Artificial Intelligence Meets Database

Guoliang Li

Tsinghua University

-
O
=
©
2
wd
O
=

Artificial Intelligence Meets Database .-
Al4DB DB4AI R S

. Declarative Language Model @
Manual - Automatic Al - as easy as DB

Al for DB DB for Al
O Self-optimization O Declarative Al

Knob Tuning

O Self-configuration O Al optimization e

Operator Selection
View Advisor

O Self-monitoring OO0 Data governance SOL Rewiter Exccution Acceleration
O Self-healing O Model management Dt Gl
D Self-secu rity D AI+DB hybrid mOdeI ardinality Estimation eature Selection

Cost Estimation Model Selection

D Self-design D A|+DB hybrid infe rence Join Order Selection Model Management

End-to-end Optimizer

Hardware Acceleration

Database Design Data Governance for AL

Data Discovery

N AlI4DB

Learned Indexes

Data Cleaning
Learned Data Structures
Data Labeling

Transaction Management Data Lineage

Database Monitoring Database Security

Health Activity Performance Data Access SQL
Monitor Monitor Prediction Discovery Control Injection

DB4AI4

o

database development

...

...

RN N A N A R A R A A R A A A R R A A R R AR R R AR AR AR A R AR AR AR AR AR AN AN AN EEEAREEEEEEERSEEEEEEEEEEEEEEEEREEL

..

transactions

tbig data | High Scalabilty; ACID

..

RN N A N A R A R A A R A A A R R A A R R AR R R AR AR AR A R AR AR AR AR AR AN AN AN EEEAREEEEEEERSEEEEEEEEEEEEEEEEREEL

Cost Saving

(resource,
DBAs, ***)
~—
a
Adaptivity High SLAs
(applications, (throughput,
hardware, latency, scalability, =)

data, query, ***)

Learned Database

® Cost Saving: Manual - Autonomous
® Auto Knob Tuner: | Maintenance cost

® Auto Index Advisor: | Optimization latency

® High SLAs: Heuristic - Intelligent

® [ntelligent Optimizer: | Query plan costs
® [ntelligent Scheduler: 1 Workload performance

® Adaptivity: Empirical - Data-Driven
® Learned Index: 1 Data access efficiency
® | earned Layout: 1 Data manipulation efficiency

Cost Saving
(resource,
DBAs,)

Adaptivity High SLAs
(applications, (throughput,
hardware, latency, scalability,)
data, query, ***)

Learned Database

® Cost Saving: Manual - Autonomous

® Auto Knob Tuner: | Maintenance cost
® Auto Index Advisor: | Optimization latency

® High SLAs: Heuristic - Intelligent

® [ntelligent Optimizer: | Query plan costs
® [ntelligent Scheduler: 1 Workload performance

® Adaptivity: Empirical - Data-Driven
® Learned Index: 1 Data access efficiency
® | earned Layout: 1 Data manipulation efficiency

New Opportunities: Why Now?

On-Premise
->Cloud

(maintenance,
setting, ")

Experience . Heuristic 2>
Data-driven Intelligent

(various applications, (database design,
hardware, data, data layout)
query, **)

Learned Database

® Cost Saving: Manual - Autonomous

® Auto Knob Tuner:
® Auto Index Advisor: | Optimization latency

| Maintenance cost

® High SLAs: Heuristic - Intelligent

® [ntelligent Optimizer: | Query plan costs
® [ntelligent Scheduler: 1 Workload performance

® Adaptivity: Empirical - Data-Driven
® Learned Index: 1 Data access efficiency
® | earned Layout: 1 Data manipulation efficiency

Double-Edged Sword: Challenges

-

N

Challenges

Feature Selection: Pick
relevant features from
numerous query /
database / os metrics ;

Model Selection: Design
ML models to solve different
database problems;

Diverse Targets: Meet
the SLA requirements
under different scenarios;

Adaptivity

Training Data

/

7

Al4DB Techniques: Motivation

] Learned Database Kernel

* Cardinality/Cost Estimation, Query Rewrite, Plan Generation

®Manual =2 Autonomous Query Optimization Data Access
- Compression

- Cardinality Estimation
- Storage layout
- Indexes

- Cost Model
- Join
Ordering

= = = - Sorting - Data Cubes
®Heuristic -2 Intelligent Joins Q - AQP
- Aggregation Model - Machine
- Scheduling Synthesis Learning
Query Execution/J Advanced Analytics

®Empirical - Data-Driven IAEJ E @ﬁ? ﬁ/

Data Hardware Workload

Al4DB Techniques: Motivation

] Learned Database Configuration

* Automate database configurations, e.g., DRL for knob tuning, binary
classifier for index selection.

| -]
s

= % ,||||§ ‘ @

¥ Labor-intensive tuning v/ Automatic tuning
X Time-consuming tuning +/ Low tuning latency
v/ Rich tuning experience X Adaptivity for different DBs

Al4DB Problems

® Automatic Advisor Automatic Advisor Intelligent Optimizer

. KnOb Tuner E _Self- . Knob Tuner i é-““““-“““-““““““"""““““E

® Index/View Advisor | Configuration |~ | || Query Plan §

® Partitioner/Scheduler . Self P w || Rewriter Enumerator

; imizati Advisor Advisor | | fTmTTTTTTommommmomssoomsooooooooooomoooos '

® Learned Generator Opt'm'zat"’” __ I

® SQL Generator i Self- Partition | | Learned i i Esﬁr?lz[tor Egdt-;[:,]-lsenf E

® Adaptive Benchmark | Organization | Advisor || Scheduler|{| | ! P i
® Intelligent Optimizer -

® Query Rewriter Learned Generator Learned Designer

® Plan Enumerator Adaptive sSQL || [Learned Learned

® Cost Estimator Benchmark Generator Indexes Layout i
® Learned Designer

9 Autonomous Data Management System
® [earned Index
® [earned Data Layout Paloton SageDB openGauss

® Autonomous Databases 10

DB4AIl Motivation

O Online Inference: T+1 - T+0

O Data Security: ETL - In-DB

0 Resource Utilization: data duplicates - one data
O Optimization: DB optimization on learning models
O DB usability: easy to use

S Transform = _
Bl & Data Analysis ﬂ I P o N R . % __Real-time Database @ Data Science Machine Learning
Extract {Z} Load -) T e T
Data Mart §—/ E\/ - ’ Data Lake _ I Data Reduchon
o : - |- g4 W Streaming Data engine
@ X 9 9 @ DataLake

Data Warehouse == o

= oag 0ag 232 == == == %é%
45 on° o° 0 @ () (G 345 on° °0)
50 Structured/semi-structured/unstructured . Structured/semi-structured/unstructured
Structured Data 94ag Data Streaming Data Data

11

DB4AIl Motivation

] 0 ne Data 11 I @ O
Data Report Data Machine
— Unstructured Science Learning
— Structured ,
Declarative Dataframe API
— Semi-structured
. Metadata API
O One Analytics
— SQL Metadata, Cache, Index

— Machine Learning
— Data Science
— Business Intelligence (BI)

Structured/semi-structured/unstructured Data

12

ODeclarative Al
— Al to SQL
— SQL completeness
— SQL advisor

OAI optimizations
— Cost estimation
— Auto parameter
— Auto model
— Parallel computing

OLightweight In-DB Model
— Training
— Inference

DBA4AI

RDBMS
Built-in
Functions

RDBMS Query Processing
(Greenplum, PostgreSQL, ...)

13

Autonomous DB System Architecture

O Learned Optimizer

[] Traditional Module [] Learned Module
« Cost Estimation (Tree-LSTM) sQL Dashboard §
SQL Parser Learned Advisor

» Logical Optimization (Tree Search)
* Physical Optimization (RL)

O Learned Advisor
* Monitoring/Diagnosis (LSTM)

Learned Optimizer

Logic Query Rewriter

| Rule-based I|

MCTS

Cardinality/Cost Estimator

|Hislogram-based| I Tree-LSTM I

Plan Enumerator

| Greedy/Genetic I | DeepRL |

Self-Monitoring Self-Configuration
Anomaly Detection Knob Tuner
@ (Extreme Value Theory) (DeepRL)
Self-Diagnosis Self-Optimization
System Diagnosis MV Recommender
< |) (RNN+RL)
-

SQL Diagnosis
(Tree-LSTM)

Index Recommender
(DeepRL)

» Configuration (DRL)
» Optimization (DRL)

Storage Engine

Model Validation | Performance Prediction (GNN)

Logs System Metrics f Model Update

O Model Validator (GNN)

Training Data Platform Model Management Platform
Training

debf“}i SQF‘j S‘v%‘eﬁ‘ﬁ Data .
O Training-Data/Model Platform |-Meoc /L)l o

Guoliang Li. openGauss: An Autonomous Database System. VLDB 2021 14

Model
Training

Model
Prediction

Model
Manager

7))
=
Q
o
O
- -
al
m
‘-
A
<
(T
O
-
O
O)
)
i
O
O

15

Al4DB: An Overview

® Automatic Advisor

® Knob Tuner . Automatic Advisor || Intelligent Optimizer
® Index/View Advisor ' Configuration Knob Tuner 11 T Query S i
® Partitioner/Scheduler o e e e S = || Rewriter Enumerator | |
i Self- Index MV ||]
® Learned Generator | Optimization | Advisor | | Advisor | }| | ="
® SQL Generator T ||| [g [EnatoEn | |
. ! ell- arttion earne ! ! . A f !
® Adaptive Benchmark ' Organization | Advisor | |Scheduler| || | | | EStimator || Optimizer |
® Intelligent Optimizer —r—+——7——+—'"———
® Query Rewriter Learned Generator Learned Designer
® Plan Enumerator Adaptive SQL - [Learned Learned
® Cost Estimator ' | Benchmark Generator | ||| Indexes Layout |
® Learned Designer A Data M CSvet
® Learned Index utonomous Data Management System
® [earned Data Layout Paloton SageDB openGauss

® Autonomous Databases

16

! Overview of Al4DB ()

. Knob Tunin
Offline NP Optimize an NP-hard problem :
Optimization with large search space

Index/View Selection

Partition-key Selection

Online NP thimize an NP-hard prleem Query rewrite
with large search space (instant

Optimization feedback) — Plan Enumeration
Determine the relationship ~ Cost/Cardinality Estimation
Regression between one dependent Index/View Benefit Estimation
variable and a series of other
independent variables Latency Estimation
.« L. Forecast the likelihood of a Trend Forecast
Prediction : - :
particular outcome Workload Prediction & Scheduling

17

Offline Optimization
(knob tuning, view
selection, index selection,
partition-key selection)

Online Optimization
(query rewrite, plan
enumeration)

Gradient
based

Deep Learning (DL)

Meta Learning

Reinforcement
Learning (RL)

MCTS(Monte Carlo
Tree Search)+DL

Multi-armed

Strategy

Local search

Continuous space
approximation

Share common
model weights

Multi-step search
Multi-step search

Multi-step search

Space

Small

Large

Various
spaces

Large

Large

Small

Huge

Small

18

Method

Classic ML (e.g., tree-
ensemble, gaussian,
autoregressive)

Sum-Product
Network

Deep Learning

Graph Embedding

Feature
Space

cost estimation, Small
view/index benefit

estimation

cost estimation Small

cost estimation, Large
benefit estimation,

latency estimation

benefit estimation, Large

latency estimation

Feature
Type

Continuous

Discrete

Continuous

Continuous

Training
Data

Small

Huge

Huge

19

Clustering Algorithm Trend High accuracy Huge
Forecast
Reinforcement Learning Workload High --

Scheduling performance

20

ion

t

iIma

ity/Cost Est

©
=

-based Card

ing

Learn

Query Optimizer

SQL Query Relational Algebra
SELECT S.name

FROM Reserves R, Sailors S M (Op, noos(
WHERE R.sid = S.sid Query Parser S:namel -'bid=100Arating>5

AND R.bid = 100 Reserves MR sid=S.sid SailorS))

AND S.rating > 5

Optimized (Physical) Query Plan:
(Logical) Query Plan:

M On-the-fly
S.name S.name Project Iterator

T (0] T On-the-fly
O R.bid=100 A S.rating > 5 Query Optimizer S.rating>5 Select Iterator
I M R.sid=S.sid Indexed Nested

Loop Join lterator
M R.sid=S.sid /\
Operator Code

; . Heap Scan
/\ B+-Tree OR.bid=100 Sailors P
Reserves Sailors Indexed Scan T
Iterator
Reserves

22

Query Optimizer

FromR — > Query Parser

Query Rewriter

Query Optimizer

Plan Cost

A 4

Catalog Manager

Schema
& Stats

Generator Estimator

l

Query Executor

23

Logical Optimization — Query Rewrite ==

s p
‘ s p
Orc=scC l
‘ D‘Q Natural join
e
e X\ cSR.A = “c” \ S
OrA=w g |

\ R
R

T gp [[OrA=(R)] DX]

24

Physical Optimization

‘ . Index ‘ -
Natural join Natural join
 Dnauction oy Soan <IN
GRA — “C” \ S GRA — “C” \ S Sequent|a|
| | Scan
R R

T gp [[OrA=(R)] DX]

25

=2 Cardinality Estimation: Selection
s Selectivity Factor (SF) = Cardinality / #tuples

Assumptions:

* Uniformity

* 0a-(R) > SF=1/V(R,A)

¢ 0,<(R)> SF = (c - Low(R, A))/(High(R,A) - Low(R,A))
* Independence

* Condl and Cond2 - SF = SF(Cond1) * SF(Cond2)
* Condl or Cond2 = SF = SF(Cond1)+SF(Cond2) -SF(Cond1)* SF(Cond2)
* Not Condl - SF = 1- SF(Cond1)

 (Containment of values
e RypsS > SF=1/max(V(R,A),V(S,B))
 Preservation of values

* V(Ra=sS,0)=V(R, C)

Cardinality Estimation: Selection

Q = SELECT list
FROM RI, ..., Rn
WHERE cond, AND cond, AND . .. AND cond,

* Estimate the number of results of Q: T(Q)
* Obtain number of tuples in each table: T(R1), T(R2), ..., T(Rn)
» Also need the selectivity of each condition

» Selectivity factor (SF) of selection and joins

* SF(R1.A=v)=T(R1)/V(R1,A)

 SF(R1.A=R2.B)=T(R1) T(R2)/ max(V(R1,A), V(R2,B))

* e.g., selectivity(A=3) =0.01

* e.g., selective (R1.A=R2.B)=0.001

T(Q)=T(R1) X ... X T(Rn) X SF(condl) X ... X SF(condk)
Remark: T(Q) <T(R1) X T(R2) X ... X T(Rn)

27

Cardinality Estimation: Predicate

* The selectivity (sel) of a predicate P is the fraction/probability of
tuples that qualify.

* Formula depends on type of predicate:
* Equality(=): sel(P(c=x))=count(c=x)/count(all)
* Range(>=): sel(P(c>=x))=(max—x+1) / (max—min+1)
e Negation (!=) : sel(P(c!=x))=1-sel(P(c=x))
e Conjunction (and)
* Independent assumption
e sel(P1 & P2) =sel(P1) * sel(P2)
* Disjunction (or)

* sel(P1 or P2) =sel(P1) + sel(P2) - sel(P1) * sel(P2)

28

Cardinality Estimation: Join

R M- S: Selectivity = 1 / max(V(R,A),V(S,A))

Q=SELECT *FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A=40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3 R(A,B)
Selectivity of S.C = T.C is 1/10 S(B,C)
Selectivity of R.A = 40 is 1/200 T(C,D

T(Q)=30k*200k*10k*1/3*1/10*1/200 =1010

29

Histograms

OFor better estimation, use a histogra

equiwidth

No. of Values 2 3 3 1 8 2 1

Value 0-.99 (1-1.992-2.99|3-3.994-4.99|5-5.99(6-6.99

equidepth
No. of Values 2 3 3 3 3 2 4
Value 0-.99 [1-1.99|2-2.99(3-4.05|4.06-4.67 |4.68-4.99 |5-6.99

Note: 10-bucket equidepth histogram divides the data into deciles

- akin to quantiles, median, etc.

Common trick: “end-biased” histogram
- very frequent values in their own buckets

30

Sketch

e How to count the number of values in a column?
o F.g, Age =207

e Sketch: a cost-model can replace histograms with sketches to improve its
selectivity estimate accuracy.

e Probabilistic data structures that generate approximate statistics about a data set.
® Most common examples:
e Count-Min Sketch (1988): Approximate frequency count of elements in a set.
e HyperLLogl.og (2007): Approximate the number of distinct elements in a set.

31

Sketch

e Given a column with a set of values, build a hash function H, and a sketch M
with w entries.

e M]i] is initialized as O for 0=<i<w-1

e For each value v in the set,
- M[H[]%w] ++;

e Given a value x, use M[H|[x]%w]| to estimate its account.

Overestimate! Because of collisions!

32

Count-min Sketch

e How about use 4 hash functions to reduce collisions?

e A matrix M with 4 rows and » columns, initialized with O for each cell value; 4
hash functions

e For each value v, each hash function h;
o M[i][h@)]=M[i][hi¥)]+1; hi(v) in [0, w)
e Given x, the frequency {(x) can be estimated as

¢ f(X) mlﬂl in [0,d-1] [][hl(v>]

hy(v)
h;(v)

W o | == | O
OO | OO |-
OO | O | O |
— O | = N W
SN | O | O
— o o =g

Hy. 1 (v)

33

Count-min Sketch

® /=4 hash functions, w=7 columns

e Given values {2, 3,2, 4, 3, 2,5}
e hy(v)=v % w; hy(v)=v2 % w; hy(v)=(2v+1) % w; hy(v)=(3v2+1) % w;

e Add 2,
0 1 2 3 4 5 6
ho(v) |0 0 1 0 0 0 0
h(v) |0 0 0 0 1 0 0
h(v) |0 0 0 0 0 I 0
hi(v) |0 0 0 0 0 0 1

34

Count-min Sketch

® /=4 hash functions, w=7 columns
e Given values {2, 3,2, 4, 3, 2,5}

o ho(V)=v % w; hy(v)=v2 % w; hy(V)=(2v+1) % w; hy(v)=(3v2+1) % w;

e Add 2, 3
0 1 2 3 4 5 6
he(v) |0 0 1 1 0 0 0
h(v) |0 0 1 0 1 0 0
hy(v) |1 0 0 0 0 1 0
hy(v) |1 0 0 0 0 0 1

35

Count-min Sketch

® /=4 hash functions, w=7 columns

e Given values {2, 3,2, 4, 3, 2,5}
e hy(v)=v % w; hy(v)=v2 % w; hy(v)=(2v+1) % w; hy(v)=(3v2+1) % w;

e Add 2, 3, 2
0 1 2 3 4 5 6
he(v) |0 0 2 1 0 0 0
h(v) |0 0 1 0 2 0 0
hy(v) |1 0 0 0 0 2 0
hy(v) |1 0 0 0 0 0 2

36

Count-min Sketch

® /=4 hash functions, w=7 columns

e Given values {2, 3,2, 4, 3, 2,5}
e hy(v)=v % w; hy(v)=v2 % w; hy(v)=(2v+1) % w; hy(v)=(3v2+1) % w;

e Add 2, 3,2,4
0 1 2 3 4 5 6
ho(v) |0 0 2 1 1 0 0
h(v) |0 0 1+1 0 2 0 0
hy(v) |1 0 1 0 0 2 0
hy(v) | 1+1 0 0 0 0 0 2

37

Count-min Sketch

® /=4 hash functions, w=7 columns

e Given values {2, 3, 2, 4, 5}
e hy(v)=v % w; hy(v)=v2 % w; hy(v)=(2v+1) % w; hy(v)=(3v2+1) % w;

e Add2,3,2,4,5

0 1 2 3 4 5 6
ho(v) |0 0 2 1 1 1 0
h(v) |0 0 1+1 0 2+1 0 0
hy(v) |1 0 1 1 0 2 0
hy(v) | 141 0 0 0 0 0 2+1

count(2)=2; count(3)=1; count(4)=1; count(5)=1

38

Loglog

Crucial insight: suppose we have a perfect hash function h taking an
integer from [1,r] and reporting an integer [0, n)
h(x) in [0, n) for x in [1,1]

The probability that the hash contains:

0 leading zeroes: 1/2
1 leading zero: 1/4

2 leading zeroes: 1/8
3 leading zeroes: 1/16

39

w<lao n leadino 7ernes 1 /9W

LoglLog

e [stimate the number of distinct values in a column
e Linear Counting: inetficient

e Hash: large space

e Log Counting: n=2max(leading Us)

e dv=0: initial distinct number

® For each element v in the column
e Hash(v) to 0/1 values
e CO=count leading Os

e dv=max(dv, 2%)

ntimes =

001

01

00001

0000001

40

Loglog

Estimate: 2°=8

O Crucial insight: maintaining the Actual: 10
largest number of leading zeroes 2 3 11101100
across all hashes allows us to get a 6 > 11010101

, 15 > 10110100
(very) rough estimate of the number 8 > 11100110

15 > 10110100

of distinct elements. 5 = 00100010

Otake multiple independent hashes for 2 - 00100010
9 > 01100100
each element, average them out? 11 > 00011000

8 = 11100110
14 - 10110111
16 - 01001101
12 - 00110110
6 > 11010101
2 - 00100010

Loglog

ZZW Estimate:

Actual;
00 stream
2= 1100010
2= 1100010
11 - 000010

12-> 1110110 4

2= 1100010
01 stream
9-> 1100100
16 2> 1001101

24+22+20+21=23
10

10 stream

15-> 1110100
15-> 1110100
14> 110111

11 stream

7-> 1101100
6> 1010101
8§ 2> 11100110
8§ 2> 11100110
6-> 010101 1

42

Loglog

Q2 w)/m
m X2 Estimate: 4 « 2(4+2+0+1)4 =~ 13 45
Actual: 10

00 stream 10 stream
2 > 11100010 15> 11110100
2 > 11100010 15> 11110100
11> 10000010 14> 0110111
12> 10110110 » 0
2 = 10100010 11 stream

7 11101100
01 stream 6> 010101
9= 111100100 8> 11100110
16 > 1001101 2 1100110

? 6-> 010101 1

43

HyperLoglog

Logl.og uses the arithmetic mean

w)/m
o XmX?2

HyperLoglog uses an alternative, the harmonic mean
o, XmXm/(>2V)

([0.673, m =16
: — 32
where Q_ 1s a constant. 0.697, m-

m _] 0709, m = 64
Ym =19 0.7213
1.079° m =128

1+

44

Loglog

hash function h from [1,f] to [0, n)
1. Initialize an array w with size m=2°, Let w;, =0 for all i

2. For each element x, compute its hash h(x)
— Split h(x) to its first b bits and remaining m-b bits.

— Let ¢ be the number represented by the first b bits and w; be the number
of leading zeroes in the m-b bits.

— Set w, = max (w,, W)

o, XmX?2 2w /m

3. Output

45

HyperLoglLog

e [stimate the number of distinct values in a column

® 2 buckets, &,, : a constant; M: # of leading Os

® [oglog: a,, - m - 225-1 Mi/m
m —1
e HyperlLoglog: - (3 2—Mm)
j=1
Value: 10,492,800 Hash Value: 1,475,498,572

1(1§1/1)0/0f1{0|0f1{0)1)0J0(1j0|0(1{0]|0]1(1{0]|O0

— —

Registe;/alue: 1 RegistervIndex: 12

Register Values: m = 64
ofofofojojoj1fofojoj1jo0yj1fofojo
2(0f0[0]j0]0J0(2|0[0]3]0]2[0f0]0
ofojofojojojofofojoj1jojofofojo
0fojof3jojojojojojojojojojofojo

46

Sampling

® Modern DBMSs also collect samples from tables to estimate selectivity.

e Update samples when the underlying tables changes significantly.

3. join samples 5. join samples

@@= <@=--

2 - N »
< 0 0 0
(¢ 3 3 3
=R =B =i
D) (0]
A B C relations
- v indexes
4 e . . . t7 g- :
m 5]
dom(A) R S T dom(A) R S T x |2
[¢] — —
. - . . S — @ -0
(a) Adding conceptual column. (b) Distinct sampling from join. n 2. index-join 3. index-join
8_ ‘ with sample with sample

47

e Sampling-based

e Histogram

e Sketch
Algorithm Ref. | Year | Observables [14] Intuition [27] Core method (Sec. 3)
FM [15] | 1985 | Bit-pattern Logarithmic hashing | Count trailing 1s
PCSA [15] | 1985 | Bit-pattern Logarithmic hashing | Count trailing 1s
AMS [3] | 1996 | Bit-pattern Logarithmic hashing | Count leading Os
BJKST [4] | 2002 | Order statistics Bucket-based Count leading 0s
LogLog [11] | 2003 | Bit-pattern Logarithmic hashing | Count leading Os
SuperLoglog [11] | 2003 | Bit-pattern Logarithmic hashing | Count leading Os
HyperLogLog [14] | 2008 | Bit-pattern (order statistics) | Logarithmic hashing | Count leading Os
HyperLoglLog++ [24] | 2013 | Bit-pattern Logarithmic hashing | Count leading Os
MinCount [21] | 2005 | Order statistics Interval-based k-th minimum value
AKMV [7] | 2007 | Order statistics Interval-based k-th minimum value
LC [32] | 1990 | No observable Bucket-based Linear synopses
BF (28] | 2010 | No observable Bucket-based Linear synopses

48

Cardinality Estimation

0 Problem Formulation:

O Cardinality: The result size of a query.
O Input: A SQL Query.
O Output: An Estimated Cardinality.

Select Count(*)
From --- , 132

Data table | Or | SQL with true cardinality

& " 4
Select Count(*)
From --- SQL query ‘ Model ‘

estimated

cardinality 130

Cardinality Estimation Example

Traditional Cardinality Estimation

0 Sampling
O Core idea: Estimating selectivity of target query by sampling.

O Limitation: Inference is slow and inaccurate when the amount of
data is large.

O Histogram

O Core idea: Store the value distribution of each attribute, and
calculate the selectivity according to the independence assumption.

O Limitation: Strong independence assumption makes it inaccurate
when the data distribution is complex.

[0 Sketch: Estimate the number of distinct elements of a set.

Regression Problems

Database estimation problems can be modeled as regression
problems, which fit the high-dimension input variables into target features

(e.g., cost, utility) and estimate the value of another variable.

O Cardinality/Cost Estimation aims to estimate the cardinality of a
query and a regression model (e.g., deep learning model) can be used.

O Index/View Benefit Estimation aims to estimate the benefit of
creating an index (or a view), and a regression model can be used to

estimate the benefit.

O Query Latency Estimation aims to estimate the execution time of a
query and a regression model can be used to estimate the performance

based on query and concurrency features.

Learned Cardinality Estimation

[0 Motivation

O Due to the attribute value independence assumption as well as the
assumption of uniform distribution, traditional cardinality estimation
methods tend to fail when the data distribution is complex.

O Challenge
O Correlation between data columns and columns.
O Multi-table join increases data volume and query types.

O Optimization Goal
O Accuracy, Inference Latency, Model Size, Training Cost

52

Automatic Cardinality/Cost Estimation

[0 Motivation:

O One of the most challenging problems in databases
» Achilles Heel of modern query optimizers

O Traditional methods for cardinality estimation
» Sampling (on base tables or joins)

» Kernel-based Methods (Gaussian Model on Samples)
» Histogram (on single column or multiple columns)

O Traditional cost models
» Data sketching/data histogram based methods
» Sampling based methods

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How
good are query optimizers, really? In VLDB, 2015.

Categories of Learned Cardinality Estimation

Q] [T quy] (T =
¥QLs SQLsg& Card PQLs SQLsg& Card ¥ SQLs
Query Feature Extractor Query Parser Query Parser Détaset
Predicte% Cardinalities Predicte‘& Cardinalities l
Query Encoder Data Sampling Data Sampling
Query#ncoding Values/Tupled Encoding Values/Tuples]Encoding
Query Model Data Model Data Model
*Cardinality $ + Cardinality)_‘ * Probabilitiesj
Parameters Optimizer Parameters Optimizer Parameters Optimizer
(1) Supervised Query Methods (2) Supervised Data Methods (3) Unsupervised Data Methods
» Neural Network » Kernel-density model » Sum product network
» XGBoost » Uniform mixture model » Autoregressive (AR) model
» Multi-set Convolutional network » Pre-training summarization model » Normalizing Flow (NF) model

54

1 Supervised Query Methods for Cardinality
Estimation

0 Problem Definition

A regression problem: learn the mapping function between query
Q and its actual cardinality

1 Cardinalities

Queries Cardinalities -

55

1.1 Query-Driven: Neural Network on Single Tables

[0 Motivation: Traditional estimation methods assume column independence.

(c1 <1lbi < e2) A (ez3 <ubt < ca) A (cs < uba < cp)

O Solution:
» Training

 Representa query (Iby < A; <ubq,..,lb_.d < A; < 2 hidden layers
. . Input vector
ub_d) on a table T with d attributes 4,,...A_d as <
N

lbl: Ubl: L) lbd: Ubd >. ‘l’. :‘\\xg”; Output layer
« A neural network with two hidden layers is used to fit 4\:0#.4‘3{&& .
ISR >
the mapping between the representation of the query)’,«&.Zz&é
and its cardinality. QVA“\\

» Inference o
Neural network with 2 hidden layers
 Answer a query by the trained network.

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019. 56

0 Solution:

O The query is represented in the same way as
the neural network based approach. Input vector

O Use XGBoost, a decision tree-based
ensemble model to fit a mapping between a
qguery's representation and its cardinality.

O Comparison with Neural Network:
O Neural Network-based method are better
when training data is sufficient.
O XGBoost is better when the training data is
insufficient.

Output|aggregation

Tree-based ensembles with 2 trees

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019. 57

0 Motivation: It's difficult for traditional methods to capture join-crossing
correlations.

0 Solution:

For table set and join set in the input, encode
each table, join with one-hot encoding.

For predicates of the form (col, op, val),
encode columns col and operators op with
one-hot encoding, and represent val as a
normalized value in [0, 1].

Use some samples to address O-tuple problem

Cardinality prediction w,;

)
f Concatenate
ﬁxg:ige? output of each
\ S " - set module
onca |
[
| Avg. pool | | Avg. pool | | Avg. pool |
/N /N /A
N I“ N [/ I“ \\ // I” \\
(N\ (3\ 4 N\
RelU						Reru	[Reru
Linear		Linear		Linear								
RetU		[Retu	[[[Reu				
Linear		Linear		Linear)							
\ J g)) N\))
Table set Tq Join set Jq Predicate set Pq

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.

58

1.3 Query-Driven: Deep Learning for Multi-tables

O Training:

Cardinality prediction w,,

* The three parts of the input are spliced together
after going through the linear layer, activation
. . . . __R LU
layer, and the dimensionality reduction layer. pvorage Concaterate
* Then go through the linear and activation layer °Ver\set —’_01?‘/ set module
again to get the estimated cardinality. [Ava.pool | [Avepooi] T Ave pool |
/N /N /N
« Tuning model parameters by backpropagatin —\ " /)
9 P Y PACKPIOPAgatNg e || (e || | ey
gl’adlentS | Linear | | Linear |
| RetU ||||| [_Reu |
O Inference | s |J | Tomesr 1 |
« Answer a query by the trained network. TableselT, Jomsetd, Predicate setP,

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.

59

2 Supervised Data Methods for Cardinality
Estimation

0 Problem Definition

A density estimation problem: learn a joint data distribution of
each data point. (except for the pre-training summarization model)

--

Data — Data
Sampler Model

(Queries Dataset Optimizer
with true
cardinalities)

1 Cardinalities

60

2.1 Supervised Data-Driven: Kernel-Density Model
on Single Table

0 Motivation: Multi-dimensional histograms are complex to construct and
hard to maintain.

O Key-idea: Fit the probability density distribution of a data table by kernel
density model.

» Kernel-Density Model

s + 4
—_ 1 -1 [760) _ 2 S e +
Model: x (&) = K (7|9 -]
8'|H|; & "
 sis sample size; K is Gaussian function; (2) Points in database. (b) Sampled points.

« tis sampled point; H is a parameter that needs to be learned.,

> Inference: 7 (Q):Lﬁ(f)df

(s the space represented by a query.

(¢) Kernels. (d) Estimated distribution.

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015. 61

2.1 Supervised Data-Driven: Kernel-Density Model
on Single Table

O Kernel-Density Estimation g

n, A = 0.04

- NA,

p;- probability

n;: number of points

N: total number of points
A: bandwidth

Pi

A =0.08

0 0.5 1

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015. 62

2.1 Supervised Data-Driven: Kernel-Density Model
on Single Table

0 Solution

D Tralnlng Get Training Data
» Get a lot of queries with true cardinalities.
\J
« Sample points (rows) from the table and Sample Points and initialize
s itiAll parameter H
initialize the parameter H. To get a Kernel-Density Model > Training Phase
* Adjust the parameter H by stochastic I
gradient descent according to estimated Adjust the parameter H by
. iyr . hasti di d
cardinalities by Kernel-Density Model and | S‘ocnastic gradient cescent
L pr () —p ()])
the true cardinalities. l
O Inference Answer query by integrating
]] over the probability density Inference Phase
* Answer queries by accumulating kernel function

density based on the kernel-density model.

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015. 63

2.2 Supervised Data-Driven: Uniform Mixture Model /
on Single Table

[0 Motivation: Traditional methods need to be populated in advance by
performing costly table scans.

O Key-idea: Fit the probability density distribution of a data table by uniform
mixture model.

0 Uniform Mixture Model:

Model: = Zl h(z) g.(x) = Z’f Wz g2(x) Inference: /B flxydx = [g Zl w, g2(x) dx
« w, is the weight for a subpopulation z * B;is the space represented by a query.

« g,(x) =1/|G,| is uniform distribution function
* |G,| is area of subpopulation z

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020 64

“‘-_2.2 Supervised Data-Driven: Uniform Mixture Model
/ on Single Table

O Solution:
O Training
« Sample some points within queries with true cardinalities.
« Generate subgroups for the points.
« Learn the weights w, of the uniformity mixture model.
O Inference
« Answer a query by calculating the cumulative probability density (i.e.,
selectivity) according to the mixture density function.
« overlap area between query rectangle and data rectangle

Generates points Creates ranges
P
using o et e that cover 1 - I
E— . L Y . *%qe . . T
i predicate ranges IR . the points g
e 3 o 5]
= > FRR o6 X9k > | B
. LIRS [T
Predicate ranges Workload-aware points Subpopulation ranges

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020 65

2.3 Supervised Data-Driven: Pre-training
Summarization Model on Single Table

0 Motivation: Pre-training models avoid per-dataset training.

0 Solution:

O Pre-train encoder and decoder with

large data tables via gradient descent @ ™OVider L BERTS. gy NNSVML 5
gmlgglmg .. — 3| Data > Task —ﬁ%

(Loss function is |log frue card) g g Many mages, text, [Encoder}(loss) | Decoder T
est.card |’ N @ @ structured data 2 Pre-training N 2

O Encode a table with the pretrained (v) user el il
L Il —3 Pre-trained _Vec‘o - S) Pre-trained |« &

encoder. ‘5@5 Newtaw/ % Encoder m Decoder 9;’{

ad-hoc schema Pre-processing (Query)

O Input a query and the encoded result
of the table into the pre-trained
decoder to get the cardinality.

Lu Y, Kandula S, Kénig A C, et al. Pre-training summarization models of structured datasets for cardinality estimation. PVLDB, 15(3): 414-426, 2021 66

2.3 Supervised Data-Driven: Pre-training
Summarization Model on Single Table

O Data Encoder

O Query Decoder

Column1 | Column2 | ..| Columnd Encoder br .
= e | cd W Row embeddings 2 Eval($, p)
1 1 1 =
. - [Quantize -[auanteg] | > | BeleD). 9e(eD] —> —> Ylsi) g 0
— |cell embedding| | — |cell embedding| | -+ | — _/_/_/ Elaiviant. S g 1 ¢s
. i 2| @
G A |l @ = | heleh) beleD] = —> Yisa) o
Input each row s € S to encoder, parallelizable _/_/_/ 0 A
Query predicate p = [py, pn]
Cp % ch, Decoder o, b,
- 5 ~ NI
- | | | - | - | —> | [9:(50). ()] > —> [0, Y] —> >0
e (pC(C}l)[) = d)c(cgz)l) = ¢C(Cg,) p Element-
| | | 1
e . e —> | [bc(cpp).-r be(cp,) > wise product

Lu Y, Kandula S, Kénig A C, et al. Pre-training summarization models of structured datasets for cardinality estimation. PVLDB, 15(3): 414-426, 2021 67

3 Unsupervised Data Methods for Cardinality
Estimation

0 Problem Definition

A regression problem: learn a probability function for each
data point.

Data — Data
Sampler Model

Dataset

lCardinaIities

Optimizer

68

3.1 Unsupervised Data-Driven: Sum-Product
Network for Multi-tables

0 Motivation: Most of the existing estimators require SQL queries.
[0 Base-idea: Learn the joint probability distribution by Sum-Product
Network .

O Relational Sum Product Network (RSPN) 0.3

O RSPN consists of three types of node:
O product node: split the columns of a table.
O sum node: split the rows of a table.
O leaf node: represent probability

distributions for individual variables. (d) Probability of European
Customers younger than 30

@2\%
15% (4)% ()20%

EUASIA 20 100 EUASIA 20 100

Benjamin Hilprecht, Andreas Schmidt, et al . DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020 69

3.1 Unsupervised Data-Driven: Sum-Product
Network for Multi-tables

0 Solution:

D Training c.age c_region

]]] L c_id c.age c.region 80 EU

» Generate some queries and their cardinalities. Lo BU 60 | ASIA
3 60 ASIA 20 EU
« Build a RSPN by recursively partitioning o™ S

] 998 20 ASIA 20 ASIA

« Row: K-means clustering 99 30 ASIA % | Asia

1000 70 ASIA 70 ASIA

 Column: randomized dependency coefficient. () exmpie Table (b) Learming with Row/Col
O Inference Pleregion: cage) e
« Estimate cardinality in bottom-up. § % /*‘i/ R
« Supports multi-table queries via join sampling, Al B S i
and supports queries on sub-schemas based ON . s @ s of Baromeas
fanout Scaling_ Customers younger than 30

(1)5%

I

Benjamin Hilprecht, Andreas Schmidt, et al . DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020 70

Fanout scaling for multi-tables

Fanout scaling is to support sub-schema queries on a full outer

join table. (full outer join table contains duplicate tuples)

0 Solution: for each foreign key — primary key relationship, add a column
denoting how many corresponding join partners a tuple has.

Customer Order

D Example c_id c_age c_region ;_id ;“id E;hs?lr\}%
1 20 EUROPE 2 1 STORE
2 50 EUROPE 3 3 ONLINE
SELECT COUNT (%) 3 80 ASIA 4 3 STORE
FROM CUSTOMER C
; =)) . Cust <(0rd
WHERE c-region EUROPE ’ ./tlfsc omecr_id rce_de c_region Flcco No o_id o_channel
1 1 20 EUROPE 2 1 1 ONLINE
. 1 1 20 EUROPE 2 1 2 STORE
O True answer is 2, but there are 3 1 2 50 EUROPE 1 0 NULL NULL
. L 1 3 80 ASIA 2 1 3 ONLINE
tuples in the outer join table. L8 80 ASIA 2 L4 STORE

O Fanout scaling result: [C>C0|-E(1/F'co - lcregion=ev - NC)

- 5. 1/2+;/2+1 _ 9

71

3.2 Unsupervised Data-Driven: Autoregressive
Model on Single Table

[0 Motivation: Existing estimators struggle to capture the rich multivariate
distributions of relational tables.

0 Solution:

O Training: Use Autoregressive (AR) Model to fit
the joint probability of different columns.
O Inference: Estimate the cardinality of the

P(x) = P(x1,22, ,an)
= P(21)P(z2|z1) -+ P(zn|z1, ..., Tne1)

Data Autoregressive
equivalent query based on the AR model. Source Model
. .. P
O Monte Carlo sampling Tup'es e L P
: . Table ‘ <o P(x2|x:)
O Range queries are supported by progressive - P(x3]x1, %2)

sampling (sampling by learned probability distribution).

unsupervised loss
(maximum likelihood)

Z.Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep Unsupervised Cardinality Estimation. PVLDB, 13(3): 279-292, 2019. 72

3.2 Unsupervised Data-Driven: Autoregressive Model
on Single Table

0 Motivation: Previous AR models do not support multi-table queries.

Autoregressive Learned

H . R Inference
0 Solution: Core Distribution 1 e
p,(all tables)

O Learn an autoregressive model for the

* tuples from join

outer join of all tables. Join Sampler
_ _ o Indexes Unbiased
O Supports multi-table queries via join Sampler
. . Join Count Tables
sampling, and supports queries on indexed base
. prepare lookup l tuples
sub-schemas through fanout scaling. :
Join Tables
Schema
T1 Tn

Zongheng Yang, Amog Kamsetty, et al. NeuroCard: One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021

3.3 Unsupervised Data-Driven: Normalizing Flow
(NF) model for Multi-tables

O Motivation: Previous data-driven approaches do not handle tables with

large domain sizes well. I' Encoding outline)
: . ' Dlscrete Dequant|ze Contmuous |
O Solution: | |
O Dequantize and normalize discrete variables to | THie |
continuous variables. iE”°°d'” ' Discretize |
O Use Normalizing Flow (NF) model to learn the '\-_St[mg_ m@ |
joint probability distribution of data points. e
O Accumulating continuous normalized flow [}_»
distribution function by adaptive importance Sl ()
: Neural u~ pu
sampling to a.nswer a query. Network Norraal
O Support multi-table query through fanout scaling. Learnx->u Distribution

Wang J, Chai C, Liu J, et al. FACE: a normalizing flow based cardinality estimator[J]. Proceedings of the VLDB Endowment, 15(1): 72-84, 2021 74

3.3 Unsupervised Data-Driven: Normalizing Flow
(NF) model for Multi-tables

| .

.‘_'_'_'_'_'_"| | Datal?ncodlng 0.319 | NF Training |
|| Encodxng outline | Category Discrete 0668 N i || I
Cook i i 0 Dequantize | ormalize
f eq-“ e . Deauantize | | |
Cook i 1.123
|| “ . il : U "" 2.886 : | |
:l THe ao o Continuou‘s‘ _ | : :
'Encodin .. Discretize Il || Numeric) : -1.600 -1.558 -0.99 |
I| . -I 162 Dequantize L7440 ormalize | 0461 -0.268 0594 | | S
' L3 — 1771 ormag 0.164 0.045 -0.226| | | P
|\ (string) (Numeric) Q@ el 1.785 0499 0.202 0085 | an
L= |l 160 1.907] 1.397 1.569 1.897]
[Training Data X |1 Neural u ~ p(u) I
I Name | Height I 4 | | Network Normal |
. X -> Distributi
: Amy.M | 1.62 | CST— 0.341 | : Learn x ->u istribution :
Andy.G| 173 L 0 1.924 |
| Ann | 173 | 1 e 2792 o] '
| I 2 Dequantize |~ Normalize | |
Ann.S | 178 [3 3.258 |
: Tom.H | 1.90 | Actor [4 4.504 | : ! :
.. | '
L _ __ OriginalData _ _ _ | '_______AmiM_“"_“VG_“ES_TT“_ ______________ I R |
Inference
: - - e e e o -l
I Query Encoding | | MC Integration @ - |
I =Cook | =% | [0,1) -1.345,-0.221) | | | :
| SELECT * FROM T S Sampling i Density Converge :
e WHERE Job=Cook >=1.6 |—> [[1.6,2.0) [-1872,2612) || | Points D After 10
AND Height>=1.6 Like B —P@ lnteractlons l
: AND Name LIKE ‘A%’ A |~ | 04 [-1.846,1.034) : T |
| I
; Initial Buckets B < CE
: —> Nme : : niform initialized Update Buckets i - Inte gl m 3 I
SELECT *FROM T veemT ale—> |
lQ /| WHERE Job=Cook =Cook|=> | [01) [-1.345,-0221) | | 4 -entt 2
I AND Height>=1.7 I
: =1.7 |—> [[1.7,2.0 - [
| AND Name LIKE ‘A%’ >|_'k [) [-0.751,2.612) I C:g\;(-;\rge |
IKe
: O’ Estimated after 0 a | | 04 [-1.846,1.034) : |1B1 Initialized from B; Interactions Iz |

Wang J, Chai C, Liu J, et al. FACE: a normalizing flow based cardinality estimator. Proceedings of the VLDB Endowment, 15(1): 72-84, 2021

75

Trammg Training Model TR

Lightweight Neural v 1 ENLY J
Network & XGBoost queries
Convolutional Neural many
Network queries

Kernel-Density Model

Uniform Mixture Model

Autoregressive (AR)
Model

Sum-Product Network

Normalizing Flow (NF)
model
Pre-training
summarization model

vV

vV

vV

medium

medium

high

high

high

high

Data
samples

Data
samples

Data
samples

Data
samples

Data
samples

Lots of
tables

Vv

Vv

Vv

small

small

high
medium

medium

very small

medium

medium

slow

medium

medium

fast

76

Cost Estimation

0 Problem Formulation:

O Cost: Execution cost of a query plan.
O Input: A SQL Query Plan.
O Output: An Estimated Cost.

4 N

Physical Plans
Estimator
[Hash] [3can]) i

Join

/N
\[Scan j [Scan]

m) Estimated Cost

77

Relations of Cardinality/Cost Estimation

O Task Target

0 Cost estimation is to approximate the execution-time/
resource-consumption.

O Correlations
O Cost estimation is based on cardinality.
O Estimation Difficulity

[Cost is harder to estimate than cardinality, which considers
multiple factors (e.g., seq scan cost, CPU usage).

[0 Motivation: Traditional cost estimation is inaccurate without learned

plan representation.
O Solution:

O Generate many query plans and true costs as training data.

O Encode the query plan via one-hot encoding.
O Representation layer learns an embedding of each query plan by Tree-LSTM.

O Estimation layer outputs estimated cost based on the representation layer’s

Training Data Generator Feature Extractor Tree-structured Model
s g Physical Plans q (5?1,12:‘(.3:%‘?;8’ 1 [m] Representation Layer Estimation
dataset™y 3 erge Real Cost i nooding [T~ g . Layer
g as o) can C:S ! vector || vectorsy | |8 g %33553—:33:: ---- T Cost
3 oin can : i ng H—200! g S| - (Representation)(Representation)

— | § Real 1 8 VAR inality |
o | Cardinality 10100 | | vector vector Ll . Cardinality
S— Encod ™ (Rep sentati n) (Representatlon)

queries 11. ?

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-319, 2019.

79

Tree-LLSTM for Cost Estimation

[0 Model Construction

 Traditional cost estimation uses estimated card, which is inaccurate
without predicate encoding 2>

: SQL Query o predicate i / Representation Model ;

SELECT MIN(mc.note) AS production_note,
MIN(t.title) AS movie_title,
MIN(t.production_year) AS movie_year

H FROM company_type AS ct,

' info_type AS it,

movie_companies AS mc,

| movie_info_idx AS mi_idx,

title AS t
WHERE ct.kind = 'production companies' |
AND it.info = 'top 250 rank' |

: AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%' 1

! AND (mc.note LIKE '%(co-production)%') e

| OR mc.note LIKE '%(presents)%') |

: AND t.production_year >2010 I

! AND ct.id = mc.company_type_id !

) AND t.id = mc.movie_id

AND t.id = mi_idx.movie_id

AND mc.movie_id = mi_idx.movie_id

AND it.id = mi_idx.info_type_id

Estimatiory Layer Ry | 1 N, G P

¥

mc.note NOT LIKE
'%(as Metro-
Goldwyn-Mayer
Pictures)%"'

mc.note LIKE
'%(presents)%"'

mc.note LIKE
'%(co-production) %'

Encoded Query Plan Predicates Embedding Layer
Nested Loop1 g o
' / Y ° 3 !
5 1 ~ 2 ¥ - g ;
: 2 ! 9 i g g :
: Hash Join Index;Scan P 3 :
; P - : o e O z
: 3 N H b ! Representation v
H Hash Join Hash Join : i : J ; '
g / \ \ : : GrR / Predicate 5 ¥ :
H 4 5 7 8| | iiRepresentation: :Representation: :Representation; :Representation :: [’““"”“’ UKE tlpresentee) O(mo-note LIKE (o prodiction’] 5
H Seq Scan Seq Scan Seq Scan Seq Scan : S; Model ' Model i Model Lo Model i OO [me.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%' '

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-319, 2019.

80

Tree-LSTM for Cost Estimation

The representation layer learns an embedding of each subquery (global

vector denotes the subquery, local vector denotes the root operator)

'%(as Metro-
Goldwyn-Mayer
Pictures)%'

--- 4 .
SQL Query i Predicate i Representation Model
SELECT MIN(me.note) AS production_note, . G| e 3 Gy
MIN(t title) AS movie_title, — = {(x () —>
MIN(t.production_year) AS movie_year E:*"_l_> 1 2
FROM company_type AS ct, ;o ke ° ki °
info_type AS it, Qf: ' i AVG fe
movie_companies AS mc, ol [G] -n
movie_info_idx AS mi_idx, \ i Ri_; | R, g T R,
title AS t _) mc.note NOT LIKE) ! 7 —> —
WHERE ct.kind = 'production companies' i ' ! E, '

AND it.info = 'top 250 rank'

AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%'

AND (mc.note LIKE '%(co-production)%')
OR mc.note LIKE '%(presents)%')

AND t.production_year >2010

AND ct.id = mc.company_type_id

AND t.id = mc.movie_id

AND t.id = mi_idx.movie_id

AND mc.movie_id = mi_idx.movie_id

mc.note LIKE
'%(co-production)%'

mc.note LIKE
'%(presents) %'

______ AND itid = mi_idx.info_type._id; B 4[:
_________ EncodedQuery | an . i - ' Predicates Embedding Layer
1 i ! Model : : e
Nested Loop ¥ . e P 12158)
2 7) : ERepresentationg i Representation ! @ g %
Hash Join Index;Scan ' : : Model : ; Model 3 é I O A
: N GaRo 77T WGeRe TN | ”) X
3 N : i : Representation ; i Representation ; TGuRu ; A [‘L'"w) [Sneer ‘] L)
Hash Join Hash Join ' i ; Model : 1 Model : i | Py Z N ;
:, H T A AT KGR ([Predeae AR
/ \ L1 T v T P T ' . i . Pl
4 5 7 8 Representation | | Representation | : Representation; ! i 3 [’“C‘“""’”KE %“"“""‘5’“)0[menote LIKE '%(co:prodction)%] 3
Seq Scan Seq Scan Seq Scan Seq Scan Model P Model . Model ' 3 OO [me.note NOT LIKE *%(as Metro-Goldwyn-Mayer Pictures)% J 3
"" TT
1

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-319, 2019. 81

z
H
=
& H
L

Take-aways of Cardinality Estimation: =,

S

4
&
W
S
<S>

SIINNY

<SSSS M

&K 2N
\

v
I\

O Cardinality Estimation

® Data-driven methods are more effective for single tables.

® Query-driven methods are more efficient than Data-driven methods.
® Data-driven methods are more robust than Query-driven methods.
® Samples are crucial to most Data-driven methods.

0 Cost Estimation
® Accurate cost estimation requires better plan embedding.

0 Open Problems
® High Accuracy with small model size and inference latency
® Adaptivity

OO0 Motivation

Deep Learning for Query Latency Estimation’

O Statistical methods fail to estimate based on query structures, and cause great errors;

O Compared with cost estimation, latency estimation is more complex because (1) it relies on
system resources and (2) Cost is one important factor of latency estimation.

O Core Idea: Utilize deep learning to capture the relations between input tables, operators, and

the final performance

O Solution

> Represent each operator g; with a neural unit

Hidden layers

Output layer

O
c O : , ® data
S r O ;
Q{\ﬁ\"le‘ co® o O O O —» latency
o .
Input layer o O

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction. VLDB, 2019.]3

Join Unit

¥ .. O }data

/0O — latency
X

R] [R]

Scan Unit

Hidden layers

Output layer

0 —»}
data
O —>

O O — latency

) \a\eﬂF'\J“ >0 Input layer
c‘(\\\%) oA

{\9‘“\

Deep Learning for Query Latency Estimation’

OO0 Motivation

O Statistical methods fail to estimate based on query structures, and cause great errors;

O Compared with cost estimation, latency estimation is more complex because (1) it relies on
system resources and (2) Cost is one important factor of latency estimation.

0 Core Idea: Utilize deep learning to capture the relations between input tables, operators, and
the final performance

O Solution F 44 4

X
> Represent each operator g; with a neural unit ‘(\ S N
R2

» Concatenate neural units by following the query structures

o
FREEY
« Example Query Q (2 Scans, 1 Join) = T NS
 Tree-structured Network for Q: : 220
— The outputs of the scan units (No + Ns) —» Data /NN
.. — Latency f8
— Input of the join operator (N,) —>Queypian 000
information
— The final predicted query latency. j*f 3
. Matches the query structure to predict the query latency information from query

plan

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction. VLDB, 2019. R4

O Latency Estimation for Concurrent Queries

Odata-sharing Reriviel
Ddata-conﬂict Workload2Graph | Feature Extraction [Workload Modeling 4_:. & :
[[
Oresource-competition i — - SF-- |
Oparent-child relationship e [. 7 £ [rormom TrackcTrace
o NA.‘N F| i
comoer_|[2f LN o nh=s

O Graph-based method

« Workload2Graph: graph modeling
« Graph prediction: GNN to predict the latency
 Graph update: on-the-fly update the model

X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020. 85

Graph Embedding for Query Latency Estimation

Graph Modeling

Concurrent Queries Graph Construction Workload Graph
SELECT MAX(aka_name.person_id) [1: Parent-Child — 2: Data-Sharing <--» 3: Data-Conflict —- = 4: Resource <--» l Vertex| e | Phae™ | Bitwon Predicate
FROM aka_name,cast_info,company_type
WHERE aka_name.id=cast_info.id and Limit Vertex Encoder (v,,seq scan) | Va2 | 001000 [T g ivetosorono oo

. ia . 1 Aggregate 010~ ~e . N _Lt--- A7 913 001001 | unmmnm Padding
CaSt_lnfO.ld—Company_type.Id, v12 99red ﬁ"‘—ﬁh Ql} . \\‘\ cost=21.39 - vs 18.95 001000 |mmmmmmm Padding
Hash Join ’\Fid_;zig \ L ’A?\‘I‘D\D;gl.\
“““ ‘ S anin U V. 259033 | 100000 | Paddin Paddin
’ \ 1 g g
SELECT cast_info.nr_order V1o e Seq Scan R ——— 'ﬁ‘c;SE)/ (hamesT)
FROM cast_info,company_type \\\ 0 __Ean’ _/ Vi3 | 24935.81 | 000001 | Padding Padding
WHERE cast_info.id=company_type.id I:> WL 101 010 11110011 |:>
LIMIT 10; A% N
L) 1‘ Edge Encoder (V4, Vs) Edge | . | V3 | V4| V5 | o | Vi | o [Vg3
\
SELECT aka_name.person_id ‘7\) V3 0 |0.012/0.005| ... [1.001| ... |0.004
FROMBaka name (j vy | .. l0012]_g2013] .. [oo16] ... [0.001
LIMIT 10; DY || - --H-¥s=F=770005|2013) 0 | .. |0.017| ... [1.003
\\\ N Resource Competition____Dat,a,-sna}ﬁlg::_ ST
UPDATE aka_name e : Ass T[T - 9) = 0.013 Ags Ae =27 Vi | ... [0.001/3.016/0.017| ... | 0 | ... [0.023
SE Taka_name.name = concat(id,name) Parent-Child Data-Conflict
WHERE id>225 or id<50 and name<>’'Fan’; Seq Scan : N/A N/A : Vi3 | ... |0.004[0.001[0.003| ... [0.023| ... | 0

X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020. 86

[0 Model Construction

 Performance prediction of concurrent queries

» Represent concurrent queries with a graph model

» Embed the graph with graph convolution network and predict the latency of all the

operators with a simple dense network

: Network
Workload | Input
Graph :
|]
.* [--
—

1

3
)
o TV
>

Graph Layer

&YX

ReLU|~

Graph Embedding
Network

Graph Layer

H

ReLU |°

- e - - - - -

time time

Graph Prediction [
Network :

3-Layer I
Perceptron . '
Predicted |

Performance |

|

- (00
|

4 A

l' 1] I

startup execution:

|

|

X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

Deep Learning for Index Benefit Estimation

O Challenge

O The index/view benefit is hard to evaluate

» Multiple evaluation metrics (e.g., index benefit, space cost)

» Cost estimation by the optimizer is inaccurate

O Interactions between existing data structures

» Multiple column access, Data refresh

» Conflicts between MVs

costs of plans with/without created indexes

0 Core Idea: Take benefit estimation as an ML classification task.

O Challenge: It is hard to accurately estimate the index benefits

0 Solution:

Est Cost: 20

- Prepare training data Ve cos0 Sl
Gndex:Seelf TD Gndex Scan Tz) . Mode
* Query Plans + Costs under different indexes st howe 200 Fow Esthowe 1000 o
» Train the classification model (a) Example query plan.
LeafWeightEstRows
« Input: Two query plans with/without indexes EstodeCost WeightedSum

. . Seek_Row_Serial |10 Seek_Row_Serial |200
* Output: 1 denotes performance gains; 0 denotes no gains ., . ool 50 ScanRowserial 12000
- - HJ_Row_Serial 55 ** |HJ_Row_Serial 4600
* Solve the index selection problem NU_Row_Serial |0 NU_Row_Serial |0
MJ_Row_Serial MJ_Row_Serial

0

0

» Use the model to create indexes with performance gains

(b) Feature channels for the plan.

Bailu Ding, Sudipto Das, et al. Al meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.

O Feature Extraction
* Previous work take candidate views as fixed length -
 Encode various number and length of queries and views with an

encoder-reducer model, which captures correlations with attention

O Model Construction E(ty) — E(t{™)) E(tlvvet) E(tlovs))
« Itis hard to jointly consider f

MVs thatmay have conflicts > Encoder
* (1) Split the problem into sub- MVs
steps that select one MV;
* (2) Use attention-based model Query

to estimate the MV benefit —

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system
with deep reinforcement learning. In ICDE, 2021. 90

Take-aways of Benefit Estimation

OLearned utility estimation is more accurate than
traditional empirical methods

OLearned utility estimation is also accurate for multiple-MV
optimization

OQuery encoding models need to be trained periodically
when data update

OOpen problems:
» Benefit prediction for future workload
» Cost of initialization and future updates

92

IMiZzer

il
Q.
O
d
(¢}
c
-
©
D
)

93

Query Optimizer

SQL Query Relational Algebra
SELECT S.name

FROM Reserves R, Sailors S M (Op, noos(
WHERE R.sid = S.sid Query Parser S:namel -'bid=100Arating>5

AND R.bid = 100 Reserves MR sid=S.sid SailorS))

AND S.rating > 5

Optimized (Physical) Query Plan:
(Logical) Query Plan:

M On-the-fly
S.name S.name Project Iterator

T (0] T On-the-fly
O R.bid=100 A S.rating > 5 Query Optimizer S.rating>5 Select Iterator
I M R.sid=S.sid Indexed Nested

Loop Join lterator
M R.sid=S.sid /\
Operator Code

; . Heap Scan
/\ B+-Tree OR.bid=100 Sailors P
Reserves Sailors Indexed Scan T
Iterator
Reserves

94

Query Optimizer

FromR NN >
Where RA=20 Query Parser

Query Rewriter

Query Optimizer

Plan Cost

A 4

Catalog Manager

Schema
& Stats

Generator Estimator

l

Query Executor

95

Logical Optimization — Query Rewrite

T p
_ | T p
R.(‘Z =S.C ‘ N Natural join
N
X OrA=¢w g
ORr. {c h S |
‘ R
R

T gp [[OrA=(R)] DX]

96

Query Rewrite

‘ OTransform one logical plan into another equivalent plan
(usually with lower cost)

OTheory Guarantee: Equivalences in relational algebra
ORule-based: Applying rewrite rules

— Push-down predicates

— Do projects early

— Avoid cross-products if possible

— Use left-deep trees

— Use of constraints, e.g., uniqueness

— Subqueries = Joins (we will study this rewrite rule after we do
physical plan selection)

Query Rewrite is important to achieve high performance!

97

Query Rewrite Rules

Opinm(€) = 0p(0p,(€)) (1)

Upl(apz(e)) = Op (Upl(e) (2)

Ma (May(e)) = Ma(e) (3)

if A1 C A

op(Ma(e)) = Ma(op(e)) (4
if F(p) C A

op(etUe) = op(er)Uop(e) (5)

op(le1Ne) = op(er) Nop(e) (6)

opler\ &) = opler))\ op(e) (7)

Na(erUe) = Ma(er) UMa(er) (8)

98

Query Rewrite Rules

e1 X &

e1¥pe

(e1 X &) X e3
(e1Xp, €2)M €3
op(er X)

op(e1 X e2)
opr (€1%p, €2)

HA(el X 62)

e X €

exXper

e1 X (e X e3)
e1Xp, (e2[><]P2 e3)
e1X,en

op(er) X e

if 7(p) C A(er)
0Opy(€1)Xp, €2

it F(p1) € Aler)
Ma, (e1) X Ma,(e2)
if A= A1 UAy, A1 C A(er),Ax C A(er)

99

Phases of Logical Query Optimization

1. break up conjunctive selection predicates (equivalence (1) —)
2. push selections down (equivalence (2) —, (14) —)

3. introduce joins (equivalence (13) —)

4. determine join order (equivalence (9), (10), (11), (12))

5. push down projections (equivalence (3) «—, (4) <, (16) —)

Tprm(€) = op(op(e€)) (1) ax& = &xa (9)
00 (7€) = (o (e)) erpe = e (10)
MNa(MNay(e)) = Na(e) (3) (e1 X&) xe3s = e X (e X €3) (11)
if A, C A (e1Mp €2)Mpe3 = ex)p (22, e3) (12)
Pere op(e = N (13)
7p(Male) = Ma(op(€)) *) laxe) = are
if F(p) C A op(erx) = opla)x e (14)
R i F(p) C Aler)
op(erUe) = opler) Uop(e) (5) op(e1¥p,82) = 0p(€1)¥p, (15)
Up(el N 62) = Up(el) N UP(eZ) (6) if 7(p1) C A(er)
opler\e) = opler)\op(e) (7) Maer x &) = My (e1) x My,(e2) (16)
I'IA(el U 62) = nA(el) U |_|A(62) (8) if A= AU Az, A C .A(el),Ag C .A(ez)

100

Step 1: Break up conjunctive selection
predicates

select distinct s.sname
from student s, attend a, lecture |, professor p
where s.sno = a.asno and a.alno =l.Ino and l.Ipno = p.pno and p.pname =~Sokrates"

selection with simple predicates can be moved around easier

Hsname

O-STLO: asno

|
Hsname
| Oalno=Ino

0 sno=asnoAalno=InoAlpno=pnoApname="Sokrates' |

| O lpno=pno
X O-pname:’l’Sokrates”
— —— |
i x Upl/\Pz(e) f Ip; (Jpz(e)) i %
X UPl(Upz(e)) = Ip (Opl(e)) X
—
/ \ y
student attend lecture professor / \
student attend lecture professor

101

Step 1: Break up conjunctive selection predicates

T
|

O pname="A" - ~-_ _
pnumber=pno ~._ ~"-._
255N=85N - - - - .
bdate > "1957"

Iname

.

o
TN\

A}
employee works_on project -

pnumber=pno

\\ ‘ / X \\
v essn_ssn | pname:'A'
\/ X\ project

bdate »'1957° works_on

employee

102

Step 2: Push Selections Down

reduce the number of tuples early, reduces the work for later operators

Hsname
Hsname |
|
O-l e

O sno=asno ;Dn0| o

| X
Oalno=lno >

S

|
Olpno=pno Op (€1 X 62) = Op (€1) X €2 Ualncl):lno

| .

O pname="Sokrates" If ‘F(p) g 'A(€1) X
op(e1Mp,e2) = 0p(e1)Xp,e —

|
% o
— |f f(pl) g A(e]_) sno|:a5no
X
- — X
X \ / \ O pname="'Sokrates'
|
/ \ student attend lecture professor

student attend lecture professor

103

Step 2: Push Selections Down

reduce the number of tuples early, reduces the work for later operators

T movieTitle

Obpirthdate
LIKE *%1960"

N starName =hame

< O\

MovleStar Starsin

e movleTitle

t 1 starName =name

MovlaStar \

Gblrlhdate
LIKE
"% 1960"

Starsin

104

Step 3: Introduce Joins

joins are cheaper than cross products

Hsname Hsname
| |
Olpno=pno
| [X]lpno—pno
ap(el X 62) = 61Np62
Ualno Ino
> [X]alno lno
/ /
O-STLO:CLS’ILO
| sno asno
% O pname="'Sokrates'
/ \ O pname="Sokrates' |
|
student attend lecture professor Student atten d 1 ecture pr OfeSS or

105

Step 3: Introduce Joins

Cartesian Product to Natural Join

O arName=name (MoOVieStar X StarsIn) = MovieStar M, Nname=name Starsin
'TC movleTltle 'Tf
‘ ‘movleTltle
0] starName = name 9}
o . birthdate
birthdate LIKE "%1960 LIKE %1960

x D 1st.eer.emﬁe = hame
MovleStar Starsin MovieStar Starsin

106

Step 3: Introduce Joins

Replace 6 + X with 4
T

|
Tmn;ber:pno

/\Rlname
X
<~ \G \ |

essn_ssn pname=
pnumber_pno

Iname

\ pro]ect /
bdate> 1957 Wworks_on pname- ‘A’

essn_ssn
employee / \ pro]ect

bdate:- 1957° Works_on

employee

107

Step 4: Determine Join Order

€1 X €
e1¥pe
(e1 X &) X €3

(el Mpy eZ)IX]Pz €3

e X €1
Hsname
eXNyeq |
€1 X (e X e
1 (2 3) M sno=asno
e1Xp, (62l><lp2 6’3) _
Malno=Ino
/
D<]lpnozpno
/
O pname=""Sokrates'
|
professor lecture attend student

108

Step 4: Determine Join Order

smaller input relation as the /eft input relation in a join () operator

| T
T movleTltle movieTitle

DqstarName =hame DqstarName =hame

MOVQ \G — / \

O L irthdate MovleStar

birthdate LIKE
LIKE '9£1060"
"%1960"
Starsin
Starsin

109

, Step 5: Introduce and Push Down Projections |

.o) I1
® climinate redundant attributes o
. . Mo,
® only before pipeline breakers momene
I
Hasno Hsno,sname
|
I_IA(el X e2) = I'IAl(el) X nA2(62) Malno:lno
if A= A1 UA2, A1 C A(er), Ax C A(e2) - —
Hlno Halno,asno
!
Nlpnozpno
/ \
1—Ipno Hlpno,lno
!
O pname=" Sokrates"
!
professor lecture attend student

110

Remove the unused attributes by inserting projection (7):

'Iname

N pnumber=pno

/

'Iname

N Gpname:'A' |
255n=55n |
/ \ pro]ec\ N pnumber=pno
Oi bdate » *1957° Works_on / \
employee M O-pname='A'

essn=ssn | T
‘phumber pname
/ \ . project
essn ‘
pno
G o~

bdate » "1957° Works

| T Iname bdate
employee

111

Physical Optimization

‘ . Index ‘ -
Natural join Natural join
 Dnauction oy Soan <IN
GRA — “C” \ S GRA — “C” \ S Sequent|a|
| | Scan
R R

T gp [[OrA=(R)] DX]

112

Join Order Selection

Query: R1D>< R2D>< R3 D>< R4 .
Progress

of
{R1,R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2 R4} {R3 R4}

{R1} {R2} { R3} {R4}

113

joined

size of
join result

5000
1000000
10000
2000
1000000
1000

Best join
ordering (plan)

114

Selinger Algorithm

OStep 1: Enumerate all access paths for a single relation
—File scan or index scan

— Keep the cheapest for each interesting order

OStep 2: Consider all ways to join two relations
— Use result from step 1 as the outer relation
— Consider every other possible relation as inner relation
— Estimate cost when using sort-merge or nested-loop join

—Keep the cheapest for each interesting order

OSteps 3 and later: Repeat for three relations, etc.

115

Learning-based Query Rewrite

Rewrite Rule Generation Rewrite Strategy

g TTTEeesessseeseee® 0 g T =" - -._-. --------- (]
' ’ ' o” Seq '
Manual : . ~ ;
: + + .~ Top-down .

' ' v ¢)
: Equivalent ;' | Heuristic '
' Pattern Pairs ¢« 4 ® _ ' '
: o+ . Arbitrary .

0 S - . o

TR R -. ' ,WeTune .o Seeao--” :
e . Se R] (]
" Equivalence *«"" C o :
' Verification v Finetune | Apply rules s
' ' 0 Predicate Rules * with MCTS '
+. SMT Solver . _ K o :
See L. . A . M . ;
Sia . LearnedRewrite ;
’ . '
' ' '

116

Learning New Rewrite Rules

\ O Motivation: Identify new rules to gain performance improvement

O Basic Idea: Extract relatively simple query pattern pairs from the public
datasets and synthesize new rewrite rules

O Challenge: (1) How to generate new rewrite rules; (2) How to verify the
rewrite equivalence

Original Query Opt. By Existing DB Ideal (WETUNE)
q0: SELECT * FROM labels ql: SELECT
WHERE id IN (FROM labels
q2: SELECT

SELECT id FROM labels
WHERE id IN (

SELECT id FROM 1labels
WHERE project_id=10
) ORDER BY title ASC)

WHERE id IN (
SELECT id
FROM labels
WHERE
project_id=10)

FROM labels
WHERE
project_id=10

q3: SELECT id FROM notes
WHERE type='D"
AND id IN (
SELECT id FROM notes
WHERE commit_id=7)

Unchanged

q4: SELECT id
FROM notes
WHERE type='D"
AND commit_id=7

q5: ...

q6: ...

Constraints
1. Relations t2,t2't4 are the same

Input || 2. Relations t1,t3 are the same
' 3. Attributes ¢0,c0',c1 are the same

4. ¢0,c0' are attributes of t1

Source Template Destination Template

FROM T WHERE T.x IN (SELECT R.y FROM R)
AND T.x IN (SELECT R.y FROM R)
FROM T WHERE T.x IN (SELECT R.y FROM R)

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022. 117

Learning New Rewrite Rules

O Motivation: Identify new rules to gain performance improvement

O Basic Idea: Extract relatively simple query pattern pairs from the public
datasets and synthesize new rewrite rules

O Challenge: (1) How to generate new rewrite rules; (2) How to verify the
rewrite equivalence

n.*

Selection
n.type ='D'

Projection
n.*

Projection
n.*

Projection
n.*

Projection
n.*

Selection
n.type = 'D'

Selection
n.type ='D’

Selection
n.type ='D'

Selection
n.type = 'D'

Rule 24 Rule 27 - Rule 30 Rule 8
IN-Selection Selection Selection Selection
n.id m.cid =7 n.cid=7 n.cid =7
Projection Selection Table
m.id m.cid =7 notes AS n
se'e,gtﬂ‘ Table Table Table Table Table Table
M-CICS notes AS n notes AS m notes AS n notes AS m notes AS n notes AS m
Table Table
notes AS n notes AS m
(1) (2) (3) (4) (5)
Original SELECT n.* FROM notes AS n WHERE n.type = 'D'

AND n.id IN (SELECT m.id FROM notes AS m WHERE m.commit_id = 7)
Optimized SELECT n.* FROM notes AS n WHERE n.type = 'D' AND n.commit_id = 7

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022. 118

Learning New Rewrite Rules

O Motivation: Identify new rules to gain performance improvement

O Basic Idea: Extract relatively simple query pattern pairs from the public

datasets and synthesize new rewrite rules

O Challenge: (1) How to generate new rewrite rules; (2) How to verify the

rewrite equivalence

D SOIUtlon Rule Enumerator
. (Section 4)
» Generate rules via rule enumerator x
])] Potential T/E
* Rule: (source pattern, destination pattern, constraints) Rule
Rule Verifier
> Verify rule equivalence via SMT solver (Section 5)
Built-in SPES
Verifier |

* Only queries with no more than 4 operators

» Use verified rules to greedily rewrite queries

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

WeTune

|| Verified Rules

[———l

Real-world

Useful Rule Queries
Selector

(Section 6) | Query

<+« Database

Perf.
‘ Useful Rules ‘

A

119

Learning New Rewrite Rules

» Generate rules via rule enumerator node0 . N0AE0| s
. . node1 v
* Rule: (source pattern, destination pattern, constraints) S |:|'> node g\
.col1 =B.coll \ \f‘rmrrzr);/ |
> Verify rule equivalence via SMT solver Am./ 1
, , " hode2 " node2
* Only queries with no more than 4 operators
« Transform: SQL Query - U-expression - FOL Formula
° i [U-expression FOL formula
Q(X) and Q(Y) are equivalent iff, Xpress T,
E, + E; Tr(E;) + Tr(E>)
* querypoL(X) — querypo,(Y) && querypo,(Y) — queryrpo(X) FixXE. THE) X THE)
[[E]] ite(Tr(E) > 0,1,0)
» Use verified rules to greedily rewrite queries ZIL ZCELLE
= ET] i7e(Fx.Tr(E) > 0,1,0)
not(X, E) ite(3x.Tr(E) > 0,0,1)
— S fO) =1 I [= 1Ay y 7x= f() = 0)
S rX) XE ,
size=2 =S rxX) X E Vx.r(x) X Tr(E) = r(x) X Tr(E’)
S S r(x)XE Vx.((r(x) X THE) = r(x) X Tr(E))
| Sel | = Zxy (X)X E' XDy | A((r(x) X Tr(E) = 0) V TH(Z y Dy = 1))

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022. 120

Finetune Predicate Rules

O Motivation: Traditional predicate-pushdown is less powerful in many cases

O Core Idea: Synthesize new predicates that are both valid (semantic
equivalence) and optimal (performance gain)

O Challenge: (1) How to generate new predicates; (2) How to verify the

predicates are valid and optimal.
svn
O Solution
- Build a classification model (SVM) | L

» Classification Model < 0/1 <& New Predicate

v
Valid? —» Optimal?

» Use true/false samples to finetune the model v’

Predicate:P1

 Valid: if the model filters out samples in origin predicate, it is not valid (true samples);

» Optimal: if the model accepts samples not in origin predicate, it is not optimal (false samples).

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021. 121

Finetune Predicate Pushdown Rules

D BUIId a CIaSSIfIcatlon mOdeI (SVM) (I)- ::zgr\ﬁzga-tz_-oli‘:ﬁi’ggtai:<zﬂsﬁi’:|)3ate-o_orderdate+10
. g . . DA | o_orderkey = I_orderke
> Classification Model < 0/1 <> New Predicate AN oorderdate < 1993.06.01"
orders lineitem
» Use true/false samples to finetune the model (@) Logical Plan for Q1
o | Emitdate ~ | shipdat < Lshipdate - o_orderdate + 10
= commitdate - I_shi ate < I-shi ate - o_orderaate +
» Valid: if the model filters out samples in origin predicate, . | o.orderkey = L orderkey P
Lo . IO- OI- I_shipdafce < ’19?3-06-20’ AI)ID
it is not valid (true samples); orders lineitem | |Sommiiete < 19330718 ONO

. | o_orderdate < '1993-06-01'
» Optimal: if the model accepts samples not in origin (b) Logical Plan for Q2

predicate, it is not optimal (false samples).

new predicate

Origin pl‘edicate Not —» True S;mples False S;mples{—
x>yandy>100 Valid Counter e.g.
X > y and y > 100 and x > 9999 > (X,Y):(SOO,IOI) Counter-Examples Learning Counter-Examples

as True Samples + Predicate-P1 as False Samples

Not
x>y andy> 100 Optimal Counter e.g. * 4>
and x> 10 g (xy)=(11,101) ¢

Predicate:P1

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021. 122

Learning-based Query Rewrite

O Why Heuristics - Learning-based?

O Many real-world queries are not well-written
> Terrible operations (e.g., subqueries/joins, union/union all) ;
» Look pretty to humans, but physically inefficient

(e.g., take subqueries as temporary tables);

O Existing methods are based on heuristic rules
» Top-down rewrite order may not lead to optimal rewrites
(e.g., remove aggregates before pulling up subqueries)

» Some cases may not be covered by existing rules

O Trade-off in SQL Rewrite

> Best Performance: Enumerate for the best rewrite order

» Minimal Latency: SQL Rewrite requires low overhead (milliseconds)

123

Learning-based Query Rewrite

O Challenge:

» Equivalence verification for new rules

» Search rewrite space within time constraints
« Rewrite within milliseconds;

> Estimate rewrite benefits by multiple factors
* Reduced costs after rewriting
» Future cost reduction if further rewriting the query

124

Automatic Query Rewrite

O Problem Definition
O Given a slow query Q and a set of rewrite rules R, apply the rules R to
the query Q so as to gain (a) the equivalent one and (b) the minimal cost.

Input SQL Query
“SELECT
MAX (DISTINCT L1 coll)
FROM lineitem L1
WHERE L1 coll = ANY
(
SELECT MAX
(C.coll)ym_key
FROM customer C,
lineitem L2 -
WHERE C coll =12 coll
AND ((
C.col2<2
AND Ccol3<2)
OR (
C.col2<2
AND L2 col2>5))
GROUP BY
C.coll);”

Logic Query Tree

©y

Aggregate

max(distinct(L1.col1)) Rema

Semi Join

Filter
L1.coll = ANY(..)

veAggt

0,,r)

Rewrite in Top Down Order

© Qs

©) Aggregate

max((L1.col1))

— @ :(03/r2>:
_I i : :

TemporaryTable

egate

o

Subquery
' (select max..)

@ Aggregate

max(C.col1)
)

[Iineitem] [lineitem] [customer]

1 v
@ v
, | X
(i) (cstome) Lnﬁhama,

I Inline @ i
_____ ! |

Rewrite in Optimal Order

@ (©) Subquery2join (©O)
max((L1.col1)) BemoveAggregate —_————

m———=

@ 1 1
o)} B S

NormalizePredicate

T Filter
R 1 (C.col3<2 or
1 1 L2.col2>5)

Performance

Planning: 0.341 ms
Execution: > 20 min

Planning: 0.172 ms
Execution: 1.941 s

t

Q@2

:(05/ r5)=

_____ O
lineitem
r C.col2<2

*-customer

125

Adaptively Apply Rewrite Rules

O Motivation: A slow query may have various rewrite sequences (different benefits)

O Core Idea: Explore optimal rewrite sequences with tree search algorithm

O Challenge: (1) How to represent candidate rewrite sequences; (2) How to efficiently find
optimal rewrite sequence.

O Solution

> Initialize policy tree for a new query
* Node v;: any rewritten query; C'(v;): previous cost reduction; C!(v;): subsequent cost reduction

> Explore rewrite sequences on the policy tree (MCTS) Ulop) = (Cwp) + CHwn) +y fln(?‘ (v0))
1) — 1 1
Node Value Computation (Node Selection): F(vi)
O optimal node O selected node Q unselected node
T T T T T T T T T L e e~ T .. T T === 1T Antimal Ouerv (O n
MCTS for Query Rewrite /| Optimal Query (Q’) |
Node Selection Subsequent Cost Estimation Utility Update : | SELECT |
maximize I | n xXm ,' T’;,”{’.’:,mal "I | DISTINCT L1.col1 |
utility V)™ E,%:E%g ’ Rule Embedding ‘ i Y | | FROM lineitem L, customer C :
i+ | nxh WHERE L. col1 = C.col1 and
N N |
BV, O O LAt} copotng [—| | Rule Selection |0.7[| | ((C.col2<2) AND |
| b 1x /,},_' | | (C.col3<2 OR L2.col2>10)); |
MetaDat - .
dataset—~ Er?cidiarl\; | Cost Estimation | | Rewrite Latency: 6.42 ms |
| Query Latency: 600x ¥ |

Xuanhe Zhou, Guoliang Li, Chengliang Chai. A Learned Query Rewrite System using Monte Carlo Tree Search. VLDB, 2022. 126

Summarization of Query Rewrite

Supported |Rule Rewrite
Strategy Overhead Performance

Granularity | Equivalence

High for

WeTune IF_)cl)agrllcaI :)/p(:/rlgt]cl)r;sé; Generated heuristic Verify g/loi;ig};;
(383*50 ms). i
Sia Predicate v (S|r_nple FCLIEEIE heuristic High More than 2x
queries) Rules only (3s)
Learned Logical Rules from Medium
Rewrite Plan v Calcite MCTS (6.1-69.8 ms) More than 2x

127

O Traditional query rewrite method is unaware of cost, causing
redundant or even negative rewrites

[0 Search-based rewrite works better than traditional rewrite for
complex queries

[0 Rewrite benefit estimation improves the performance of simple
search based rewrite

O Open Problems
» Further reduce the rewrite overhead
» Adapt to different rule sets/datasets

» Design new rewrite rules
128

Join Order Selection

[0 Motivation:

O Planning cost is hard to estimate

» The plan space is huge

O Traditional optimizers have some limitations

» DP gains high optimization performance, but causes great

latency;

» Random picking has poor optimization ability

[0 Steer existing optimiers can gain higher performance

»> Hint join orders; Hint operator types 129

Join Order Selection

Problem Definition: Given an SQL query, select the “cheapest”
join ordering (according to the cost model).

« Cost, Latency

Dynamic programing

o ® 0.0 | : ’
L T oooo 9.'\0
e 00’ o -— oooo
e o, o* oo
oo
Genetic optimizer

Cost Model Experts

Quick-pick
130

Join Order Selection

[0 Method Classification

O Offline Optimization Methods.
» Characteristic: given Workload, RL based.

> Key idea: Use existing workload to train a learned optimizer, which predicts
the plan for future queries.

O Online Optimization Methods.

» Characteristic: No workload, but rely on customized Database.

> Key idea: The plan of a query can be changed during execution. The query
can switch to another better plan. It learns when the database executes the

query.

131

Why Learned Join Order

* Why learned join order selection?

e Learned Cost Model

* Learned from latency when cost estimation is inaccurate. @

e Learned Plan Enumeration ' Cost ——>! Latency !

* not only to estimate the execution time of the complete plan,

but also to estimate the generation direction of a good plan

* guide the direction of plan generation, and reduce the number of enumerated plans.

R
o iR = - mmss

Value-based 100\/
Policy-based 0.8 \/

Now

132

« Challenges
* Learning models need to be able to accurately predict execution times.

* The latency of plan generation should be low enough.

« Optimization Goals
* Quality: Latency
« Adaptivity: Adapt to different DB instances, workloads
« Update: Join graph, Schema, Data

* Training Cost
133

Learned Join Order Selection

* Method Classification
« Offline learning methods
« Characteristic : Learn before use - given workload

» Key idea : Use existing workload to train a learned optimizer, which will
predict the plan for future workload.

* Online learning methods
* Characteristic: Learn runtime - no workload

» Key idea : The model can quickly learn from the execution feedback during
or after query execution to improve the next plan generation.

« Key difference: Online learning methods can handle update easily

and the performance will not be limited by the given training data.
134

Learned Join Order

Need Workload

Selection

No workload

Offline Learning

Online Learning

RL
Learn cost

DQ,Redoin

Learn latency Learn latency Learn aftel

Tree-LSTM(Leaf to root Tree-CNN(father,child)

Schema Change

Learn during execution

Skinner-DB

execution

RTOS NEO ——» Bao

Learn operator hint

135

.....

OMotivation
— The search space for join order is huge. saL Vectorization
— Traditional optimizer did not learn from pre FEaiE .
bad or good choice.
OChallenges
— How to reduce the search space of join orc¢

—How to select the best join order. 5__' _____________________________________ i

ODifference: [Operstor Seleoton |~+-|_ Execition Engine |
— RedJoin uses a policy based method (PPO) to guide the plan
search.
—DQ uses a value based method (DQN) to guide the plan search.

It useS.I0E. DR S PIEN 1. préefral e Vallg tedral etwork. 136

Environment
Action Layer T
=

State Layer
=

" Serminal s~ g

Jojesawinug JaplQ ulop
Buiuiea Juswadlojulay

>
2
Reward " Expenenoe |<J

» Agent : optimizer Select *

» Action: join

From T1,T2,T3,T4

Where Tl.a=TR2.a
and T3.b=T4.b
and Tl.c=T3.c

» Environment: Cost model, database

» Reward: Cost, Latency

» State :_join orde]

-~
A ent|
ol

state reward

action
J"&!

R.'d ()
< Environment
\

. . . . Initial State

l Tl.a=T2a
(>9)
. . Intermediate state

T3.b=T4.b

.

T1.c=T3.c

()
= 9

Termination State

Marcus, Ryan, and Olga Papaemmanouil. “Deep reinforcement learning for join order enumeration.” ,aiDM 2018
Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018 137

* RL model

Agent : optimizer;

Action: join;

Environment: Cost model, database
Reward: Cost;

State : join order

Long-term reward:

SELECT * FROM A, B, C, D WHERE A.id = B.id AND

A.id = C.id AND C.id = D.id AND B.a2 > 100; X
‘»:«) >4 PR Xl m
w
g@@@ Allc| [B][D] ‘&‘; A/ C| B/ D
s 1 2 4 1 2 3 1 2
Action Action: 2, 3 Action: 1, 2 Final
24 A B ABCD ABCD ABCD
€ af1o0 axc [[% 0 % 0) |Axc [% 0 % 07 | (Aaxc) [% % % %]
© B|0 1 B 0100 BxD | 0 % 0 % x
o cloo D 0001 (BXD)
2 po ABCD
Afo 110
B|1 00O
A.al A.a2 .. B.al B.a2 .. clioo01
I 0 .0 1 -] ploo1o
Join predicate vector Column predicate vectors

* Policy-based : Output all-join probability

* Neural network : A three-layer MLP.

Marcus, Ryan, and Olga Papaemmanouil. “Deep reinforcement learning for join order enumeration.” ,aiDM 2018

138

o RL mOdeI Initial State

Tla=T2a
Select *

Where Tl.a=TR.a

* Agent : optimizer From T1T2,T5,74
« Action: join Snd TLo-T55

. . Intermediate state

T3.b=T4.b

» Environment: Cost model, database N
» Reward: Cost
 State : join order @@@

° L on g te rm rewa rd - Termination State

I W Y P N B o YN |y N -]) R G S) PR
SELECT « Ag = [E.id, E.name, E.rank, Ay = [Eid, E.name, E.rank,
Wiggl‘é Emp, Po }S< » Sal P.rank, P.title, P.code, Ar = [E.id, Ename, E.rank] P.rank, P.title, P.code]
mp.ran _ _
e S.code, S.amount] =[11100000] =[11111100]
AND Pos.code - [1 111111 1] AR = [P.rank, P.tltle, P.code] AR = [S.code, S.amount]
= Sal.code (b) Query graph =[00011100] =[00000011]
(a) Example query featurization (c) Features of E >« P (d) Features of (E>< P) >« S

Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018 139

Z VITINE Ledrmnea Join vraer o€iecCloll.

RTOS
* Motivation <) () 6 ()

* Previous learning based optimizers give good
cost, but they do not give good latency on test

= T1 T2 T3 T4
queries.
1/411/411/4|1/4

« Schema often changes in real-world database. o

DRL Initial State

« Challenges o \? fffffffffffff)

=
i Optimizer Intermediate State

- The intermediate state is a forest, which cannot be | Chens
represented by a simple feature vector. |

UOT3097188 U0V

Terminating Stat
g
H
50
@

:]
£
=
]
&
8

* The training time is huge when collecting latency
as feedback.

 The schema change leads to the retraining. m s

Estimator
@ Latency Tuning: Cost, Latency

Yu X, Li G, Chai C, et al. Reinforcement learning with tree-Istm for join order selection. ICDE 2020 140

Z VITINE Ledrmnea Join vraer o€iecCloll.

RTOS

* TreeLSTM based Q network
 Use n-ary to represent the sub-trees &=

From T1,T2,T3,T4
Where T1.h>30

 Use child-sum to represent the forest =emx:

and TR.b =T3.b

R(((Ty x Tz) T3,T4),q)

(00 0000
P
R(Ty x To) x T3,T1) (@ © @)@ @ @)

.

« Two step training oy Ropmesttion o ot ry @
« Cost pretrain ©909) B Rlg g
Ara (@0 00000 —, ' oy '
¢ i - i M = > < g o
Latency fine-tuning e @ @
. 2NN 3 |3 R(T,b) R(T,b) R(T,)
« Dynamic neural network Rmb)tooooooow%: | = .
am e e)
 DFS to build neural network o @ @
. H . R(T, /ONO s R() RT) R(T.a RT,a RT)
[] MUItI-AIIas: Pa rameter Sharlng ")(O(B?Ta,ble?ndcolfnnore)mve:ntation (C) Join tree and join state representation

« Schema change: Local fine-tuning

Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection. ICDE 2020

141

I:I Feature Extraction

2 Offline Learned Join Order Selection: RTOS ~U

The structural information of the execution plan is vital to join

order selection =2

 Encode the operator relations
and metadata features of the

query

 Embed the query features with
Tree-LSTM;

* Decide join orders with RL
model

Query q:

Select *

From T1,T2,T3,T4

Where T1.h>30
and T1l.h <50
and Tl.a=T2.a
and T2.b=T3.b
and Tl.c=T4.c

R(((T1 X Tz) X T3,T4),q)
CXeXeXeXeXe)
<=
R(TyxTo) x T3, T1) @ @® @)D @ @ @)
A@

@ e)

(T1,T1)(T1,T2) ... (T4,T3)(T4,T4)
(A) Query Representation for input query

R((Ty » T) » Ty) @ R(Ty)

J L
AT,9 (@O 000 00—, _ -
B ()
M = > < % ®
eYeyeYe 4 p<
LT XIORIRATR o |3 R(T b) R(T b) R(T)
ATH) (@O OO OO0 ~P—+ & @ 1]
® @
...... e)
X = > <
\d
:’,,/’/‘(‘,’\‘,\35{3\“\‘. Ny R(T,) R(T..a) R(T,a) R(T,
rRTH(QOO0 OO)— ATy ’ @ e ?

(B) Table and column representation

(C) Join tree and join state representation

X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-Istm for join order selection. In ICDE, 2020. 142

<SS
P N
9
0
9

& 20\
« 0
|
ZH
&4
&'
4% <A

A W&
||“ \“s'.

* Motivation
* Previous traditional optimizer relies on cost models
* Previous methods solve join ordering only but cannot support
physical operator selection.
« Challenges
 How to build a learn cost model automatically to capture intuitive
patterns in tree-structured query plans and predict the latency.
 How to represent query predicate semantics (supporting strings
— word2vector) automatically.
 How to overcome reinforcement learning’s sample inefficiency
(with optimizer guide)

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019 143

It uses Tree-CNN to design a value network to — 1= : :
represent the query plan (join order, operator). j —— E §

It uses row vectors to represent predicates. Each :Eﬁﬁiﬁ; o ¥
row is a sentence. @ Ouputiayer (a.C.F)

It learns from the expert optimizer learning from g o
demonstration. g I

Normalize plan’s cost by cost of optimizer’s plan

1R

8zZL X | l Jafe pajosuuo) Ajin4 |

POX | \ Joke payeuuo) Ajing |

Ze X1 | 19Ae paeuuod Aing |

Plan-level Encoding

Concatenation

Trained network

1x512 1x256 1x128

- &_.

~

Tree Convolution

[nput [] Layer [] Intermediary [| Output

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimbizer. VLDB 2019

eztu\ Joke pajeuuo) Ang |

SZLXL‘

Buijood olweuig
v

PO X | | 19Ae pajauuo) Ajing |
v

zex1| ek paweuuog Ang |

|

uonolpald 1s00

bx1| ket papeuuog Aing |
v

|

144

 Motivation

* Long training time

« Cannot adjust to data and workload changes

+ Tail latency of worse plans

* The choice of physical operator affects the quality of the plan
« Challenges

* How to enumerate the plan?

* How to study plan latency and choose a high-quality plan?

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

145

« Use operator hint to generate candidate plans.

- Enable/disable hash join,... i P &40
. . f y
« Use Tree-CNN to predict the latency and guide S Hintsetz -fm_+ | Eeaonengne
=
the plan Se|eCt|On E & . D : ‘ Training ‘4—‘Exr)erience‘
-bi L Hint set 3 .D.I _g_ H (L;zeérr ;)gg:?ed
1 H eemeccncccscsssascsscansaan) [External component
« Latency prediction =
 Encode each plan into a vectorized tree.
» Contextual multi-armed bandits. - e | | |
- Each hint set is an arm ﬁ 5 %ﬁ\ 111
« Use Thompson sampling to update the = mm mue mow : R C

model parameter.
Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019 146

4 Online Learned Join Order Selection: Bao

O Enhance query optimization with minor changes 8ol G025 wm Posresal)
g B Postgre no loop join
O E.g., Activate/Deactivate loop join for different queries 2 40
. . . % 20 - 19.7s
O Model Plan Hinter as a Multi-armed Bandit Problem §
o 9 0.4s
O Model each hint set HSet; as a query optimizer 0 ouey P
HSet;i : Q > T
O For a query q, it aims to generate optimal plan by
selecting proper hint sets, which is dealed as a regret E i Hinsets T e A+—
minimization problem: | a | T
9 - ‘En ; n
Rg = (P(B(q)<q>> - miinP(HSeti(q))) | P A
- N e Foltog
Y :g:frnalcommnent

Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021. 147

5 Unline Learned Join urder Selection:
SkinnerDB

 Motivation

* Previous works relied on learning from cost models or expert optimizers.

* Previous learning based optimizers need to give training queries and are hard
to provide good plans to different workload.

* The executor can detect estimation errors during query execution.

« Challenges
 How to design a new working mechanism that allows the optimizer to learn and

switch between different join orders online.

« How to evaluate and choose different join orders online.

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019 148

5 Online Learned Join Order Selection:
SkinnerDB

« Eddies-style

* Divide the execution process into several time slices.

« N way join can support the plan switch.

« Select the plan for the next time slice based on the

previous time slice Gz (35 &)~
e« MCTS For JOS

* Learn and generate a plan in each time slice

Selection Expansion Simulation Backpropagation

. (=) (e o)
* Rely on Customize Database & ©© @ & @
_ _ OOETOD OO OOCOD OO
« Switch plan in low latency ®8 @ @ ®6
Q, @) D,

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019 149

® Support online reorder with MCTS -

> Do not require pre-training
> Time Slides: 0.001s
> Learn during runtime
» Customize Database
> Switch Plan in Low Latency

SELECTION EXPANSION

a8 (70) (o)
<@ @

Monte Carlo tree search (MCTS).

R S
2 ! 4 '
3! ,/’/ 6!
10 ! \9\ 7!
Y gl
N way join
DS S TD S T
SIMULATIC BACKPROPAGATION
li 0
@ \/0;3 xs@ @ o;a 3/8
i lr(. 1 3 ’VX b 1 2/3 | 3
() () () (9
()

Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019. 150

5 Online Learned Join Order Selection: SkinnerDB ;.-

0 Update execution orders of tuples on the fly

— Update the plan on the fly and preserve the execution state >

* Tuples flows into the Eddy from input relations
(e.g.,R, S, T);

- Eddy routes tuples to corresponding operators
(the order is adaptively selected by the
operator costs);

« Eddy sends tuples to the output only when the
tuples have been handled by all the operators.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

151

Learned Join Order Selection

. Training Adaptive Adaptive Learned
Quality Cost (workload) (DB Instance) Operator Methods
Traditional _ _
[Genetic algorithms] Low Low High High N4 Cost model
[Dynamic Programming]
DQ Medium High Low High X Value-based DRL
RedJoin Medium High Low High X Policy-based DRL
: : : : Value-based DRL,
RTOS High High Medium High X Tree-LSTM
: : : Value-based DRL,
NEO High High Low High v Tree-CNN
CMAB, Thompson
Bao High- Medium High High v sampling, Value-based,
Tree-CNN
: : : Eddies-style, Value-
Skinner-DB High Low High Low X based. MCTS

152

* Not easy to be applied in real DBMS

 Open problems
* Low latency plan generation

* Neural networks bring delays that cannot be ignored. How to apply
learning algorithms to low-latency OLTP services.

* Support complex queries
* Nested queries.
* Learning metrics
* The planned latency will vary with the system state and network delay.

- Some faster plans may consume more resources. For example, use two-

core CPU in parallel to reduce the execution time by 20%.
153

Autonomous Database Systems

Motivation

O Traditional Database Design is laborious
» Develop databases based on workload/data features
» Some general modules may not work well in all the cases

 Most Al4DB Works Focus on Single Modules

» Local optimum with high training overhead

« Commercial Practices of Al4DB Works
» Heavy ML models are hard to implement inside kernel
» A uniform training platform is required

154

Peloton

O Schedule optimization actions via workload forecasting

» Embedded Monitor: Detect the event stream

» Workload Forecast Model: Future workload type

» Optimization Actions: Tuning, Planning

§o Peloton

(\ Workload Classification ["Action Planning Module
5 7| r
RHCM Search
7 r Workloa Clustering - Physical Opts
Application J Monito! Algorithm ; TATE T TETD
AL
<

]
>

Stream Workload Clusters =y
X [[Execution Opts Cost Estimator
_V Workload Forecasting j/ A {
Execution Threads AVAVAVAVAVAVAVAS
a In-Memory ——— — i Action
Lo Database ‘A'A'A'A‘] Catalog
4 \m Deployment History
Recurrent Neural Network gg;i 5‘1’@5; ates
Runtime Architecture Workload Modeling Control Framework

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017.

155

SageDB

0 Customize DB design via learning the Data Distribution

» Learn Data Distribution by Learned CDF

Mcpr = Fx,,.. X, (21,..2m) = P(X1 < z1,..., X;n < Tm)

» Design Components based on the

learned CDFs
» Query optimization and execution

» Data layout design
» Advanced analytics

Query Optimization
- Cardinality Estimation

Data Access
- Compression

- Cost Model - Storage layout
- Join - Indexes
Ordering gﬁ.
Lo/ ®

- Data Cubes

- Sorting

- Joins Q - AQP

- Aggregation Model - Machine
- Scheduling Synthesis Learning

Query ExecuticLJ

Advanced Analytics

g =

Hardware

Data

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019.

Workload

156

openGauss

O Implement, validate, and manage learning-based modules
» Learned Optimizer

] Traditional Module [] Learned Module
° Query Rewrlter SQLl DashboardT
. | SQL Parser | Learned Advisor
* COSt/ Ca rd E Stl m ato r Learned Optimizer Self-Monitoring Self-Configuration
- . Anomaly Detection Knob Tuner
° P I a n E n u m e rato r Logic Query Rewriter (Extreme Value Theory) (DeepRL)
i | Rule-based | | MCTS | @2
> Lea rned AdVISOr — - Self-Diagnosis Self-Optimization
. . 'Card|nal|ty/Cost Estimator System Diagnosis MV Recommender
° S e If_ M on Ito rin g | Histogram-based | | Tree-LSTM | ﬁ (LSTM+KNN) (RNN+RL)
. : Plan Enumerator SQL Diagnosis Index Recommender
o« Self-D 1agnosIS [Greedy/Genetic | | DeepRL | (Tree-LSTM) (DeepRL)
« Self-Configuration

Storage Engine Model Validation I Performance Prediction (GNN)

« Self-Optimization

Logs 1 System Metrics f Model Update

. . Training Data Platform o Model Management Platform
» Model Validation Training
Databasa SQL ﬁ systemj Data | Model Model Model
Metri Queri L | Training Prediction Manager
» Data/Model Management s

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021.

157

- S
O
D
>
d
<
g
O
C
- S
(©
o
-

158

Learned Advisors

O Learned Knob Tuning

O Learned Index Advisor

[0 Learned View Advisor

[0 Learned Partition Advisor

[0 Learned Data Generation

159

Knob Tuning

Given a suite of knobs B and a target T, knob tuning aims to find the

optimal values of B, so as to meet T for the incoming workload.
O Knobs

Workload
« concurrency control, optimizer settings Q
* memory management, background processes ,___ | Request
Workload Workload
D Targets 4. Knob Tuning
3. Read Metrics />
« Performance (throughput, latency) @
 Resource Usage (e.g., CPU utilization)

5. Set Knobs
Target DBMS

Tuner

160

Problem Definition: Consider a database with different workloads,
the target is to find the optimal knob settings to meet required
SLA (service-level agreement).

knobs knobs

@ \ agent @
Knob Tuning
>@ Value?

@
@ @ Value?

161

Offline Optimization for Knob Tuning

[0 Motivation:

O DBMSs have different optimal knob settings, which significantly

affect the query performance and resource utilization.

0 DBMSs have numerous runtime metrics. Classic ML models

cannot efficiently select knobs based on the metrics.

O DBMSs have numerous system knobs with continuous

values, which makes it harder to find optimal knobs.

162

O Motivation: Most users only utilize default knob settings and cause

performance regression

0 Basic Idea: Greedily select local-optimal knob settings with bound-and-

search algorithm

O Challenge: Optimal settings change with tuning goals and workloads

0 Solutions:

» Sample Phase: Divide each knob range into k intervals
and sample k settings that cover all the value ranges
» Search Phase: Select the best sampled setting and

build search space around the best setting

Parameter Space

L
o — — — — —

?

C

Parameter Y

Bounded

Parameter X

Random Sampling: Some important settings may not be sampled

Yuqing Zhu et al. BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning. In SoCC, 2017.

O A large number of configuration knobs
« Total >400

» Heuristic Method: waste much time in search

from huge knob space

O Knobs control nearly every aspect and

have complex correlations
* One-knob-at-a-time is inefficient
* Heuristic: The relations are non-monotonic
O Learn from the historical tuning

» Heuristic: Restart tuning from scratch each time

| Hi, list. I've just upgraded pgsql from 8.3 to

8.4. I've used pgtune before and everything
worked fine for me. And now i have ~93%
cpu load. Here's changed values of config:

default_statistics_target = 50
maintenance_work _mem = 1GB
constraint_exclusion = on
checkpoint_completion_target = 0.9
effective cache size = 22GB

work mem = 192MB

wal buffers = 8MB
checkpoint_segments = 16

shared buffers = 7680MB
max_connections = 80

164

Learning-based Knob Tuning

Deep Learning

Bayesian Optimization Reinforcement Learning

T e T T VT L \
: iTune ' 'y .
L ' '
: Historical o DNN . CDBTune i
: Data 1 b !
| [Resource [Delayed RL !
: OtterTune Vo Code Constraint : 1 Workload for heavy knobs |
" 1 1 Encoding I ; Features 0
" : : : : Tuning :
[- . | hints from
1 Empirical Query Pre-trained !V !) ! !
: Experience Features Models : : LITE UDO : : QTune manual UDO :
1 ']
[1o L !
! 1 b !
i RelM CGPTuner ResTune | | P DBBert !
lcccccccccccccc——ccc_——ccc—————_e heccccccccc———c——————— T !
X: Configuration,Y: Performance; .
W: Workload; E: Empirical Experience Initial Sample Input Data Tuner
! \ s e
: | e 1
’ X ; — Latin Hypercube | =
input=(X, ! input=(X,Y) !
| Wg @ | Tuned Sampling (LHS)
Sampling Data Historical Data Configuration
Sampling Data Historical Data Samples
OtterTune |=——= Workload E— E— Gaussian
input=(X,Y,E, : input=(X,Y,W) Maboi —_ - Process
. (cerr o Workioad | |77 Regression
(S) uner —_— —
| CGPTuner Features

165

(1.1) Bayesian Optimization for Knob Tuning

Motivation: Only a few knobs have significant effects to the performance
Basic Idea: Explore the knob-performance relations by experiments

Challenge: Identify important knobs and their values efficiently
Solution:
* Planner: Adaptively sample some knob settings

« Executor: Get the performance of sampled settings by running workloads
« Estimator: Predict knob-performance relations with Gaussian Process

« Termination: Terminate if arriving time limit; otherwise repeat above steps

TPC-H Workload Q18
Planner
sampled knob-performance o
settings relations (GP) -§250- ,
Executor F—* Estimator
effective_cache_size(MB) 00 shared_buffers(MB)
experiments

knob-performance relations
Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009. 166

(1.1) Bayesian Optimization for Knob Tuning

O Motivation: Only a few knobs have significant effects to the performance
O Basic Idea: Explore the knob-performance relations by experiments

O Challenge: Identify important knobs and their values within hours
O Solution:

* Planner: Adaptively sample some knob settings

« Executor: Get the performance of sampled settings by running workloads
« Estimator: Predict knob-performance relations with Gaussian Process

« Termination: Terminate if arriving time limit; otherwise repeat above steps
O Limitations
O Sampling configurations from scratch is inefficient

O Knob-performance relations are extremely complex =] %
O Important workload features are not utilized

effective_cache_size(MB) 00 shared_buffers(MB)

TPC-H Workload Q18

Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009. 167

(1.2) Bayesian Optimization + Historical Data

Data-driven: Optimize tuning performance with numerous historical data

» Characterize workloads with runtime metrics (e.g., #-read-page, #-write-page)

» ldentify important knobs (rank knobs through knob-performance sampling)

» Generate workload-to-identified-knob-settings correlations (data repository)

» Given a workload, compute a mapped workload via metric similarity, use corresponding
knob settings to initialize GP, explore more settings to get better performance

Workload Characterization Knob Identification Automatic Tuner

aouenodw|

<

Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough Large-scale Machine Learning. SIGMOD, 2017. 168

I:I Motivation: Expert experience can make learned tuning more robust
* e.g., limit the minimal shard buffer size

O Basic Idea: Utilize expert experience to optimize tuning
O Solution

» Empirically compute input features at resource/APP/VM levels

x. Tested knob setting
M; + me M;: Code overhead value

min(mg, my) m.: Required cache storage
m,. GC settings

> Rely on empirical features to estimate tuning performance
(1) Input: Empirical features, e

e.g., Memory Efficiency: q%‘ -

e : — = -
Initialized knob values; = e e g
(2) Model: Gaussian Process; soncaon™=) Gemrtr =>[']=>[b Se.md,]
(3) Target: Tuning Performance. . ReM &) _—_1

Mayuresh Kunijir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-based Analytics. SIGMOD 2020. 169

O Motivation: Learning-based tuning is hard to migrate to new scenarios

O Basic Idea: Improve migration capability with pre-trained tuning models

O Solution:

* Characterize the common workload features
* Reserved SQL words (e.g., SELECT, DISTINCT)
» Cluster tuning models on historical workloads to generate Base Leaners;

 For a New Task, generate Meta Learner based on the Base Leaners (similarity weight: g;);

« The Meta Learner M is a gaussian process model:
New Task
Z-T:l g'p'(e) T+1 ~ A
mean value m(0) = === variance oy (0) = » 007 (0), t rdlf
. [l + -
* Fine-tune the Meta Learner by running the new workload; ~AR /
« Recommend promising knobs with Meta Learner. Meta-Learner
f= zw,-fj
Performance -

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases. SIGMOD, 2021.

170

(2.1) Deep Learning for Knob Tuning

O Motivation: Expensive to run workloads for evaluating tuning effects
[0 Basic Idea: Estimate tuning effects without running workloads
O Challenge: Many metrics affect the performance
O Solution:
O Collect DB metrics: [logical-read, QPS, CPU usage, response time];
O Initialize a buffer size using historical workloads with similar metrics;

O Design a neural network to estimate the response time as tuning feedback;
O Greedily reduce the initialized buffer size until arriving safe response time.

State Metrics

Estimated

Apply new BP size \/’X\ .\ Performance

-,

< Safe Response time
(SLA)

T

J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases. VLDB 2019. 171

(2.2) Deep Learning + Code Encoding

O Motivation: Spark code involves complex semantics, and it is costly
to migrate tuning models from small datasets to large datasets

O Basic Idea: Restrict the tuning region by predicting the performance
« Knob Sampling: Sample candidate knob settings based on the data and code features;
« Code Instrumentation: Enrich semantic features by adding the Spark API;

« Performance Prediction: Predict the performance with encoded code, data, knob, DAG.

code | stagelevel Codes
encoding

,,, Adaptive Candidate Generation | Given a testing application
Tower MLP Knob 2
. A I

Collect data and application feature a;, d;

I]
1 ‘ 1 I

Rel.U7 } | }
I:> ‘ } Knob d: Predict mean value by Random

mnymm
[e]e]e]e] OO+OO Q000
0000

- _ +.+ ‘
tuning i candidate ++ ‘ Forest Regression RFRY(a;, d;)
performance E—— L E—
= : knobs | ‘ ‘ I
- |
H \ .
e - -——-- - - - - - - - ' Region of Interest RFRY(a;, d;) + 0@ ‘
Stage-based Code Organization ! Feature Encoding ! Performance Estimation
Knob 1

Chen Lin, Junging Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022. 172

to migrate tuning models from small datasets to large datasets
O Basic Idea: Restrict the tuning region by predicting the performance

Knob Sampling: Sample candidate knob settings based on the data and code features;
Code Instrumentation: Enrich the code features by adding the Spark API tokens;

Performance Prediction: Predict the performance with encoded code, data, knob, DAG features;

Generalization to Big Datasets: When dataset changes, utilize adversarial learning to capture the

domain-invariant features and update the performance model with newly collected samples.

..-Prediction loss--...

Source (trainingset) - NECS -

predict

Feature
extraction

+ +
@
- 90 @

classify

Representation space

. e Adaplive Model Updach ***** I"**Discrimination In.\\"""
Target (new instances)

Chen Lin, Junging Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022. 173

O Motivation: Traditional methods fall into local optimum

O Basic Idea: Use reinforcement learning (exploration-exploitation)

O Challenge: Map knob tuning into RL

O Solution: DRL

CDBTune

Agent
Environment
State

Reward

Action

Policy

The tuning system
DB instance

Internal metrics

Performance change
Knob configuration

Deep neural network

Throughput
Latency
SLAs

xact_commit
blk reads/hit
tuple_fetched
conflicts

CDBTune

e |

<Policy>

effective_cache_size
checkpoint timeout
I0_concurrency

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 174

O Issue1: How to choose an appropriate RL approach

O Challenge: Many continuous runtime metrics and knobs

« Value-based method (DQN) Discrete Action X
— Replace the Q-table with a neural network

— Input: state metrics; Output: Q-values for all the actions

* Policy-based method (DDPG) Continuous State/Action v
— (actor) Parameterized policy function: a; = p(s;|6%)

— (critic) Score specific action and state: Q(st, a:[6°)

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 175

O Challenge: Optimize the tuning strategy with execution rewards

* Design effective reward function r (current benefit): han. krokoane | oo
9) I
(1+Ai50) = D1+ Apssq|,Ap 50 > 0 |
- At o) A At < |
_((1 - t—>0) - 1)|1 - t—>t—1|a t—o S 0

\)\ ; |

Improvement over Improvement over e o e e e

default setting (t-1) setting e ————————— 4

» Actor Network Training: Update with the score estimated by the Critic
Vorama =Va,Q(S;, Ai|nc) - Verama(Si|074) Q(Si, Ailmc) > The output of Critic

* Critic Network Training: Update with accumulated /long-term benefit:

L = (Q(Si, Ailrc) — Yi)?
Yi=R;+1- Q(S§+1>7TA(S£+1|9WA)|7TC)

Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. VLDB 2019.

Y: = Long-term benefit based on the reward

176

(3.2) Reinforcement Learning + Tuning Hints

O Limitations in RL-based tuning O Basic Idea: Tuning hints from manual

O High tuning overhead (1) Collect tuning hints from website

dba.stackexchange.com

L] -
O Require DBASs (e.g., decide e
Set shared_buffers to Try setting
25% of RAM and random_page_cost
the knob ranges)
- — S — S—
Set shared_buffers to \
® 25% of RAM and Utilize up to 6 Use 40% of memory Try setting
Workload, Metric pman i 2 I T random page.cost
to1
I:> Set shared_buffers to \
25% of RAM and Use 40% of
workmem to 256M8 Utilize up to 6 workers p h::’zozlz,s
[max_parallel_workers] S
- A .
DB Tuning Tool DM i l Extract hints
e from manual

1 “~—

Best Configuration

Parameter = Value [* System Property][* Constant]

Givenin Text RAM/Disk/Cores

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022. 177

O Limitations in RL-based tuning O Basic Idea: Tuning hints from manual
(2) Apply the tuning hints with the
reinforcement learning model

O High tuning overhead
O Require DBASs (e.g., decide

the knob ranges)
Workload, Metric e

etw gwork

'ﬁ' |‘ J‘»’
Agent Environment
DB-BERT Observations Workload,

Hint & Action Text System

Parameter = Value [* System Property][* Constant]

Neura\ N

Best Configuration

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual”. SIGMOD, 2022. 178

Summarization of Learned Knob Tuning

TR,
_ Training Efficiency | Training Data Adaptivity

Gaussian Process
(historical data)

Gaussian Process
(+ empirical features) v 4 v vV

Gaussian Process
(pre-trained models)

Deep Learning
(resource issues)

Deep Learning
(+ code encoding)

Reinforcement Learning
(from scratch) Prepared Data

Reinforcement Learning J
(+ tuning hints)

-- Vv vV

179

Take-aways of Knob Tuning

O Gradient-based GP methods reduce the tuning complexity by filtering out
unimporant features. However, it heavily relies on training data, and requires
other migration techniques to adapt to new scenarios

O Deep learning method considers both query performance and resource
utilization. And they can significantly reduce the tuning overhead.

O Reinforcement learning methods take longest training time, e.g., hours,
from scratch. It takes minutes to tune the database after well trained and gains
relatively good performance.

O Learning based methods may recommend bad settings when migrated to
a new workload. Hence, it is vital to validate the tuning performance.

O Open problems:
» One tuning model fits multiple databases
» Natively integrate empirical knowledge

180

Learned Advisors

O Learned Knob Tuning

O Learned Index Advisor

[0 Learned View Advisor

[0 Learned Partition Advisor

[0 Learned Data Generation

181

Index Management

Problem Definition: Given a set of queries W and resource constraint D (e.g., disk
limit), create a collection of indexes so as to optimize the execution of these
qgueries under the constraint D. -> NP-hard

Queries Candidate Indexes Indexes

?Q > h h Create?
% h Index Selection> h Create?
2 O

Ed n=t

182

Index Management

[0 Index Benefit Estimation

— The benefit of building an index on a column

[0 Index Selection
— Column selection
—Index-type selection, e.g., B-tree, Hash, bitmap

O Index Update

— Adding or removing an index

Heuristic Index Selection

O Motivation: Proper indexes can significantly improve the performance

0 Basic Idea: Model index selection as a knapsack problem and
heuristically find the best indexes under disk limit

O Challenge: There are correlations between indexes (e.g., index sizes)

D SOIUtion: Const)rag;;sk osn ;izoxlrlzc‘e:ed
. . SQL Workload y TimeIC':)mpIexity
 Model index selection as a knapsack problem
« Item: Candidate index A
* [tem weight: Index size M D W 5
« Value: Cost reduced by the index Exploits Optimizerto: = Database
. . . L. # Suggest good candidates, Structure
* Heuristically select the highest-benefit indexes rperawern
¢ Evaluate combinations, .
. . . for entire workload Indexes Designed by DB2 for Your
« Benefit: Cost Reduction / Index Size Environment & Workload

by optimizer

G. Valentin, M. Zuliani, D. C. Zilio, et al. DB2 aavisor: An optimizer smart enough to recommend its own indexes. In ICDE 2000. 184

O Basic Idea: Split workloads into epochs and finetune indexes for each epoch

O Challenge: Online index update for new queries
O Solution:

Query

- Divide a workload into epochs of queries U SR
[——
» Generate candidate indexes for each new query || oueryparser | |
| |
* Index Benefit: average latency reduction for the queries E ; i FTTTTTTTTTTTTTS
o o . |
within the same epoch [ey <_¢ :
. | Optimizer : |
- Benefit Estimation: Estimate the index benefit through | e !
. | tatistics)
what-if call (similar queries have similar index benefits) L awey ! i !
= - - | Engine | | Self-Organizer |
« Update the index set and statistics e NN - |
requests _ Indices to materialize |
« Create indexes with highest index benefit at each epoch ! \..* l
| Scheduler |
| |
|

K. Schnaitter, S. Abiteboul, T. Milo and N. Polyzotis. On-Line Index Selection for Shifting Workloads. In ICDE 2007. 185

Learning-based Index Selection

O Why heuristics - learned index selection?

* Indexes are essential for efficient execution

» SELECT c_discount from bmsql_customer where ¢ w_id = 10;

» CREATE INDEX on bmsqgl_customer(c_w_id);
* Find better solutions from numerous candidate indexes

» Columns have different access frequencies, data distribution

 Redundant indexes may cause negative effects

» Increase maintenance costs for update/delete operations

186

Learning-based Index Recommendation

Benefit Estimation Index Selection Index Update
. Cost Estimator ' Greedy . ! Greedy .
‘ : X Index : : :
; Index : : Senefits l : y Time-series :
. Templates ' DB2 '+ Workloads :
' What-if Calls - DeepRLl . . Onlinindex
' . ' DBA Bandits , :
, Plans . ‘o Index .
0 with/without Index ¢+ Empirical l ', Update '
: : ; Rules : ; :
: \ ' y ! ! :
. DeeplLearning + + RLAdvisor . ; RLAdvisor .

187

Index Benefit Estimation

O Challenge

The index benefit is hard to evaluate

» Multiple evaluation metrics (e.g., index benefit, space cost)

» Cost estimation by the optimizer is inaccurate

Correlations with other components
» Multiple column access, data refresh

» Conflicts between Indexes

188

costs of plans with/without created indexes

0 Core Idea: Model benefit estimation as an ML classification task

O Challenge: Hard to accurately estimate the index benefits

0 Solution:

Est Cost: 20

- Prepare training data Ve cos0 Sl
Gndex:Seelf TD Gndex Scan Tz) . Mode
* Query Plans + Costs under different indexes st howe 200 Fow Esthowe 1000 o
» Train the classification model (a) Example query plan.
LeafWeightEstRows
« Input: Two query plans with/without indexes EstodeCost WeightedSum

. . Seek_Row_Serial |10 Seek_Row_Serial |200
* Output: 1 denotes performance gains; 0 denotes no gains ., . ool 50 ScanRowserial 12000
- - HJ_Row_Serial 55 ** |HJ_Row_Serial 4600
* Solve the index selection problem NU_Row_Serial |0 NU_Row_Serial |0
MJ_Row_Serial MJ_Row_Serial

0

0

» Use the model to create indexes with performance gains

(b) Feature channels for the plan.

Bailu Ding, Sudipto Das, et al. Al meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.

189

Learning-based Index Selection

O Challenges

O The index benefit is hard to evaluate
» Multiple evaluation metrics (e.g., index benefit, space cost)

» Cost estimation by the optimizer is inaccurate

O Index selection is an NP-hard problem

» The set of candidate index combinations is huge

O Index update is expensive

» Hard to estimate the number of involved pages

190

O Motivation: Index selection using reinforcement learning

O Challenge 1: How to extract candidate indexes?

Rule 1: Construct all single-attribute indexes by using the attributes
_ _ in J, EQ, RANGE.
from query predicates with Rule 2: When the attributes in O come from the same table, generate

empirical rules the index by using all attributes in O.
Rule 3: If table a joins table b with multiple attributes, construct

indexes bv using all ioin attributes.

O Challenge 2: How to choose from candidate indexes?
» Map into Markov Decision Process (MDP)

» Extract candidate indexes

large state space
State: Info of current built indexes >

discrete action space

DQN Model

Action: Choose an index to build .

Reward: Cost reduction ratio after building the index

H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020. 191

MCTS for Index Update

Motivation: Existing methods cannot incrementally update indexes

Basic Idea: Incrementally add/remove indexes with MCTS
Challenge: Consider both the read and write queries
Solution:

* Index Diagnosis (anomaly detection)

* Incremental Index Update (policy tree search)
. Index Benefit Estimation (deep regression)

——— - - ——————— e - —— - - - - - - = e e - - - E— en e e e e - - - - - = - - ——— - - ———————

| | |
I Index Diagnosis l | Incremental Index Management o Updated |
! |@ | I 1 Index Set !
| ; candidate 1@ | ;emmcmmccccceeee
| Performance Index | templates Candidate Index MCTS-based 1) H
| ' Regression? Analysis |::>' SQlL2Template — """, ™ g oration e e :'j‘>: i Advised b
I [I I Indexes I
e = = S i e R S | |
ﬁ@ Incremental Selectivity Calculation Index Benefits | merge |
Performance Template Update (Database Kernel) (Index Estimator) | ittt |
Change I 1 Existing Indexs 1 :
__ ['
| ittt | | E Positive Indexes E |
i Database Kernel ' Index Estimator i+ Existing Indexes ! ! ' ' !
| pm====mmmmmmmmmo o o ! ' ! Useless Indexes ! :
[} . .
: i Workload i 1 Hypothesis Index Deep Regression | i Indexes Statistics Kﬁ:' i .
) (] [}] I

Negative Indexes

Xuanhe Zhou, Luyang Liu, et al. Autolndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022. 192

MCTS for Index Update

I:I Motlvatlon Existing methods cannot incrementally update indexes
O Basic Idea: Incrementally add/remove indexes with MCTS

O Challenge: Consider both the read and write queries
O Solution:

> Index Problem Diagnosis: Detect whether the performance regression is caused by index issues;
» Candidate index extraction: Cluster queries > Map to query templates - Extract candidate indexes;
> Incremental Index Update: Initialize a policy tree with existing indexes = Add new candidate indexes;

> Index Benefit Estimation: Index Update Costs = seek_tuples * cpu_cost + insert_tuples * cpu_index_tuple_cost

MCTS-based Index Update
, .) Updated
Policy Tree Policy Tree Search < Index (T)
root 1
® @) L
L wiy T,
Il 7 O @ @ - I (i-coll)
I, | 2 &S 0.8/ ~0:9 . 2 09 IS (d-coll)
°pt’"7;l 12 13 d d N Ir Il 12 Arriving storage limit!!
L (a) select highest utility (b) estimate node benefit (c) update policy tree U — 12

Xuanhe Zhou, Luyang Liu, et al. Autolndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022. 193

Optimization Training
Targets Efficiency
: Accurate :
Deep Learning Estimation high
Reinforcement High high :
) computation
Learning Performance
costs
High
MCTS Performance for Tade-off (costs,

index update performance)

Training
Data

numerous
data

no prepared
Data

a few
prepared
data

Adaptive

query
changes

query
changes

query
changes

194

Take-aways of Index Advisor

O Learned index estimation is more robust than cost models

O RL-based index selection works takes much time for model
training (cold start); while MCTS can gain similar performance
and better interpretability (or regret bounds)

O Learned estimation models need to be trained periodically
for data or workload update

O Open problems:
» Benefit prediction for future workload
» Cost for future updates

195

Learned Advisors

O Learned Knob Tuning

[0 Learned Index Advisor

[0 Learned View Advisor

[0 Learned Partition Advisor

[0 Learned Data Generation

196

View Management

[0View Benefit Estimation

— The benefit of building a materialized view (MV) for a

subquery
0View Selection

—Which subquery to create an MV
OView Update/Refresh

— Adding or removing an MV

197

View Selection

Problem Definition: Given a workload Q and a space budget, select optimal
subqueries to materialize (MVs), including (i) MV benefit estimation; (ii) MV
Selection; (iii) MV update; (iv) MV rewrite.

Queries Views Views

El > [%I % MV?
?Q % View Selection> F__é MV?

% .%I [%MV?
N\ -

198

View Selection

0 Materialized Views (MVs) can optimize queries

- Share common subqueries

O Space-for-time trade-off principle
« Materialize hot data (MVs) within limited space

« How to estimate the MV utilities

0 The number of potential MVs grows exponentially

» Greedy/Genetic/other-heuristics work bad

199

 Given a workload, select and maintain materialized views that minimize the

total latency within a limited materialized view storage space (NP-hard).
» Traditional Methods
* Greedy: WATCHMAN, DynaMat, CloudViews

Genetic: EA, Hybrid-GHCA

Coral Reefs Optimization Algorithm: CROMVS

Backtracking Search Optimization Algorithm: BSAMVS-penalty

Integer Linear Programming: BIGSUBS, HAWC

200

Learned View Management

e Limitations of Traditional Methods
 View’s benefit estimation. Not accurate.

* Traditional models is not accurate for view benefit/multiple view benefit
estimation.

« Hard to estimate materialized view update cost.
* View selection. Not generalizable.
* Designed and work well for specific scenarios or workloads.
* Rely on assumptions that are not always right
* View update. Long Delay.
« Based on accumulated benefits and creation cost of views.
« Hard to estimate the a view’s future benefit and recreation cost.

201

Learned View Management

 Motivation

« Estimate view benefit accurately.

» Learned based methods from real runtime statistics.
(Also verified in learned cardinality and learned join order selection)

 Generalizable on different workloads.

» Learns from historical workloads and learns directly from the view

selection performance without human experience.
* Predict views’ future benefit.

» Learns from historical MV utilization and predict future benefit and

update cost.

202

Learned View Management

Challenges
* View and query need to be encoded for neural networks.
 New models need to be designed for view benefit estimation.
 View selection models should be efficient and flexible.
« Optimization Goals
* View Quality
 Model Adaptivity

« Support view update

203

Learned View Management

Heuristic

RL view selection Learned View refresh

RLView ECSE

RNN view estimation

AutoView

204

Learned View Estimation: AutoView

“~+ Motivation
» Estimate views’ benefit more accurately.
« Support variable number of views in RL for view selection.

« Challenges
* Views have different benefits on queries in workload.
» Hard to extend state representation after model training.

AutoView System

MV Generation Benefit Estimation MV Selection Execution
N q:-’ Estimation ﬁ - Selection = Recommendation
= | e”ef'” Cre=r) o '
- ‘Qg / MV2‘ Reertlng
Workload ' © ot (Environment) o
O — — = Experience
[Encoder- \\ Pool :
= Red Execution
= - | DDQN
O Dataset Training == Training Materialize Result
Collect Data

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021. 205

Learned View Estimation: AutoView

- Estimate the query-view benefits with encoder-reducer model:
 Two LSTM network for query and views, which captures query-MV
correlations with attention.
» Select optimal query-view combinations with reinforcement
learning iteratively.

Agent Environment

[Q-Network ! _ (
Reducer Cell | | Action | —

\

|

Attention E(tg") | 1Q(s, ao) | |

out, > Vol

Encoder Cell By u hy | ISelect? 0 : I

uty U ‘ '
-

A GRU

! ReLU

Linear

> e [~ < State Observation

Reducer Embeddng) 2000 | —mmmmm————— (C]h ’U1)

A}
= [.E.] [.E.l [.E.] @3{.] ﬁ] = Statistics Hidden State Vec Encoder
Nodes [Seq Scan] [Nf:;zd] [Aggregate] Index Scan Imlja;(msagan Nf:fd Seq Scan | [. . .] [. . .]

C) C) < J e p—— Reducer
Query View, View, Budget etc.|Benefit, etc. |dden State T

Encoder| Encoder
Cell

A4

Encoder

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021. 206

Learned View Estimation: AutoView

O Feature Extraction
* Previous work take candidate views as fixed length -
 Encode various number and length of queries and views with an

encoder-reducer model, which captures correlations with attention

O Model Construction E(ty) E(ti)) E(iooveh) E(loovsh

« Itis hard to jointly consider f
MVs with conflicts 2> Encoder

« (1) Split the problem into sub- MVs
steps that select one MV;

* (2) Use attention-based model | query
to estimate the MV benefit

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021. 207

Learned View Selection: RLView

* Motivation
* RL performs well on combinatorial optimization problem.

« Challenges
* How to solve view selection problem in RL framework.

» Solutions
» Cluster equivalent queries and select the

<Agent>
RLView

<Policy>
Select z; from Z

5 ;V
least overhead ones as the candidate; <Action>
. y 9 <Environment>
* Represent MVs as a fixed-length
<State>
state vector and solve with DQN model; g c=(ZY) pumm -
 Estimate the MV benefits with DNN. yzf{iff}}iiiiﬁi? A

H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning and reinforcement learning. In ICDE, 2020. 208

Learned View Update: ECSE

 Motivation

 Support MV refresh.

» Challenges i
« Hard to estimate refresh benefit/cost from historical MY Candidae
workload. ! \
» Solutions o traull [
« Traditional view generation, estimation, and selection; c;slt.b;em; /
 Use a neural network model to predict future DML ‘“‘1‘*?

operations and MV usage for scheduling the refresh.

« Use linear regression to estimate MV refresh time with
« MV size, refresh method, affected number of rows,
» previous refreshes time.

MYV Verification

Ahmed, R., Bello, R., Witkowski, A. Kumar. Automated generation of materialized views in Oracle. VLDB 2020.

209

Learned View Management: Comparison

VleW View VleW Vlew View
RILView Medlum Learned Learned

AutoView High High No Learned Learned -
ECSE Medium Medium Yes Heuristic Heuristic Learned

210

 Learned view selection gains higher performance than heuristics
« Learned view selection works well for read workloads

 Learned view benefit estimation is more accurate than traditional empirical

methods
 Learned view benefit estimation is accurate for multiple-view optimization
« Open Problems:

* Learned MV update/refresh

 Learned MV rewrite

211

Learned Advisors

O Learned Knob Tuning

O Learned Index Advisor

[0 Learned View Advisor

[0 Learned Partition Advisor

[0 Learned Data Generation

212

Database Partition

Problem Definition: Given tables {T,, T,, ..., T,,} and a partition function F, database
partition selects columns for each table T, as the partition key, and allocate the tuples
in T, into partitions using F, such that the workload performance is optimal.

customer_p_00
| cwomer ool Gd 2 .
4 4

(c_custkey)
c_nationkey

;- . > Node 0

' 5 : = 64 15

PR
Raw 4
Tables ' 1 15

i I_orderkeyi |_suppkey = !

| 197 i 15 . Node 1

€9 i Distribute by HASH 7 o

i 161 P11 (I_orderkey) 69 13

| 64 |15 161 1

SELECT * FROM customer,lineitem WHERE c_nationkey = |_suppkey and c_nationkey < 4; 213

O Motivation
» Reduce the network costs by judiciously partitioning tables

[0 Core Idea

» Heuristically co-partition (the tuples of the referenced table are on
the same node of referencing table) tables by foreign-key relations

O Challenge

> It is hard to find a suitable partitioning scheme (for many tables
with join correlations) that maximizes data locality.

» There can be different partition schemes. How to merge them so as
to reduce the data redundancy caused by co-partitioning.

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015. 214

Heuristic Database Partition for OLAP Workloads

‘. Represent the specific dataset schema - Build a graph mode

> Initialize a graph model G,
» Nodes: tables, Edges: foreign keys, Edge weight. the size of smaller table connected to the edge

> Improve data locality (reduce network costs) = Partition by join predicates
» REF partitioning: a table is co-partitioned by the join predicate that refers to another table;

» Utilize maximum spanning tree to extract subsets of edges (a partition strategy) that (1)
partition all the tables and (2) maximize the data locality.

> Full data locality may introduce duplicate tuples > Merge duplicated partitions

» Utilize dynamic programming to merge candidate partition strategies so as to find the one
with minimal data redundancy.

Maximum Spanning ,::> Merged MASTs |:> Merged MASTs
. . T Trees MAST (First Phase): (Second Phase):
Schema Graph Gg Maximum Spanning |::> Partitioning (): PREF PREF PREF PREF
(with weights): Tree MAST: Configuration: o a, 150k1 Sm et o PR
15m c®o%0 .
OO =O—O" ;
on L 2 PREF . $ IS
on S
10k = PREF PREF
e e PREF O e PREF Qs % ®_@ -gj i ons onn 5P
on © on b Q, O2® w O—m - ¢ Qu.q
2 = =
25 0 5 PREF o PREF SP g:“ 2
on C on N Q&
Improve Data Locality Reduce Data Redundancy

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015. 215

Traditional Database Partition

O Motivation: Partition on join columns can significantly reduce the network communication
and reduce execution costs

O Core Idea: Combine exact and heuristic algorithms to find good partition strategies for
different workloads

O Challenge: Picking join columns as partition keys is NP-complete

O Solution
» Build a Join Multi-Graph

« Vertices are tables, Edges denote join relations

« Partition with hybrid partitioning algorithms

)
H _ a
. Exact algorithm: Assume each table only uses a column; —: Weight =2 “A : collocated A
—: weight=1 ——:non collocated

and turn into an integer programming problem;

* Heuristic algorithm: Select the table columns with largest edge weights

P. Parchas, et al. Fast and Effective Distribution-Key Recommendation for Amazon Redshift. Proc. VLDB Endow, 2020. 216

Learning-based Database Partition

0 Motivation:
» Consider both the data balance & access efficiency
« Place partitions on different nodes to speedup queries
« Trade-off based on workload and data features
» Combine ML to optimize the NP optimization problem
« Combinatorial problem: 61 TPC-H columns, 145 query

relations, 2.3 x 10'8 candidate combinations

217

O Motivation: OLAP Workloads contain complex and recursive queries

O Core Idea: Explore column combinations as partition keys with RL

O Challenge: Characterize partition features; Migrate to new workloads

OO0 Solution

* [Extract partition features as a vector
* [tables, query frequencies, foreign keys]
 Use DQN to partition the tables for a workload
* Iteratively partition tables by long-term reward
* Support new workloads with trained models

« Train a cluster of DQN models on typical workloads;

L /

State S

Agent

Q-leaning

Reward: minimizes the run time
for the workload mix

Environment -

Action A

Activate/de-activate
edges between tables

Select one key at a time

* Pick models whose workloads are similar to the new workload to partition tables.

Benjamin Hilprecht, Carsten Binnig, Uwe Réhm. Towards learning a partitioning advisor with deep reinforcement learning. SIGMOD 2019.

218

Takeaways of Database Partition

O Learned key-selection partition outperforms heuristic partition

under complex workloads (e.g., with multiple joins)

[0 Learned key-selection partition has much higher partitioning

latency (e.g., data collection, model training)

0 Open Problems:
» Adaptive partition for relational databases
» Partition quality prediction

» Improve partition availability with replicates
219

Learned Advisors

O Learned Knob Tuning

[Learned Index Advisor

[0 Learned View Advisor

[0 Learned Partition Advisor

[0 Learned Data Generation

220

Automatic Query Generation

[0 Motivation
« Companies generally will not release their data and queries
(out of privacy issues);
 |tis vital to generate synthetical workloads (in replace of real
workloads), and release the synthetical workloads to the public

to train the ML models

221

Automatic Query Generation

Definiation: Given a scheme and constraints (e.g., cost/ cardinality ranges), we generate k
SQL queries which can (i) legally execute in the databse and (ii) meet the constraints.

Example: Generate 1000 TPC-H SQLs whose cardinality equals 1000.

» Challenges & Solutions:

RL ' O Construct a LSTM-based critic to predict

[It is hard to predict the performance of
g b ‘ the long-term benefits of any intermediate

generated SQLs, i.e., whether they meet _ -
the constraints; queries; utilize actor to explore new tokens;

Ol It is hard to generate diverse SQLSs: ‘ [0 Construct a probablistics model to ensure
’ the diversity of generated queries;
0 Grammar and syntax constraints need to

be considered to generate legal queries; ‘] Construct a ESM to prune illegal tokens for

current intermediate queries;

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022. 222

Query Legality
» SQL Grammar:

FSM

AGGREGATE GROUP BY HAVING

Advantage:
v" Easy to add new grammar

v" Customize SQL queries

» Semantic Checks:
(D Join Relation

Automatic Query Generation

pART PARTSUPP

REGION

PART

PARTSUPP

CUSTOMER ,_,ME'T;M/
LIER

ORDERs WATION

/
'\REGION

pART PARTSUPP

CUSTOMER | \viErT
‘ SUPPLIER
—

ORD Rs GalON
REGION

@ Type Checking

» Aggregation: Aggregate Function

Predicate: WHERE caluse, HAVING clause

(3 Operand Restriction

“people name = China”

X

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.

223

O Machine learning is widely adopted in database components

O It is challenging to obtain suitable datasets
» Training data is rarely available in public

» It is time-consuming to manually generate samples (e.g., over 6 months
for 10,000 jobs with 1T data)

O It is hard to measure the dataset quality
» The size of training data
» The quality of extracted features

» The availability of valuable ground-truth labels
224

O Challenges in existing workload generators (TPC-H, sqglsmith)

» Limited SQL templates; while real queries have various structures;
» Fail to label the SQL queries (e.g, cost, execution time)

O Core Idea: Reduce the labeling time by generating many query jobs and

estimating the job latency >
» SQL Sampling

» A few real SQL queries + sample data;

» Plan Synthesis

> Generate abstract plans from the real SQLs; @ ‘ Group by
> Collect statistics, e.qg., distribution of the longest plan paths; ° -

Parent Operator

» Generate job by imitating the structures/patterns of the plans,
» E.qg., for join operator, they select the operator (Group by) as the
child node with the max possibility (the transition matrix)

Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.

®

Data Data
Source Source

OC
AS

225

Automatic Training Data Generation

O Challenges in existing workload generators (TPC-H, sqglsmith)
» Limited SQL templates; while real queries have various structures;
» Fail to label the SQL queries (e.g, cost, execution time)

O Core Idea: Reduce the labeling time by generating many query jobs and
estimating the job latency

» SQL Sampling

> A few real SQL queries + sample data;

Jobs Sample +

& | Real Runtime

Computing Resources

‘ o000 003° “33
- @ 8 B

» Plan Synthesis

. ;JObSEXe(iUtiOn @lfhlgh uncenainty
»> Label Forecasting e <
Y e v @9 Ty
. < Model H
» Sample and execute jobs > Get the real latency (labels) —>’@ Builder g Uncertainty ;:
Feature @ MR Uncertainty ® 158
. . . Extractor Evaluator ¢
» Build an estimator > Evaluate the latency and uncertainty % Forocacior | °
> I r [3 S 3
. @ ® Job\I;stancés +
Of the Unexecuted JObS Label Forecaster Forecasted Runtime

» Incrementally sample jobs & Reduce the uncertainty

Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.

226

Takeaways of Learned Generator

O Generated queries or performance labels are useful to test

database functions

0 Sometimes most real queries have similar structures and

may not be effective as generated queries

0 Open Problems:
» Semantic-aware query generation

» Low overhead query generation

227

-
O
ﬁ
2
d
O
| S
ol
d
O
C
- S
(©
@
-

228

Prediction Problems

0 Motivation

« Effective Scheduling can Improve the Performance
» Minimize conflicts between transactions

« Concurrency Control is Challenging
» #-CPU Cores Increase

 Transaction Management Tasks
» Transaction Prediction
» Transaction Scheduling

229

Learned Workload Prediction

] Predict the future trend of different workloads

» Pre-Processor identifies query templates and the arrival-rate from the workload;
» Clusterer combines templates with similar arrival rate patterns

» Forecaster utilizes ML models to predict arrival rate in each cluster

Pre-Processor Clusterer Forecaster
' RawsQL Templte 11— : LR/ KR RNN :
| [SELECT * FROM foo WHERE id = @||:>|seuzcr * FROM foo WHERE id = I§| {1 A {] ° :
Target DBMS | Lo N o .
) Arrival Rate History N E> I
: 1 Minute Interval 1 Hour Interval oo :
) [SELECT * FROM foo WHERE id = [g] AW ‘W\‘& A A |
1 I
: | DELETE FROM foo WHERE id = g S| AT S\ AN\ —-% o : : :
) 1 1 1
—> UPDATE foo SET value = [§] 4/_\/_/_/ 4"\/_/'_, to t 1 Predict [\[\/\j '
SQL Queries | | | ! Template Clusters KD Tree ! :
1 . [[t 1

__

Lin Ma, Dana Van Aken, and et al. Query-based Workload Forecasting for Self-Driving Database Systems. In SIGMOD, 2018. 230

O Learn to schedule queries to minimize disk access requests

DB Engine

» Collect requested data blocks
(buffer hit) from the buffer pool:

» State Features: buffer pool size,
data block requests, ;

» Schedule Queries to optimize
global performance with Q-learning

Query Queue

Buffer State
(cached blocks)

(buffer hit ratio)

Action

(Q, to execute)

Q-Learning DNN

Action Selection

320 90—

Q value for Q;

Q value for Q,

{ e0®
900

Q value for Q,

Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. In VLDB, 2020.

X
@
=
=
d
O
=
- S
©
Q
]

232

Basic ldea of Learned Index

O Model the cumulative distribution function(CDF) of the data to
predict the location as:
p = F(Key) * N

(a) B-Tree Index (b) Learned Index
Key Key
v v
/\ Model
BTree (e.g., NN)
pos\] pos\

pos - 0 pos + pagezise pos - min_err pos + max_er

O Data sampling — Training CDF — Predict approximate location —
Search precise location

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD, 2018. 233

Why Learned Index

Motivation

O Indexes are essential for database system
» Indexes significantly speed up query process
» Take up unignorable memory in huge data-scale situation

O Limitations in Traditional Index
» Unaware of data features
» Trade-off between Space and Access Efficiency

[0 Advantages of Learned Index
» Space efficient, only store several parameters
» Highly parallel, adapt to modern hardware like GPU and TPU

234

Learned Index: Formulation

OProblem Formulation

— Given a set of key-value pairs, index is a data structure that
improves the speed of data retrieval operations such as: lookup the
value of the key, range query, nearest neighbor query, etc.

OTraditional Methods
— B-Tree, ART, R-Tree,...
COLimitations

— Unaware of data and workload distribution

— Trade-off between space and access efficiency

235

Learned Index: Challanges
OAdvantages

— Space efficient, only store several parameters

— Faster access if the model fit well, predict the position
OChallenges

— Support update, concurrency, and persistency
OOptimization Goals

— Higher throughput

— Less space

— Robustness

236

Learned Index: Lineage

RMI Se/f-deSign > GENE

ut-

in-place insert of-place insert

"LIPP ALEX: " FITing-Tree : XIndex
: NVM i L fully- . fine-grained
concurrencyi Ieamedi . sorted bufferl 5
APEX PGM FINEdex_,g
...... mult-dimension | other
Flood -5 HERMIT |
: skewed query
in-memoryé lcorrelated dimensions E SLBF

- Tsunami

237

Learned Index: RMI

[0 Motivation: indexes are models

O Challenge: difficult for the “last mile” to reduce error

O Range index: approximate location as p = CDF(Key) *» N, model by
hierarchy of simple neural networks, search precise location within
error-bounded range

0 Hash index: CDF as hash function to reduce conflict

Key l Key .
é gﬂ Model 1.1
vodel 1.
Model &
~ —— &
(e.g., NN) ~ Key

a0 Model 2.1 Model 2.2 Model 2.3 - Model

pos\q &
. — A N — T
| Model 3.1 Model 3.2 Model 3.3 Model 3.4 | -
&]

pos - min_err pos + max_er lI’OSiUOH —

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD 2018 238

Updatable Learned Index: ALEX

O Motivation: support update
O Challenge: adaptive to dynamic data distribution

Key

O Linear model, only exponential oot &)
search in data nodes Legend Node |[JTT1]
. Internal
O Use gapped array layout in oy
Adaptive
" RMI

data nodes to accelerate insert
Data
Node

O Cost model: predict latency of T
[(M]
Bl ey N E

lookup and insert, expand/split

data node if slower than a]
threshold (e.g. 1.5X that at L] Ger \4 \\u
creation) -

exponential
search

Ding, J., Minhas, U. F,, Yu, J., et al. ALEX: An Updatable Adaptive Learned Index. SIGMOD 2020 239

O Challenge: lower write bandwidth,
crash consistency

» Reduce write: linear model in data
node as hash function, collision solved
by sequential scan and chaining

Concurrency: reader-writer lock for
inner node, fine-grained optimistic lock
for data nodes’ non-structural update
Crash recovery: nodes out-of-place

expand/split, undo-log before new
node prepared, redo-log after

64B; one per 256 records

I

Metadata

Accelerator‘sha red by PA[0-15]

[

[Lock

Stash bitmap

(a)

DRAM structure

16-bit

Model: m

\
BitmapEENd 16 FPs |Bitmap ..

16B

K
p

K

P

4 K K K
Nrr - PE

Primary array

(b) PM-resident data node

Stash array

k €[0,1)
Root node pos = |kx4]|
k€0 ! 11
['4) k€[
Data node A 42
Inner node C

pos = |40k + 0.3]

L
a]
9]

pos = [(k - %)x16j

II:-]

(c) PM-resident
extended stash

1

05

0

0 1/4
kelo
7D

|
1/2 3/4 1
key

Data node B

pos = |50k — 25|

Lu, B, Ding, |, Lo, E., et al. APEX: A High-Performance Learned Index on Persistent Memory. VLDB 2022

|-’IZI:-]

Updatable Learned Index: PGM

O Motivation: support update, fully-dynamic
O Challenge: adaptive to dynamic data distribution

 Piecewise Geometric Model index (PGM-index)
« 1/O-optimally the predecessor search problem while taking succinct space
- adaptive not only to the key distribution but also to the query distribution

BuiLD-PGM-INDEX (A, n, &)

l('“f‘[ﬁ‘:(): 1 levels = an empty dynamic array
2 1 =0; keys = A
2, sl ic) 3 repeat
1 M = BuiLD-PLA-MODEL(keys,)
5 /l‘l'("h[il =M; i =1+1
levels/1) [} m = S1ZE(M)
i 7 keys [M0]. key, ..., M[m — 1]. key]
. - 8 until m =1
2, SI[]" I(.ll’ ! N[{' H‘{ 102, ,[,‘13_ ,(-;'2 187, Sl"l" ”l“l‘ 9 return levels in reverse order
N / _
) V QUERY (A, n, e, levels, k)
/('1‘('/&[2 / 1 pos = [fr(k), where r = levels[0][0]
o, ‘ P, o, P _ 2 .2 PN PP P 2 for i = 1 to Size(levels) — 1
2, sly, ¢ 23, sy, ey , sl e I8, sl3,1c5 | T1, sly, icy | 102, sk, ic5 | 168, slg, icg | 187, sz, ic7 3 lo = max{pos — ,0
N y 1 hi = min{pos + £, S1zE(levels[i]) — 1}
0 - ~N Mopt — 1 5 s = the rightmost segment s’ in

levels[i][lo, hi] such that s key < k
A 6 t the segment at the right of s
l 2 I 12 | 15 | 18 | 23 Iz 1 |zu| I.‘H |:u, I:;xl 18 Ir,r,l»'.n I“” [71 I"i" 1E,Jm<|ns Im_vll l.',ll'.l'.!ll‘.!:&ll'.!lllf,.\ll.'mlltilll(; 1|nm|mllxnlmul Z " /Z':“*l\l{lll';:l\li/(fgj)} Te(t. key)}]
0 v n—1 9 hi = min{pos+e,n— 1}
10 return search for k in A[lo, hi|

FERRAGINA P, VINCIGUERRA G. The PGM-index: A fully-dynamic compressed learned index with provable worst-case bounds. VLDB 2020 241

Concurrent Learned Index: Xindex

O Motivation: handle concurrent write
O Challenge: update in-place with a non-blocking scheme

 Two write types: in-place update, E RMI Moddl
insert into buffer g Group Pointers
- Two-phase compaction to £ [Chear o Tree
. =3 Data Array Group, | - | Group,
preserve effect of update: = oo
« first merge pointers to group’s data
and buffer wg Model
« then copy the value g Group Poies_
N R | e
 Similar design for the hash index, F | Hash
. . . o Bucket Array Group, | | Group,
similar two-phase resize s ¥ 3

Wang, Z., Chen, H., Wang, Y., et al. The Concurrent Learned Indexes for Multicore Data Storage. ACM Transactions on Storage 2022 242

Attribute 2

O Challenge: optimize for data and query distribution

CeI’I 1

Variant of grid index, cells sorted by 1st, 2nd, ... column; within cell, points
sorted by the last column
Gradient descent to find the optimal number of segments for each column using
sample of dataset and workload
Use RMI to learn CDF of each column to even out segments and predict
position
Query »---. » _gm [= matched query filter
Cell2 | Cell3 | Cell4 . Cell5 | ' Executon] | '_’7 i = = stat and ond E 8 = not matchad query iar
All \\\ A ‘\‘ A ‘\\ A Queries Of’""”“ i) " Find In;:::::} ‘ L m%{?}:izg:: E E E
__Jopimze) p— Tt o hysicd
“\ ‘\\ | ‘ (=2ein) ‘ CDFs ’\Fnﬁgﬁaﬁgpggﬁ;l} 'Vcwn Cellz | call3 Coll 4 |Coil 5 E
e e Ve T =
7) G T (1§)Project_ionﬁnds4 _(1b) Identifyphysical (2) R’_eﬁn_ethe (3) Scan and
2;‘(‘0;0"""3: .¢Result intersecting cells — index range of third cell. = physical index—>" " Eier
sort attribute (cells 1-4) (Repeat for other cells.) range
» AAt\trithe1 b B OffYIine On}ine

Nathan, V., Ding, J., Alizadeh, M,, et al. Learning multi-dimensional indexes. SIGMOD 2020 243

Learned Index Generation: GENE

O Motivation: self-design indexes
O Challenge: generalize to a genetic index framework

O Genetic Algorithm
— Node framework: child mapping, data, data layout and search method
— Population: a set of indexes (e.g. initially a single node)

— Mutations: change particular node’s implementation, or merge/split
nodes horizontally and vertically

— Fitness function: optimize indexes for the runtime given workload

) P |RI DT
!zg'ca' t.eli-o08), [6:11), [11;+00))| O
physical P IRl [DLco,soea |DT e ! P physical
index SAg IS P RI or 1P Rl DT P R| %) i
l.e ((-00;6), [6,11), [11,+00) 0 { 1{(0,B), 2,A)} { |{(7.B), (6,C)} { [{(11,C), (12,2)} t.e

1

/ /
F RI-P RI PR i‘ ' I I P|RIDT \
DL: row, sorted DL: row, sorted
specify specify
—01{01,B), (2,A) 0 |{(7 B), (6,C)} | 01{011,0), (12,2)) =10 1{(1,B), 2,A) — [0 [{7.B), 6.C) =18 1{11,0), (12,.2)}

Dittrich, J., Nix, J., & Schon, C. The next 50 Years in Database Indexing or: The Case for Automatically Generated Index Structures.. VLDB 2022

o

244

Learned Index: Comparison

Loiac

simple NN
ALEX linear yes no no
Flood simple NN no no no
XIndex simple NN, linear yes yes no
APEX linear yes yes yes

GENE any function no no no

245

Learned Index: Take-away

O Though some research has already verified the benefit of learned index,
performance in industrial workloads still needs to be studied, especially in
update distribution-drift and multi-dimension situation.

O Open problems
— Types of ML models to use
— More efficiently support update, concurrency, persistency
— Robustness: more adaptive to update distribution drift
— Self-design: learn faster, or amortize learning cost

— Make learned index applicable to industrial database systems

246

Learned Data Layout

Motivation

O To reduce the #-data read from disk
» Split data into data blocks (main-memory, secondary storage)
» in-memory min-max index for each block

O It is challenging to partition data into data blocks
» Numerous ways to assign records into blocks
Traditional: assign by arrival time; hash/range parititon

247

O Qd-tree: Learning Branch Predicates
» Root Node: The whole data space
» Other Nodes: A part of the whole space

O Approach

» Constructor: Construct a
Qd-tree based on the
candidate

workload and dataset cuts
(greedy/RL) offline

> Query Router: Route access online

requests based on the >
Data |

mple

constructed qd-tree

Learned Data Layout (Qd-tree)

Queries <------- >

cpu<10%?
e AN
mem=10GB? cpu<5%?
/N / N\
By By By By

Example Qd-tree

Query Router .

AY
learned \\ Block IDs
tree N

Yl
Qd-tree Constructor
Greedy / Deep RL DBMS
Data Blocks

Data Router

Zongheng Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. SIGMOD, 2020. 248

Learned Data Layout: Join Predicates

OO0 Motivaiton

» Traditonal: either provide rare data skipping (zone maps),
Or requ”.e Careful manual deSIQnS (Z_Order) .uerWorkload ..

> Qd-tree: only optimize singe-table layouts B8 s ©
P rovas

O Qd-Trees for the whole datasets P andaccimandsy> 20
- SELECT ... o We
» Step#1: Learn Qd-tree for each table ; iy ... o, @
> Extract simple predicates; .. st Reettsest
Query Workload
> Create join-induced predicates; P ~s g
Optimization
» Induce relevant tuples based on Dataset (Sec3.2.1) Qd-tree per table

Block

Storage

the simple&join-induced predicates @
. Ski Do0) >
» Step#2: Skip useless blocks
9 Online Query /

Based on the qd-trees e — xecution ue
q a I’Y- (ESec3.tZ.2)) Igésulr:;.

Jialin Ding, et al. linstance-Optimized Data Layouts for Cloud Analytics Workloads. SIGMOD, 2021. 249

O Learned index opens up a novel idea to replace traditional index, and show good

performance in small datasets.

O Learned index uses machine learning technology, which provides probability of

combining new hardware like NVM with database system in future.

O Though some research has already verified the benefit of learned index,
performance in industrial level data scale still needs to be studied, especially in

updatable and multi-dimension situation.

O Open problems

> Persistent, Update, Concurrency Control, Recovery

250

=
Q
i
2
>
/p)
LL]
N
LL]
©O
D
-
-
©
(¢}
—

251

Autonomous Database Systems

Motivation

O Traditional Database Design is laborious
» Develop databases based on workload/data features
» Some general modules may not work well in all the cases

O Most Al4DB Works Focus on Single Modules

» Local optimum with high training overhead

COCommercial Practices of Al4DB Works

» Heavy ML models are hard to implement inside kernel
» A uniform training platform is required

252

Peloton

O Schedule optimization actions via workload forecasting

» Embedded Monitor: Detect the event stream

» Workload Forecast Model: Future workload type

» Optimization Actions: Tuning, Planning

$o Peloton

(\ Workload Classification AF' tl%‘ n Planning Module
H 5 1 7 or
1 H RHCM Search
! -, S— !
ZZZan r Workl(_)a i Clustering - ! Physical Opts
Application " ¥ Wonito : Algorithm X ; : Y V- 777]
| *t. s

Event
Stream Workload Clusters
X Execution Opts Cost Estimator
> Workload Forecasting A !
Execution Threads
a In-Memory ~— ¢ .
g Action
4 S D‘eploymgnt History
Recurrent Neural Network Eg;f)liscl;”g;; ates
Runtime Architecture Workload Modeling Control Framework

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017.

253

SageDB

0 Customize DB design via learning the Data Distribution

» Learn Data Distribution by Learned CDF

Mcpr = Fx,,.. X, (21,..2m) = P(X1 < z1,..., X;n < Tm)

» Design Components based on the

learned CDFs
» Query optimization and execution

» Data layout design
» Advanced analytics

Query Optimization
- Cardinality Estimation

Data Access
- Compression

- Cost Model - Storage layout
- Join - Indexes
Ordering gﬁ.
Lo/ ®

- Data Cubes

- Sorting

- Joins Q - AQP

- Aggregation Model - Machine
- Scheduling Synthesis Learning

Query ExecuticLJ

Advanced Analytics

g =

Hardware

Data

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019.

Workload

254

openGauss

O Implement, validate, and manage learning-based modules
» Learned Optimizer

] Traditional Module [] Learned Module
° Query Rewrlter SQLl DashboardT
. | SQL Parser | Learned Advisor
* COSt/ Ca rd E Stl m ato r Learned Optimizer Self-Monitoring Self-Configuration
- . Anomaly Detection Knob Tuner
° P I a n E n u m e rato r Logic Query Rewriter (Extreme Value Theory) (DeepRL)
i | Rule-based | | MCTS | @2
> Lea rned AdVISOr — - Self-Diagnosis Self-Optimization
. . 'Card|nal|ty/Cost Estimator System Diagnosis MV Recommender
° S e If_ M on Ito rin g | Histogram-based | | Tree-LSTM | ﬁ (LSTM+KNN) (RNN+RL)
. : Plan Enumerator SQL Diagnosis Index Recommender
o« Self-D 1agnosIS [Greedy/Genetic | | DeepRL | (Tree-LSTM) (DeepRL)
« Self-Configuration

Storage Engine Model Validation I Performance Prediction (GNN)

« Self-Optimization

Logs 1 System Metrics f Model Update

. . Training Data Platform o Model Management Platform
» Model Validation Training
Databasa SQL ﬁ systemj Data | Model Model Model
Metri Queri L | Training Prediction Manager
» Data/Model Management s

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021.

255

7
=
9
e
O
| S
o
-
T
o
O

256

Future Works: Adaptability

® Significant data changes

® Migration from small datasets to large datasets
® Completely new instances

® New dataset, workload, and SLA requirements;

® Incremental DB module update

® |earned knob tuner for hardware upgrade, learned optimizer for dynamic

workloads.

257

Future Works: Optimization Overhead

® Cold-Start Problems

® Across datasets / instances / hardware / database types

® Lightweight in-kernel components

® Efficient ML models; rare-data/compute-dependency;
® Online Optimization
® Workload execution overhead

® Model training overhead

258

Future Works: Small Training Data

® Few Training Samples
® Few-shot learning
® Knowledge + Data-driven

® Summarize (interpretable) experience from data

® Pre-Trained Model

® Train a model for multiple scenarios

259

[0 Model Validation

» Whether a model is effective?
» Whether a model outperforms existing ones?

» Whether a model can adapt to new scenarios?

260

Future Works: Complex Scenarios

® Hybrid Workloads
® HTAP, dynamic streaming tasks
® Distributed Databases

® Distributed plan optimization

® Cloud Databases

® Dynamic environment, serverless optimization

261

Future Works: SLA Improvement

® Optimize databases under noisy scenarios
® Training Data Cleaning, Model Robust

® Optimize for extremely complex queries (e.g., nested queries)
® Adaptive cardinality estimation - efficient query plan

® Optimize for OLTP queries

® Multiple query optimization

262

Future Works: One Model Fits Various Scenarios

O High Adaptability
» Workloads: query operators; plan structures; underlying data access

> Datasets: tables; columns; data distribution; indexes / views; data updates

> DB Instances: state metrics (DB, resource utilization): hardware

configurations

> DBMSs: MySQL; PostgreSQL; MongoDB; Spark

O Possible Solutions: common knowledge extraction; meta

learning

263

0 Automatic Database Assembling

» Automatically select ML models/algorithms for different tasks
» Evaluate the overall performance

saL

Category Method

Supervised Linear Regression
e Learning Logistic Regression
Decision Tree
P gy Deep Learning

Unsupervise K-Means Clustering
— = d Learning Association Rules
orage ~ Reinforcement Leaming

(Column)

Descriptive ~ Count-Min Sketch

ariten are | Hoxdware || Hordware | Ha Statistics Data Profiling
(CPU) /M

Database Assembling The Stack of ML Algorithms
264

Future Works: Unified Database Optimization

O Arrange Multiple Database Optimization Tasks

O Multiple Requirements: (1) Optimizer can produce good plans with not very
accurate estimator; (2) Creating indexes may incur the change of optimal knobs

O Hybrid Scheduling: Arrange different optimization tasks based on the database
configuration and workload characters

O Optimization Overhead: Achieve maximum optimization without competing
resources with user processes

v' Challenges: various task features; correlations between tasks; trend changes

265

Thanks §i;

266

Machine Learing for Databases

Empirical Methods

Heuristic Search/Rules

e.d., knob tuning

Dynamic Programming

e.g., Index Selection

Maximum Spanning Tree

e.g., Database Partition

Supervised ML

Gaussian Process

e.d., knob tuning

Bayesian Optimization

e.d., knob tuning

CNN

e.d., card Estimation

Tree-based Ensemble

e.d., card Estimation

Kernel Density Estimation

e.d., card Estimation

Uniform Mixture Model

e.d., card Estimation

Causal Model

e.g., System Diagnosis

Clustering Algorithns

e.g., System Diagnosis

Annotated Plan Graph

e.g., System Diagnosis

Dense Neural Network

e.d., knob tuning, view selection, index selection, lesarned Index,
transactions, query latency prediction

Encoder-Decoder

e.d., view selection

Unsupervised ML

Tree-LSTM e.g., Cost estimation, plan enumerator
Graph Neural Network e.g., workload performance prediction
AutoRegressive e.d., card Estimation

Sum-Product Network

e.d., card estimation

Semi-supervised ML

Meta Learning

e.d., kKnob tuning

Pre-Training Network

e.d., query encoding

(Deep) Reinforcement
Learning

DDPG e.g., knob tuning

DQN e.g., view selection, index selection, plan enumerator
Q-learning e.g., view Selection , database partition, transactions

MCTS e.g., plan enumerator

267

Summarization of Al4DB Techniques

Database Problem Method Performance | Overhead Training Data | Adaptivity
gradient-based [1, 18, 47] | High High High -
knob space exploration | dense network [37] Medium High/Medium | High - / instance
. DDPG [23, 46] High High Low/Medium query
Offline - - - -
NP Problem index selection q-learn%ng [19] - H%gh Low -
view selection q-learning [43] Medium High Low -
DDON [9] High High Low query
partition-key selection | g-learning [11] - High Low -
q-learning [27] High High Low =
Online join order selection DON [26, 42] High High Low query
NP Problem MCTS [38] Medium Low Low instance
query rewrite MCTS [21, 49] - Low Low query
cost estimation tree-LSTM [35] High High High query
tree-ensemble [7] Medium Medium High query
cardinality estimation autoregressive [41] High High/Medium | Low data
dense network [16] High High High query
Regression sum-product [12] Medium High Low data
Problem index benefit estimation | dense network [5] - High High query
view benefit estimation | dense network [9] - High High query
latency prediction dense network [28] Medium High High query
graph embedding [50] High High High instance
learned index dense network [3] - High High query
Prediction | trend prediction clustering-based [24] - Medium Medium instance
Problem transaction scheduling | g-learning [44] - High Low query

268

Gradient-based
Methods

Contextual Multi-
armed Bandit

Deep Reinforcement

Learning

Monte Carlo Tree
Search

Approximate the data
distribution with gaussian
functions, and select the
optimal point by the guidance
of gradients

Maximize the reward by
repeatedly selecting from a
fixed number of arms

Learn the selection (actor) or
estimation (critic) policy with
neural networks

Repeated iterations of four
steps (selection, expansion,
simulation, back-propagation)

until termination

ML Models for Optlmlzatlon Problems

====target function

prediction

training data 20 credible region

Recommendation
(arm)
User Contc;)‘(:)%::llMAB
(environment) (agent)

L@User features (context) J

Implicit feedback such as click
(reward)

Tree
policy 4
p

2. Expansion
4. Back-propagation
Default . Propag
policy 3. Monte Carlo?,
simulation

[«—— sState evaluation

Knob Tuning; Cardinality
Estimation

Plan Hint; Knob Tuning; MV
Selection; Index Selection;
Database Partition; Join Order
Selection; Workload Schedule

Query Rewrite; Online Join Order
Selection

269

Build a regression model to
approximate real
distribution based on
sampled data

Statistical ML

Learn distributions with
Sum for different filters and

Sum-Product Network
Product for different joins

Learn the mapping relations

Value

ML Models for Regressmn Problems

™~ Anomaly

[hoy

from the input features to
the targets by graident
descent

Deep Learning (e.g.,
DNN, CNN, RNN)

Time

+)5%

'\

& 2%

/s 80% (5% (>/% (20%

EUASIA 20 100 EUASIA 20 100

Cardinality prediction w,

Sigmoid

Linear
RelLU

Linear Concatenate
output of each

- set module

Average
over set
\ Concat

I
| Avg. pool | | Avg. pool | | Avg. pool

Cardinality Estimation; Trend
Prediction

Cardinality Estimation

Knob Tuning; Cardinality Estimation;
Cost Estimation

270

ML Models for Others

Generative Model (e.g.,
Encoder-Decoder)

Graph Convolutional
Network

Meta Learning

AL

Encode varied-length input Decoder
features into fixed-length 7 j
vector with mechanisms like

multi-head attention

’ Encoder 4):”‘:2 3

©

Encode graph-structured
input features with A,
convolutions on the vertex ' ;
features and their K-hop A,
neighbor vertices

1 % o
x3) (xa
) @

o

Query Latency Prediction

S

Unseen

Use the base models to form
the target model based on
the task similarity and the
prediction accuracy during
usage h

Knob Tuning

é_

271

Classical ML Methods

O Techniques
« Gradient methods (e.g., GP); Regression methods (e.g., tree-
ensembling, kernel-density estimation)
O Advantages
* Lightweight; Easier to interpret than DL
O Disadvantages
« Hard to extend to large data; Complex feature engineering
O ML4DB Applications

 Knob Tuning; Cardinality Estimation

2172

Classical ML Methods: Challenges

O How to apply to a new problem?

Problem Modelling: As a regression or gradient-based
optimization problems

Feature Engineering: Determine the input with feature
engineering techniques

Model Construction: Select proper classic ML models, collect
sample data, and learn the mapping relations

Additional Requirements: Reuse classic ML models in limited

scenarios (e.g., similar workloads)

2173

Classical ML Methods

_ Feature Engineering Model Selection

Knob
Tuning

Cardinality
Estimation

* Reduce the knob space with
linear regression like Lasso;

* Reduce redundant metrics
with factor analysis and
clustering like k-means;

e Assumptions like column
independency or linear
relations between columns

* Determine supported queries

like range queries

Gaussian Process: Search local-
optimal settings within the selected
knob space

Reuse the historical data by matching
workloads by their metric values

Query-based: Define input space as
conjunction of the query ranges on
data columns (Tree-Ensemble)
Data-based: Partition data into
indpendent regions (Sum-Product) or
learn column correlations (AR)

274

Reinforcement Learning Methods

Techniques

« Model-based (e.g.,, MCTS+DL);

« Model-free (e.g., value-based like Q-learning, policy-based like DDPG)
O Advantages

 High performance on large search space; No prepared data

O Disadvantages

 Long exploration time; Hard to migration to new scenarios

O ML4DB Applications

« Knob Tuning, View/Index/Partition-key Selection, Optimizer, Workload

Scheduling
275

% 1 Reinforcement Learning Methods: Challenges _

O How to apply to a new problem?

O Problem Modelling: Map to the 6 factors in a RL model

(state, action, reward, policy, agent, environment)

O Feature Characterization: Select target-related features as the
state of the RL problem

O Model Construction: Select proper RL models (e.g., MCTS,
DQN, DDPG), design the networks and the reward function

O Additional Requirements: E.g., encode the query costs with

Deep Learning; encode the join relations with GNN

276

Input Features RL Method Reward Design | Estimation Model

Knob * Knobs Values <+ DDPG for both * Performance * Design a dense

Tuning <« Innter Metrics continuous improvements network as the
» Workloads state and over last tuning estimation (critic)
continuous action model
actions * Performance
improvements
over first tuning
action

277

Reinforcement Learning Methods

- Input Features RL Method Reward Design | Estimation Model

View ¢ Candidate Views ¢ DQN for < Utility increase ¢ Encoder-decoder

Selection ¢ Built Views continuous on creating the for inputs;

* Workload state and views Nonlinear layers
discrete for utility
actions estimation

Index e+ Candidate « Utility increase ¢ Design a dense
Selection Indexes on creating the network as the
* Built indexes indexes estimation model
* Workload
Partiton- ¢ Columns * Estimated costs ¢ Design a dense
key » Tables beofore/after network as the
Selection * Query templates partitioning estimation model

278

Reinforcement Learning Methods

- Input Features RL Method Reward Design | Estimation Model

Query < Logical Query * MCTS for « Utility increase * Multi-head

Rewrite ¢ Rewrite Rules tree search for future attention for
* Table Schema optimal queries rules, query, data
Join ¢ Physical Plan <+ DQN for e Saved costs * Design a dense
Order -+ Candidate continuous network as the
Selection Joins state and estimation model
e Table Schema discrete
actions
Plan * Physical Plan ¢ Contextual * Saved costs * Traditional
Hinter <« Hint Sets Multi-armed Optimizer
for limited
actions

2179

Deep Learning Methods

O Techniques
 Dense Layer ((non)-linear); Convolutional Layer; Graph
Embedding Layer; Recurrent Layer
O Advantages
« Approximate the high-dimension relations
O Disadvantages
 Data-consuming
O ML4DB Applications

« Cost Estimation; Benefit Estimation; Latency Estimation

280

Deep Learning Methods: Challenges

O How to apply to a new problem?
O Input Features: Select features that affect the estimation
targets (e.g., latency, utility)
O Encoding Strategy: Encode based on the feature structures
(e.g., Graph embedding for query relations)
O Model Design: Design the network structures (e.g., layers,
activation functions, loss functions) based on the input

embedding (e.g., fixed-length or varied-length)

281

Cost
Estimation

Benefit
Estimation

Latency
Estimation

Deep Learning Methods Al
e Reuures | Peaart Encoting | oaeDesgn

* Physical Plan

* Physical Plan

* Optimization
Actions (e.g.,
views. indexes)

* Physical Plan
* Query Relations
* DB State

* Encode operators
with LSTM

* Encode actions
like Encoder-
Decoder for Views
and linear layer for
Indexes

* Encoder query
correlations with
graph covolutions

e Plan-structured
Neural Network

* Design a dense
network as the
estimation model

* Design a K-layer
graph embedding
network for K-hop
neighbors

282

