Update (policy tree search)
• Index Benefit Estimation (deep regression)

Xuanhe Zhou, Luyang Liu, et al. AutoIndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022. 192



MCTS for Index Update
p Motivation: Existing methods cannot incrementally update indexes
p Basic Idea: Incrementally add/remove indexes with MCTS
p Challenge: Consider both the read and write queries
p Solution:

Ø Index Problem Diagnosis: Detect whether the performance regression is caused by index issues;
Ø Candidate index extraction: Cluster queries à Map to query templates à Extract candidate indexes;
Ø Incremental Index Update: Initialize a policy tree with existing indexes à Add new candidate indexes;
Ø Index Benefit Estimation: Index Update Costs = seek_tuples * cpu_cost + insert_tuples * cpu_index_tuple_cost

Xuanhe Zhou, Luyang Liu, et al. AutoIndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022. 193



Summarization of Index Management

Optimization 
Targets

Training
Efficiency

Training
Data Adaptive

Deep Learning Accurate 
Estimation high numerous 

data 
query 

changes

Reinforcement 
Learning

High 
Performance

high 
computation 

costs

no prepared 
Data

query 
changes

MCTS
High 

Performance for 
index update

trade-off (costs, 
performance)

a few 
prepared 

data

query 
changes
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Take-aways of Index Advisor

p Learned index estimation is more robust than cost models
p RL-based index selection works takes much time for model

training (cold start); while MCTS can gain similar performance
and better interpretability (or regret bounds)

p Learned estimation models need to be trained periodically
for data or workload update

p Open problems:
Ø Benefit prediction for future workload
Ø Cost for future updates
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p Learned Knob Tuning
p Learned Index Advisor

p Learned View Advisor

p Learned Partition Advisor

p Learned Data Generation

Learned Advisors

196



View Management

pView Benefit Estimation

– The benefit of building a materialized view (MV) for a
subquery

pView Selection

– Which subquery to create an MV

pView Update/Refresh

– Adding or removing an MV
197



View Selection
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Problem Definition: Given a workload Q and a space budget, select optimal
subqueries to materialize (MVs), including (i) MV benefit estimation; (ii) MV
Selection; (iii) MV update; (iv) MV rewrite.

Queries

MV?View Selection

MV?

MV?

…

…

Views

…

…

Views

…

…
MV?



p Materialized Views (MVs) can optimize queries
• Share common subqueries 

p Space-for-time trade-off principle
• Materialize hot data (MVs) within limited space

• How to estimate the MV utilities

p The number of potential MVs grows exponentially

• Greedy/Genetic/other-heuristics work bad

View Selection
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Traditional View Selection Methods
• Given a workload, select and maintain materialized views that minimize the 

total latency within a limited materialized view storage space (NP-hard).

• Traditional Methods

• Greedy: WATCHMAN, DynaMat, CloudViews

• Genetic: EA, Hybrid-GHCA

• Coral Reefs Optimization Algorithm: CROMVS

• Backtracking Search Optimization  Algorithm: BSAMVS-penalty

• Integer Linear Programming: BIGSUBS, HAWC
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• Limitations of Traditional Methods
• View’s benefit estimation. Not accurate.

• Traditional models is not accurate for view benefit/multiple view benefit 
estimation.

• Hard to estimate materialized view update cost.
• View selection. Not generalizable.

• Designed and work well for specific scenarios or workloads.
• Rely on assumptions that are not always right

• View update. Long Delay.
• Based on accumulated benefits and creation cost of views.
• Hard to estimate the a view’s future benefit and recreation cost.
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Learned View Management
• Motivation

• Estimate view benefit accurately.

• Learned based methods from real runtime statistics.
(Also verified in learned cardinality and learned join order selection)

• Generalizable on different workloads.

• Learns from historical workloads and learns directly from the view 
selection performance without human experience.

• Predict views’ future benefit.

• Learns from historical MV utilization and predict future benefit and 
update cost.
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Learned View Management
• Challenges

• View and query need to be encoded for neural networks.

• New models need to be designed for view benefit estimation.

• View selection models should be efficient and flexible.

• Optimization Goals

• View Quality

• Model Adaptivity

• Support view update
203



Learned View Management
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AutoView

RLView ECSE

Heuristic

RL view selection

RNN view estimation

Learned View refresh



Learned View Estimation: AutoView
• Motivation

• Estimate views’ benefit more accurately.
• Support variable number of views in RL for view selection.

• Challenges
• Views have different benefits on queries in workload.
• Hard to extend state representation after model training.
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Learned View Estimation: AutoView

• Estimate the query-view benefits with encoder-reducer model:
• Two LSTM network for query and views, which captures query-MV 

correlations with attention.

• Select optimal query-view combinations with reinforcement 
learning iteratively.
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Benefit, etc. Hidden State

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.



Learned View Estimation: AutoView
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p Feature Extraction
• Previous work take candidate views as fixed length à

• Encode various number and length of queries and views with an
encoder-reducer model, which captures correlations with attention

p Model Construction
• It is hard to jointly consider

MVs with conflicts à

• (1) Split the problem into sub-
steps that select one MV;

• (2) Use attention-based model
to estimate the MV benefit

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.



Learned View Selection: RLView
• Motivation

• RL performs well on combinatorial optimization problem.
• Challenges

• How to solve view selection problem in RL framework.
• Solutions

• Cluster equivalent queries and select the 
least overhead ones as the candidate;
• Represent MVs as a fixed-length 
state vector and solve with DQN model;
• Estimate the MV benefits with DNN.

208H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning and reinforcement learning. In ICDE, 2020.



Learned View Update: ECSE
• Motivation

• Support MV refresh.

• Challenges
• Hard to estimate refresh benefit/cost from historical 

workload.

• Solutions
• Traditional view generation, estimation, and selection；
• Use a neural network model to predict future DML 

operations and MV usage for scheduling the refresh.
• Use linear regression to estimate MV refresh time with 

• MV size, refresh method, affected number of rows, 
• previous refreshes time.

209Ahmed, R., Bello, R., Witkowski, A. Kumar. Automated generation of materialized views in Oracle. VLDB 2020.



Learned View Management: Comparison
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Method View 
Quality Adaptability View 

Update
View 

Estimation
View 

Selection
View 

Update
RLView Medium Low No Learned Learned -

AutoView High High No Learned Learned -
ECSE Medium Medium Yes Heuristic Heuristic Learned



Learned View Advisor: Take-away
• Learned view selection gains higher performance than heuristics 

• Learned view selection works well for read workloads

• Learned view benefit estimation is more accurate than traditional empirical 

methods

• Learned view benefit estimation is accurate for multiple-view optimization

• Open Problems:

• Learned MV update/refresh

• Learned MV rewrite

211



p Learned Knob Tuning
p Learned Index Advisor

p Learned View Advisor

p Learned Partition Advisor

p Learned Data Generation

Learned Advisors
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Database Partition

213

Problem Definition: Given tables {𝑇1, 𝑇2, … , 𝑇𝑚} and a partition function 𝐹, database
partition selects columns for each table 𝑇𝑖 as the partition key, and allocate the tuples
in 𝑇𝑖 into partitions using 𝐹, such that the workload performance is optimal.



p Motivation
Ø Reduce the network costs by judiciously partitioning tables

p Core Idea
Ø Heuristically co-partition (the tuples of the referenced table are on

the same node of referencing table) tables by foreign-key relations
p Challenge

Ø It is hard to find a suitable partitioning scheme (for many tables
with join correlations) that maximizes data locality.

Ø There can be different partition schemes. How to merge them so as
to reduce the data redundancy caused by co-partitioning.

214Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015.

Heuristic Database Partition for OLAP Workloads



Heuristic Database Partition for OLAP Workloads
Ø Represent the specific dataset schema à Build a graph mode

Ø Initialize a graph model G,
ØNodes: tables, Edges: foreign keys, Edge weight: the size of smaller table connected to the edge

Ø Improve data locality (reduce network costs) à Partition by join predicates
Ø REF partitioning: a table is co-partitioned by the join predicate that refers to another table;
Ø Utilize maximum spanning tree to extract subsets of edges (a partition strategy) that (1)

partition all the tables and (2) maximize the data locality.
Ø Full data locality may introduce duplicate tuples à Merge duplicated partitions

Ø Utilize dynamic programming to merge candidate partition strategies so as to find the one
with minimal data redundancy.

215Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015.

Improve Data Locality Reduce Data Redundancy



Traditional Database Partition
p Motivation: Partition on join columns can significantly reduce the network communication

and reduce execution costs
p Core Idea: Combine exact and heuristic algorithms to find good partition strategies for

different workloads
p Challenge: Picking join columns as partition keys is NP-complete
p Solution

• Build a Join Multi-Graph

• Vertices are tables, Edges denote join relations

• Partition with hybrid partitioning algorithms

• Exact algorithm: Assume each table only uses a column;

and turn into an integer programming problem;

• Heuristic algorithm: Select the table columns with largest edge weights

216P. Parchas, et al. Fast and Effective Distribution-Key Recommendation for Amazon Redshift. Proc. VLDB Endow, 2020.



p Motivation:
Ø Consider both the data balance & access efficiency

• Place partitions on different nodes to speedup queries

• Trade-off based on workload and data features

Ø Combine ML to optimize the NP optimization problem

• Combinatorial problem: 61 TPC-H columns, 145 query 

relations, 2.3 x 1018 candidate combinations

Learning-based Database Partition
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Reinforcement Learning for Database Partition

p Motivation: OLAP Workloads contain complex and recursive queries
p Core Idea: Explore column combinations as partition keys with RL
p Challenge: Characterize partition features; Migrate to new workloads
p Solution

• Extract partition features as a vector

• [tables, query frequencies, foreign keys]

• Use DQN to partition the tables for a workload
• Iteratively partition tables by long-term reward

• Support new workloads with trained models
• Train a cluster of DQN models on typical workloads;
• Pick models whose workloads are similar to the new workload to partition tables.

218Benjamin Hilprecht, Carsten Binnig, Uwe Röhm. Towards learning a partitioning advisor with deep reinforcement learning. SIGMOD 2019.



Takeaways of Database Partition

p Learned key-selection partition outperforms heuristic partition

under complex workloads (e.g., with multiple joins)

p Learned key-selection partition has much higher partitioning 

latency (e.g., data collection, model training)

p Open Problems: 

ØAdaptive partition for relational databases

ØPartition quality prediction

ØImprove partition availability with replicates
219



p Learned Knob Tuning
p Learned Index Advisor

p Learned View Advisor

p Learned Partition Advisor

p Learned Data Generation

Learned Advisors
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Automatic Query Generation

221

p Motivation
• Companies generally will not release their data and queries 

(out of privacy issues);

• It is vital to generate synthetical workloads (in replace of real

workloads), and release the synthetical workloads to the public

to train the ML models



Automatic Query Generation
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Ø How to generate queries that meet legality, diversity, and representative?

Definiation：Given a scheme and constraints (e.g., cost/ cardinality ranges), we generate k 
SQL queries which can (i) legally execute in the databse and (ii) meet the constraints.

Example：Generate 1000 TPC-H SQLs whose cardinality equals 1000.

Ø Challenges & Solutions：

p It is hard to predict the performance of 
generated SQLs, i.e., whether they meet 
the constraints；

p It is hard to generate diverse SQLs；

p Grammar and syntax constraints need to 
be considered to generate legal queries；

p Construct a LSTM-based critic to predict 
the long-term benefits of any intermediate 
queries; utilize actor to explore new tokens；

p Construct a probablistics model to ensure 
the diversity of generated queries；

p Construct a FSM to prune illegal tokens for 
current intermediate queries；

RL

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.



Automatic Query Generation
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Ø SQL Grammar：

• FSM

Query Legality
Ø Semantic Checks：
① Join Relation

② Type Checking

③ Operand Restriction

PARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PART PARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PARTPARTSUPP

NATION

CUSTOMER
SUPPLIER

ORDERS

LIMEITEM

REGION

PART

• Aggregation: Aggregate Function

• Predicate: WHERE caluse, HAVING clause
Advantage：

ü Easy to add new grammar

ü Customize SQL queries
• “ people_name =  China ” X

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.



Automatic Training Data Generation

p It is challenging to obtain suitable datasets
Ø Training data is rarely available in public
Ø It is time-consuming to manually generate samples (e.g., over 6 months 

for 10,000 jobs with 1T data)

224

Motivation
p Machine learning is widely adopted in database components

p It is hard to measure the dataset quality
Ø The size of training data
Ø The quality of extracted features 
Ø The availability of valuable ground-truth labels



p Challenges in existing workload generators (TPC-H, sqlsmith)
Ø Limited SQL templates; while real queries have various structures;
Ø Fail to label the SQL queries (e.g, cost, execution time)

p Core Idea: Reduce the labeling time by generating many query jobs and
estimating the job latency
Ø SQL Sampling

ØA few real SQL queries + sample data;

Ø Plan Synthesis
ØGenerate abstract plans from the real SQLs;

ØCollect statistics, e.g., distribution of the longest plan paths;

ØGenerate job by imitating the structures/patterns of the plans,
Ø E.g., for join operator, they select the operator (Group by) as the

child node with the max possibility (the transition matrix )

225Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.



p Challenges in existing workload generators (TPC-H, sqlsmith)
Ø Limited SQL templates; while real queries have various structures;
Ø Fail to label the SQL queries (e.g, cost, execution time)

p Core Idea: Reduce the labeling time by generating many query jobs and
estimating the job latency
Ø SQL Sampling

Ø A few real SQL queries + sample data;

Ø Plan Synthesis

Ø Label Forecasting
ØSample and execute jobs à Get the real latency (labels)

ØBuild an estimator à Evaluate the latency and uncertainty

of the unexecuted jobs

Ø Incrementally sample jobs à Reduce the uncertainty
Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021. 226



Takeaways of Learned Generator

p Generated queries or performance labels are useful to test 

database functions

p Sometimes most real queries have similar structures and 

may not be effective as generated queries

p Open Problems: 

Ø Semantic-aware query generation

Ø Low overhead query generation

227



Learned Prediction

228



• Concurrency Control is Challenging
Ø #-CPU Cores Increase

229

• Transaction Management Tasks
Ø Transaction Prediction
Ø Transaction Scheduling

• Effective Scheduling can Improve the Performance
Ø Minimize conflicts between transactions

p Motivation

Prediction Problems



Learned Workload Prediction
p Predict the future trend of different workloads

Ø Pre-Processor identifies query templates and the arrival-rate  from the workload;

Ø Clusterer combines templates with similar arrival rate patterns

Ø Forecaster utilizes ML models to predict arrival rate in each cluster

230Lin Ma, Dana Van Aken, and et al.  Query-based Workload Forecasting for Self-Driving Database Systems. In SIGMOD, 2018.



Learned Workload Scheduling

p Learn to schedule queries to minimize disk access requests

231Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. In VLDB, 2020.

Ø Collect requested data blocks 
(buffer hit) from the buffer pool: 

Ø State Features: buffer pool size, 
data block requests, ;

Ø Schedule Queries to optimize 
global performance with Q-learning



Learned Index
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Basic Idea of Learned Index
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p Model the cumulative distribution function(CDF) of the data to 
predict the location as:

𝒑 = 𝑭(𝑲𝒆𝒚) ∗ 𝑵

p Data sampling → Training CDF → Predict approximate location → 
Search precise location

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD, 2018.



Why Learned Index

p Limitations in Traditional Index 
Ø Unaware of data features
Ø Trade-off between Space and Access Efficiency

234

Motivation
p Indexes are essential for database system

Ø Indexes significantly speed up query process
Ø Take up unignorable memory in huge data-scale situation

p Advantages of Learned Index
ØSpace efficient, only store several parameters
ØHighly parallel, adapt to modern hardware like GPU and TPU



Learned Index: Formulation
pProblem Formulation

– Given a set of key-value pairs, index is a data structure that 
improves the speed of data retrieval operations such as: lookup the 
value of the key, range query, nearest neighbor query, etc.

pTraditional Methods
– B-Tree, ART, R-Tree,…

pLimitations
– Unaware of data and workload distribution

– Trade-off between space and access efficiency
235



Learned Index: Challanges
pAdvantages

– Space efficient, only store several parameters

– Faster access if the model fit well, predict the position

pChallenges
– Support update, concurrency, and persistency

pOptimization Goals
– Higher throughput

– Less space

– Robustness
236



Learned Index: Lineage
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Learned Index: RMI

238

p Motivation: indexes are models
p Challenge: difficult for the “last mile” to reduce error

p Range index: approximate location as 𝑝 = 𝐶𝐷𝐹(𝐾𝑒𝑦) ∗ 𝑁, model by 
hierarchy of simple neural networks, search precise location within 
error-bounded range

p Hash index: CDF as hash function to reduce conflict

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD 2018



Updatable Learned Index: ALEX
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p Linear model, only exponential 
search in data nodes

p Use gapped array layout in 
data nodes to accelerate insert

p Cost model: predict latency of 
lookup and insert, expand/split 
data node if slower than a 
threshold (e.g. 1.5× that at 
creation)

Ding, J., Minhas, U. F., Yu, J., et al. ALEX: An Updatable Adaptive Learned Index. SIGMOD 2020

p Motivation: support update
p Challenge: adaptive to dynamic data distribution



Persistent Learned Index: APEX
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p Motivation: NVM-optimized ALEX
p Challenge: lower write bandwidth, 

crash consistency
Ø Reduce write: linear model in data 

node as hash function, collision solved 
by sequential scan and chaining

Ø Concurrency: reader-writer lock for 
inner node, fine-grained optimistic lock 
for data nodes’ non-structural update

Ø Crash recovery: nodes out-of-place 
expand/split, undo-log before new 
node prepared, redo-log after

Lu, B., Ding, J., Lo, E., et al. APEX: A High-Performance Learned Index on Persistent Memory. VLDB 2022



Updatable Learned Index: PGM

241

• Piecewise Geometric Model index (PGM-index) 
• I/O-optimally the predecessor search problem while taking succinct space 
• adaptive not only to the key distribution but also to the query distribution

FERRAGINA P, VINCIGUERRA G. The PGM-index: A fully-dynamic compressed learned index with provable worst-case bounds. VLDB 2020 

p Motivation: support update, fully-dynamic
p Challenge: adaptive to dynamic data distribution



Concurrent Learned Index: XIndex

242

• Two write types: in-place update, 
insert into buffer

• Two-phase compaction to 
preserve effect of update: 

• first merge pointers to group’s data 
and buffer

• then copy the value
• Similar design for the hash index, 

similar two-phase resize

Wang, Z., Chen, H., Wang, Y., et al. The Concurrent Learned Indexes for Multicore Data Storage. ACM Transactions on Storage 2022

p Motivation: handle concurrent write
p Challenge: update in-place with a non-blocking scheme

Tree

Hash



Multi-D Learned Index: Flood
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• Variant of grid index, cells sorted by 1st, 2nd, … column; within cell, points 
sorted by the last column

• Gradient descent to find the optimal number of segments for each column using 
sample of dataset and workload

• Use RMI to learn CDF of each column to even out segments and predict 
position

Nathan, V., Ding, J., Alizadeh, M., et al. Learning multi-dimensional indexes. SIGMOD 2020

p Motivation: multi-dimensional in-memory read-optimized
p Challenge: optimize for data and query distribution



Learned Index Generation: GENE

244Dittrich, J., Nix, J., & Schön, C. The next 50 Years in Database Indexing or: The Case for Automatically Generated Index Structures.. VLDB 2022

p Motivation: self-design indexes
p Challenge: generalize to a genetic index framework
p Genetic Algorithm

– Node framework: child mapping, data, data layout and search method
– Population: a set of indexes (e.g. initially a single node)
– Mutations: change particular node’s implementation, or merge/split 

nodes horizontally and vertically
– Fitness function: optimize indexes for the runtime given workload



Learned Index: Comparison
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Learned index Model Update Concurrency Persistency
RMI simple NN no no no

ALEX linear yes no no
Flood simple NN no no no

XIndex simple NN, linear yes yes no
APEX linear yes yes yes
GENE any function no no no



Learned Index: Take-away
pThough some research has already verified the benefit of learned index, 

performance in industrial workloads still needs to be studied, especially in 
update distribution-drift and multi-dimension situation. 

pOpen problems
– Types of ML models to use

– More efficiently support update, concurrency, persistency

– Robustness: more adaptive to update distribution drift

– Self-design: learn faster, or amortize learning cost

– Make learned index applicable to industrial database systems
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Learned Data Layout

p It is challenging to partition data into data blocks
Ø Numerous ways to assign records into blocks

Traditional: assign by arrival time; hash/range parititon

247

Motivation

p To reduce the #-data read from disk
Ø Split data into data blocks (main-memory, secondary storage)
Ø in-memory min-max index for each block



Learned Data Layout (Qd-tree)
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p Qd-tree: Learning Branch Predicates
Ø Root Node: The whole data space
Ø Other Nodes: A part of the whole space

Example Qd-tree
p Approach

Ø Constructor: Construct a 
Qd-tree based on the 
workload and dataset 
(greedy/RL)

Ø Query Router: Route access 
requests based on the 
constructed qd-tree

Zongheng Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. SIGMOD, 2020.



Learned Data Layout: Join Predicates
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p Motivaiton 
Ø Traditonal: either provide rare data skipping (zone maps), 

or require careful manual designs (Z-order)
Ø Qd-tree: only optimize singe-table layouts 

Jialin Ding, et al. Iinstance-Optimized Data Layouts for Cloud Analytics Workloads. SIGMOD, 2021.

p Qd-Trees for the whole datasets
Ø Step#1: Learn Qd-tree for each table ;

Ø Extract simple predicates;
Ø Create join-induced predicates;
Ø Induce relevant tuples based on 
the simple&join-induced predicates

Ø Step#2: Skip useless blocks 
Based on the qd-trees



Take-aways of Learned Data Designer

pLearned index opens up a novel idea to replace traditional index, and show good 

performance in small datasets.

pLearned index uses machine learning technology, which provides probability of 

combining new hardware like NVM with database system in future.

p Though some research has already verified the benefit of learned index, 

performance in industrial level data scale still needs to be studied, especially in 

updatable and multi-dimension situation. 

pOpen problems

Ø Persistent, Update, Concurrency Control, Recovery
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Learned E2E System
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Autonomous Database Systems

p Traditional Database Design is laborious
Ø Develop databases based on workload/data features
Ø Some general modules may not work well in all the cases

252

Motivation

pCommercial Practices of AI4DB Works
Ø Heavy ML models are hard to implement inside kernel
Ø A uniform training platform is required

p Most AI4DB Works Focus on Single Modules
Ø Local optimum with high training overhead



Peloton

p Schedule optimization actions via workload forecasting

253

Ø Embedded Monitor: Detect the event stream

Ø Workload Forecast Model: Future workload type

Ø Optimization Actions: Tuning, Planning

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017.



SageDB

p Customize DB design via learning the Data Distribution

254

Ø Learn Data Distribution by Learned CDF

Ø Design Components based on the 
learned CDFs

Ø Query optimization and execution
Ø Data layout design
Ø Advanced analytics

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019.



openGauss

p Implement, validate, and manage learning-based modules

255

Ø Learned Optimizer
• Query Rewriter
• Cost/Card Estimator
• Plan Enumerator

Ø Learned Advisor
• Self-Monitoring
• Self-Diagnosis
• Self-Configuration
• Self-Optimization

Ø Model Validation
Ø Data/Model Management

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021.



Open Problems
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Future Works: Adaptability

l Significant data changes

l Migration from small datasets to large datasets

l Completely new instances

l New dataset, workload, and SLA requirements; 

l Incremental DB module update

l Learned knob tuner for hardware upgrade, learned optimizer for dynamic 

workloads.
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Future Works: Optimization Overhead

l Cold-Start Problems

l Across datasets / instances / hardware / database types

l Lightweight in-kernel components

l Efficient ML models; rare-data/compute-dependency; 

l Online Optimization 

l Workload execution overhead

l Model training overhead
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Future Works: Small Training Data

l Few Training Samples

l Few-shot learning

l Knowledge + Data-driven

l Summarize (interpretable) experience from data 

l Pre-Trained Model

l Train a model for multiple scenarios
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p Model Validation

Ø Whether a model is effective?

Ø Whether a model outperforms existing ones?

Ø Whether a model can adapt to new scenarios?

Future Works: Validate Learning-based Models
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Future Works: Complex Scenarios

l Hybrid Workloads

l HTAP, dynamic streaming tasks

l Distributed Databases

l Distributed plan optimization 

l Cloud Databases
l Dynamic environment, serverless optimization
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Future Works: SLA Improvement

l Optimize databases under noisy scenarios

l Training Data Cleaning, Model Robust

l Optimize for extremely complex queries (e.g., nested queries)

l Adaptive cardinality estimation à efficient query plan

l Optimize for OLTP queries

l Multiple query optimization
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p High Adaptability

Ø Workloads: query operators; plan structures; underlying data access

Ø Datasets: tables; columns; data distribution; indexes / views; data updates

Ø DB Instances: state metrics (DB, resource utilization): hardware 

configurations

Ø DBMSs: MySQL; PostgreSQL; MongoDB; Spark

p Possible Solutions: common knowledge extraction; meta 

learning

263

Future Works: One Model Fits Various Scenarios



p Automatic Database Assembling
Ø Automatically select ML models/algorithms for different tasks
Ø Evaluate the overall performance

Database Assembling The Stack of ML Algorithms 

Category Method

Supervised
Learning

Linear Regression
Logistic Regression
Decision Tree
Deep Learning

Unsupervise
d Learning

K-Means Clustering
Association Rules
Reinforcement Learning

Descriptive
Statistics

Count-Min Sketch
Data Profiling

264

Future Works: Automatic Learned Model Selection



p Arrange Multiple Database Optimization Tasks
p Multiple Requirements: (1) Optimizer can produce good plans with not very

accurate estimator; (2) Creating indexes may incur the change of optimal knobs

p Hybrid Scheduling: Arrange different optimization tasks based on the database
configuration and workload characters

p Optimization Overhead: Achieve maximum optimization without competing
resources with user processes

ü Challenges: various task features; correlations between tasks; trend changes

265

Future Works: Unified Database Optimization



Thanks
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Machine Learing for Databases
Empirical Methods

Heuristic Search/Rules e.g., knob tuning
Dynamic Programming e.g., Index Selection

Maximum Spanning Tree e.g., Database Partition

Supervised ML

Gaussian Process e.g., knob tuning
Bayesian Optimization e.g., knob tuning

CNN e.g., card Estimation
Tree-based Ensemble e.g., card Estimation

Kernel Density Estimation e.g., card Estimation
Uniform Mixture Model e.g., card Estimation

Causal Model e.g., System Diagnosis
Clustering Algorithns e.g., System Diagnosis

Annotated Plan Graph e.g., System Diagnosis

Dense Neural Network e.g., knob tuning, view selection, index selection, lesarned lndex, 
transactions, query latency prediction

Encoder-Decoder e.g., view selection
Tree-LSTM e.g., Cost estimation, plan enumerator

Graph Neural Network e.g., workload performance prediction

Unsupervised ML AutoRegressive e.g., card Estimation
Sum-Product Network e.g., card estimation

Semi-supervised ML Meta Learning e.g., knob tuning
Pre-Training Network e.g., query encoding

(Deep) Reinforcement
Learning

DDPG e.g., knob tuning
DQN e.g., view selection, index selection, plan enumerator

Q-learning e.g., view Selection , database partition, transactions
MCTS e.g., plan enumerator
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Summarization of AI4DB Techniques
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ML Method Description Example DB Tasks

Gradient-based
Methods

Approximate the data 
distribution with gaussian 
functions, and select the 

optimal point by the guidance 
of gradients

Knob Tuning; Cardinality 
Estimation

Contextual Multi-
armed Bandit

Maximize the reward by 
repeatedly selecting from a 

fixed number of arms
Plan Hint; Knob Tuning; MV 
Selection; Index Selection; 
Database Partition; Join Order 
Selection; Workload ScheduleDeep Reinforcement

Learning

Learn the selection (actor) or 
estimation (critic) policy with 

neural networks

Monte Carlo Tree
Search

Repeated iterations of four 
steps (selection, expansion, 

simulation, back-propagation) 
until termination

Query Rewrite; Online Join Order 
Selection

ML Models for Optimization Problems
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ML Method Description Example DB Tasks

Statistical ML
Build a regression model to 

approximate real 
distribution based on 

sampled data

Cardinality Estimation; Trend
Prediction

Sum-Product Network
Learn distributions with

Sum for different filters and 
Product for different joins

Cardinality Estimation

Deep Learning (e.g.,
DNN, CNN, RNN)

Learn the mapping relations
from the input features to

the targets by graident
descent

Knob Tuning; Cardinality Estimation;
Cost Estimation

ML Models for Regression Problems
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ML Method Description Example DB Tasks

Generative Model (e.g.,
Encoder-Decoder)

Encode varied-length input
features into fixed-length

vector with mechanisms like
multi-head attention

MV Selection

Graph Convolutional
Network

Encode graph-structured
input features with

convolutions on the vertex
features and their K-hop

neighbor vertices

Query Latency Prediction

Meta Learning

Use the base models to form
the target model based on
the task similarity and the
prediction accuracy during

usage

Knob Tuning

ML Models for Others
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Classical ML Methods
p Techniques

• Gradient methods (e.g., GP); Regression methods (e.g., tree-

ensembling, kernel-density estimation)

p Advantages
• Lightweight; Easier to interpret than DL

p Disadvantages
• Hard to extend to large data; Complex feature engineering

p ML4DB Applications
• Knob Tuning; Cardinality Estimation
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Classical ML Methods: Challenges
p How to apply to a new problem?

• Problem Modelling: As a regression or gradient-based

optimization problems

• Feature Engineering: Determine the input with feature
engineering techniques

• Model Construction: Select proper classic ML models, collect

sample data, and learn the mapping relations
• Additional Requirements: Reuse classic ML models in limited

scenarios (e.g., similar workloads)
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Classical ML Methods

Feature Engineering Model Selection
Knob

Tuning
• Reduce the knob space with

linear regression like Lasso;
• Reduce redundant metrics

with factor analysis and
clustering like k-means;

• Gaussian Process: Search local-
optimal settings within the selected
knob space

• Reuse the historical data by matching
workloads by their metric values

Cardinality
Estimation

• Assumptions like column
independency or linear
relations between columns

• Determine supported queries
like range queries

• Query-based: Define input space as
conjunction of the query ranges on
data columns (Tree-Ensemble)

• Data-based: Partition data into
indpendent regions (Sum-Product) or
learn column correlations (AR)
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p Techniques
• Model-based (e.g.,, MCTS+DL);

• Model-free (e.g., value-based like Q-learning, policy-based like DDPG)

p Advantages
• High performance on large search space; No prepared data

p Disadvantages
• Long exploration time; Hard to migration to new scenarios

p ML4DB Applications
• Knob Tuning, View/Index/Partition-key Selection, Optimizer, Workload

Scheduling

Reinforcement Learning Methods
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p How to apply to a new problem?
p Problem Modelling: Map to the 6 factors in a RL model

(state, action, reward, policy, agent, environment)

p Feature Characterization: Select target-related features as the
state of the RL problem

p Model Construction: Select proper RL models (e.g., MCTS,

DQN, DDPG), design the networks and the reward function
p Additional Requirements: E.g., encode the query costs with

Deep Learning; encode the join relations with GNN

Reinforcement Learning Methods: Challenges
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Input Features RL Method Reward Design Estimation Model

Knob
Tuning

• Knobs Values
• Innter Metrics
• Workloads

• DDPG for both
continuous
state and
continuous
actions

• Performance
improvements
over last tuning
action

• Performance
improvements
over first tuning
action

• Design a dense
network as the
estimation (critic)
model

Reinforcement Learning Methods
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Input Features RL Method Reward Design Estimation Model
View

Selection
• Candidate Views
• Built Views
• Workload

• DQN for
continuous
state and
discrete
actions

• Utility increase
on creating the
views

• Encoder-decoder
for inputs;
Nonlinear layers
for utility
estimation

Index
Selection

• Candidate
Indexes

• Built indexes
• Workload

• Utility increase
on creating the
indexes

• Design a dense
network as the
estimation model

Partiton-
key

Selection

• Columns
• Tables
• Query templates

• Estimated costs
beofore/after
partitioning

• Design a dense
network as the
estimation model

Reinforcement Learning Methods
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Input Features RL Method Reward Design Estimation Model
Query

Rewrite
• Logical Query
• Rewrite Rules
• Table Schema

• MCTS for
tree search

• Utility increase
for future
optimal queries

• Multi-head
attention for
rules, query, data

Join
Order

Selection

• Physical Plan
• Candidate

Joins
• Table Schema

• DQN for
continuous
state and
discrete
actions

• Saved costs • Design a dense
network as the
estimation model

Plan
Hinter

• Physical Plan
• Hint Sets

• Contextual
Multi-armed
for limited
actions

• Saved costs • Traditional
Optimizer

Reinforcement Learning Methods
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p Techniques
• Dense Layer ((non)-linear); Convolutional Layer; Graph

Embedding Layer; Recurrent Layer

p Advantages
• Approximate the high-dimension relations

p Disadvantages
• Data-consuming

p ML4DB Applications
• Cost Estimation; Benefit Estimation; Latency Estimation

Deep Learning Methods
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p How to apply to a new problem?
p Input Features: Select features that affect the estimation

targets (e.g., latency, utility)

p Encoding Strategy: Encode based on the feature structures
(e.g., Graph embedding for query relations)

p Model Design: Design the network structures (e.g., layers,

activation functions, loss functions) based on the input
embedding (e.g., fixed-length or varied-length)

Deep Learning Methods: Challenges
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Deep Learning Methods
Input Features Feature Encoding Model Design

Cost
Estimation

• Physical Plan • Encode operators
with LSTM

• Plan-structured
Neural Network

Benefit
Estimation

• Physical Plan
• Optimization

Actions (e.g.,
views. indexes)

• Encode actions
like Encoder-
Decoder for Views
and linear layer for
Indexes

• Design a dense
network as the
estimation model

Latency
Estimation

• Physical Plan
• Query Relations
• DB State

• Encoder query
correlations with
graph covolutions

• Design a K-layer
graph embedding
network for K-hop
neighbors


