Artificial Intelligence Meets Database

Guoliang Li

Tsinghua University

Motivation

Artificial Intelligence Meets Database

AI4DB

Manual → Automatic □ Self-optimization □ Self-configuration □ Self-monitoring □ Self-healing □ Self-security □ Self-design

DB4AI AI → as easy as DB □ Declarative AI □ AI optimization □ Data governance □ Model management □ AI+DB hybrid model □ AI+DB hybrid inference

Revisit DB Systems: Driving Factors

File Syst	tem
Relations	Easy to manipulate data
Relation	al Model, SQL
transactions	Atomicity, Consistency, Isolation, Durability
OLTP: ro	ollbacks, triggers, locking, logging,
data analysis	High Quality
OLAP: J	IIT compilation, vectorized execution,
Scale out	Unstructured Data; High Scalability
NoSQL:	data models, indexing, partitioning,
transactions +big data	High Scalability; ACID
Distribu	ted OLTP: 2PC, Paxos, Distributed SQL
DBaaS	Flexibility, Cost-Saving
Cloud-N	ative: compute-storage disaggregation,

Learned Database

New Opportunities: What Can AI Bring for DB?

● Cost Saving: Manual → Autonomous

- Auto Knob Tuner: ↓ Maintenance cost
- Auto Index Advisor: Uptimization latency

● High SLAs: Heuristic → Intelligent

- Intelligent Optimizer: ↓ Query plan costs

• Adaptivity: Empirical \rightarrow Data-Driven

Learned Database

New Opportunities: Why Now?

● Cost Saving: Manual → Autonomous

- Auto Knob Tuner: ↓ Maintenance cost
- Auto Index Advisor:
 Optimization latency

● High SLAs: Heuristic → Intelligent

- Intelligent Optimizer: ↓ Query plan costs

● Adaptivity: Empirical → Data-Driven

- Learned Index: ↑ Data access efficiency
- Learned Layout:
 ↑ Data manipulation efficiency

Learned Database

Double-Edged Sword: Challenges

● Cost Saving: Manual → Autonomous

- Auto Knob Tuner: ↓ Maintenance cost
- Auto Index Advisor:
 Optimization latency

● High SLAs: Heuristic → Intelligent

- Intelligent Optimizer: ↓ Query plan costs

● Adaptivity: Empirical → Data-Driven

- Learned Index: ↑ Data access efficiency

Challenges

- Feature Selection: Pick relevant features from numerous query / database / os metrics ;
- Model Selection: Design ML models to solve different database problems;
- **Diverse Targets:** Meet the SLA requirements under different scenarios;
- Adaptivity
- Training Data

AI4DB Techniques: Motivation

Learned Database Kernel

- Cardinality/Cost Estimation, Query Rewrite, Plan Generation
- ●Manual → Autonomous

●Heuristic → Intelligent

●Empirical → Data-Driven

AI4DB Techniques: Motivation

D Learned Database Configuration

• Automate database configurations, e.g., DRL for knob tuning, binary classifier for index selection.

- **X** Labor-intensive tuning
- X Time-consuming tuning
- ✓ Rich tuning experience

- Automatic tuning
- Low tuning latency
- ★ Adaptivity for different DBs

AI4DB Problems

Automatic Advisor

- Knob Tuner
- Index/View Advisor
- Partitioner/Scheduler

Learned Generator

- SQL Generator
- Adaptive Benchmark

Intelligent Optimizer

- Query Rewriter
- Plan Enumerator
- Cost Estimator

• Learned Designer

- Learned Index
- Learned Data Layout

Autonomous Databases

10

DB4AI Motivation

- □ Online Inference: T+1 \rightarrow T+0
- □ Data Security: ETL \rightarrow In-DB
- $\square \text{ Resource Utilization: data duplicates} \rightarrow \text{ one data}$
- Optimization: DB optimization on learning models
- DB usability: easy to use

DB4AI Motivation

One Data

- Unstructured
- Structured
- Semi-structured
- □ One Analytics
 - -SQL
 - Machine Learning
 - Data Science
 - Business Intelligence (BI)

DB4AI

Declarative AI

- AI to SQL
- SQL completeness
- SQL advisor

DAI optimizations

- Cost estimation
- Auto parameter
- Auto model
- Parallel computing

Lightweight In-DB Model

- Training
- Inference

RDBMS Query Processing

(Greenplum, PostgreSQL, ...)

(matrix operations, C++ to RDBMS

type bridge, ...)

Autonomous DB System Architecture

Learned Optimizer

- Cost Estimation (Tree-LSTM)
- Logical Optimization (Tree Search)
- Physical Optimization (RL)

Learned Advisor

- Monitoring/Diagnosis (LSTM)
- Configuration (DRL)
- Optimization (DRL)
- □ Model Validator (GNN)

□ Training-Data/Model Platform

Guoliang Li. openGauss: An Autonomous Database System. VLDB 2021

Category of AI4DB Problems

AI4DB: An Overview

Automatic Advisor

- Knob Tuner
- Index/View Advisor
- Partitioner/Scheduler

Learned Generator

- SQL Generator
- Adaptive Benchmark

Intelligent Optimizer

- Query Rewriter
- Plan Enumerator
- Cost Estimator

• Learned Designer

- Learned Index
- Learned Data Layout
- Autonomous Databases

Overview of AI4DB

Problem	Description	DB Tasks
Offline NP	Optimize on NP hard problem	Knob Tuning
Ontimization	with large search space	Index/View Selection
Optimization	with large search space	Partition-key Selection
Online ND	Optimize an NP-hard problem	Query rewrite
Online NP Optimization	with large search space (<u>instant</u> <u>feedback</u>)	Plan Enumeration
	Determine the relationship	Cost/Cardinality Estimation
Regression	between one dependent variable and a series of other	Index/View Benefit Estimation
	independent variables	Latency Estimation
Duadiation	Forecast the likelihood of a	Trend Forecast
Prediction	particular outcome	Workload Prediction & Scheduling

Overview of NP-hard Problems

	Method	Strategy	Search Space	Training Data
	Gradient based	Local search	Small	Huge
Offline Optimization (knob tuning, view selection, index selection, partition-key selection)	Deep Learning (DL)	Continuous space approximation	Large	Huge
	Meta Learning	Share common model weights	Various spaces	Huge
	Reinforcement Learning (RL)	Multi-step search	Large	
Online Optimization (query rewrite, plan enumeration)	MCTS(Monte Carlo Tree Search)+DL	Multi-step search	Large	Huge
	Multi-armed	Multi-step search	Small	Small

Overview of Regression Problems

Method	Task	Feature Space	Feature Type	Training Data	
Classic ML (e.g., tree- ensemble, gaussian, autoregressive)	cost estimation, view/index benefit estimation	Small	Continuous	Huge	
Sum-Product Network	cost estimation	Small	Discrete	Small	
Deep Learning	cost estimation, benefit estimation, latency estimation	Large	Continuous	Huge	
Graph Embedding	benefit estimation, latency estimation	Large	Continuous	Huge	

Overview of Prediction Problems

Method	Task	Target	Training Data
Clustering Algorithm	Trend Forecast	High accuracy	Huge
Reinforcement Learning	Workload Scheduling	High performance	

Learning-based Cardinality/Cost Estimation

Query Optimizer

Query Optimizer

Physical Optimization

 $\pi_{B,D}[[\sigma_{R,A="c"}(R)] \bowtie S]$

Cardinality Estimation: Selection

Selectivity Factor (SF) = Cardinality / #tuples

Assumptions:

- Uniformity
 - $\sigma_{A=c}(R) \rightarrow SF = 1/V(R,A)$
 - $\sigma_{A < c}(R) \rightarrow SF = (c Low(R, A))/(High(R, A) Low(R, A))$
- Independence
 - Cond1 and Cond2 \rightarrow SF = SF(Cond1) * SF(Cond2)
 - Cond1 or Cond2 \rightarrow SF = SF(Cond1)+SF(Cond2) -SF(Cond1)* SF(Cond2)
 - Not Cond1 \rightarrow SF = 1- SF(Cond1)
- Containment of values
 - $R_{\bowtie A=B} S \rightarrow SF = 1 / max(V(R,A),V(S,B))$
- Preservation of values
 - $V(R_{\bowtie A=B}S, C) = V(R, C)$

Cardinality Estimation: Selection

Q = SELECT list FROM R1, ..., Rn WHERE cond₁ AND cond₂ AND . . . AND cond_k

- Estimate the number of results of Q: T(Q)
- Obtain number of tuples in each table: T(R1), T(R2), ..., T(Rn)
- Also need the selectivity of each condition
 - Selectivity factor (SF) of selection and joins
 - SF(R1.A=v)=T(R1)/V(R1,A)
 - SF(R1.A=R2.B)=T(R1) T(R2)/ max(V(R1,A), V(R2,B))
 - e.g., selectivity(A=3) = 0.01
 - e.g., selective (R1.A=R2.B) = 0.001

 $T(Q) = T(R1) \times ... \times T(Rn) \times SF(cond1) \times ... \times SF(condk)$ Remark: $T(Q) \le T(R1) \times T(R2) \times ... \times T(Rn)$

Cardinality Estimation: Predicate

- The **selectivity** (**sel**) of a predicate **P** is the fraction/probability of tuples that qualify.
- Formula depends on type of predicate:
 - Equality(=): sel(P(c=x))=count(c=x)/count(all)
 - Range(>=): sel(P(c>=x))=(max-x+1) / (max-min+1)
 - Negation (!=) : sel(P(c!=x))=1-sel(P(c=x))
 - Conjunction (and)
 - Independent assumption
 - sel(P1 & P2) = sel(P1) * sel(P2)
 - Disjunction (or)
 - $\operatorname{sel}(P1 \text{ or } P2) = \operatorname{sel}(P1) + \operatorname{sel}(P2) \operatorname{sel}(P1) * \operatorname{sel}(P2)$

Cardinality Estimation: Join

 $R \bowtie_{A=B} S$: Selectivity = 1 / max(V(R,A),V(S,A))

Q= SELECT * FROM R, S, T WHERE R.B=S.B and S.C=T.C and R.A=40

T(R) = 30k, T(S) = 200k, T(T) = 10kSelectivity of R.B = S.B is 1/3 Selectivity of S.C = T.C is 1/10 Selectivity of R.A = 40 is 1/200 T(C,D)

T(Q)=30k*200k*10k*1/3*1/10*1/200 =10¹⁰

Histograms

□For better estimation, use a histogran

equiwidth

No. of Values	2	3	3	1	8	2	1
Value	099	1-1.99	2-2.99	3-3.99	4-4.99	5-5.99	6-6.99

equidepth

No. of Values	2	3	3	3	3	2	4
Value	099	1-1.99	2-2.99	3-4.05	4.06-4.67	4.68-4.99	5-6.99

Note: 10-bucket equidepth histogram divides the data into *deciles* - akin to quantiles, median, etc. Common trick: "end-biased" histogram

- very frequent values in their own buckets

Sketch

- How to count the number of values in a column?
 - E.g., Age = 20?
- Sketch: a cost-model can replace histograms with sketches to improve its selectivity estimate accuracy.
- Probabilistic data structures that generate approximate statistics about a data set.
- Most common examples:
 - Count-Min Sketch (1988): Approximate frequency count of elements in a set.
 - HyperLogLog (2007): Approximate the number of distinct elements in a set.

Sketch

- Given a column with a set of values, build a hash function H, and a sketch M with w entries.
 - M[i] is initialized as 0 for $0 \le i \le w-1$
 - For each value **v** in the set,
 - M[H[v]%w] ++;
- Given a value x, use M[H[x]%w] to estimate its account.

Overestimate! Because of collisions!

- How about use *d* hash functions to reduce collisions?
- A matrix M with *d* rows and *w* columns, initialized with 0 for each cell value; *d* hash functions
- For each value v, each hash function h_i :
 - $M[i][h_i(v)]=M[i][h_i(v)]+1; h_i(v) in [0, w)$
- Given x, the frequency f(x) can be estimated as
 - $f(x) = \min_{i \text{ in } [0,d-1]} M[i][h_i(v)]$

	0	1	2	3	4		w-1
$h_0(v)$	1	0	0	2	0	0	1
$h_1(v)$	1	0	0	1	0	0	0
	0	0	0	0	2	0	0
$H_{d-1}(v)$	3	0	0	1	0	0	1

- d=4 hash functions, w=7 columns
- Given values {2, 3, 2, 4, 3, 2,5}
 - $h_0(v)=v \% w$; $h_1(v)=v^2 \% w$; $h_2(v)=(2v+1) \% w$; $h_2(v)=(3v^2+1) \% w$;

• Add <u>2</u>,

	0	1	2	3	4	5	6
$h_0(v)$	0	0	1	0	0	0	0
$h_1(v)$	0	0	0	0	1	0	0
$h_2(v)$	0	0	0	0	0	1	0
h ₃ (v)	0	0	0	0	0	0	1

- d=4 hash functions, w=7 columns
- Given values {2, 3, 2, 4, 3, 2,5}
 - $h_0(v)=v \% w$; $h_1(v)=v^2 \% w$; $h_2(v)=(2v+1) \% w$; $h_2(v)=(3v^2+1) \% w$;
- Add 2, <u>3</u>

	0	1	2	3	4	5	6
$h_0(v)$	0	0	1	1	0	0	0
$h_1(v)$	0	0	1	0	1	0	0
$h_2(v)$	1	0	0	0	0	1	0
h ₃ (v)	1	0	0	0	0	0	1

- d=4 hash functions, w=7 columns
- Given values {2, 3, 2, 4, 3, 2,5}
 - $h_0(v)=v \% w$; $h_1(v)=v^2 \% w$; $h_2(v)=(2v+1) \% w$; $h_2(v)=(3v^2+1) \% w$;
- Add 2, 3, <u>2</u>

	0	1	2	3	4	5	6
$h_0(v)$	0	0	2	1	0	0	0
$h_1(v)$	0	0	1	0	2	0	0
$h_2(v)$	1	0	0	0	0	2	0
h ₃ (v)	1	0	0	0	0	0	2

Count-min Sketch

- d=4 hash functions, w=7 columns
- Given values {2, 3, 2, 4, 3, 2,5}
 - $h_0(v)=v \% w$; $h_1(v)=v^2 \% w$; $h_2(v)=(2v+1) \% w$; $h_2(v)=(3v^2+1) \% w$;
- Add 2, 3, 2, <u>4</u>

	0	1	2	3	4	5	6
$h_0(v)$	0	0	2	1	1	0	0
$h_1(v)$	0	0	1+1	0	2	0	0
$h_2(v)$	1	0	1	0	0	2	0
h ₃ (v)	1+1	0	0	0	0	0	2

Count-min Sketch

- d=4 hash functions, w=7 columns
- Given values {2, 3, 2, 4, 5}
 - $h_0(v)=v \% w$; $h_1(v)=v^2 \% w$; $h_2(v)=(2v+1) \% w$; $h_2(v)=(3v^2+1) \% w$;
- Add 2, 3, 2, 4, <u>5</u>

	0	1	2	3	4	5	6
$h_0(v)$	0	0	2	1	1	1	0
$h_1(v)$	0	0	1+1	0	2+1	0	0
$h_2(v)$	1	0	1	1	0	2	0
h ₃ (v)	1+1	0	0	0	0	0	2+1

count(2)=2; count(3)=1; count(4)=1; count(5)=1

Crucial insight: suppose we have a perfect hash function h taking an integer from [1,r] and reporting an integer [0, n) h(x) in [0, n) for x in [1,r]

The probability that the hash contains:

0 leading zeroes: 1/21 leading zero: 1/42 leading zeroes: 1/83 leading zeroes: 1/16

. . .

w<log n leading zeroes 1/2w

LogLog

- Estimate the number of distinct values in a column
- Linear Counting: inefficient
- Hash: large space
- Log Counting: n=2^{max(leading 0s)}
- dv=0: initial distinct number
- For each element v in the column
 - Hash(v) to 0/1 values
 - C0=count leading 0s
 - $dv = max(dv, 2^{C0})$

- Crucial insight: maintaining the largest number of leading zeroes across all hashes allows us to get a (very) rough estimate of the number of distinct elements.
- ■take multiple independent hashes for each element, average them out?

 $\sum 2^{w}$

Estimate: $2^4 + 2^2 + 2^0 + 2^1 = 23$ Actual: 10

00 stream

- 2 **→** 00100010
- $2 \rightarrow 00100010$ $11 \rightarrow 00000010$
- $12 \rightarrow 00110110$
- $2 \rightarrow 00100010$

01 stream

 $9 \rightarrow 01100100$ $16 \rightarrow 01001101$

2

10 stream

 $\begin{array}{c} 15 \rightarrow 10110100 \\ 15 \rightarrow 10110100 \\ 14 \rightarrow 10110111 \end{array}$

11 stream

0

 $7 \rightarrow 11101100 \\ 6 \rightarrow 11010101$

- 8 **→** 11100110
- $8 \rightarrow 11100110$
- $6 \rightarrow 11010101$ 1

Estimate: Actual:

e: 4 • 2^{(4+2+0+1)/4} ≈ **13.45** II: 10

00 stream

 $(\sum w)/m$

 $m \times 2$

- $2 \rightarrow 00100010$
- $2 \rightarrow 00100010$ $11 \rightarrow 00000010$
- $12 \rightarrow 00110110$ 4
- 2 **→** 00100010

01 stream

 $9 \rightarrow 01100100$ $16 \rightarrow 01001101$

2

$15 \rightarrow 10110100$ $15 \rightarrow 10110100$

 $15 \rightarrow 10110100$ $14 \rightarrow 10110111$

10 stream

11 stream

0

- $7 \rightarrow 11101100 \\ 6 \rightarrow 11010101$
- $8 \rightarrow 11100110$
- 8 **→** 11100110
- $6 \rightarrow 11010101$ 1

HyperLoglog

LogLog uses the arithmetic mean

 $\boldsymbol{\alpha}_{m} \times m \times 2^{(\sum w)/m}$

HyperLogLog uses an alternative, the harmonic mean

 $\boldsymbol{\alpha}_{m} \times m \times m / (\Sigma 2^{-w})$

where
$$\boldsymbol{\alpha}_{m}$$
 is a constant.
 $\alpha_{m} = \begin{cases} 0.673, & m = 16\\ 0.697, & m = 32\\ 0.709, & m = 64\\ 0.7213\\ \hline 1 + \frac{1.079}{m}, & m \ge 128 \end{cases}$

Thus the LogLog algorithm can be succinctly described. We need a hash function h from [1,r] to [0, n)

- 1. Initialize an array w with size $m=2^{b}$. Let $w_{i} = 0$ for all i
- 2. For each element x, compute its hash h(x)
 - Split **h(x)** to its first **b** bits and remaining **m-b** bits.
 - Let c be the number represented by the first b bits and w₀ be the number of leading zeroes in the m-b bits.
 - Set $w_c = max (w_c, w_0)$

$$\boldsymbol{\alpha}_{\mathrm{m}} \times \mathrm{m} \times 2^{(\sum \mathrm{w}_{\mathrm{c}})/\mathrm{m}}$$

3. Output

HyperLogLog

- Estimate the number of distinct values in a column
- *m* buckets, α_m : a constant; M_j : # of leading 0s
- LogLog: $\alpha_m \cdot m \cdot 2^{\sum_{j=1}^m M_j/m}$
- HyperLoglog: $\alpha_m \cdot m^2 \cdot \left(\sum_{j=1}^m 2^{-M[j]}\right)^{-1}$

Value: 10,492,800

Hash Value: 1,475,498,572

Register Values:

m = 64

0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
2	0	0	0	0	0	0	2	0	0	3	0	2	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0

Sampling

- Modern DBMSs also collect samples from tables to estimate selectivity.
- Update samples when the underlying tables changes significantly.

Traditional Cost Model Summary

- Sampling-based
- Histogram
- Sketch

Algorithm	Ref.	Year	Observables [14]	Intuition [27]	Core method (Sec. 3)
FM	[15]	1985	Bit-pattern	Logarithmic hashing	Count trailing 1s
PCSA	[15]	1985	Bit-pattern	Logarithmic hashing	Count trailing 1s
AMS	[3]	1996	Bit-pattern	Logarithmic hashing	Count leading 0s
BJKST	[4]	2002	Order statistics	Bucket-based	Count leading 0s
LogLog	[11]	2003	Bit-pattern	Logarithmic hashing	Count leading 0s
SuperLogLog	[11]	2003	Bit-pattern	Logarithmic hashing	Count leading 0s
HyperLogLog	[14]	2008	Bit-pattern (order statistics)	Logarithmic hashing	Count leading 0s
HyperLogLog++	[24]	2013	Bit-pattern	Logarithmic hashing	Count leading 0s
MinCount	[21]	2005	Order statistics	Interval-based	k-th minimum value
AKMV	[7]	2007	Order statistics	Interval-based	k-th minimum value
LC	[32]	1990	No observable	Bucket-based	Linear synopses
BF	[28]	2010	No observable	Bucket-based	Linear synopses A

Cardinality Estimation

Problem Formulation:

Cardinality: The result size of a query.

- □ Input: A SQL Query.
- **Output:** An Estimated Cardinality.

Traditional Cardinality Estimation

□ Sampling

- **Core idea:** Estimating selectivity of target query by sampling.
- **Limitation:** Inference is slow and inaccurate when the amount of data is large.

Histogram

- □ Core idea: Store the value distribution of each attribute, and calculate the selectivity according to the independence assumption.
- Limitation: Strong independence assumption makes it inaccurate when the data distribution is complex.
- **Sketch:** Estimate the number of distinct elements of a set.

Regression Problems

Database estimation problems can be modeled as regression problems, which fit the high-dimension input variables into target features (e.g., cost, utility) and estimate the value of another variable.

□ Cardinality/Cost Estimation aims to estimate the cardinality of a query and a regression model (e.g., deep learning model) can be used.

□ Index/View Benefit Estimation aims to estimate the benefit of creating an index (or a view), and a regression model can be used to estimate the benefit.

Query Latency Estimation aims to estimate the execution time of a query and a regression model can be used to estimate the performance based on query and concurrency features.

Learned Cardinality Estimation

□ Motivation

Due to the attribute value independence assumption as well as the assumption of uniform distribution, traditional cardinality estimation methods tend to fail when the data distribution is complex.

□ Challenge

- Correlation between data columns and columns.
- Multi-table join increases data volume and query types.

Optimization Goal

□ Accuracy, Inference Latency, Model Size, Training Cost

Automatic Cardinality/Cost Estimation

□ Motivation:

□ One of the most challenging problems in databases

Achilles Heel of modern query optimizers

□ Traditional methods for cardinality estimation

- Sampling (on base tables or joins)
- Kernel-based Methods (Gaussian Model on Samples)
- Histogram (on single column or multiple columns)

□ Traditional cost models

- Data sketching/data histogram based methods
- Sampling based methods

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How good are query optimizers, really? In VLDB, 2015.

Categories of Learned Cardinality Estimation

(1) Supervised Query Methods

- Neural Network
- XGBoost
- Multi-set Convolutional network

(2) Supervised Data Methods

- ➤Kernel-density model
- Uniform mixture model
- Pre-training summarization model

(3) Unsupervised Data Methods

- Sum product network
- Autoregressive (AR) model
- Normalizing Flow (NF) model

1 Supervised Query Methods for Cardinality Estimation

Problem Definition

A regression problem: learn the mapping function between query Q and its actual cardinality

1.1 Query-Driven: Neural Network on Single Tables

□ Solution:

 \geq

> Training

Inference

- Represent a query $(lb_1 < A_1 < ub_1, ..., lb_d < A_d < ub_d)$ on a table *T* with d attributes $A_1, ..., A_d$ as $< lb_1, ub_1, ..., lb_d, ub_d >$.
- A neural network with two hidden layers is used to fit the mapping between the representation of the query and its cardinality.

```
Input vector
Output layer
```

2 hidden layers

Neural network with 2 hidden layers

• Answer a query by the trained network.

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation for range predicates using lightweight models. PVLDB, 2019.

 $(c_1 \leq lb_1 < c_2) \wedge (c_3 < ub_1 \leq c_4) \wedge (c_5 \leq ub_2 \leq c_6)$

1.2 Query-Driven: XGBoost for Cardinality Estimation

□ Solution:

The query is represented in the same way as the neural network based approach.
 Use XGBoost, a decision tree-based ensemble model to fit a mapping between a query's representation and its cardinality.

Comparison with Neural Network:

- Neural Network-based method are better when training data is sufficient.
- XGBoost is better when the training data is insufficient.

1.3 Query-Driven: Deep Learning for Multi-tables

■ Motivation: It's difficult for traditional methods to capture join-crossing correlations.

□ Solution:

- For table set and join set in the input, encode each table, join with one-hot encoding.
- For predicates of the form (col, op, val), encode columns col and operators op with one-hot encoding, and represent val as a normalized value in [0, 1].
- Use some samples to address 0-tuple problem

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.

1.3 Query-Driven: Deep Learning for Multi-tables

□ Training:

- The three parts of the input are spliced together after going through the linear layer, activation layer, and the dimensionality reduction layer.
- Then go through the linear and activation layer again to get the estimated cardinality.
- Tuning model parameters by backpropagating gradients.

□ Inference

Answer a query by the trained network.

2 Supervised Data Methods for Cardinality Estimation

Problem Definition

A density estimation problem: learn a joint data distribution of each data point. (except for the pre-training summarization model)

2.1 Supervised Data-Driven: Kernel-Density Model on Single Table

- Motivation: Multi-dimensional histograms are complex to construct and hard to maintain.
- **Control** Key-idea: Fit the probability density distribution of a data table by kernel density model.
- Kernel-Density Model

Model:
$$\hat{p}_{H}(\vec{x}) = \frac{1}{s \cdot |H|} \sum_{i=1}^{s} K\left(H^{-1}\left[\vec{t}^{(i)} - \vec{x}\right]\right)$$

- s is sample size; K is Gaussian function;
- \vec{t} is sampled point; H is a parameter that needs to be learned.,

> Inference:
$$\hat{p}_H(\Omega) = \int_{\Omega} \hat{p}(\vec{x}) d\vec{x}$$

• Ω is the space represented by a query.

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.1 Supervised Data-Driven: Kernel-Density Model on Single Table

Kernel-Density Estimation

$$p_i = \frac{n_i}{N \,\Delta_i}$$

 p_i : probability

 n_i : number of points

N: total number of points

 Δ : bandwidth

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.1 Supervised Data-Driven: Kernel-Density Model on Single Table

□ Solution

□ Training

- Get a lot of queries with true cardinalities.
- Sample points (rows) from the table and initialize the parameter H.
- Adjust the parameter H by stochastic gradient descent according to estimated cardinalities by Kernel-Density Model and the true cardinalities.

□ Inference

 Answer queries by accumulating kernel density based on the kernel-density model.

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for multidimensional selectivity estimation. SIGMOD, 2015.

2.2 Supervised Data-Driven: Uniform Mixture Model on Single Table

■ Motivation: Traditional methods need to be populated in advance by performing costly table scans.

C Key-idea: Fit the probability density distribution of a data table by uniform mixture model.

Uniform Mixture Model:

Model:
$$f(x) = \sum_{z=1}^{m} h(z) g_z(x) = \sum_{z=1}^{m} w_z g_z(x)$$

- w_z is the weight for a subpopulation z
- $g_z(x) = 1/|G_z|$ is uniform distribution function
- $|G_z|$ is area of subpopulation z

Inference:
$$\int_{B_i} f(x) dx = \int_{B_i} \sum_{z=1}^m w_z g_z(x) dx$$

• B_i is the space represented by a query.

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020

2.2 Supervised Data-Driven: Uniform Mixture Model on Single Table

□ Solution:

Training

- Sample some points within queries with true cardinalities.
- Generate subgroups for the points.
- Learn the weights w_z of the uniformity mixture model.
- □ Inference
 - Answer a query by calculating the cumulative probability density (i.e., selectivity) according to the mixture density function.
 - overlap area between query rectangle and data rectangle

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020

2.3 Supervised Data-Driven: Pre-training Summarization Model on Single Table

□ Solution:

□ Pre-train encoder and decoder with

large data tables via gradient descent

(Loss function is $\left| log \frac{true \ card}{est.card} \right|$).

Encode a table with the pretrained encoder.

 Input a query and the encoded result of the table into the pre-trained decoder to get the cardinality.

2.3 Supervised Data-Driven: Pre-training Summarization Model on Single Table

Data Encoder

Query Decoder

Lu Y, Kandula S, König A C, et al. Pre-training summarization models of structured datasets for cardinality estimation. PVLDB, 15(3): 414-426, 2021 67

3 Unsupervised Data Methods for Cardinality Estimation

Problem Definition

A regression problem: learn a probability function for each data point.

3.1 Unsupervised Data-Driven: Sum-Product Network for Multi-tables

- □ Motivation: Most of the existing estimators require SQL queries.
- □ Base-idea: Learn the joint probability distribution by Sum-Product Network .
- Relational Sum Product Network (RSPN)
 RSPN consists of three types of node:
 product node: split the columns of a table.
 sum node: split the rows of a table.
 leaf node: represent probability distributions for individual variables.

(d) Probability of European Customers younger than 30

3.1 Unsupervised Data-Driven: Sum-Product Network for Multi-tables

□ Training

- Generate some queries and their cardinalities.
- Build a RSPN by recursively partitioning
 - Row: K-means clustering
 - Column: randomized dependency coefficient.
- □ Inference
 - Estimate cardinality in bottom-up.
 - Supports multi-table queries via join sampling, and supports queries on sub-schemas based on fanout scaling.

c_age	$c_{-}region$
80	${ m EU}$
70	${ m EU}$
60	ASIA
20	\mathbf{EU}
20	ASIA
25	\mathbf{EU}
30	ASIA
70	ASIA
	c_age 80 70 60 20 20 25 30 70

(a) Example Table

(b) Learning with Row/Column Clustering

(d) Probability of European Customers younger than 30

Fanout scaling for multi-tables

Fanout scaling is to support sub-schema queries on a full outer join table. (full outer join table contains duplicate tuples)

Solution: for each *foreign* $key \rightarrow primary$ key relationship, add a column denoting how many corresponding join partners a tuple has.

D Example:

```
SELECT COUNT(*)
FROM CUSTOMER C
WHERE c_region='EUROPE';
```

□ True answer is 2, but there are 3 tuples in the outer join table.

D Fanout scaling result: $|C > C 0| \cdot \mathbb{E}(1/\mathcal{F}'_{C \leftarrow O} \cdot \mathbf{1}_{c_region='EU'} \cdot \mathcal{N}_{C})$

$$= 5 \cdot \frac{1/2 + 1/2 + 1}{5} = 2$$

Custo	mor						
					o_id	c_id	o_channel
C10	. c_a	ge c_region			1	1	ONLINE
1	20	E	EUROPE		2	1	STORE
2	50	E	EUROPE		$\frac{-}{3}$	3	ONLINE
3	80	A	ASIA		4	3	STORE
Custor	merXO	rder					
\mathcal{N}_{C}	c_id	c_age	c_region	$\mathcal{F}'_{C \leftarrow O}$	\mathcal{N}_{O}	o_id	o_channel
1	1	20	EUROPE	2	1	1	ONLINE
1	1	20	EUROPE	2	1	2	STORE
1	2	50	EUROPE	1	0	NULL	NULL
1	3	80	ASIA	2	1	3	ONLINE
1	3	80	ASIA	2	1	4	STORE

Order

3.2 Unsupervised Data-Driven: Autoregressive Model on Single Table

■ Motivation: Existing estimators struggle to capture the rich multivariate distributions of relational tables.

□ Solution:

□ Training: Use Autoregressive (AR) Model to fit

the joint probability of different columns.

□ Inference: Estimate the cardinality of the equivalent query based on the AR model.

□ Monte Carlo sampling

Range queries are supported by progressive sampling (sampling by learned probability distribution).

$$\widehat{P}(\boldsymbol{x}) = \widehat{P}(x_1, x_2, \cdots, x_n)$$
$$= \widehat{P}(x_1)\widehat{P}(x_2|x_1)\cdots\widehat{P}(x_n|x_1, \dots, x_{n-1})$$

3.2 Unsupervised Data-Driven: Autoregressive Model on Single Table

□ Motivation: Previous AR models do not support multi-table queries.

□ Solution:

Learn an autoregressive model for the outer join of all tables.

 Supports multi-table queries via join sampling, and supports queries on sub-schemas through fanout scaling.

Zongheng Yang, Amog Kamsetty, et al. NeuroCard: One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021

3.3 Unsupervised Data-Driven: Normalizing Flow (NF) model for Multi-tables

□ Motivation: Previous data-driven approaches do not handle tables with

large domain sizes well.

- Dequantize and normalize discrete variables to continuous variables.
- Use Normalizing Flow (NF) model to learn the joint probability distribution of data points.
- Accumulating continuous normalized flow distribution function by adaptive importance sampling to answer a query.
- □ Support multi-table query through fanout scaling.

3.3 Unsupervised Data-Driven: Normalizing Flow (NF) model for Multi-tables

Wang J, Chai C, Liu J, et al. FACE: a normalizing flow based cardinality estimator. Proceedings of the VLDB Endowment, 15(1): 72-84, 2021

Summarization of Learned Cardinality Estimation

Method	Quality	Training overhead	Training Data	Adaptive	Model Size	Inference Latency
Lightweight Neural Network & XGBoost	\checkmark	low	many queries	\checkmark	small	fast
Convolutional Neural Network	$\sqrt{}$	low	many queries	$\checkmark\checkmark$	small	fast
Kernel-Density Model	\checkmark	medium	Data samples	\checkmark	small	medium
Uniform Mixture Model	\checkmark	medium	Data samples	\checkmark	small	medium
Autoregressive (AR) Model	$\sqrt{}$	high	Data samples	$\sqrt{\sqrt{\sqrt{1}}}$	high	slow
Sum-Product Network	$\checkmark\checkmark$	high	Data samples	$\sqrt{\sqrt{\sqrt{1}}}$	medium	medium
Normalizing Flow (NF) model	$\sqrt{}$	high	Data samples	$\sqrt{\sqrt{\sqrt{1}}}$	medium	medium
Pre-training summarization model	\checkmark	high	Lots of tables	$\checkmark\checkmark$	very small	fast

Cost Estimation

Problem Formulation:

Cost: Execution cost of a query plan.

- □ Input: A SQL Query Plan.
- **D** Output: An Estimated Cost.

Relations of Cardinality/Cost Estimation

Task Target

Cost estimation is to approximate the execution-time/ resource-consumption.

Correlations

□ Cost estimation is based on cardinality.

Estimation Difficulity

Cost is harder to estimate than cardinality, which considers multiple factors (e.g., seq scan cost, CPU usage).

Tree-LSTM for Cost Estimation

■ Motivation: Traditional cost estimation is inaccurate without learned plan representation.

□ Solution:

- □ Generate many query plans and true costs as training data.
- **D** Encode the query plan via one-hot encoding.
- □ Representation layer learns an embedding of each query plan by Tree-LSTM.

Estimation layer outputs estimated cost based on the representation layer's output.

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

Tree-LSTM for Cost Estimation

Model Construction

 Traditional cost estimation uses estimated card, which is inaccurate without predicate encoding →

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

Tree-LSTM for Cost Estimation

The representation layer learns an embedding of each subquery (global

vector denotes the subquery, local vector denotes the root operator)

• The estimation layer outputs cardinality & cost simultaneously

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

Take-aways of Cardinality Estimation

- Data-driven methods are more effective for single tables.
- Query-driven methods are more efficient than Data-driven methods.
- Data-driven methods are more robust than Query-driven methods.
- Samples are crucial to most Data-driven methods.

Cost Estimation

• Accurate cost estimation requires better plan embedding.

Open Problems

- High Accuracy with small model size and inference latency
- Adaptivity

Deep Learning for Query Latency Estimation

Motivation

- □ Statistical methods fail to estimate based on query structures, and cause great errors;
- Compared with cost estimation, latency estimation is more complex because (1) it relies on system resources and (2) Cost is one important factor of latency estimation.
- **Core Idea:** Utilize deep learning to capture the relations between input tables, operators, and the final performance Hidden layers left child

□ Solution

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for guery performance prediction. VLDB, 2019.

Deep Learning for Query Latency Estimation

□ Motivation

- Statistical methods fail to estimate based on query structures, and cause great errors;
- Compared with cost estimation, latency estimation is more complex because (1) it relies on system resources and (2) Cost is one important factor of latency estimation.
- **Core Idea:** Utilize deep learning to capture the relations between input tables, operators, and the final performance

□ Solution

- > Represent each operator q_i with a neural unit
- Concatenate neural units by following the query structures
 - Example Query Q (2 Scans, 1 Join)
 - Tree-structured Network for Q:
 - The outputs of the scan units (N σ + Ns)
 - Input of the join operator (N_{\bowtie})
 - The final predicted query latency.
 - Matches the query structure to predict the query latency

Graph Embedding for Query Latency Estimation

User Group

Latency Estimation for Concurrent Queries

- **□**data-sharing
- □data-conflict
- □resource-competition

Dparent-child relationship

Graph-based method

- Workload2Graph: graph modeling
- Graph prediction: GNN to predict the latency
- Graph update: on-the-fly update the model

Graph Embedding for Query Latency Estimation

X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

86

Graph Embedding for Query Latency Estimation

Model Construction

- Performance prediction of concurrent queries
 - Represent concurrent queries with a graph model
 - > Embed the graph with graph convolution network and predict the latency of all the

X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

Deep Learning for Index Benefit Estimation

□ Challenge

□ The index/view benefit is hard to evaluate

- > Multiple evaluation metrics (e.g., index benefit, space cost)
- Cost estimation by the optimizer is inaccurate

□ Interactions between existing data structures

- Multiple column access, Data refresh
- Conflicts between MVs

Deep Learning for Index Benefit Estimation

- Motivation: Critical to estimate index benefits by comparing execution costs of plans with/without created indexes
- □ Core Idea: Take benefit estimation as an ML classification task.
- □ Challenge: It is hard to accurately estimate the index benefits
- □ Solution:
 - Prepare training data
 - Query Plans + Costs under different indexes
 - Train the classification model
 - Input: Two query plans with/without indexes
 - Output: 1 denotes performance gains; 0 denotes no gains
 - Solve the index selection problem
 - Use the model to create indexes with performance gains

(b) Feature channels for the plan.

Bailu Ding, Sudipto Das, et al. Al meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.

Encoder-Decoder for View Benefit Estimation

□ Feature Extraction

- Previous work take candidate views as fixed length \rightarrow
- Encode various number and length of queries and views with an *encoder-reducer model*, which captures correlations with *attention*

Model Construction

- It is hard to jointly consider MVs thatmay have conflicts →
- (1) Split the problem into substeps that select one MV;
- (2) Use attention-based model to estimate the MV benefit

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.

Take-aways of Benefit Estimation

- □Learned utility estimation is more accurate than traditional empirical methods
- □Learned utility estimation is also accurate for multiple-MV optimization
- □Query encoding models need to be trained periodically when data update

Open problems:

- Benefit prediction for future workload
- Cost of initialization and future updates

Learned Optimizer

Query Optimizer

Logical Optimization – Query Rewrite

Query Rewrite

□Transform one logical plan into another equivalent plan (usually with lower cost)

Theory Guarantee: Equivalences in relational algebra

CRule-based: Applying rewrite rules

- Push-down predicates
- Do projects early
- Avoid cross-products if possible
- Use left-deep trees
- Use of constraints, e.g., uniqueness
- Subqueries → Joins (we will study this rewrite rule after we do physical plan selection)

Query Rewrite is important to achieve high performance!

Query Rewrite Rules

$\sigma_{\pmb{p}_1 \wedge \pmb{p}_2}(\pmb{e})$	\equiv	$\sigma_{p_1}(\sigma_{p_2}(e))$	(1)
$\sigma_{p_1}(\sigma_{p_2}(e))$	\equiv	$\sigma_{p_2}(\sigma_{p_1}(e))$	(2	?)
$\Pi_{\mathcal{A}_1}(\Pi_{\mathcal{A}_2}(e))$	\equiv	$\Pi_{A_1}(e)$	(3	5)
		$if\ A_1\subseteq A_2$		
$\sigma_p(\Pi_A(e))$	\equiv	$\Pi_A(\sigma_p(e))$	(4	.)
		$if\;\mathcal{F}(p)\subseteq A$		
$\sigma_p(e_1 \cup e_2)$	\equiv	$\sigma_{p}(e_{1}) \cup \sigma_{p}(e_{2})$	(5)
$\sigma_p(e_1 \cap e_2)$	\equiv	$\sigma_p(e_1) \cap \sigma_p(e_2)$	(6)
$\sigma_{p}(e_{1} \setminus e_{2})$	\equiv	$\sigma_{p}(e_{1}) \setminus \sigma_{p}(e_{2})$	(7	')
$\Pi_A(e_1 \cup e_2)$	\equiv	$\Pi_A(e_1)\cup \Pi_A(e_2)$	(8	;)

Query Rewrite Rules

$$e_{1} \times e_{2} \equiv e_{2} \times e_{1}$$

$$e_{1} \bowtie_{p} e_{2} \equiv e_{2} \bowtie_{p} e_{1}$$

$$(10)$$

$$(e_{1} \times e_{2}) \times e_{3} \equiv e_{1} \times (e_{2} \times e_{3})$$

$$(11)$$

$$(e_{1} \bowtie_{p_{1}} e_{2}) \bowtie_{p_{2}} e_{3} \equiv e_{1} \bowtie_{p_{1}} (e_{2} \bowtie_{p_{2}} e_{3})$$

$$(12)$$

$$\sigma_{p}(e_{1} \times e_{2}) \equiv e_{1} \bowtie_{p} e_{2}$$

$$(13)$$

$$\sigma_{p}(e_{1} \times e_{2}) \equiv \sigma_{p}(e_{1}) \times e_{2}$$

$$(14)$$

$$if \mathcal{F}(p) \subseteq \mathcal{A}(e_{1})$$

$$\sigma_{p_{1}}(e_{1} \bowtie_{p_{2}} e_{2}) \equiv \sigma_{p_{1}}(e_{1}) \bowtie_{p_{2}} e_{2}$$

$$(15)$$

$$if \mathcal{F}(p_{1}) \subseteq \mathcal{A}(e_{1})$$

$$\Pi_{A}(e_{1} \times e_{2}) \equiv \Pi_{A_{1}}(e_{1}) \times \Pi_{A_{2}}(e_{2})$$

$$(16)$$

$$if \mathcal{A} = A_{1} \cup A_{2}, A_{1} \subseteq \mathcal{A}(e_{1}), A_{2} \subseteq \mathcal{A}(e_{2})$$

99

Phases of Logical Query Optimization

- 1. break up conjunctive selection predicates (equivalence $(1) \rightarrow$)
- 2. push selections down (equivalence $(2) \rightarrow, (14) \rightarrow$)
- 3. introduce joins (equivalence $(13) \rightarrow$)
- 4. determine join order (equivalence (9), (10), (11), (12))
- 5. push down projections (equivalence (3) \leftarrow , (4) \leftarrow , (16) \rightarrow)

(9) (10) (11)

(12)(13)(14)

(15)

(16)

Step 1: Break up conjunctive selection predicates

select distinct s.sname

from student s, attend a, lecture l, professor p

where s.sno = a.asno and a.alno = l.lno and l.lpno = p.pno and p.pname ="Sokrates"

selection with simple predicates can be moved around easier

Step 1: Break up conjunctive selection predicates

Step 2: Push Selections Down

reduce the number of tuples early, reduces the work for later operators

Step 2: Push Selections Down

reduce the number of tuples early, reduces the work for later operators

Step 3: Introduce Joins

joins are cheaper than cross products

Step 3: Introduce Joins

Cartesian Product to Natural Join

 $\sigma_{\text{starName=name}}$ (MovieStar × StarsIn) = MovieStar $\bowtie_{\text{starName=name}}$ StarsIn

Step 3: Introduce Joins

Replace $\sigma + \times$ with \bowtie :

Step 4: Determine Join Order

Step 4: Determine Join Order

smaller input relation as the *left* input relation in a join (⋈) operator

Step 5: Introduce and Push Down Projections

Step 5: Introduce and Push Down Projections

Remove the unused attributes by inserting projection (π):

Physical Optimization

 $\pi_{B,D}[[\sigma_{R,A="c"}(R)] \bowtie S]$

112

113

Dynamic Programming

Relations	size of	Cost of	Best join	
joined	join result	join	ordering (plan)	
	+	+	+	
ĸ				
5	1000	0	5	
T	1000	0	T	
U	1000	0	ן ט	
	+	+·	+	
R, S	5000	0	R M S	
R, T	1000000	0	R M T	
R, U	10000	0	R 🛛 U	
S , Т	2000	0	S 🛛 Т	
S, U	1000000	0	S 🛛 U	
T, U	1000	0	TNU	
R,S,T	10000	2000	(S ⋈ T) ⋈ R	
R,S,U	50000	5000	(R 🛛 S) 🖂 U	
R,T,U	10000	1000	(T 🛛 U) 🕅 R	
S,T,U	2000	1000	(T 🛛 U) 🖄 S	
R,S,T,U	???	???	???	

114

Selinger Algorithm

□Step 1: Enumerate all access paths for a single relation

- -File scan or index scan
- -Keep the cheapest for each interesting order
- □Step 2: Consider all ways to join two relations
 - -Use result from step 1 as the outer relation
 - -Consider every other possible relation as inner relation
 - -Estimate cost when using sort-merge or nested-loop join
 - -Keep the cheapest for each interesting order
- □Steps 3 and later: Repeat for three relations, etc.

Learning-based Query Rewrite

- Motivation: Identify new rules to gain performance improvement
- Basic Idea: Extract relatively simple query pattern pairs from the public datasets and synthesize new rewrite rules
- □ Challenge: (1) How to generate new rewrite rules; (2) How to verify the rewrite equivalence

Original Query	Opt. By Existing DB	Ideal (WETUNE)	
<pre>q0: SELECT * FROM labels WHERE id IN (SELECT id FROM labels WHERE id IN (SELECT id FROM labels WHERE project_id=10) ORDER BY title ASC)</pre>	<pre>q1: SELECT * FROM labels WHERE id IN (SELECT id FROM labels WHERE project_id=10)</pre>	q2: SELECT * FROM labels WHERE project_id=10	InSub <co> InSub <co> Input Constraints 1. Relations t2,t2',t4 are the same 2. Relations t1,t3 are the same 3. Attributes c0,c0',c1 are the same 4. c0,c0' are attributes of t1 Input t1 Logical Actions t2,t2',t4 are the same 1. Relations t2,t2',t4 are the same 1. Relations t1,t3 are the same 1. Co,c0' are attributes of t1 Logical Actions t1 Logical Actions t2,t2',t4 are the same 1. Relations t2,t2',t4 are the same 1. Relations t2,t2',t4 are the same 1. Relations t1,t3 are the same 1. Co,c0' are attributes of t1 Logical Actions t2,t2',t4 are the same 1. Relations t1,t3 are t1</co></co>
<pre>q3: SELECT id FROM notes WHERE type='D' AND id IN (SELECT id FROM notes WHERE commit_id=7)</pre>	Unchanged	q4: SELECT id FROM notes WHERE type='D' AND commit_id=7	q5: FROM T WHERE T.x IN (SELECT R.y FROM R) AND T.x IN (SELECT R.y FROM R) q6: FROM T WHERE T.x IN (SELECT R.y FROM R)

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

- Motivation: Identify new rules to gain performance improvement
- Basic Idea: Extract relatively simple query pattern pairs from the public datasets and synthesize new rewrite rules
- Challenge: (1) How to generate new rewrite rules; (2) How to verify the rewrite equivalence

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

- □ Motivation: Identify new rules to gain performance improvement
- Basic Idea: Extract relatively simple query pattern pairs from the public datasets and synthesize new rewrite rules
- Challenge: (1) How to generate new rewrite rules; (2) How to verify the rewrite equivalence

□ Solution

- Generate rules via rule enumerator
 - Rule: (source pattern, destination pattern, constraints)
- Verify rule equivalence via SMT solver
 - Only queries with no more than 4 operators
- Use verified rules to greedily rewrite queries

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

Generate rules via rule enumerator

• Rule: (source pattern, destination pattern, constraints)

Verify rule equivalence via SMT solver

- Only queries with no more than 4 operators
- Transform: SQL Query \rightarrow U-expression \rightarrow FOL Formula
- Q(X) and Q(Y) are equivalent iff,
 - $query_{FOL}(X) \rightarrow query_{FOL}(Y) \&\& query_{FOL}(Y) \rightarrow query_{FOL}(X)$
- Use verified rules to greedily rewrite queries

U-expression	FOL formula
$E_1 = E_2$	$\operatorname{Tr}(E_1) = \operatorname{Tr}(E_2)$
$E_1 + E_2$	$\operatorname{Tr}(E_1) + \operatorname{Tr}(E_2)$
$E_1 imes E_2$	$\operatorname{Tr}(E_1) \times \operatorname{Tr}(E_2)$
E	$ite(\mathrm{Tr}(E) > 0, 1, 0)$
not(E)	$ite(\operatorname{Tr}(E) > 0, 0, 1)$
[<i>p</i>]	ite(p, 0, 1)
$ \sum_{x} E $	$ite(\exists x.\mathrm{Tr}(E) > 0, 1, 0)$
$not(\sum_{x} E)$	$ite(\exists x.\mathrm{Tr}(E) > 0, 0, 1)$
$\sum_{x} f(x) = 1$	$\exists x.(f(x) = 1 \land (\forall y. y \neq x \Longrightarrow f(y) = 0))$
$\sum_{x} r(x) \times E$	$\forall x \ r(x) \times \mathrm{Tr}(F) = r(x) \times \mathrm{Tr}(F')$
$=\sum_{x}r(x)\times E'$	$\forall x. f(x) \wedge \Pi(E) = f(x) \wedge \Pi(E)$
$\sum_{x} r(x) \times E$	$\forall x.((r(x) \times \operatorname{Tr}(E) = r(x) \times \operatorname{Tr}(E'))$
$= \sum_{x,y} r(x) \times E' \times D_y$	$\wedge ((r(x) \times \operatorname{Tr}(E) = 0) \vee \operatorname{Tr}(\sum_{y} D_{y} = 1)))$

Wang Z, Zhou Z, Yang Y, et al. WeTune: Automatic Discovery and Verification of Query Rewrite Rules. SIGMOD, 2022.

Finetune Predicate Rules

- □ Motivation: Traditional predicate-pushdown is less powerful in many cases
- Core Idea: Synthesize new predicates that are both valid (semantic equivalence) and optimal (performance gain)
- □ Challenge: (1) How to generate new predicates; (2) How to verify the predicates are valid and optimal.
- □ Solution
 - Build a classification model (SVM)
 - Classification Model \Leftrightarrow 0/1 \Leftrightarrow New Predicate
 - Use true/false samples to finetune the model
 - Valid: if the model filters out samples in origin predicate, it is not valid (true samples);
 - Optimal: if the model accepts samples not in origin predicate, it is not optimal (false samples).

Finetune Predicate Pushdown Rules

□ Build a classification model (SVM)

- ➤ Classification Model ⇔ 0/1 ⇔ New Predicate
- Use true/false samples to finetune the model
 - Valid: if the model filters out samples in origin predicate, it is not valid (true samples);
 - > Optimal: if the model accepts samples not in origin

predicate, it is not optimal (false samples).

Qi Zhou, Joy Arulraj, Shamkant B, et al. SIA: Optimizing Queries using Learned Predicates. SIGMOD, 2021.

Learning-based Query Rewrite

\Box Why Heuristics \rightarrow Learning-based?

□ Many real-world queries are not well-written

- Terrible operations (e.g., subqueries/joins, union/union all);
- Look pretty to humans, but physically inefficient

(e.g., take subqueries as temporary tables);

Existing methods are based on heuristic rules

Top-down rewrite order may not lead to optimal rewrites

(e.g., remove aggregates before pulling up subqueries)

Some cases may not be covered by existing rules

□ Trade-off in SQL Rewrite

- Best Performance: Enumerate for the best rewrite order
- Minimal Latency: SQL Rewrite requires low overhead (milliseconds)

Learning-based Query Rewrite

□ Challenge:

- Equivalence verification for new rules
- Search rewrite space within time constraints
 - Rewrite within milliseconds;

Estimate rewrite benefits by multiple factors

- Reduced costs after rewriting
- Future cost reduction if further rewriting the query

Automatic Query Rewrite

Problem Definition

\Box Given a slow query Q and a set of rewrite rules R, apply the rules R to the query Q so as to gain (a) the equivalent one and (b) the minimal cost.

Adaptively Apply Rewrite Rules

- □ Motivation: A slow query may have various rewrite sequences (different benefits)
- □ Core Idea: Explore optimal rewrite sequences with tree search algorithm
- □ Challenge: (1) How to represent candidate rewrite sequences; (2) How to efficiently find optimal rewrite sequence.

□ Solution

- Initialize policy tree for a new query
 - Node v_i : any rewritten query; $C^{\uparrow}(v_i)$: previous cost reduction; $C^{\downarrow}(v_i)$: subsequent cost reduction

Summarization of Query Rewrite

Methods	Granularity	Equivalence	Supported Rules	Rule Strategy	Rewrite Overhead	Rewrite Performance
WeTune	Logical Plan	(within 4 operators)	Generated	heuristic	High for Verify (383*50 ms).	More than 30%~90%
Sia	Predicate	$\sqrt{(simple queries)}$	Predicate Rules only	heuristic	High (3s)	More than 2x
Learned Rewrite	Logical Plan	\checkmark	Rules from Calcite	MCTS	Medium (6.1-69.8 ms)	More than 2x

Take-aways of Query Rewrite

- □ Traditional query rewrite method is unaware of cost, causing redundant or even negative rewrites
- Search-based rewrite works better than traditional rewrite for complex queries
- Rewrite benefit estimation improves the performance of simple search based rewrite

Open Problems

- Further reduce the rewrite overhead
- Adapt to different rule sets/datasets
- Design new rewrite rules

□ Motivation:

□ Planning cost is hard to estimate

The plan space is huge

□ Traditional optimizers have some limitations

- DP gains high optimization performance, but causes great latency;
- Random picking has poor optimization ability
- □ Steer existing optimiers can gain higher performance
 - > Hint join orders; Hint operator types

Problem Definition: Given an SQL query, select the "cheapest" join ordering (according to the cost model).

Cost, Latency

Method Classification

Offline Optimization Methods.

- > Characteristic: given Workload, RL based.
- Key idea: Use existing workload to train a learned optimizer, which predicts the plan for future queries.

□ Online Optimization Methods.

- > Characteristic: No workload, but rely on customized Database.
- Key idea: The plan of a query can be changed during execution. The query can switch to another better plan. It learns when the database executes the query.

Why Learned Join Order

- Why learned join order selection?
 - Learned Cost Model
 - Learned from latency when cost estimation is inaccurate.
 - Learned Plan Enumeration
 - not only to estimate the execution time of the complete plan, but also to estimate the generation direction of a good plan
 - guide the direction of plan generation, and reduce the number of enumerated plans.

Learned Join Order Selection

- Challenges
 - Learning models need to be able to accurately predict execution times.
 - The latency of plan generation should be low enough.
- Optimization Goals
 - Quality: Latency
 - Adaptivity: Adapt to different DB instances, workloads
 - Update: Join graph, Schema, Data
 - Training Cost

Learned Join Order Selection

- Method Classification
 - Offline learning methods
 - Characteristic : Learn before use given workload
 - Key idea : Use existing workload to train a learned optimizer, which will predict the plan for future workload.
 - Online learning methods
 - Characteristic: Learn runtime no workload
 - Key idea : The model can quickly learn from the execution feedback during or after query execution to improve the next plan generation.
 - Key difference: Online learning methods can handle update easily and the performance will not be limited by the given training data.

Learned Join Order Selection

1 Offline Join Order Selection: ReJoin & DQ

Motivation

- The search space for join order is huge.
- Traditional optimizer did not learn from pre bad or good choice.

□Challenges

- How to reduce the search space of join orc
- How to select the best join order.

Difference:

- ReJoin uses a policy based method (PPO) to guide the plan search.
- DQ uses a value based method (DQN) to guide the plan search. It uses at he not be plan and the plan search of the plan search is a search of the plan search.

1 Offline Join Order Selection: ReJoin & DQ

Select *

DMap into RL Models (DQ, ReJOIN) ^[1,2]

- Agent : optimizer
- Action: join
- Environment: Cost model, database
- Reward: Cost, Latency

Marcus, Ryan, and Olga Papaemmanouil. "Deep reinforcement learning for join order enumeration.", aiDM 2018 Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018

1 Offline Learned Join Order Selection: ReJoin

- RL model
 - Agent : optimizer;
 - Action: join;
 - Environment: Cost model, database
 - Reward: Cost;
 - State : join order
 - Long-term reward:
 - Policy-based : Output all-join probability
 - Neural network : A three-layer MLP.

Marcus, Ryan, and Olga Papaemmanouil. "Deep reinforcement learning for join order enumeration.", aiDM 2018

1 Offline Learned Join Order Selection: DQ

Select *

- RL model
 - Agent : optimizer
 - Action: join
 - Environment: Cost model, database

and Dradict the researches

- Reward: Cost
- State : join order
- Long term reward:

(a)]	Example query	featurization	(c) Features of $E \bowtie P$	(d) Features of $(E \bowtie P) \bowtie S$
	= Sal.code	(b) Ouery graph	$= [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0]$	$= [0\ 0\ 0\ 0\ 0\ 0\ 1\ 1]$
AND	Pos.code	$= [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$	$A_R = [P.rank, P.title, P.code]$	$A_R = [S.code, S.amount]$
	= Pos.rank	S.code, S.amount]		= [11111100]
WHERE	Emp.rank		-[1110000]	- [1 1 1 1 1 0 0]
FROM	Emp, Pos, Sal	Prank Ptitle Pcode	$A_L = [E.id, E.name, E.rank]$	P.rank, P.title, P.code]
SELECT	*	$A_G = [E.id, E.name, E.rank,$		$A_L = [E.id, E.name, E.rank,$

Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning, arXiv 2018

Z UTTIINE Learned Join Urder Selection: RTOS

- Motivation
 - Previous learning based optimizers give good cost, but they do not give good latency on test queries.
 - Schema often changes in real-world database.
- Challenges
 - The intermediate state is a forest, which cannot be represented by a simple feature vector.
 - The training time is huge when collecting latency as feedback.
 - The schema change leads to the retraining.

Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection. ICDE 2020

Z UTTIINE Learned Join Urder Selection: RTOS

- TreeLSTM based Q network
 - Use n-ary to represent the sub-trees
 - Use child-sum to represent the forest
- Two step training
 - Cost pretrain
 - Latency fine-tuning
- Dynamic neural network
 - DFS to build neural network
 - Multi-Alias: Parameter sharing
 - Schema change: Local fine-tuning

Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection. ICDE 2020

2 Offline Learned Join Order Selection: RTOS

□ Feature Extraction

- The structural information of the execution plan is vital to join order selection →
- Encode the operator relations and metadata features of the query
- Embed the query features with Tree-LSTM;
- Decide join orders with RL model

X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-lstm for join order selection. In ICDE, 2020.

3 Offline Learned Join Order Selection: NEO

- Motivation
 - Previous traditional optimizer relies on cost models
 - Previous methods solve join ordering only but cannot support physical operator selection.
- Challenges
 - How to build a learn cost model automatically to capture intuitive patterns in tree-structured query plans and predict the latency.
 - How to represent query predicate semantics (supporting strings – word2vector) automatically.
 - How to overcome reinforcement learning's sample inefficiency (with optimizer guide)

Offline Learned Join Order Selection: NEO

- It uses Tree-CNN to design a value network to represent the query plan (join order, operator).
- It uses row vectors to represent predicates. Each row is a sentence.
- It learns from the expert optimizer learning from demonstration.
- Normalize plan's cost by cost of optimizer's plan

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

col2

col1

raining

Optimization

uery (

col3

4 Online Learned Join Order Selection: Bao

- Motivation
 - Long training time
 - Cannot adjust to data and workload changes
 - Tail latency of worse plans
 - The choice of physical operator affects the quality of the plan
- Challenges
 - How to enumerate the plan?
 - How to study plan latency and choose a high-quality plan?

4 Online Learned Join Order Selection: Bao

- Use operator hint to generate candidate plans.
 - Enable/disable hash join,...
- Use Tree-CNN to predict the latency and guide the plan selection.
 - Latency prediction
 - Encode each plan into a vectorized tree.
 - Contextual multi-armed bandits.
 - Each hint set is an arm
 - Use Thompson sampling to update the

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

4 Online Learned Join Order Selection: Bao

□ Enhance query optimization with minor changes

E.g., Activate/Deactivate loop join for different queries

D Model Plan Hinter as a Multi-armed Bandit Problem

□ Model each hint set HSet_i as a query optimizer

$$HSet_i: Q \to T$$

■ For a query q, it aims to generate optimal plan by selecting proper hint sets, which is dealed as a regret minimization problem:

$$R_q = \left(P(B(q)(q)) - \min_i P(HSet_i(q)) \right)^2$$

Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021.

5 Unline Learned Join Order Selection: SkinnerDB

- Motivation
 - Previous works relied on learning from cost models or expert optimizers.
 - Previous learning based optimizers need to give training queries and are hard to provide good plans to different workload.
 - The executor can detect estimation errors during query execution.
- Challenges
 - How to design a new working mechanism that allows the optimizer to learn and switch between different join orders online.
 - How to evaluate and choose different join orders online.

5 Online Learned Join Order Selection: SkinnerDB

149

- Eddies-style
 - Divide the execution process into several time slices.
 - N way join can support the plan switch.
 - Select the plan for the next time slice based on the previous time slice
- MCTS For JOS
 - Learn and generate a plan in each time slice
- Rely on Customize Database
 - Switch plan in low latency

Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer. VLDB 2019

5 Online Learned Join Order Selection: SkinnerDB

Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019.

5 Online Learned Join Order Selection: SkinnerDB

Update execution orders of tuples on the fly

- Update the plan on the fly and preserve the execution state \rightarrow
- Tuples flows into the Eddy from input relations (e.g., R, S, T);
- Eddy routes tuples to corresponding operators (the order is adaptively selected by the operator costs);
- Eddy sends tuples to the output only when the tuples have been handled by all the operators.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

Learned Join Order Selection

	Quality	Training Cost	Adaptive (workload)	Adaptive (DB Instance)	Learned Operator	Methods
Traditional [Genetic algorithms] [Dynamic Programming]	Low	Low	High	High	\checkmark	Cost model
DQ	Medium	High	Low	High	\times	Value-based DRL
ReJoin	Medium	High	Low	High	×	Policy-based DRL
RTOS	High	High	Medium	High	×	Value-based DRL, Tree-LSTM
NEO	High	High	Low	High	\checkmark	Value-based DRL, Tree-CNN
Bao	High-	Medium	High	High	\checkmark	CMAB, Thompson sampling, Value-based, Tree-CNN
Skinner-DB	High	Low	High	Low	×	Eddies-style, Value- based, MCTS

Learned Join Order Selection: Take-away

- Not easy to be applied in real DBMS
- Open problems
 - Low latency plan generation
 - Neural networks bring delays that cannot be ignored. How to apply learning algorithms to low-latency OLTP services.
 - Support complex queries
 - Nested queries.
 - Learning metrics
 - The planned latency will vary with the system state and network delay.
 - Some faster plans may consume more resources. For example, use twocore CPU in parallel to reduce the execution time by 20%.

Motivation

□ Traditional Database Design is laborious

- Develop databases based on workload/data features
- > Some general modules may not work well in all the cases
- Most AI4DB Works Focus on Single Modules
 - Local optimum with high training overhead
- Commercial Practices of AI4DB Works
 - Heavy ML models are hard to implement inside kernel
 - > A uniform training platform is required

Peloton

□ Schedule optimization actions via workload forecasting

- Embedded Monitor: Detect the event stream
- Workload Forecast Model: Future workload type
- Optimization Actions: Tuning, Planning

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017.

SageDB

□ Customize DB design via learning the Data Distribution

Learn Data Distribution by Learned CDF

$$M_{CDF} = F_{X_1,...,X_m}(x_1,...,x_m) = P(X_1 \le x_1,...,X_m \le x_m)$$

- Design Components based on the learned CDFs
 - Query optimization and execution
 - Data layout design
 - Advanced analytics

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019.

openGauss

□ Implement, validate, and manage learning-based modules

- Learned Optimizer
 - Query Rewriter
 - Cost/Card Estimator
 - Plan Enumerator

Learned Advisor

- Self-Monitoring
- Self-Diagnosis
- Self-Configuration
- Self-Optimization
- Model Validation
- Data/Model Management

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021.

Learned Advisor

Learned Advisors

- **Learned Knob Tuning**
- Learned Index Advisor
- **Learned View Advisor**
- **Learned Partition Advisor**
- **Learned Data Generation**

Knob Tuning

A Constrained Optimization Problem

• Given a suite of knobs B and a target T, knob tuning aims to find the optimal values of B, so as to meet T for the incoming workload.

□ Knobs

- concurrency control, optimizer settings
- memory management, background processes

□ Targets

- Performance (throughput, latency)
- Resource Usage (e.g., CPU utilization)

Offline Optimization for Knob Tuning

Problem Definition: Consider a database with different workloads, the target is to find the optimal knob settings to meet required SLA (service-level agreement).

Offline Optimization for Knob Tuning

□ Motivation:

□ DBMSs have different optimal knob settings, which significantly affect the query performance and resource utilization.

- □ DBMSs have numerous runtime metrics. Classic ML models cannot efficiently select knobs based on the metrics.
- □ DBMSs have numerous system knobs with continuous values, which makes it harder to find optimal knobs.

Traditional Knob Tuning Methods

- Motivation: Most users only utilize default knob settings and cause performance regression
- Basic Idea: Greedily select local-optimal knob settings with bound-andsearch algorithm
- Challenge: Optimal settings change with tuning goals and workloads
 Solutions:
 - Sample Phase: Divide each knob range into k intervals and sample k settings that cover all the value ranges
 - Search Phase: Select the best sampled setting and build search space around the best setting

Random Sampling: Some important settings may not be sampled

Yuqing Zhu et al. BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning. In SoCC, 2017.

Learning-based Knob Tuning

J Why heuristics \rightarrow Machine Learning ?

□ A large number of configuration knobs

- Total > 400
- Heuristic Method: waste much time in search
 from huge knob space

□ Knobs control nearly every aspect and

have complex correlations

- One-knob-at-a-time is inefficient
- *Heuristic:* The relations are non-monotonic

□ Learn from the historical tuning

• Heuristic: Restart tuning from scratch each time

Hi, list. I've just upgraded pgsql from 8.3 to 8.4. I've used pgtune before and everything worked fine for me. And now i have ~93% cpu load. Here's changed values of config:

default_statistics_target = 50
maintenance_work_mem = 1GB
constraint_exclusion = on
checkpoint_completion_target = 0.9
effective_cache_size = 22GB
work_mem = 192MB
wal_buffers = 8MB
checkpoint_segments = 16
shared_buffers = 7680MB
max_connections = 80

Learning-based Knob Tuning

165

(1.1) Bayesian Optimization for Knob Tuning

- □ Motivation: Only a few knobs have significant effects to the performance
- □ Basic Idea: Explore the knob-performance relations by experiments
- □ Challenge: Identify important knobs and their values efficiently
- □ Solution:
 - Planner: Adaptively sample some knob settings
 - Executor: Get the performance of sampled settings by running workloads
 - Estimator: Predict knob-performance relations with Gaussian Process
 - Termination: Terminate if arriving time limit; otherwise repeat above steps

Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009.

(1.1) Bayesian Optimization for Knob Tuning

- □ Motivation: Only a few knobs have significant effects to the performance
- □ Basic Idea: Explore the knob-performance relations by experiments
- □ Challenge: Identify important knobs and their values within hours
- □ Solution:
 - Planner: Adaptively sample some knob settings
 - Executor: Get the performance of sampled settings by running workloads
 - Estimator: Predict knob-performance relations with Gaussian Process
 - **Termination:** Terminate if arriving time limit; otherwise repeat above steps
- Limitations

Sampling configurations from scratch is inefficient
 Knob-performance relations are extremely complex
 Important workload features are not utilized

(1.2) Bayesian Optimization + Historical Data

1 Data-driven: Optimize tuning performance with numerous historical data

- Characterize workloads with runtime metrics (e.g., #-read-page, #-write-page)
- Identify important knobs (rank knobs through knob-performance sampling)
- Generate workload-to-identified-knob-settings correlations (data repository)
- Given a workload, compute a mapped workload via metric similarity, use corresponding knob settings to initialize GP, explore more settings to get better performance

Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough Large-scale Machine Learning. SIGMOD, 2017. 168

(1.3) Bayesian Optimization + Empirical Experience

Motivation: Expert experience can make learned tuning more robust

• e.g., limit the minimal shard buffer size

Basic Idea: Utilize expert experience to optimize tuning

- Solution
 - Empirically compute input features at resource/APP/VM levels

e.g., Memory Efficiency: $q_2^{\mathbf{x}} = \frac{M_i + m_c}{\min(m_o^{\mathbf{x}}, m_c^{\mathbf{x}})}$ M_i : Code overhead value m_c : Required cache storage

- x: Tested knob setting
- m_{o} : GC settings
- > Rely on empirical features to estimate tuning performance
 - (1) Input: Empirical features,

Initialized knob values;

- (2) Model: Gaussian Process;
- (3) Target: Tuning Performance.

Mayuresh Kunjir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-based Analytics. SIGMOD 2020.

(1.4) Bayesian Optimization + Pretrained Models

- Motivation: Learning-based tuning is hard to migrate to new scenarios
- Basic Idea: Improve migration capability with pre-trained tuning models
- Solution:
 - Characterize the common workload features
 - Reserved SQL words (e.g., SELECT, DISTINCT)
 - Cluster tuning models on historical workloads to generate **Base Leaners**;
 - For a New Task, generate *Meta Learner* based on the Base Leaners (similarity weight: q_i);
 - The Meta Learner *M* is a gaussian process model:

$$\textit{mean value } \mu_M(\theta) = \frac{\sum_{i=1}^{T+1} g_i \mu_i(\theta)}{\sum_{i=1}^{T+1} g_i} \quad \textit{variance } \sigma_M^2(\theta) = \sum_{i=1}^{T+1} v_i \sigma_i^2(\theta),$$

- Fine-tune the *Meta Learner* by running the new workload;
- Recommend promising knobs with Meta Learner.

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases. SIGMOD, 2021.

(2.1) Deep Learning for Knob Tuning

- □ Motivation: Expensive to run workloads for evaluating tuning effects
- Basic Idea: Estimate tuning effects without running workloads
- □ Challenge: Many metrics affect the performance
- □ Solution:
 - Collect DB metrics: [logical-read, QPS, CPU usage, response time];
 - □ Initialize a buffer size using historical workloads with similar metrics;
 - Design a neural network to estimate the response time as tuning feedback;
 - Greedily reduce the initialized buffer size until arriving safe response time.

J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases. VLDB 2019. 171

(2.2) Deep Learning + Code Encoding

- Motivation: Spark code involves complex semantics, and it is costly to migrate tuning models from small datasets to large datasets
- □ Basic Idea: Restrict the tuning region by predicting the performance
 - Knob Sampling: Sample candidate knob settings based on the data and code features;
 - Code Instrumentation: Enrich semantic features by adding the Spark API;
 - Performance Prediction: Predict the performance with encoded code, data, knob, DAG.

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022.

(2.2) Deep Learning + Code Encoding

- Motivation: Spark code involves complex semantics, and it is costly to migrate tuning models from small datasets to large datasets
 Basic Idea: Restrict the tuning region by predicting the performance
 - Knob Sampling: Sample candidate knob settings based on the data and code features;
 - Code Instrumentation: Enrich the code features by adding the Spark API tokens;
 - **Performance Prediction:** Predict the performance with *encoded code*, *data*, *knob*, DAG features;
 - **Generalization to Big Datasets:** When dataset changes, utilize adversarial learning to capture the domain-invariant features and update the performance model with newly collected samples.

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, Guoliang Li. Adaptive code learning for Spark configuration tuning. ICDE, 2022.

(3.1) Reinforcement Learning for Knob Tuning

- Motivation: Traditional methods fall into local optimum
- Basic Idea: Use reinforcement learning (exploration-exploitation)

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD, 2019. 174

(3.1) Reinforcement Learning for Knob Tuning

- □ Issue1: How to choose an appropriate RL approach
 - Challenge: Many continuous runtime metrics and knobs
 - Value-based method (DQN)

Discrete Action ×

- Replace the Q-table with a neural network
- Input: state metrics; Output: Q-values for all the actions
- Policy-based method (DDPG)
 Continuous State/Action ✓
 - (actor) Parameterized policy function: $a_t = \mu(s_t | \theta^{\mu})$
 - (critic) Score specific action and state: $Q(s_t, a_t | \theta^Q)$

(3.1) Reinforcement Learning for Knob Tuning

Issue2: How to train an RL-based Model (e.g., DDPG)

- □ Challenge: Optimize the tuning strategy with execution rewards
- Design effective reward function *r* (current benefit):

$$r = \begin{cases} ((1 + \Delta_{t \to 0})^2 - 1)|1 + \Delta_{t \to t-1}|, \Delta_{t \to 0} > 0\\ -((1 - \Delta_{t \to 0})^2 - 1)|1 - \Delta_{t \to t-1}|, \Delta_{t \to 0} \le 0 \end{cases}$$

Improvement over Improvement over default setting (t-1) setting

Actor Network Training: Update with the score estimated by the Critic

 $\nabla_{\theta^{\pi_A}} \pi_A = \nabla_{A_i} Q(S'_i, A_i | \pi_C) \cdot \nabla_{\theta^{\pi_A}} \pi_A(S'_i | \theta^{\pi_A}) \qquad Q(S'_i, A_i | \pi_C) \rightarrow \text{The output of Critic}$

• Critic Network Training: Update with accumulated long-term benefit:

$$L = (Q(S'_i, A_i | \pi_C) - Y_i)^2$$

$$Y_i = R_i + \tau \cdot Q(S'_{i+1}, \pi_A(S'_{i+1} | \theta^{\pi_A}) | \pi_C)$$

$$Y_i \rightarrow \text{Long-term benefit based on the reward}$$

Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. VLDB 2019.

(3.2) Reinforcement Learning + Tuning Hints

- Limitations in RL-based tuning
 - High tuning overhead
 - □ Require DBAs (e.g., decide
 - the knob ranges)

Basic Idea: Tuning hints from manual(1) Collect tuning hints from website

Parameter = Value [* System Property][* Constant]

Given in Text RAM/Disk/Cores

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual". SIGMOD, 2022.

(3.2) Reinforcement Learning + Tuning Hints

- Limitations in RL-based tuning
 - High tuning overhead
 - **D** Require DBAs (e.g., decide
 - the knob ranges)

Basic Idea: Tuning hints from manual
 (2) Apply the tuning hints with the reinforcement learning model

Parameter = Value [* System Property][* Constant]

Immanuel Trummer. DB-BERT: a Database Tuning Tool that" Reads the Manual". SIGMOD, 2022.

Summarization of Learned Knob Tuning

	Quality	Training Efficiency	Training Data	Adaptivity
Gaussian Process (historical data)	\checkmark		$\sqrt{}$	\checkmark
Gaussian Process (+ empirical features)	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$
Gaussian Process (pre-trained models)	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$
Deep Learning (resource issues)	\checkmark	\checkmark	$\sqrt{}$	\checkmark
Deep Learning (+ code encoding)	$\checkmark\checkmark$	\checkmark	$\sqrt{}$	$\sqrt{}$
Reinforcement Learning (from scratch)	$\checkmark\checkmark$		No Prepared Data	\checkmark
Reinforcement Learning (+ tuning hints)	\checkmark		$\sqrt{\sqrt{\sqrt{1}}}$	$\checkmark\checkmark$

Take-aways of Knob Tuning

- □ Gradient-based GP methods reduce the tuning complexity by filtering out unimporant features. However, it heavily relies on training data, and requires other migration techniques to adapt to new scenarios
- □ Deep learning method considers both query performance and resource utilization. And they can significantly reduce the tuning overhead.
- Reinforcement learning methods take longest training time, e.g., hours, from scratch. It takes minutes to tune the database after well trained and gains relatively good performance.
- □ Learning based methods may recommend bad settings when migrated to a new workload. Hence, it is vital to validate the tuning performance.

Open problems:

- One tuning model fits multiple databases
- Natively integrate empirical knowledge

- Learned Knob Tuning
- **Learned Index Advisor**
- **Learned View Advisor**
- **Learned Partition Advisor**
- **Learned Data Generation**

Index Management

Problem Definition: Given a set of queries W and resource constraint D (e.g., disk limit), create a collection of indexes so as to optimize the execution of these queries under the constraint D. \rightarrow NP-hard

Index Management

Index Benefit Estimation

- The benefit of building an index on a column

- □ Index Selection
 - Column selection
 - Index-type selection, e.g., B-tree, Hash, bitmap

□ Index Update

-Adding or removing an index

Heuristic Index Selection

- Motivation: Proper indexes can significantly improve the performance
- Basic Idea: Model index selection as a knapsack problem and heuristically find the best indexes under disk limit
- Challenge: There are correlations between indexes (e.g., index sizes)
- □ Solution:
 - Model index selection as a knapsack problem
 - Item: Candidate index
 - Item weight: Index size
 - Value: Cost reduced by the index
 - Heuristically select the highest-benefit indexes
 - Benefit: Cost Reduction / Index Size
 by optimizer

G. Valentin, M. Zuliani, D. C. Zilio, et al. DB2 advisor: An optimizer smart enough to recommend its own indexes. In ICDE 2000.

Heuristic Index Selection for Dynamic Workloads

- Motivation: Performance gets unstable for dynamic workloads
- □ Basic Idea: Split workloads into epochs and finetune indexes for each epoch
- Challenge: Online index update for new queries

□ Solution:

- Divide a workload into epochs of queries
- Generate candidate indexes for each new query
 - Index Benefit: average latency reduction for the queries within the same epoch
 - Benefit Estimation: Estimate the index benefit through what-if call (similar queries have similar index benefits)
 - Update the index set and statistics
- Create indexes with highest index benefit at each epoch

K. Schnaitter, S. Abiteboul, T. Milo and N. Polyzotis. *On-Line Index Selection for Shifting Workloads*. In ICDE 2007.

Learning-based Index Selection

- \Box Why heuristics \rightarrow learned index selection?
 - Indexes are essential for efficient execution
 - SELECT c_discount from bmsql_customer where c_w_id = 10;
 - CREATE INDEX on bmsql_customer(c_w_id);
 - Find better solutions from numerous candidate indexes
 - Columns have different access frequencies, data distribution
 - Redundant indexes may cause negative effects
 - Increase maintenance costs for update/delete operations

Learning-based Index Recommendation

Benefit Estimation		Index Selection	Index Update	
Cost Estimator		Greedy	Greedy	
0 0 0 0	Index Templates	Index Benefits DB2	Time-series Workloads	
♦ What-if Calls		DeepRL	• OnlinIndex	
0 0 0 0	Plans with/without Index	DBA Bandits Empirical Rules	Index Update	
DeepLearning		RLAdvisor	RLAdvisor	

Index Benefit Estimation

□ Challenge

• The index benefit is hard to evaluate

Multiple evaluation metrics (e.g., index benefit, space cost)

Cost estimation by the optimizer is inaccurate

Correlations with other components

- Multiple column access, data refresh
- Conflicts between Indexes

Deep learning for Index Benefit Estimation

- □ Motivation: Critical to estimate index benefits by comparing execution costs of plans with/without created indexes
- □ Core Idea: Model benefit estimation as an ML classification task
- □ Challenge: Hard to accurately estimate the index benefits
- □ Solution:
 - Prepare training data
 - Query Plans + Costs under different indexes
 - Train the classification model
 - Input: Two query plans with/without indexes
 - Output: 1 denotes performance gains; 0 denotes no gains
 - Solve the index selection problem
 - Use the model to create indexes with performance gains

(b) Feature channels for the plan.

Bailu Ding, Sudipto Das, et al. Al meets ai: leveraging query executions to improve index recommendations. In SIGMOD, 2019.

Learning-based Index Selection

□ Challenges

□ The index benefit is hard to evaluate

- Multiple evaluation metrics (e.g., index benefit, space cost)
- Cost estimation by the optimizer is inaccurate

□ Index selection is an NP-hard problem

The set of candidate index combinations is huge

□ Index update is expensive

Hard to estimate the number of involved pages

Reinforcement Learning for Index Selection

- □ Motivation: Index selection using reinforcement learning
- □ Challenge 1: How to extract candidate indexes?
 - Extract candidate indexes from query predicates with empirical rules

Rule 1: Construct all single-attribute indexes by using the attributes in J, EQ, RANGE.
Rule 2: When the attributes in 0 come from the same table, generate the index by using all attributes in 0.
Rule 3: If table *a* joins table *b* with multiple attributes, construct indexes by using all ioin attributes.

□ Challenge 2: How to choose from candidate indexes?

Map into Markov Decision Process (MDP)

State: Info of current built indexes

Action: Choose an index to build

large state space

discrete action space

DQN Model

Reward: Cost reduction ratio after building the index

H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020.

MCTS for Index Update

- **1** Motivation: Existing methods cannot incrementally update indexes
- Basic Idea: Incrementally add/remove indexes with MCTS
- Challenge: Consider both the read and write queries
- □ Solution:
 - Index Diagnosis (anomaly detection)
 - Incremental Index Update (policy tree search)
 - Index Benefit Estimation (deep regression)

Xuanhe Zhou, Luyang Liu, et al. AutoIndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022.

MCTS for Index Update

- Motivation: Existing methods cannot incrementally update indexes
- Basic Idea: Incrementally add/remove indexes with MCTS
- □ Challenge: Consider both the read and write queries

□ Solution:

- > Index Problem Diagnosis: Detect whether the performance regression is caused by index issues;
- > Candidate index extraction: Cluster queries \rightarrow Map to query templates \rightarrow Extract candidate indexes;
- ➢ Incremental Index Update: Initialize a policy tree with existing indexes → Add new candidate indexes;
- Index Benefit Estimation: Index Update Costs = seek_tuples * cpu_cost + insert_tuples * cpu_index_tuple_cost

Xuanhe Zhou, Luyang Liu, et al. AutoIndex: An Incremental Index Management System for Dynamic Workloads. ICDE, 2022.

Summarization of Index Management

	Optimization Targets	Training Efficiency	Training Data	Adaptive
Deep Learning	Accurate Estimation	high	numerous data	query changes
Reinforcement Learning	High Performance	high computation costs	no prepared Data	query changes
MCTS	High Performance for index update	trade-off (costs, performance)	a few prepared data	query changes

Take-aways of Index Advisor

- Learned index estimation is more robust than cost models
- RL-based index selection works takes much time for model training (cold start); while MCTS can gain similar performance and better interpretability (or regret bounds)
- □ Learned estimation models need to be trained periodically for data or workload update
- **Open problems:**
 - Benefit prediction for future workload
 - Cost for future updates

- Learned Knob Tuning
- Learned Index Advisor
- Learned View Advisor
- Learned Partition Advisor
- **Learned Data Generation**

View Management

DView Benefit Estimation

The benefit of building a materialized view (MV) for a subquery

UView Selection

-Which subquery to create an MV

□View Update/Refresh

- Adding or removing an MV

View Selection

Problem Definition: Given a workload *Q* and a space budget, select optimal subqueries to materialize (MVs), including (i) MV benefit estimation; (ii) MV Selection; (iii) MV update; (iv) MV rewrite.

View Selection

□ Materialized Views (MVs) can optimize queries

Share common subqueries

□ Space-for-time trade-off principle

- Materialize hot data (MVs) within limited space
- How to estimate the MV utilities

□ The number of potential MVs grows exponentially

• Greedy/Genetic/other-heuristics work bad

Traditional View Selection Methods

- Given a workload, select and maintain materialized views that minimize the total latency within a limited materialized view storage space (NP-hard).
- Traditional Methods
 - Greedy: WATCHMAN, DynaMat, CloudViews
 - Genetic: EA, Hybrid-GHCA
 - Coral Reefs Optimization Algorithm: CROMVS
 - Backtracking Search Optimization Algorithm: BSAMVS-penalty
 - Integer Linear Programming: BIGSUBS, HAWC

- Limitations of Traditional Methods
 - View's benefit estimation. Not accurate.
 - Traditional models is not accurate for view benefit/multiple view benefit estimation.
 - Hard to estimate materialized view update cost.
 - View selection. Not generalizable.
 - Designed and work well for specific scenarios or workloads.
 - Rely on assumptions that are not always right
 - View update. Long Delay.
 - Based on accumulated benefits and creation cost of views.
 - Hard to estimate the a view's future benefit and recreation cost.

- Motivation
 - Estimate view benefit accurately.
 - Learned based methods from real runtime statistics.
 (Also verified in learned cardinality and learned join order selection)
 - Generalizable on different workloads.
 - Learns from historical workloads and learns directly from the view selection performance without human experience.
 - Predict views' future benefit.
 - Learns from historical MV utilization and predict future benefit and update cost.

- Challenges
 - View and query need to be encoded for neural networks.
 - New models need to be designed for view benefit estimation.
 - View selection models should be efficient and flexible.
- Optimization Goals
 - View Quality
 - Model Adaptivity
 - Support view update

Learned View Estimation: AutoView

• Motivation

- Estimate views' benefit more accurately.
- Support variable number of views in RL for view selection.
- Challenges
 - Views have different benefits on queries in workload.
 - Hard to extend state representation after model training.

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.

Learned View Estimation: AutoView

- Estimate the query-view benefits with encoder-reducer model:
 - Two LSTM network for query and views, which captures query-MV correlations with attention.
- Select optimal query-view combinations with reinforcement learning iteratively.

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021.

Learned View Estimation: AutoView

□ Feature Extraction

- Previous work take candidate views as fixed length \rightarrow
- Encode various number and length of queries and views with an encoder-reducer model, which captures correlations with attention

Model Construction

- It is hard to jointly consider MVs with conflicts →
- (1) Split the problem into substeps that select one MV;
- (2) Use attention-based model to estimate the MV benefit

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system with deep reinforcement learning. In ICDE, 2021. 207

Learned View Selection: RLView

- Motivation
 - RL performs well on combinatorial optimization problem.
- Challenges
 - How to solve view selection problem in RL framework.

Solutions

- Cluster equivalent queries and select the least overhead ones as the candidate;
- Represent MVs as a fixed-length state vector and solve with DQN model;
- Estimate the MV benefits with DNN.

 $Z = \{z_j\}: z_j \text{ is a } 0/1 \text{ variable indicating whether to materialize the subquery } s_j$ $Y = \{y_{ij}\}: y_{ij} \text{ is a } 0/1 \text{ variable indicating whether to use the view } v_{s_j} \text{ for the query } q_i$

Learned View Update: ECSE

- Motivation
 - Support MV refresh.
- Challenges
 - Hard to estimate refresh benefit/cost from historical workload.
- Solutions
 - Traditional view generation, estimation, and selection;
 - Use a neural network model to predict future DML operations and MV usage for scheduling the refresh.
 - Use linear regression to estimate MV refresh time with
 - MV size, refresh method, affected number of rows,
 - previous refreshes time.

Ahmed, R., Bello, R., Witkowski, A. Kumar. Automated generation of materialized views in Oracle. VLDB 2020.

Learned View Management: Comparison

Method	View Quality	Adaptability	View Update	View Estimation	View Selection	View Update
RLView	Medium	Low	No	Learned	Learned	-
AutoView	High	High	No	Learned	Learned	-
ECSE	Medium	Medium	Yes	Heuristic	Heuristic	Learned

Learned View Advisor: Take-away

- Learned view selection gains higher performance than heuristics
- Learned view selection works well for read workloads
- Learned view benefit estimation is more accurate than traditional empirical methods
- Learned view benefit estimation is accurate for multiple-view optimization
- Open Problems:
 - Learned MV update/refresh
 - Learned MV rewrite

- **Learned Knob Tuning**
- **Learned Index Advisor**
- **Learned View Advisor**
- **Learned Partition Advisor**
- **D** Learned Data Generation

Database Partition

Problem Definition: Given tables $\{T_1, T_2, ..., T_m\}$ and a partition function *F*, database partition selects columns for each table T_i as the partition key, and allocate the tuples in T_i into partitions using *F*, such that the workload performance is optimal.

Heuristic Database Partition for OLAP Workloads

Motivation

Reduce the network costs by judiciously partitioning tables

Core Idea

Heuristically co-partition (the tuples of the referenced table are on the same node of referencing table) tables by foreign-key relations

□ Challenge

- It is hard to find a suitable partitioning scheme (for many tables with join correlations) that maximizes data locality.
- There can be different partition schemes. How to merge them so as to reduce the data redundancy caused by co-partitioning.

Heuristic Database Partition for OLAP Workloads

\succ Represent the specific dataset schema \rightarrow Build a graph mode

Initialize a graph model G,

> Nodes: tables, Edges: foreign keys, Edge weight: the size of smaller table connected to the edge

➢ Improve data locality (reduce network costs) → Partition by join predicates

- > REF partitioning: a table is co-partitioned by the join predicate that refers to another table;
- Utilize maximum spanning tree to extract subsets of edges (a partition strategy) that (1) partition all the tables and (2) maximize the data locality.

➢ Full data locality may introduce duplicate tuples → Merge duplicated partitions

Utilize dynamic programming to merge candidate partition strategies so as to find the one with minimal data redundancy.

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel Database Systems. SIGMOD 2015.

Traditional Database Partition

- Motivation: Partition on join columns can significantly reduce the network communication and reduce execution costs
- Core Idea: Combine exact and heuristic algorithms to find good partition strategies for different workloads
- □ Challenge: Picking join columns as partition keys is NP-complete
- □ Solution
 - Build a Join Multi-Graph
 - *Vertices* are tables, *Edges* denote join relations
 - Partition with hybrid partitioning algorithms
 - *Exact algorithm:* Assume each table only uses a column; and turn into an integer programming problem;
 - *Heuristic algorithm:* Select the table columns with largest edge weights

Learning-based Database Partition

□ Motivation:

- Consider both the data balance & access efficiency
 - Place partitions on different nodes to speedup queries
 - Trade-off based on workload and data features
- Combine ML to optimize the NP optimization problem
 - **Combinatorial problem:** 61 TPC-H columns, 145 query

relations, 2.3×10^{18} candidate combinations

Reinforcement Learning for Database Partition

Motivation: OLAP Workloads contain complex and recursive queries

- Core Idea: Explore column combinations as partition keys with RL
- Challenge: Characterize partition features; Migrate to new workloads

□ Solution

- Extract partition features as a vector
 - [tables, query frequencies, foreign keys]
- Use DQN to partition the tables for a workload
 - Iteratively partition tables by long-term reward
- Support new workloads with trained models
 - Train a cluster of DQN models on typical workloads;
 - Pick models whose workloads are similar to the new workload to partition tables.

Takeaways of Database Partition

- □ Learned key-selection partition outperforms heuristic partition under complex workloads (e.g., with multiple joins)
- □ Learned key-selection partition has much higher partitioning latency (e.g., data collection, model training)

Open Problems:

- Adaptive partition for relational databases
- Partition quality prediction
- Improve partition availability with replicates

Learned Advisors

- **Learned Knob Tuning**
- **Learned Index Advisor**
- Learned View Advisor
- **Learned Partition Advisor**
- **Learned Data Generation**

Automatic Query Generation

Motivation

- Companies generally will not release their data and queries (out of privacy issues);
- It is vital to generate synthetical workloads (in replace of real workloads), and release the synthetical workloads to the public to train the ML models

Automatic Query Generation

How to generate queries that meet legality, diversity, and representative?

Definiation: Given a scheme and constraints (e.g., cost/ cardinality ranges), we generate k SQL queries which can (i) legally execute in the databse and (ii) meet the constraints.

RL

Example: Generate 1000 TPC-H SQLs whose cardinality equals 1000.

Challenges & Solutions:

- It is hard to predict the performance of generated SQLs, i.e., whether they meet the constraints;
- □ It is hard to generate diverse SQLs;
- Grammar and syntax constraints need to be considered to generate legal queries;

Construct a LSTM-based <u>critic</u> to predict the long-term benefits of any intermediate queries; utilize <u>actor</u> to explore new tokens;

- Construct a <u>probablistics model</u> to ensure the diversity of generated queries;
- Construct a <u>FSM</u> to prune illegal tokens for current intermediate queries;

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.

Automatic Query Generation

Query Legality

SQL Grammar:

Semantic Checks:

Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022.

Automatic Training Data Generation

Motivation

□ Machine learning is widely adopted in database components

□ It is challenging to obtain suitable datasets

- Training data is rarely available in public
- It is time-consuming to manually generate samples (e.g., over 6 months for 10,000 jobs with 1T data)

□ It is hard to measure the dataset quality

- The size of training data
- The quality of extracted features
- The availability of valuable ground-truth labels

Automatic Training Data Generation

Challenges in existing workload generators (TPC-H, sqlsmith)

- Limited SQL templates; while real queries have various structures;
- Fail to label the SQL queries (e.g, cost, execution time)

□ Core Idea: Reduce the labeling time by generating many query jobs and estimating the job latency

- SQL Sampling
 - A few real SQL queries + sample data;
- Plan Synthesis
 - Generate abstract plans from the real SQLs;
 - Collect statistics, e.g., distribution of the longest plan paths;
 - Generate job by imitating the structures/patterns of the plans,
 - > E.g., for join operator, they select the operator (Group by) as the child node with the max possibility (the transition matrix)

Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.

Automatic Training Data Generation

226

Challenges in existing workload generators (TPC-H, sqlsmith)

- Limited SQL templates; while real queries have various structures;
- Fail to label the SQL queries (e.g, cost, execution time)

□ Core Idea: Reduce the labeling time by generating many query jobs and estimating the job latency

- SQL Sampling
 - A few real SQL queries + sample data;
- Plan Synthesis
- Label Forecasting
 - > Sample and execute jobs \rightarrow Get the real latency (labels)
 - ➢ Build an estimator → Evaluate the latency and uncertainty
 - of the unexecuted jobs
 - ➤ Incrementally sample jobs → Reduce the uncertainty

Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021.

Takeaways of Learned Generator

□ Generated queries or performance labels are useful to test database functions

□ Sometimes most real queries have similar structures and may not be effective as generated queries

Open Problems:

- Semantic-aware query generation
- Low overhead query generation

Learned Prediction

Prediction Problems

□ Motivation

- Effective Scheduling can Improve the Performance
 - Minimize conflicts between transactions
- Concurrency Control is Challenging

 #-CPU Cores Increase
- Transaction Management Tasks
 - Transaction Prediction
 - Transaction Scheduling

Learned Workload Prediction

Predict the future trend of different workloads

- > **Pre-Processor** identifies query templates and the arrival-rate from the workload;
- Clusterer combines templates with similar arrival rate patterns
- Forecaster utilizes ML models to predict arrival rate in each cluster

Lin Ma, Dana Van Aken, and et al. Query-based Workload Forecasting for Self-Driving Database Systems. In SIGMOD, 2018.

Learned Workload Scheduling

Learn to schedule queries to minimize disk access requests

- Collect requested data blocks (buffer hit) from the buffer pool:
- State Features: buffer pool size, data block requests, ;
- Schedule Queries to optimize global performance with Q-learning

Learned Index

Basic Idea of Learned Index

Model the cumulative distribution function(CDF) of the data to predict the location as:

 $\hfill\square$ Data sampling \rightarrow Training CDF \rightarrow Predict approximate location \rightarrow Search precise location

Why Learned Index

Motivation

□ Indexes are essential for database system

- Indexes significantly speed up query process
- > Take up unignorable memory in huge data-scale situation

Limitations in Traditional Index

- Unaware of data features
- Trade-off between Space and Access Efficiency

□ Advantages of Learned Index

- Space efficient, only store several parameters
- ➢ Highly parallel, adapt to modern hardware like GPU and TPU

Learned Index: Formulation

Problem Formulation

 Given a set of key-value pairs, index is a data structure that improves the speed of data retrieval operations such as: lookup the value of the key, range query, nearest neighbor query, etc.

DTraditional Methods

– B-Tree, ART, R-Tree,...

□Limitations

- Unaware of data and workload distribution
- Trade-off between space and access efficiency

Learned Index: Challanges

- Space efficient, only store several parameters
- Faster access if the model fit well, predict the position

□Challenges

- Support update, concurrency, and persistency

DOptimization Goals

- Higher throughput
- Less space
- Robustness

Learned Index: Lineage

Learned Index: RMI

□ Motivation: indexes are models

□ Challenge: difficult for the "last mile" to reduce error

- **D** Range index: approximate location as p = CDF(Key) * N, model by hierarchy of simple neural networks, search precise location within error-bounded range
- □ Hash index: CDF as hash function to reduce conflict

Kraska, T., Beutel, A., Chi, et al. The case for learned index structures. SIGMOD 2018

Updatable Learned Index: ALEX

□ Motivation: support update

□ Challenge: adaptive to dynamic data distribution

- Linear model, only exponential search in data nodes
- Use gapped array layout in data nodes to accelerate insert
- Cost model: predict latency of lookup and insert, expand/split data node if slower than a threshold (e.g. 1.5× that at creation)

Ding, J., Minhas, U. F., Yu, J., et al. ALEX: An Updatable Adaptive Learned Index. SIGMOD 2020

Persistent Learned Index: APEX

Motivation: NVM-optimized ALEX

Challenge: lower write bandwidth, crash consistency

- Reduce write: linear model in data node as hash function, collision solved by sequential scan and chaining
- Concurrency: reader-writer lock for inner node, fine-grained optimistic lock for data nodes' non-structural update
- Crash recovery: nodes out-of-place expand/split, undo-log before new node prepared, redo-log after

Lu, B., Ding, J., Lo, E., et al. APEX: A High-Performance Learned Index on Persistent Memory. VLDB 2022

Updatable Learned Index: PGM

- Motivation: support update, fully-dynamic
- Challenge: adaptive to dynamic data distribution
 - Piecewise Geometric Model index (PGM-index)
 - I/O-optimally the predecessor search problem while taking succinct space
 - adaptive not only to the key distribution but also to the query distribution

FERRAGINA P, VINCIGUERRA G. The PGM-index: A fully-dynamic compressed learned index with provable worst-case bounds. VLDB 2020

Concurrent Learned Index: XIndex

- Motivation: handle concurrent write
- □ Challenge: update in-place with a non-blocking scheme
 - Two write types: in-place update, insert into buffer
 - **Two-phase compaction** to preserve effect of update:
 - first merge pointers to group's data and buffer
 - then copy the value
 - Similar design for the hash index, similar two-phase resize

Wang, Z., Chen, H., Wang, Y., et al. The Concurrent Learned Indexes for Multicore Data Storage. ACM Transactions on Storage 2022

Multi-D Learned Index: Flood

Motivation: multi-dimensional in-memory read-optimized

Challenge: optimize for data and query distribution

- Variant of grid index, cells sorted by 1st, 2nd, ... column; within cell, points sorted by the last column
- Gradient descent to find the optimal number of segments for each column using sample of dataset and workload
- Use RMI to learn CDF of each column to even out segments and predict position

Nathan, V., Ding, J., Alizadeh, M., et al. Learning multi-dimensional indexes. SIGMOD 2020

Learned Index Generation: GENE

- Motivation: self-design indexes
- □ Challenge: generalize to a genetic index framework
- **Genetic Algorithm**
 - Node framework: child mapping, data, data layout and search method
 - Population: a set of indexes (e.g. initially a single node)
 - Mutations: change particular node's implementation, or merge/split nodes horizontally and vertically
 - Fitness function: optimize indexes for the runtime given workload

Dittrich, J., Nix, J., & Schön, C. The next 50 Years in Database Indexing or: The Case for Automatically Generated Index Structures.. VLDB 2022

Learned Index: Comparison

Learned Index: Take-away

Though some research has already verified the benefit of learned index, performance in industrial workloads still needs to be studied, especially in update distribution-drift and multi-dimension situation.

Open problems

- Types of ML models to use
- More efficiently support update, concurrency, persistency
- Robustness: more adaptive to update distribution drift
- Self-design: learn faster, or amortize learning cost
- Make learned index applicable to industrial database systems

Learned Data Layout

Motivation

□ To reduce the #-data read from disk

- Split data into data blocks (main-memory, secondary storage)
- ➢ in-memory min-max index for each block

□ It is challenging to partition data into data blocks

Numerous ways to assign records into blocks
Traditional: assign by arrival time; hash/range parititon

Learned Data Layout (Qd-tree)

Qd-tree: Learning Branch Predicates

- Root Node: The whole data space
- Other Nodes: A part of the whole space

□ Approach

- Constructor: Construct a Qd-tree based on the workload and dataset (greedy/RL)
- Query Router: Route access requests based on the constructed qd-tree

cpu<10%?

Zongheng Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. SIGMOD, 2020.

Learned Data Layout: Join Predicates

Motivaiton

- Traditonal: either provide rare data skipping (zone maps), or require careful manual designs (Z-order)
- Qd-tree: only optimize singe-table layouts

Qd-Trees for the whole datasets

- Step#1: Learn Qd-tree for each table ;
 - Extract simple predicates;
 - Create join-induced predicates;
 - Induce relevant tuples based on the simple&join-induced predicates
- Step#2: Skip useless blocks

Based on the qd-trees

Jialin Ding, et al. Iinstance-Optimized Data Layouts for Cloud Analytics Workloads. SIGMOD, 2021.

Take-aways of Learned Data Designer

- Learned index opens up a novel idea to replace traditional index, and show good performance in small datasets.
- Learned index uses machine learning technology, which provides probability of combining new hardware like NVM with database system in future.
- Though some research has already verified the benefit of learned index,
 performance in *industrial level data scale* still needs to be studied, especially in
 updatable and *multi-dimension* situation.
- **D** Open problems
 - Persistent, Update, Concurrency Control, Recovery

Learned E2E System

Motivation

□ Traditional Database Design is laborious

- Develop databases based on workload/data features
- > Some general modules may not work well in all the cases

□ Most AI4DB Works Focus on Single Modules

Local optimum with high training overhead

Commercial Practices of AI4DB Works

- Heavy ML models are hard to implement inside kernel
- > A uniform training platform is required

Peloton

□ Schedule optimization actions via workload forecasting

- Embedded Monitor: Detect the event stream
- Workload Forecast Model: Future workload type
- Optimization Actions: Tuning, Planning

Andy Pavlo, et al. Self-Driving Database Management Systems. In CIDR, 2017.

SageDB

□ Customize DB design via learning the Data Distribution

Learn Data Distribution by Learned CDF

$$M_{CDF} = F_{X_1,...,X_m}(x_1,...,x_m) = P(X_1 \le x_1,...,X_m \le x_m)$$

- Design Components based on the learned CDFs
 - Query optimization and execution
 - Data layout design
 - Advanced analytics

Tim Kraska, et al. SageDB: A Learned Database System. In CIDR, 2019.

openGauss

□ Implement, validate, and manage learning-based modules

- Learned Optimizer
 - Query Rewriter
 - Cost/Card Estimator
 - Plan Enumerator

Learned Advisor

- Self-Monitoring
- Self-Diagnosis
- Self-Configuration
- Self-Optimization
- Model Validation
- Data/Model Management

Guoliang Li, et al. openGauss: An Autonomous Database System. In VLDB, 2021.

Open Problems

Future Works: Adaptability

Significant data changes

• Migration from small datasets to large datasets

• Completely new instances

• New dataset, workload, and SLA requirements;

Incremental DB module update

 Learned knob tuner for hardware upgrade, learned optimizer for dynamic workloads.

Future Works: Optimization Overhead

- Cold-Start Problems
 - Across datasets / instances / hardware / database types
- Lightweight in-kernel components
 - Efficient ML models; rare-data/compute-dependency;
- Online Optimization
- Workload execution overhead
- Model training overhead

Future Works: Small Training Data

- Few Training Samples
 - Few-shot learning
- Knowledge + Data-driven
 - Summarize (interpretable) experience from data

Pre-Trained Model

• Train a model for multiple scenarios

Future Works: Validate Learning-based Models

Model Validation

- > Whether a model is effective?
- > Whether a model outperforms existing ones?
- > Whether a model can adapt to new scenarios?

Future Works: Complex Scenarios

Hybrid Workloads

- HTAP, dynamic streaming tasks
- Distributed Databases
 - Distributed plan optimization

Cloud Databases

• Dynamic environment, serverless optimization

Future Works: SLA Improvement

- Optimize databases under noisy scenarios
 - Training Data Cleaning, Model Robust
- Optimize for extremely complex queries (e.g., nested queries)
 - Adaptive cardinality estimation \rightarrow efficient query plan
- Optimize for OLTP queries
 - Multiple query optimization

Future Works: One Model Fits Various Scenarios

High Adaptability

- > Workloads: query operators; plan structures; underlying data access
- > **Datasets:** tables; columns; data distribution; indexes / views; data updates
- DB Instances: state metrics (DB, resource utilization): hardware configurations
- DBMSs: MySQL; PostgreSQL; MongoDB; Spark

Possible Solutions: common knowledge extraction; meta learning

Future Works: Automatic Learned Model Selection

□ Automatic Database Assembling

- Automatically select ML models/algorithms for different tasks
- Evaluate the overall performance

Database Assembling

Category	Method
Supervised Learning	Linear Regression Logistic Regression Decision Tree Deep Learning
Unsupervise d Learning	K-Means Clustering Association Rules Reinforcement Learning
Descriptive Statistics	Count-Min Sketch Data Profiling

The Stack of ML Algorithms

Future Works: Unified Database Optimization

Arrange Multiple Database Optimization Tasks

- Multiple Requirements: (1) Optimizer can produce good plans with not very accurate estimator; (2) Creating indexes may incur the change of optimal knobs
- □ Hybrid Scheduling: Arrange different optimization tasks based on the database configuration and workload characters
- Optimization Overhead: Achieve maximum optimization without competing resources with user processes
- ✓ **Challenges:** various task features; correlations between tasks; trend changes

Machine Learing for Databases

Summarization of AI4DB Techniques

	Datahasa Drahlam	Mathad	Daufarmanaa	Overhead	Training Data	Adaptivity
	Database Problem	Method	Performance	Overnead	Training Data	Adaptivity
	knob space exploration	gradient-based [1, 18, 47]	High	High	High	_
		dense network [37]	Medium	High/Medium	High	– / instance
Offline		DDPG [23, 46]	High	High	Low/Medium	query
VII IIIe ND Drichlam	index selection	q-learning [19]	-	High	Low	_
INI I IODICIII	view selection	q-learning [43]	Medium	High	Low	_
	view selection	DDQN [9]	High	High	Low	query
	partition-key selection	q-learning [11]	-	High	Low	_
		q-learning [27]	High	High	Low	_
Online	join order selection	DQN [26, 42]	High	High	Low	query
NP Problem		MCTS [38]	Medium	Low	Low	instance
	query rewrite	MCTS [21, 49]	-	Low	Low	query
-	cost estimation	tree-LSTM [35]	High	High	High	query
	cardinality estimation	tree-ensemble [7]	Medium	Medium	High	query
		autoregressive [41]	High	High/Medium	Low	data
		dense network [16]	High	High	High	query
Regression		sum-product [12]	Medium	High	Low	data
Problem	index benefit estimation	dense network [5]	-	High	High	query
	view benefit estimation	dense network [9]	-	High	High	query
-	latency prediction	dense network [28]	Medium	High	High	query
	latency prediction	graph embedding [50]	High	High	High	instance
	learned index	dense network [3]	-	High	High	query
Prediction	trend prediction	clustering-based [24]	-	Medium	Medium	instance
Problem	transaction scheduling	q-learning [44]	-	High	Low	query

ML Models for Optimization Problems

ML Method	Description	Example	DB Tasks
Gradient-based Methods	Approximate the data distribution with gaussian functions, and select the optimal point by the guidance of gradients	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	Knob Tuning; Cardinality Estimation
Contextual Multi- armed Bandit	Maximize the reward by repeatedly selecting from a fixed number of arms	User (environment)	Plan Hint; Knob Tuning; MV Selection; Index Selection;
Deep Reinforcement Learning	Learn the selection (<u>actor</u>) or estimation (<u>critic</u>) policy with neural networks	(ugen) 1 User features (<i>context</i>) 3 Implicit feedback such as click (<i>reward</i>)	Database Partition; Join Order Selection; Workload Schedule
Monte Carlo Tree Search	Repeated iterations of four steps (<u>selection</u> , <u>expansion</u> , <u>simulation</u> , <u>back-propagation</u>) until termination	1. Tree selection Tree policy 2. Expansion Default policy 3. Monte Carlo simulation State evaluation	Query Rewrite; Online Join Order Selection

ML Models for Regression Problems

ML Method	Description	Example	DB Tasks
Statistical ML	Build a regression model to approximate real distribution based on sampled data	Anomaly May Market State Time	Cardinality Estimation; Trend Prediction
Sum-Product Network	Learn distributions with <u>Sum</u> for different filters and <u>Product</u> for different joins	0.3 0.7 × 12% 80% 15% 10% 20% EUASIA 20 100 EUASIA 20 100	Cardinality Estimation
Deep Learning (e.g., DNN, CNN, RNN)	Learn the <u>mapping relations</u> from the input features to the targets by graident descent	Average over set Average Average over set Average Average over set Average Ave	Knob Tuning; Cardinality Estimation; Cost Estimation

ML Models for Others

ML Method	Description	Example	DB Tasks
Generative Model (e.g., Encoder-Decoder)	Encode varied-length input features into fixed-length vector with mechanisms like multi-head attention	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	MV Selection
Graph Convolutional Network	Encode graph-structured input features with convolutions on the vertex features and their K-hop neighbor vertices	$\left(\begin{array}{c c} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_2 \end{array} \right), \begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_2 \end{array} \right) = \begin{array}{c} \mathbf{X}_1' \\ \mathbf{X}_2' \\ \mathbf{X}_2' \end{array}$	Query Latency Prediction
Meta Learning	<u>Use the base models to form</u> <u>the target model</u> based on the task similarity and the prediction accuracy during usage	$ \begin{array}{c} S \\ Seen \\ Unseen \\ h \\ \hline M \\ \hline M \\ \hline H \\ \hline OSML \\ \hline H \\ \hline$	Knob Tuning

Classical ML Methods

Techniques

- Gradient methods (e.g., GP); Regression methods (e.g., treeensembling, kernel-density estimation)
- □ Advantages
 - Lightweight; Easier to interpret than DL
- □ Disadvantages
 - Hard to extend to large data; Complex feature engineering
- ML4DB Applications
 - Knob Tuning; Cardinality Estimation

Classical ML Methods: Challenges

□ How to apply to a new problem?

- Problem Modelling: As a regression or gradient-based optimization problems
- Feature Engineering: Determine the input with feature engineering techniques
- Model Construction: Select proper classic ML models, collect sample data, and learn the mapping relations
- Additional Requirements: Reuse classic ML models in limited scenarios (e.g., similar workloads)

Classical ML Methods

	Feature Engineering	Model Selection
Knob Tuning	 <u>Reduce the knob space</u> with linear regression like Lasso; <u>Reduce redundant metrics</u> with factor analysis and clustering like k-means; 	 Gaussian Process: <u>Search local-optimal settings</u> within the selected knob space <u>Reuse the historical data</u> by matching workloads by their metric values
Cardinality Estimation	 <u>Assumptions</u> like column independency or linear relations between columns Determine <u>supported queries</u> like range queries 	 <u>Query-based</u>: Define input space as conjunction of the query ranges on data columns (Tree-Ensemble) <u>Data-based</u>: Partition data into indpendent regions (Sum-Product) or learn column correlations (AR)

Techniques

- Model-based (e.g.,, MCTS+DL);
- Model-free (e.g., value-based like Q-learning, policy-based like DDPG)

□ Advantages

• High performance on large search space; No prepared data

Disadvantages

Long exploration time; Hard to migration to new scenarios

□ ML4DB Applications

Knob Tuning, View/Index/Partition-key Selection, Optimizer, Workload
 Scheduling

Reinforcement Learning Methods: Challenges

- □ How to apply to a new problem?
 - □ Problem Modelling: Map to the 6 factors in a RL model
 - (state, action, reward, policy, agent, environment)
 - Feature Characterization: Select target-related features as the state of the RL problem
 - □ Model Construction: Select proper RL models (e.g., MCTS, DQN, DDPG), design the networks and the reward function
 - □ Additional Requirements: E.g., encode the query costs with Deep Learning; encode the join relations with GNN

	Input Features	RL Method	Reward Design	Estimation Model
Knob Tuning	Knobs ValuesInnter MetricsWorkloads	• DDPG for both continuous state and continuous actions	 Performance improvements over last tuning action Performance improvements over first tuning action 	• Design a dense network as the estimation (critic) model

	Input Features	RL Method	Reward Design	Estimation Model
View Selection	Candidate ViewsBuilt ViewsWorkload	• DQN for continuous state and discrete actions	• Utility increase on creating the views	 Encoder-decoder for inputs; Nonlinear layers for utility estimation
Index Selection	 Candidate Indexes Built indexes Workload 		• Utility increase on creating the indexes	• Design a dense network as the estimation model
Partiton- key Selection	ColumnsTablesQuery templates		• Estimated costs beofore/after partitioning	• Design a dense network as the estimation model

	Input Features	RL Method	Reward Design	Estimation Model
Query Rewrite	Logical QueryRewrite RulesTable Schema	• MCTS for tree search	• Utility increase for future optimal queries	• Multi-head attention for rules, query, data
Join Order Selection	 Physical Plan Candidate Joins Table Schema 	• DQN for continuous state and discrete actions	• Saved costs	• Design a dense network as the estimation model
Plan Hinter	 Physical Plan Hint Sets	Contextual Multi-armed for limited actions	Saved costs	Traditional Optimizer

Deep Learning Methods

Techniques

- Dense Layer ((non)-linear); Convolutional Layer; Graph Embedding Layer; Recurrent Layer
- □ Advantages
 - Approximate the high-dimension relations
- □ Disadvantages
 - Data-consuming
- ML4DB Applications
 - Cost Estimation; Benefit Estimation; Latency Estimation

Deep Learning Methods: Challenges

- □ How to apply to a new problem?
 - Input Features: Select features that affect the estimation targets (e.g., latency, utility)
 - Encoding Strategy: Encode based on the feature structures
 (e.g., Graph embedding for query relations)
 - Model Design: Design the network structures (e.g., layers, activation functions, loss functions) based on the input embedding (e.g., fixed-length or varied-length)

Deep Learning Methods

	Input Features	Feature Encoding	Model Design
Cost Estimation	Physical Plan	• Encode operators with LSTM	Plan-structured Neural Network
Benefit Estimation	 Physical Plan Optimization Actions (e.g., views. indexes) 	• Encode actions like Encoder- Decoder for Views and linear layer for Indexes	• Design a dense network as the estimation model
Latency Estimation	 Physical Plan Query Relations DB State	• Encoder query correlations with graph covolutions	• Design a K-layer graph embedding network for K-hop neighbors