
The VLDB Journal (2021) 30:959–987
https://doi.org/10.1007/s00778-021-00670-9

REGULAR PAPER

CDBTune+: An efficient deep reinforcement learning-based automatic
cloud database tuning system

Ji Zhang1,2 · Ke Zhou1 · Guoliang Li3 · Yu Liu1 ·Ming Xie4 · Bin Cheng4 · Jiashu Xing4

Received: 30 January 2020 / Revised: 10 February 2021 / Accepted: 10 April 2021 / Published online: 5 June 2021
© The Author(s) 2021

Abstract
Configuration tuning is vital to optimize the performance of a database management system (DBMS). It becomes more
tedious and urgent for cloud databases (CDB) due to diverse database instances and query workloads, which make the
job of a database administrator (DBA) very difficult. Existing solutions for automatic DBMS configuration tuning have
several limitations. Firstly, they adopt a pipelined learning model but cannot optimize the overall performance in an end-
to-end manner. Secondly, they rely on large-scale high-quality training samples which are hard to obtain. Thirdly, existing
approaches cannot recommend reasonable configurations for a large number of knobs to tune whose potential values live
in such high-dimensional continuous space. Lastly, in cloud environments, existing approaches can hardly cope with the
changes of hardware configurations and workloads, and have poor adaptability. To address these challenges, we design an
end-to-end automatic CDB tuning system, CDBTune+, using deep reinforcement learning (RL). CDBTune+ utilizes the deep
deterministic policy gradient method to find the optimal configurations in a high-dimensional continuous space. CDBTune+
adopts a trial-and-error strategy to learn knob settings with a limited number of samples to accomplish the initial training,
which alleviates the necessity of collecting amassive amount of high-quality samples.CDBTune+ adopts the reward-feedback
mechanism in RL instead of traditional regression, which enables end-to-end learning and accelerates the convergence speed
of our model and improves the efficiency of online tuning. Besides, we propose effective techniques to improve the training
and tuning efficiency of CDBTune+ for practical usage in a cloud environment. We conducted extensive experiments under
7 different workloads on real cloud databases to evaluate CDBTune+. Experimental results showed that CDBTune+ adapts
well to a new hardware environment or workload, and significantly outperformed the state-of-the-art tuning tools and DBA
experts.

Keywords Cloud database · Tuning · Reinforcement learning · Automatic

B Ke Zhou
k.zhou@hust.edu.cn

Ji Zhang
jizhang@hust.edu.cn

Guoliang Li
liguoliang@tsinghua.edu.cn

Yu Liu
liu_yu@hust.edu.cn

Ming Xie
reganxie@tencent.com

Bin Cheng
bencheng@tencent.com

Jiashu Xing
flacroxing@tencent.com

1 Introduction

Theperformanceof databasemanagement systems (DBMSs)
relies on hundreds of tunable configuration knobs. We list 65
commonly used knobs for users to tune the performance of
their cloud database in Appendix C. For example, the tun-
able knob innodb_buffer_pool_size is the memory space in
which indexes, caches, buffers, etc. are stored which speci-
fies the amount of memory allocated to the InnoDB buffer

1 Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan, China

2 University of Amsterdam, Amsterdam, The Netherlands

3 Department of Computer Science, Tsinghua University,
Beijing, China

4 Tencent Inc., Shenzhen, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00670-9&domain=pdf
http://orcid.org/0000-0002-3770-1463

960 J. Zhang et al.

(a) CDB (TPC-H) (b) CDB (Sysbench) (c) Knobs Increase

(d) Performance surface

Fig. 1 a and b show the performance of OtterTune [55] and OtterTune
with deep learning over number of samples compared with default set-
tings (MySQLv5.6) and configurations generated by experiencedDBAs
on CDB2 (developed by the company Tencent). c shows the number of

tunable knobs provided by a CDB in different versions. d shows the
performance surface of a CDB (Read-Write workload of Sysbench,
physical memory = 8GB, disk = 100GB)

pool. The tunable knob table_open_cache denotes the num-
ber of cached open tables for all threads which shows the
number of tables that can stay open at the server in every
parallel session. Superior knob settings can improve the
performance for DBMSs (e.g., higher throughput and lower
latency). However, only a few experienced database admin-
istrators (DBAs) master the skills of setting appropriate knob
configurations. In cloud databases (CDB), however, even the
most experienced DBAs cannot solve most of the tuning
problems. Consequently, cloud database service providers
are facing the challenge that they have to tune cloud database
systems for a large number of users with a limited number
of expensive DBA experts. Thus, developing effective sys-
tems to accomplish automatic parameter configuration and
optimization becomes an indispensableway to overcome this
challenge.

There are two classes of representative studies in DBMS
configuration tuning: search-basedmethods [67] and learning-
based methods [15,40,55]. The search-based methods, e.g.,
BestConfig [67], search the optimal parameters based on cer-
tain given principles. However, they have two limitations.
Firstly, they spend a great amount of time on searching the
optimal configurations. Secondly, they restart the search pro-
cess whenever a new tuning request arrives, and thus fail to
utilize knowledge gained from previous tuning efforts.

The learning-based methods, e.g., OtterTune [55], utilize
machine learning (ML) techniques to collect, process and
analyze knobs, and recommend possible settings by learn-
ing a DBA’s experiences from historical data. However, they
have four limitations. Firstly, they adopt a pipelined learn-
ing model, which suffers from a severe problem that the
optimal solution of the previous stage cannot guarantee the
optimal solution in the later stage, and different stages of the
model may not work well with each other. Thus they cannot
optimize the overall performance in an end-to-end manner.
Secondly, they rely on large-scale high-quality training sam-
ples, which are hard to obtain. For example, the performance
of cloud databases is affected by various factors such asmem-
ory size, disk capacity, workloads, storage media type, CPU

model and database type. It is hard to reproduce all con-
ditions and accumulate high-quality samples. As shown in
Figs. 1a and1b,without high-quality samples,OtterTune [55]
or OtterTune with deep learning (we reproduce OtterTune
and improve its pipelined model using deep learning) can
hardly gain higher performance, even though provided with
an increasing number of samples. Thirdly, in practice there
are a large number of knobs as shown in Fig. 1c. One cannot
optimize the knob settings in a high-dimensional continuous
space by just using a regression method like the Gaussian
Process (GP) regression OtterTune used, because the DBMS
configuration tuning problem that aims to find the optimal
solution in continuous space is NP-hard [55]. Moreover, the
knobs are in continuous space and have unseen dependen-
cies. As shown in Fig. 1d, due to nonlinear correlations
and dependencies between knobs, the performance will not
monotonically change in any direction. Besides, there exist
countless combinations of knobs because of the continuous
tunable parameter space, making it tricky to find the optimal
solution. Lastly, due to the flexibility of a cloud environ-
ment, users often change the hardware configuration, such as
adjusting the memory size, disk capacity and storage media
type. According to statistics from Tencent, 1800 users have
made 6700 adjustments in half a year. In this case, conven-
tional machine learning approaches have poor adaptability,
and need to retrain the model to adapt to the new environ-
ment.

In this paper, we design an end-to-end automatic cloud
database tuning system called CDBTune+ using deep rein-
forcement learning (RL). CDBTune+ uses the reward func-
tion inRL toprovide feedback for evaluating the performance
of a cloud database, and provides an end-to-end learning
model based on the feedback mechanism. The end-to-end
design improves the efficiency andmaintainability of the sys-
tem. CDBTune+ adopts a trial-and-error method to enable
utilizing a few samples to tune knobs for achieving higher
performance, which alleviates the burden of collecting a
large number of samples in the initial stage of modeling,
and is more in line with a DBA’s judgments and tuning

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 961

actions in real-world scenarios. CDBTune+ utilizes deep
deterministic policy gradient method to find the optimal con-
figurations in a continuous space, which solves the problem
of quantization loss caused by regression in existing meth-
ods. Besides, we propose effective techniques to improve the
training and tuning efficiency of CDBTune+ for practical
use in a cloud environment. We conducted extensive experi-
ments under 7 different workloads on four types of databases.
Our experimental results demonstrated that CDBTune+ can
recommend knob settings that greatly improve performance
with higher throughput and lower latency compared to exist-
ing tuning tools and DBA experts. Besides, CDBTune+
has a high adaptability so that the performance of CDB1

deployed on configurations recommended by CDBTune+
will not decline even though the environment (e.g., memory,
disk, workloads and storage media type) changes. Note that
the CDB in our paper is a redeveloped cloud database whose
kernel is MySQL, MongoDB or Postgres by Tencent which
is a cloud database hosting service that combines high perfor-
mance, high availability, high security, high scalability and
ease of use.

In this paper, we make the following contributions:

(1) To the best of our knowledge, we design the first end-to-
end automatic database tuning system that uses deep RL
to learn and recommend configurations for databases.

(2) We adopt a trial-and-error manner in RL to learn the best
knob settings with a limited number of samples.

(3) We design an effective reward function in RL, which
enables an end-to-end tuning system, accelerates the
convergence speed of our model, and improves tuning
efficiency.

(4) CDBTune+ utilizes the deep deterministic policy gradi-
ent method to find the optimal configurations in high-
dimensional continuous space.

(5) We propose a prioritized experience replay in our
CDBTune+ to accelerate the convergence of our model
and explore how to reduce the time-consuming restart
time in order to provide users with a better experience in
practical use.

(6) Our experimental results demonstrate that CDBTune+
could recommend knob settings that greatly improved
performance, compared with the state-of-the-art tuning
tools and DBA experts. Furthermore, we found that our
system adapts well to a cloud environment (e.g., memory
size, disk capacity, workloads and storage media type)
changes. Our system is open-sourced and publicly avail-
able on Github2.

1 https://intl.cloud.tencent.com
2 https://github.com/HustAIsGroup/CDBTune

2 System overview

In this section, we present our end-to-end automatic cloud
database tuning systemCDBTune+,whichuses deepRL.We
first introduce the general approachofCDBTune+ (Sect. 2.1)
and then present the architecture of CDBTune (Sect. 2.2).

2.1 CDBTune+ workingmechanism

CDBTune+ first trains a model based on some initial train-
ing data. Then, given an online tuning request, CDBTune
utilizes the model to recommend knob settings. CDBTune
also updates the model by leveraging the tuning request as
training data.

2.1.1 Offline training

We first briefly introduce the basic idea of the model training
(and more details will be discussed in Sects. 3 and 4) and
then present how to collect the training data.
Training dataThe training data is a set of training quadruples
〈q, a, s, r〉, where q is a set of query workloads (i.e., SQL
queries), a is a set of knobs as well as their values when
processing q, s is the database state (which is a set of 63
metrics) when processing q and r is the performance when
processing q (including throughput and latency). We use the
SQL command “show status” to obtain the state s, which is a
common command that aDBAuses to understand the state of
database. The statemetrics contain the statistical information
of the CDB, which describe the current state of the database;
We refer to them as internal metrics. There are 63 internal
metrics in CDB, including 14 state values and 49 cumulative
values. Example state metrics include buffer size, page size,
etc., and cumulative values include data reads, lock timeouts,
buffer pool in pages, buffer pool read/write requests, lock
time, etc. All the collected metrics and knobs data will be
stored in the memory pool (see Sect. 2.2.4). Note there is
almost no cost to collect training data, because the collection
interval is on the order of seconds.
Training model Because the DBMS configuration tuning
problem that aims to find the optimal solution in continuous
space isNP-hard [55], we use deep RL as the training model.
RL adopts a trial-and-error strategy to train the model, which
exploresmore optimal configurations that aDBAmight never
try, reducing the possibility of falling into a local optimum.
Note that the RL model is trained offline once, and will sub-
sequently be used to tune the database knobs for each tuning
request from database users. The details of themodel training
will be introduced in Section 3.
Training data generation There are two ways to collect the
training data. (1) Cold Start. Because of the lack of his-
torical training data at the beginning of the offline training
process, we utilize standard workload testing tools (such as

123

https://intl.cloud.tencent.com
https://github.com/HustAIsGroup/CDBTune

962 J. Zhang et al.

Sysbench3, TPC-MySQL4 and other query generator) to gen-
erate a set of query workloads. Then for each query workload
q, we execute it on the CDB and generate the initial quadru-
ple. Next, we apply the trial-and-error strategy described
previously to train on the quadruple and generate more train-
ing data. (2) Incremental Training.During the later practical
use of CDBTune+, for each user tuning request, our sys-
tem continuously gains feedback information from the user
request according to the configurations CDBTune+ recom-
mends. The gradual addition of real user behavior data to
the training process allows CDBTune to further strengthen
the model and improve the recommendation accuracy of the
model.

2.1.2 Online tuning

If a user wants to tune her database, she just needs to sub-
mit a tuning request to CDBTune+ (analogous to existing
tuning tools like OtterTune and BestConfig). Once receiv-
ing an online tuning request from a user, CDBTune collects
the query workload q from the user quickly in about 150s,
gets the current knob configuration a, and executes the query
workload in the CDB to generate the current state s and
performance r . Next it uses the model obtained by offline
training to conduct online tuning. Eventually, the knobs cor-
responding to the best performance in online tuning will be
recommended to the user. If the tuning process terminates,
we also need to update the deep RL model and the memory
pool. The reason why we update the memory pool is that
the samples produced by RL are generally sequential (such
as configuration tuning step by step), which does not con-
form to the independent and identically distributed (i.i.d.)
hypothesis between samples in deep learning. Specifically,
one of the most common assumptions in many deep learning
approaches is that the given data samples are realizations of
i.i.d. random variables. In deep reinforcement learning, in
general, successive states (actions and rewards) are highly
correlated. An “experience replay” buffer (see Sect. 5.1) was
used in DDPG architecture to avoid training the neural net-
work which represents the Q function, with correlated (or
non-independent) sample [16]. Based on this, we will ran-
domly extract some batches of samples each time and update
themodel in order to eliminate the correlations between sam-
ples (which is also done during offline training). Note that
CDBTune needs to fine-tune the pre-trained model in order
to adapt to the real user workload. There are mainly two dif-
ferences between online tuning and offline training. On the
one hand, we no longer utilize the simulated data. Instead,
we replay the user’s current workload (see Sect. 2.2.1) to
conduct stress testing on CDB in order to fine-tune (com-

3 https://github.com/akopytov/sysbench
4 https://github.com/Percona-Lab/tpcc-mysql

monly used in ML, same with offline training just decrease
the model learning rate) the model. On the other hand, the
tuning terminates if the user obtains a satisfying performance
with the improvements over the initial configuration or the
number of tuning steps reaches the predefined maximum. In
our experiments, we set the maximum number to 5.

Because restarting the DBMS is undesirable for users on
the primary database instance in a cloud environment which
will take more costs, we employ this tuning processing in the
backup databases. In general, they have same the hardware
as the primary databases and are therefore representative
of them. We tailored the technical improvements (this will
take extra costs to help our CDBTune+ works which are
beyond the scope of ourmainwork here) based on the general
cloud database backup technologies (e.g., via log shipping) to
ensure that the secondary copy can accurately reflect the per-
formance characteristics of the primary. Note that although
theOtterTune does not state that it relies on a backup database
or a primary one, we think it directly employs the primary
database for tuning since they do not take into account the
cost of restarting into consideration when choosing config-
urations but as future work [55]. Besides, CDBTune+ also
works well on the primary since our method is not limited to
whether to use it on the backup or primary database, consid-
ering that working on the primary one causes unacceptable
restarting to be impractical for users, we decide to deploy it
on backup databases in our case. Of course, many low-cost
cloud database services only have one database process and
no secondaries or the general cloud database backup technol-
ogy does not guarantee that the secondary copy accurately
reflects the performance features of the primary one which
makes it is an interesting and challenging question for future
work.

2.2 System architecture

Figure 2 illustrates the architecture of CDBTune+. The dot-
ted box on the left represents the client, where users send
their tuning requests to the server through the local inter-
face. The other dotted box represents our tuning system in
the cloud, in which the controller of the distributed cloud
platform coordinates the client, the CDB and CDBTune+.
When the user initiates a tuning request or the DBA initiates
a training request via the controller, the workload generator
conducts stress testing on the CDB instances which remain
to be tuned by simulating workloads or replaying the user’s
workloads. At the same time, the metrics collector collects
and processes related metrics. The processed data will be
stored in the memory pool and fed into the deep RL network
respectively. Finally, the recommender outputs the knob con-
figurations which will be deployed in the CDB.

123

https://github.com/akopytov/sysbench
https://github.com/Percona-Lab/tpcc-mysql

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 963

Fig. 2 System architecture

2.2.1 Workload generator

Our workload generator mainly takes care of two tasks:
generating the standard testing workload and replaying the
current user’s real workload. Due to a lack of samples (his-
torical experience data) during initial training, we can utilize
standard workload testing tools such as Sysbench/TPC-
MySQL combined with the trial-and-error manner of RL
to collect simulated data, avoiding to strongly depend on
real data. In this way, a standard (pre-training) model is
established. When having accumulated a certain amount of
feedback data from the user and recommending configu-
rations to the user, we use the replay mechanism of the
workload generator to collect the user’s SQL logs from a
given period and then execute them under the same envi-
ronment so as to restore the user’s real behavior data. By
this means, the model can grasp the real state of the user’s
database instances more accurately and further recommend
better configurations.

2.2.2 Metrics collector

When tuning a CDB upon a tuning request, we will collect
and process the metrics data which captures the aspects of
the CDB’s runtime behavior in a certain time interval. Since
the 63 metrics represent the current state of the database
and are fed to the deep RL model in the form of vectors,
we need to compute representative features from them. For
example, we take the mean value of a state value in a certain
time interval and compute the difference between the cumu-
lative value at the same time. As for external metrics (latency
and throughput), we take samples every 5 seconds and then
simply calculate the mean value of sampled results to cal-
culate the reward (which denotes how the performance of
the current database will change after performing the corre-
sponding knobs change in Sect. 4.2). Note that the DBA also
collects the average values for these metrics by executing the
“show status” command during the tuning tasks. Although
these values may change over time, the average value can
describe the database state well. This method is intuitive and
simple, and we also experimentally validate its effectiveness.

We also investigate other methods. For example, we replace
the average value by taking the maximum and minimum val-
ues of metrics in a period of time, which just grasp the local
state of database. Experimental results show that the maxi-
mum and minimum values do not work as well as the mean
value due to their lack of accurately grasping the database
state (see Sect. 6.1.6). Last but not least, we would like to
highlight that our usage of the “show status” command to
get the database states does not affect the deployment under
different workloads, environments and settings.

2.2.3 Recommender

When the deep RLmodel outputs the recommended configu-
rations, the recommender generates correspondingparameter
setting commands, and sends a configuration modification
request to the controller. After acquiring the DBA’s or user’s
approval, the controller deploys these configurations to the
CDB instances.

2.2.4 Memory pool

As mentioned above, we use the memory pool to store the
training samples. Generally speaking, each experience sam-
ple contains four types of information: the state of the current
database st (in the form of vectorized internal metrics), the
reward value rt calculated by the reward function (which will
be introduced in Sect. 4.2) via external metrics, the knobs to
be set on the database at , and the database’s state vector
after applying the configurations st+1. A sample can be rep-
resented as (st , rt , at , st+1), which is called a transition. Like
the DBA’s brain, it constantly accumulates data and replay
experience;we therefore refer to it as experience replaymem-
ory.

3 RL in CDBTune+

We introduce RL to simulate the trial-and-error method that
the DBA adopts, and to overcome the shortcomings caused
by regression. RL originates from trial-and-error learning
in animal learning psychology and is a key technology to
approach the NP-hard problem of database tuning in contin-
uous parameter space. We clarify our notation in Table 1.

3.1 Basic idea

Both the search-based approach and the multistep learning-
based approach suffer from some limitations, so we desire
to design an efficient end-to-end tuning system. At the same
time, we want our model to learn well with limited sam-
ples during initial training and to simulate the DBA’s train
of thought as much as possible. Therefore, we tried the

123

964 J. Zhang et al.

Table 1 Notations Variables Descriptions Mapping to CDBTune+

s State Internal metrics of the DBMS

a Action Tunable knobs of the DBMS

r Reward The performance of the DBMS

α Learning rate Set to 0.001

γ Discount factor Set to 0.99

ω The weights of the neural network Initialized to Uni f orm(−0.1, 0.1)

E Environment, the tuning target An instance of CDB

μ Policy Deep neural network

θQ Learnable parameters Initialized to Normal(0, 0.01)

θμ Actor, mapping state st to action at –

Qμ Critic, the policy μ –

L Loss function –

y Q value label through Q-learning algorithm –

RL method. At the beginning, we tried classic Q-learning
and DQN models in RL, but both of these methods failed
to solve the problems incurred by our high-dimensional
space problem (database state, knobs combination of knobs)
and continuous actions (continuous knobs). Eventually, we
adopt the policy-based Deep Deterministic Policy Gradient
approach which overcomes these shortcomings effectively.
In addition, the design of the reward function (RF) is vital (as
the “soul” of RL), which directly affects the efficiency and
quality of the model. Thus, by simulating the DBA’s tuning
experience,we design a reward functionwhich ismore in line
with tuning scenarios, and makes our algorithm effective and
efficient. RL uses the exploration& exploitation strategy [27]
to potentially explore more optimal configurations that the a
DBAwould never have tried. For example, when training our
model, we randomly output a set of recommended configura-
tions with a small probability (e.g., 0.1) and follow an output
according to the network learning strategy with a large prob-
ability (0.9). This allows us to explore the unknown tuning
space with a small probability so as to reduce the possibility
of falling into a local optimum. Although the exploration
in RL will not result in arbitrarily bad performance from
the users’ side (because we employ the training and tuning
process first to backup databases), we are working hard to
explore techniques that could constrain the recommended
configuration to a “safe” range. This is an interesting and
challenging question for future work.

3.2 RL for CDBTune+

The main challenge of using RL in CDBTune is to map
database tuning scenarios to appropriate actions in RL. In
Fig. 3,we showan interaction diagramof the six key elements
in RL and the correspondence between the six elements and
database configuration tuning.

Fig. 3 The correspondence between RL elements and CDB configura-
tion tuning

AgentThe agent can be seen as the tuning systemCDBTune+
which receives a reward (i.e., the performance change) and
a state from the CDB, and updates the policy guiding the
system to adjust the knobs for getting a higher reward (higher
performance).
Environment The environment is the tuning target, specifi-
cally an instance of a CDB.
State The state denotes the current state of the agent, i.e.,
the 63 metrics. Specifically, when CDBTune+ recommends
a set of knob settings and the CDB applies them, the internal
metrics (such as counters for pages read to or written from
disk collected within a period of time) represent the current
state of the CDB. In general, we describe the state at time t
as st .
RewardThe reward is a scalar rt which denotes the difference
between the performance at times t and that at t − 1 or the
initial settings, i.e., the performance change after/before the
CDB applied the new knob configurations that CDBTune+
recommended at time t .

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 965

Action An action originates from the space of knob con-
figurations, which is often described as at . An action here
corresponds to a knob tuning operation. The CDB applies
the corresponding action according to the latest policy under
the corresponding state of theCDB.Note that an actionmight
increase or decrease several tunable knobs’ values at a time.
Policy The policy μ(st) defines the behavior of CDBTune+
at a certain specific time and in a certain environment, It
maps a state to an action. In other words, given a CDB state,
if an action (i.e., a knob tuning) is called, the policy outputs
the next state by applying the action to the original state.
The policy here is a deep neural network, which contains the
input (database state), output (knobs), and transitions among
different states. The goal of RL is to learn the best policy. We
will introduce the details of the corresponding deep neural
network in Sect. 4.
RL-Based learning. The learning process of DBMS configu-
ration tuning inRL is as as follows. TheCDB is the target that
we need to tune, which can be regarded as the environment
in RL, while the deep RL model in CDBTune+ is consid-
ered to be the agent in RL, which is mainly composed of
a deep neural network (policy) whose input is the database
state and whose output are the recommended configurations
corresponding to the state.When applying the recommended
configurations to the CDB, the current state of the database
will change, which is reflected in the metrics. The internal
metrics can be used to measure the runtime behavior of a
database corresponding to the state in RL, while external
metrics can evaluate the performance of a database for cal-
culating the corresponding feedback reward value in RL. The
agent will update its network (policy) according to these two
pieces of feedback in order to recommend better performing
knobs. This process iterates until the model converges. Ulti-
mately, the most appropriate knob settings will be exposed.
Note that we think CDBTune+ is not database specific if the
objective optimization system (e.g. a storage system, Spark,
Hive and Tomcat) can be abstracted to the six elements men-
tioned above. This is an interesting question for future work
to verify.

3.3 RL for tuning

RL makes a policy decision through the interaction process
between agent and environment. In contrast to supervised
learning or unsupervised learning, RL depends on accumu-
lated rewards, rather than labels, to perform training and
learning. The goal of RL is to optimize its own policy based
on the reward of the environment by interactingwith the envi-
ronment and achieving higher rewards by acting according
to the updated policy. The agent is able to discover the best
action through a trial-and-error strategy by either exploiting
current knowledge or exploring unknown states. The learn-
ing of ourmodel follows the two rules that the action depends

Fig. 4 Difference between Q-Learning and DQN

on the policy, and that the policy is driven by the expected
rewards of each state. RL can be divided into two categories:
value-based method and policy-based methods. The output
of the value-based method is the value or benefit (generally
referred to as Q-value) of all actions and it chooses the action
corresponding to the highest value. Differently, the output of
the policy-based method is a concrete policy instead of a
value and we can immediately output the action according
to the policy. Since we need to use the actions, we adopt the
policy-based method.
Q-Learning It is worth noting that Q-Learning [34] is one of
the most popular value-based RL methods, at whose core is
the calculation of Q-tables,which are defined as Q(s, a). The
rows of the Q-tables contain the Q-value of the states while
the columns of the Q-table represent actions,whichmeasures
how beneficial it will be if the current state is followed by
this action. Q(s, a) is iteratively defined as follows:

Q(st , at) ← Q(st , at)

+ α[r + γmaxat+1Q(st+1, at+1) − Q(st , at)] (1)

The basis for updating the Q-table is the Bellman Equa-
tion. In Eq. (1), α is the learning rate, γ is a discount factor,
which pays more attention to short-term reward if close
to zero and concentrates more on long-term reward when
approaching one, and r is the performance at time t + 1.

Q-Learning is effective in a relatively small state space.
However, it is not well suited to solve problems with a large
state space such asAlphaGowhich contains asmany as 10172

states, because a Q-table can hardly store so many states. In
addition, the states of a database in a cloud environment are
also complex and diverse. For example, suppose that each
inner metric value ranges from 0 to 100 and its value is dis-
cretized into 100 equal bins. Then 63 metrics will then have
10063 states. As a result, applying Q-Learning to database
configuration tuning is impractical.
DQN Fortunately, the Deep Q Network (DQN) [36] method
is able to solve the problems mentioned above effectively.
DQN uses neural networks rather than Q-tables to evaluate
the Q-value, which fundamentally differs from Q-Learning
(see Fig. 4). In DQN, the input are states while the output are
the Q-values of all actions. Nevertheless, DQN still adopts
Q-Learning to update the Q-value, so we can describe the

123

966 J. Zhang et al.

relationship between them as follows:

Q(s, a, ω) → Q(s, a)

where ω of Q(s, a, ω) represents the weights of the neural
network in DQN.

Unfortunately, DQN is a discrete-oriented control algo-
rithm, which means that the actions it outputs are discrete.
Taking the maze game for example [66], only four directions
of output can be controlled. However, knob combinations in
a database are high-dimensional and the values for many of
them are continuous. For instance, if we use 266 (the max-
imum number of knobs that the DBA uses to tune a CDB)
continuous knobs which range from 0 to 100. If each knob
range would be discretized into 100 intervals, there would be
100 values for each knob. Thus therewould be 100266 actions
(knob combinations) in total for DQN. Further, if we increase
the number of knobs or decrease the learning interval, the
scale of outputs would increase exponentially. Thus, neither
Q-Learning nor DQN can solve the issue of database tuning.
Thus we introduce the policy-based RL method DDPG to
address this issue in Sect. 4.

4 DDPG for CDBTune+

The “Deep Deterministic Policy Gradient” (DDPG) [33]
algorithm is a policy-based method for RL. DDPG is a com-
bination of the DQN and an actor-critic algorithm, and can
directly learn the policy. In other words, DDPG is able to
immediately acquire the specific value of the current contin-
uous action according to the current state instead of having to
compute and store the corresponding Q-values for all actions,
as DQN has to. Therefore, DDPG can learn the policy with
high-dimensional states and actions, in our case with the
internal metrics and knob configurations. As a consequence,
we choose DDPG in CDBTune+ for our use case.

In this section, we first introduce the policy-based RL
method DDPG and the prioritized experience replay in
DDPG, then describe our custom reward function, and finally
summarize the advantages of applying RL to the database
tuning problem.

4.1 Deep deterministic policy gradient with
prioritized experience replay

We illustrate DDPG for CDBTune in Fig. 5. When utilizing
DDPG in CDBTune+, firstly, we regard the CDB instance
to be tuned as the environment E , and our tuning agent
can obtain normalized internal metrics st from E at time
t . Then our tuning agent generates the knob settings at and
will receive a reward rt after applying at to the instance.
Analogous to most policy gradient methods, DDPG has a

Fig. 5 DDPG for CDBTune+. It consists two parts: an actor network
and a critic network

parameterized policy function at = μ(st |θμ) (θμ, mapping
the state st to the value of action at which is usually called
an actor). The critic function Q(st , at |θQ) of the network
(where θQ denotes the learnable parameters) aims to repre-
sent the value (score) for a specific action at and state st ,
which guides the learning of actor. Specifically, the critic
function helps to evaluate the knob settings generated by the
actor according to the current state of the instance. Inherit-
ing the insights from the Bellman Equation and DQN, the
expected Q(s, a) is defined as:

Qμ(s, a) = Ert ,st+1∼E [r(st , at) + γ Qμ(st+1, μ(st+1))] (2)

where the policy μ(s) is deterministic, st+1 is the next state,
rt = r(st , at) is the reward function, and γ is a discount
factor which denotes the importance of the future reward
relative to the current reward. When parameterized by θQ ,
the critic will be represented as Qμ(s, a|θQ) under the policy
μ. After sampling transitions (st , rt , at , st+1) from the replay
memory, we apply the Q-learning algorithm and minimize
the training objective:

min L(θQ) = E[(Q(s, a|θQ) − y)2] (3)

where

y = r(st , at) + γ Qμ(st+1, μ(st+1)|θQ) (4)

The parameters of the critic are updated with gradient
descent. As for the actor, we will apply the chain rule and
update it with the policy gradient derived from Q(st , at |θQ):

∇θμ J ≈ E[∇θμQ(s, a|θQ)|s=st ,a=μ(st)]
= E[∇aQ(s, a|θQ)|s=st ,a=μ(st)∇θμμ(s|θμ)|s=st]

(5)

The algorithm contains seven main steps, which are sum-
marized in pseudo code in Algorithm 1. Note that we use the
prioritized experience replay (PER) [43] method to acceler-
ate our model convergence in online training (detailed see
Sect. 5.1).

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 967

Algorithm 1 Deep deterministic policy gradient (DDPG)
with Prioritized Experience Replay (PER)
1: Sample a transition (st , rt , at , st+1) based on prioritized experience

replay in DDPG from Experience Replay Memory.
2: Calculate the action for state st+1: a′

t+1 = μ(st+1).
3: Calculate the value for state st+1 and a′

t+1: Vt+1 =
Q(st+1, a′

t+1|θQ).
4: Apply Q-learning and obtain the estimated value for state st : V ′

t =
γ Vt+1 + rt .

5: Calculate the value for state st directly: Vt = Q(st , at |θQ).
6: Update the critic network by gradient descent and define the loss as:

Lt = (Vt − V ′
t)

2

7: Update the actor network by policy gradient:

∇a Q(st , a|θQ)|a=μ(st)∇θμμ(st |θμ)

Step 1 We first extract a batch of transitions (st , rt , at , st+1)

based on prioritized experience replay from the expe-
rience replay memory.

Step 2 We feed st+1 into the actor network and output the
knob settings a′

t+1 to be executed at the next moment.
Step 3 We get the value (score) Vt+1 after sending st+1 and

a′
t+1 to the critic network.

Step 4 According to the Q-Learning algorithm, Vt+1 is mul-
tiplied by the discount factor γ and added to the value
of the reward at time t . Nowwe can estimate the value
of V ′

t of the current state st .
Step 5 We feed st (obtained at the first step) to the critic

network and further acquire the valueVt of the current
state.

Step 6 We compute the squared difference between V ′
t and

Vt and update the parameter θQ of the critic network
by gradient descent.

Step 7 We use Q(s = st , μ(st)|θQ) provided by the critic
network as the loss function, and adopt gradient
descent as ameans to guide the update of the actor net-

work so that the critic network gives a higher score for
the recommendation provided by the actor network
each time.

To make it easier to understand and implement our
algorithm, we elaborate the network structure and specific
parameter values of DDPG in Table 2. Note that we also
discuss the impact of the recommended configurations bydif-
ferent networks on the system’s performance in Sect. 6.1.5.
Remark. Traditional machine learning methods rely on a
massive amount of training samples to train the model. In
contrast to that, we adopt the trial-and-error method to make
our model generate diversified samples and learn via deep
reinforcement learning,which only requires a limited amount
of samples. We summarize the advantages of this approach.
Firstly, for solving traditional game problems,we cannot pre-
dict how the environment will change after taking an action,
because the environment of the game is random (for exam-
ple, in Go, we do not know what the opponent will do next).
However, in our DBMS tuning scenario, after a configuration
is executed, the database (environment) will not randomly
change after a configuration changes, due to the dependencies
between knobs. Because of this, with relatively few samples,
it is easier to learnDBMS tuningmodels than game problems
with an adversary. Secondly, our CDBTune+ model, only
requires few input andoutput dimensions (63 and266),which
allows the network to efficiently converge without too many
samples. Thirdly, RL also requires diverse samples, not only
massive samples. For example, RL solves the game prob-
lems by processing each frame of the game screen to form
the initial training samples. The time interval for each frame
is very short, leading to a high redundancy of the training
images. On the contrary, for DBMS tuning, we will change
the parameters of database and collect the performance data.
These data are diverse in our learning process, which allows
us to constantly update and optimize the performance. Lastly,

Table 2 Detailed actor-critic
network and parameters of
DDPG

Step Actor Critic
Layer Param Layer Param

1 Input 63 Input #Knobs + 63

2 Full connection 128 Parallel full connection 128 + 128

3 ReLU 0.2 Full connection 256

4 BatchNorm 16 ReLU 0.2

5 Full connection 128 BatchNorm 16

6 Tanh – Full connection 256

7 Dropout 0.3 Full connection 64

8 Full connection 128 Tanh –

9 Tanh – Dropout 0.3

10 Full connection 64 BatchNorm 16

11 Output #Knobs Output 1

123

968 J. Zhang et al.

coupled with our efficient reward function, our method per-
forms effectively with a small number of diverse samples
(which will be evaluated in Sect. 6.3.1).

In summary, the DDPG algorithm makes it feasible for
deep neural networks to process high-dimensional states and
generate continuous actions. DQN is not able to directly map
states to continuous actions for maximizing the action-value
function. In DDPG, the actor can directly predict the values
for all tunable knobs at the same time without considering
the Q-value of a specific action and state.

4.2 Reward function

The reward function is vital in RL, as it determines the feed-
back information between the agent and environment. We
aim for a function that simulates a DBA’s empirical judg-
ment of a real environment in the tuning process.

Next we describe howCDBTune+ simulates aDBA’s tun-
ing process to design reward functions. First, we introduce a
DBA’s tuning process as follows:

(1) Suppose that the initial performance of the DBMS is D0

and the final performance achieved by the DBA is Dn .
(2) The DBA tunes the knobs and the performance changes

to D1 after the first tuning step. Then the DBA computes
the performance change Δ(D1, D0).

(3) At the i th tuning iteration, the DBA expects that the
current performance is better than that of the previous
one (i.e., Di is better than Di−1 where i < n), because
the DBA aims to improve the performance through the
tuning. However, the DBA cannot guarantee that Di

is better than Di−1 at every iteration. To this end, the
DBA compares (a) Di and D0 and (b) Di and Di−1.
If Di is better than D0, the tuning trend is correct and
the reward is positive; otherwise the reward is negative.
The reward value is calculated based on Δ(Di , D0) and
Δ(Di , Di−1).

Based on the above idea, we aim to mimic the tuning method
of DBAs, which not only considers the change of perfor-
mance compared to the previous step but also to the initial
state (the time when the decision to tune the database was
made). Formally, let r , T and L denote reward, throughput
and latency. Especially, T0 and L0 respectively denote the
throughput and latency before tuning. We design the reward
function as follows.

At time t , we calculate the rate of the performance change
Δ from time t − 1 and the initial time to time t respectively.

The detailed formula is shown as follows:

ΔT =

⎧
⎪⎪⎨

⎪⎪⎩

ΔT t→0 = Tt − T0
T0

ΔT t→t−1 = Tt − Tt−1

Tt−1

(6)

ΔL =

⎧
⎪⎪⎨

⎪⎪⎩

ΔLt→0 = −Lt + L0

L0

ΔLt→t−1 = −Lt + Lt−1

Lt−1

(7)

According to Eqs. (6) and (7), we design the reward func-
tion below:

r =
{

((1 + Δt→0)
2 − 1)|1 + Δt→t−1|,Δt→0 > 0

−((1 − Δt→0)
2 − 1)|1 − Δt→t−1|,Δt→0 ≤ 0

(8)

Δ can refer to the performance change of latency L or
throughput T . As the ultimate goal of tuning is to achieve
better performance than the initial settings, we need to reduce
the impact of the intermediate process of tuningwhen design-
ing the reward function. We therefore set r to 0 if the result
of Eq. (8) is positive and Δt→t−1 is negative.

We calculate the reward for throughput rT and latency rL
according to Eq. (8). We combine these two rewards with the
corresponding weights CL and CT , where CL + CT = 1.
Note that these weights can be set based on user preferences.
We have r to denote the sum of rewards of throughput and
latency:

r = CT ∗ rT + CL ∗ rL (9)

If the goal of optimization is throughput and latency,
our reward function does not need to change, because the
reward function is independent of the hardware environment
and workload changes, as it only depends on the optimiza-
tion goal. Thus, the reward function would only need to be
redesigned if the optimization goals were changed.

Note that other reward functions can be integrated into our
system as well. We evaluate our designed reward function
for the training and tuning process, by comparing it with
three other typical reward functions in Sect. 6.3.1. Moreover,
we explore how the two weights CL and CT will affect the
performance of the DBMS in Sect. 6.3.2.

4.3 Advantages

We briefly summarize the advantages of our method. (1)
Limited Samples. In the absence of high-quality empirical
data, accumulating experience via a trial-and-error method
reduces the cost of data acquisition. We have our model
generate diverse samples and learn towards an optimizing
direction by using deep RL which only requires a limited

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 969

amount of samples to achieve great effects (see Sect. 6). (2)
High-dimensional Continuous Knobs Recommendation.
The DDPG algorithm recommends better configurations in
high-dimensional continuous space than simple regression
methods, which are for example used by OtterTune (see
Sect. 6.2.2). (3) End-to-End Approach. Our end-to-end
approach reduces the potential for errors caused by multiple
segmented tasks and improves the precision of recommended
configuration. Moreover, the importance of different knobs
is treated as an abstract feature which is implicitly learned
by our deep neural network instead of us having to apply an
extra method to rank the importance of different knobs (see
Sect. 6.2.2). (4) Reducing the Possibility of a Local Opti-
mum. CDBTune+ may not find the global optimum, but
RL adopts the well-known exploration & exploitation strat-
egy, which is designed to efficiently explores configurations
that a DBA may never try, thereby reducing the possibil-
ity of getting stuck in a local optimum (see Sect. 6.2.3). (5)
HighAdaptability. In contrast to supervised or unsupervised
learning, RL has the ability to learn as much as possible in a
reasonable direction from experience rather than from given
examples, with a much lower dependency on labels or train-
ing data and shows a much higher adaptability to different
workloads and hardware configurations in a cloud environ-
ment (see Sect. 6.4).

5 Improving the efficiency of CDBTune+

In this section, we explore for improving the efficiency of
CDBTune+ in practical usage. We first describe the prior-
itized experience replay (PER) method in DDPG, and then
introduce how to reduce the restart time of a CDB.

5.1 Prioritized experience replay in DDPG

Successful attempts obtained during reinforcement learning
are rare, resulting in an imbalance of positive and negative
transitions. If a transition is randomly sampled in step 1 of
Algorithm 1, failed attempts will be sampled with a high
probability, which results in low efficiency of learning. How
can we effectively prioritize the transitions we need to learn
in DDPG? Prioritized experience replay (PER) is a method
that is widely used in DQN. It is based on the idea to more
frequently replay experiences associated with very success-
ful attempts or extremely awful performance. Therefore, we
adopt this method in DDPG. The so-called temporal differ-
ence error (TD-error) is used to update the estimate of the
critic function Q(s, a) in DDPG. The computation of the
TD-error T Dm of a transition m is given as:

T Dm = Vm − V ′
m (10)

Vm is the Q-value/score of the current state and V ′
m is the

estimated oneThe TD-error value is the loss of the critic net-
work (which can be described as “how far the Q-value is
from its next bootstrap estimation”) which reflects a correc-
tion for the estimation and may implicitly reflect to what
extent an agent can learn from the experience. The larger
the TD-error value is, the more space for improvement is
still present in the prediction accuracy of the model, and the
more important it is to learn from this transition. Replaying
these transitions more frequently will help CDBTune+ to
gradually realize the true consequence of the wrong behav-
ior in the corresponding states as well as avoid applying the
wrong behavior in these conditions again, which can improve
the overall database tuning performance. However, using the
TD-error as the metric to sample the transitions will result
in some transitions with very small TD-error values that are
never sampled for learning. Therefore, we define the proba-
bility of the sampled transition m via the SoftMax:

P(m) = pε
m

∑

k
pε
k

(11)

where pm = (rank(m))−1, and rank(m) denote the rank of
the transition m in the experience replay memory with abso-
lute TD-error being the criterion. Besides, the parameter ε

is the parameter which controls to what extent the prioritiza-
tion is used. (Note that setting ε to 1 corresponds to random
sampling). This sampling strategy ensures that even transi-
tions with a low TD-error have a chance of being sampled,
which increases the diversity of sampled transitions and reg-
ularizes the model. Last but not least, since we tend to more
frequently replay the transitions with a high TD-error, we
violate the assumption that the states in reinforcement learn-
ing are accessed randomly. This may lead the convergence
problems for CDBTune+. In order to solve this problem,
importance-sampling weights are used in the computation of
weight changes:

Wm = 1

Nβ ∗ P(m)β
(12)

where N is the number of transitions and β is the param-
eter, which controls to what extent the correction is used.
According to the above description. The Prioritized Expe-
rience Replay method in DDPG (PER-DDPG, Step 1 in
Algorithm 1) used in our CDBTune+ training process (and
following our outlined approach) is shown in Algorithm 2.
We also have evaluated the effect of this method on training
CDBTune+ in Sect. 6.1.1.

123

970 J. Zhang et al.

Algorithm 2 Prioritized Experience Replay in DDPG (PER-
DDPG)
1: Store transition (st , rt , at , st+1) in experience replay memory and

initialize the minibatch B.
2: for m = 1 to B do
3: Sample transition m with probability P(m).
4: Compute the corresponding importance-sampling weight Wm .
5: Compute the TD-error T Dm .
6: Update the transition m priority based on the absolute TD-error

|T Dm |.
7: end for

5.2 Instant restart of a CDB

Changes in some of the tunable knobs in a CDB require a
restart the database system.The restart time ranges froma few
minutes to tenminutes becausemost database systems follow
the classic Algorithms for Recovery and Isolation Exploiting
Semantics (ARIES) [37], which typically create checkpoints
periodically and store this information in a log file. When a
database needs to restart, the system first needs to conduct
the redo recovery from the last checkpoint to restore the data
to the state before the restart (storage tier), then apply the
undo recovery based on the undo log records to complete
uncommitted transactions (compute tier). Note that a large
amount of data I/O, file I/O, binlog I/O and redo log I/O
operations are required to interact between the two tiers in
this process. Therefore, the restart of a database system is a
very time consuming operation.

To solve this problem, clouddatabases drawson the idea of
“The log is the database” from Aurora [56], PolarDB [8] and
AnalyticDB [65] The differences between cloud databases
and general database are shown in Fig. 6. CDBs differ in three
characteristics from a general database: (1) they decouple the
storage tier from the compute tier; (2) they offload all other
types of I/O (data, file and binlog) except for log I/O; (3)
CDBs use shared distributed block storage instead of local
storage. Therefore, in contrast to the restarting process of
general databases like MySQL where the redo recovery in
the storage tier follows the undo operation in compute tier,
the decoupled design between compute tier and storage tier
in CDBs allows the storage tier to continuously construct the
latest version of the data in parallel with the compute tier
in an asynchronous manner. Besides, CDBs offload most of
the I/O access in this architecture, minimizing the bandwidth
between the compute and storage tiers. Thus, CDBs achieve a
nearly instant restart, where the restart time is mostly around
5s. The reduction of the restart time significantly reduces
the waiting time (online tuning) for cloud database users of
CDBTune+ and thus provides them with a better experience
in practical use (detailed see in Sect. 6.1.3). In addition, if the
user is not sensitive to the online tuning time,CDBTune+ can

Fig. 6 Architectural differences between CDBs and general databases.
CDBs use shared distributed block storage instead of local storage

try more steps in the same online tuning time and might find
better configurations to achieve higher performance (detailed
see Sect. 6.1.4).

6 Experimental study

In this section, we evaluate the performance of CDBTune+
and compare it to existing approaches. We first show the exe-
cution time of our model in contrast to existing baselines,
then evaluate the impact of prioritized experience replay
(PER) in CDBTune+ and show the performance of vary-
ing tuning steps, neural networks and types of metric data.
Secondly, we compare the performance of CDBTune+ with
BestConfig [67], OtterTune [55], and 3 DBA experts who
have been engaged in tuning and optimizing DBMSs for 12
years at Tencent. Additionally, we evaluate CDBTune+ on
other databases and storage media. Finally, we evaluate our
custom reward function, and verify the adaptability of the
model under different conditions.
Workload. Our experiments are conducted using three kinds
of benchmark tools: Sysbench, MySQL-TPCH and TPC-
MySQL. We carry out the experiments with 7 workloads
consisting of read-only, write-only and read-write workloads
of Sysbench, TPC-H5 workloads, TPC-C workloads, YCSB
workloads and JOB workloads, which are similar to existing
work. Under Sysbench workloads, we set up 16 tables each
of which contain about 200K records (about 8.5GB) and
we set the number of threads to 1500. For TPC-C (OLTP),
we select a database consisting of 200 warehouses (about
12.8GB) and set the number of concurrent connections to
32. The TPC-H (OLAP) workloads contain 16 tables (about
16GB). For YCSB (OLTP), we generate 35GB data using
50 threads and 20M operations. For JOB workloads, we
leverage 21 tables (about 13GB). We abbreviate read-only,
write-only and read-writeworkloads of Sysbench asRO,WO
and RW respectively. We denote online tuning using a model
trained on another condition via the expression M_{training

5 http://www.tpc.org/tpch

123

http://www.tpc.org/tpch

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 971

Table 3 The training data for
CDBTune+ and OtterTune

#Knobs Samples of CDBTune+ Samples of OtterTune

16 208 208 (CDBTune+)+10 (DBA)

65 469 469 (CDBTune+)+24 (DBA)

266 1530 1530 (CDBTune+)+75 (DBA)

Table 4 Database instances and
hardware configuration

Instance Media RAM (GB) Disk (GB)

CDB-A HDD 8 100

CDB-B HDD 12 100

CDB-C HDD 12 200

CDB-D HDD 16 200

CDB-E HDD 32 300

CDB-X1 HDD (4, 12, 32, 64, 128) 100

CDB-X2 HDD 12 (32, 64, 100, 256, 512)

CDB-S-A SSD 16 200

CDB-N-A NVMe SSD 32 300

CDB-N-B NVMe SSD 16 200

condition}→{tuning condition}. For example, when we use
8GBRAMas a training setting and apply the resultingmodel
for online tuning on 12GB RAM, and then we denote this as
M_8G → 12G.
Training data It is hard to collect a large amount of training
data to adequatly represent the tuning experience of a DBA.
We show the data for training CDBTune+ and comparing
to OtterTune [55] in Table 3. We utilize all the accumu-
lated DBA experience data as well as the training data for
CDBTune+ to train OtterTune. The proportion of these two
datasets is about 1:20. For example, when recommending
the configuration for 266 knobs, CDBTune+ collects 1500
samples; OtterTune will additionally use 75 historical sam-
ples and the samples of tuning data of a DBA. Note that
the DBA’s samples and the samples CDBTune+ adopted are
different, where CDBTune+ collected the sample as men-
tioned in Sect. 2.1.1. The samples from DBAs contain two
parts: workload (internal metrics) and current configuration
that DBA tuned (Note that these are the same as the samples
OtterTune and Bestconfig used).
SettingOur CDBTune+ is implemented using PyTorch6 and
Python libraries including the scikit-learn library7. All the
experiments are run on Tencent’s cloud servers with a 12-
core 4.0GHz CPU, 64GB RAM and a 200GB Disk. We use
10 types of CDB instances in the evaluation and show their
hardware configurations in Table 4. The difference between
them is mainly reflected in the memory size, disk capacity
and storage media type. For fair comparison, in all experi-
ments, we select the best result of the recommendations of

6 https://pytorch.org
7 http://scikit-learn.org/stable

CDBTune and OtterTune in the first 5 steps. Comprehen-
sively, considering that BestConfig (a search-based method)
needs to restart the search each time (which will take a lot
of time), we allow it to run for 50 steps in the experiment.
When the 50 steps are finished, we suspend BestConfig and
use the recommended configuration corresponding to its best
performance. Last but not least, to improve the offline train-
ing performance, we add the method of DDPG with priority
experience replay to accelerate the convergence (as described
in Section 6.1.1), which increases the convergence speed by
a factor of two (halving the number of iterations). We also
adopt parallel computing (30 servers) which greatly reduces
the offline training time (Note that we do not use parallel
computing for online tuning).

6.1 Efficiency comparison

We first evaluate impact of the PER Method in CDBTune+
and the execution time details of our method, then we com-
pare with baselines and show the performance of varying the
tuning steps, neural networks and the types of metrics data.

6.1.1 The impact of PERmethod in CDBTune+

As mentioned in Sect. 5.1, the core idea of the prioritized
experience relay (PER) is tomore frequently replay impactful
transitions in order to increase the efficiency and perfor-
mance of modeling. For verifying the effectiveness of the
PRE method during model training in CDBTune+, we carry
out the experiments using the Sysbench RW, RO and WO
workload based on the database instance CDB-A. We record
the tuning performance (throughput and latency) and the

123

https://pytorch.org
http://scikit-learn.org/stable

972 J. Zhang et al.

Fig. 7 Performance comparison for the Sysbench RO, RW and WO
workload between CDBTune+ with PER and without PER method in
DDPG

final number of convergence for CDBTune+ with or with-
out PRE method in DDPG. The experimental results shown
in Fig. 7. Combining DDPG with PER increases the con-
vergence speed by a factor of two (about 1500 iterations
with PER and 3200 iterations without PER) and results in a
10% to 20% improvement in tuning performance compared
to training without PER. This demonstrates that DDPG with
PER can prioritize more helpful transitions for the training of
CDBTune+ and increase the tuning performance and learn-
ing efficiency.

6.1.2 Breakdown of the execution time in CDBTune+

In order to know how long a step takes in the training and
tuning process, we record the average runtime of each step.
This average runtime for each step is 3min, which is mainly
divided into 5 parts (excluding about 5 s to restart the CDB)
as follows:

(1) Stress Testing Time (152.88 sec) Runtime of the work-
load generator for collecting the current metrics of the
database.

(2) Metrics Collection Time (0.86 ms)Runtime of obtaining
state vectors from internal metrics and calculating the
reward from external metrics.

(3) Model Update Time (28.76 ms) Runtime of forward
computation and back-propagation in the network dur-
ing one training process.

(4) Recommendation Time (2.16 ms)Runtime from reading
the database state to outputting recommended knobs.

(5) Deployment Time (16.68 sec) Runtime from outputting
recommended knobs to deploying the configurations
according to the CDB’s API interface.

Offline training CDBTune+ takes about 4.7h for 266 knobs
and2.3h for 65knobs in offline training.Note that the number
of knobs affects the offline training time but will not affect
the online tuning time.
Online tuning For each tuning request, we run CDBTune+
for 5 steps, so the online tuning time is 15min.

6.1.3 Tuning efficiency comparison with baselines

The reduction of the restart time asmentioned in Sect. 5.2 sig-
nificantly reduces the waiting time (online tuning) for cloud
database users of CDBTune+ and thus provides them with
a better experience in practical use. Specifically, the mini-
mum waiting period (5 trial steps, each step costs 3min) was
reduced to 15min compared to the 25min that the general
database takes (a total reduction of 40%). Additionally, if the
user is not sensitive to the online tuning time,CDBTune+ can
try more steps in the same online tuning time. CDBTune+
will find better configurations to achieve higher performance
for the users, as we will describe in Sect. 6.1.4. Note that
the zero restart database technology can be explored in the
future to improve the users’ experience and the performance
of the database tuning further. We just need to restart the
database from theuser side oncebecauseweemploy the train-
ing and tuning process in the backup database. We compare
the online tuning efficiency of CDBTune+ with OtterTune
[55], BestConfig [67] and aDBA.Note that onlyCDBTune+
requires offline training. But it trains the model once and
uses the same model to do online tuning, while OtterTune
requires to train the model for every online tuning request
and BestConfig requires to do online search. As shown in
Table 5, for each tuning request, OtterTune takes 55min,
BestConfig takes about 250min, the DBAs take 8.6h, while
CDBTune+ takes 15min. Note that we invite 3 DBAs to
tune the parameters and select the best performance of their
results which takes 8.6h for each tuning request. (We have
recorded 57 tuning requests from3DBAs,which in total took
491 hours.) It takes a DBA about 2h to constantly execute
the workload replay and detect the factors (e.g., analyzing
the most time-consuming functions in the source code, then
locating the reason, and finding the corresponding knobs to
tune) that affect the performance of DBMS. This process
usually requires a lot of experience and takes a lot of time.
OtterTune adopts a simple GP regression, and the knobs
recommended are not accurate. Therefore, it has to con-
duct more trials to achieve a better performance. BestConfig
restarts the entire search processing whenever a new tuning
request comes, and fails to utilize knowledge gained from
previous tuning efforts, thus it requires huge amount of trial
time.

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 973

Table 5 Detailed online tuning
steps and the time of CDBTune
and other tools

Tuning tools Total steps Time of one step (mins) Total time (mins)

CDBTune 5 3 15

OtterTune 5 11 55

BestConfig 50 5 250

DBA 1 516 516

6.1.4 Varying tuning steps

When recommending configurations for the user, we need
to replay the current user’s workload and conduct stress
testing on the instance. In this process, we fine-tune the
pretrained model with a limited number of steps which
we refer to as accumulated trial steps. Hence, how many
steps will it take to achieve the desired performance? In
most cases, the algorithm will bring better results. However,
due to the exploration & exploitation dilemma in DDPG,
knob settings that have never been tried in the past will be
obtained with a very low probability only. These outliers
may either degrade or improve performance to an unprece-
dented level. We decide to use 5 steps as an increment unit
to observe the system’s performance and record the recom-
mended result corresponding to the optimal performance.
We carry out experiments with CDB-A on three different
Sysbench workloads respectively as shown in Fig. 8. Here,
the horizontal coordinate represents the number of tuning
steps before recommending configurations while the vertical
ordinate represents the value of throughput or latency. We
find that the standard model gradually adapts to the current
workload through fine-tuning operations as the number of
steps increases, which continuously improves performance.
Also, compared with OtterTune and DBA, CDBTune+ has
already achieved a better result in the first 5 steps in all cases,
indicating that our model provides high efficiency. The main
reasons for ensuring convergence in the first 5 steps include
two aspects. Firstly, deep reinforcement learning can learn
and obtain the decision-making experience in complex envi-
ronments. Although hardware configuration and workloads
may change, deep reinforcement learning can automatically
extract the features that reallywork in different environments,
thus simplifying the tuning difficulty, effectively making
decisions, and adapting to the current environment. Secondly,
for ensuring the accuracy of recommendations, we fine-tune
the model with a limited number of steps and to allow it
to quickly adapt to the current environment. Certainly, the
user will get better configurations to achieve higher perfor-
mance if accepting a longer tuning time. However, OtterTune
exhibits diminishing returns with increasing number of iter-
ations, which is caused by the characteristics of supervised
learning and regression.

Fig. 8 Performance by increasing number of steps

6.1.5 Varying neural networks

In this section, we discuss the impact of recommended con-
figurations by different network architectures on the system’s
performance when tuning 266 knobs. We mainly change the
number of hidden layers and neurons in each layer of both
the Actor and Critic network. The detailed parameters are
displayed in Table 6. The performance decreases when the
number of layers extends 5. This may result from the high
complexity of ourmodel due to the increasing number of lay-
ers, which leads to over-fitting. Moreover, when the number
of hidden layers (of both two networks) is fixed, increas-
ing the number of neurons in each layer seems to have little
effect on the performance, but the number of required iter-
ations increases a lot due to the higher complexity of the
network. Based on the observations, it is also vital to choose
a reasonable and efficient network after fixing the number of
knobs, which is why we use the network structure of Fig. 5
in Sect. 4.1.

123

974 J. Zhang et al.

Table 6 Tuning performance varying neural network structure

AHL Neurons CHL Neurons Thr Lat Iteration

3 128-128-64 3 256-256-64 ↓1169.37 ↑3042.75 ↓682
3 256-256-128 3 512-512-128 ↓1195.19 ↑3087.58 ↓1034
4 128-128-128-64 4 256-256-256-64 1416.71 2840.41 1530

4 256-256-256-128 4 512-512-512-128 ↓1394.65 ↓2836.27 ↑2436
5 128-128-128-128-64 5 256-256-256-256-64 ↓1389.47 ↑2795.87 ↑ 1946

5 256-256-256-256-128 5 512-512-512-512-128 ↓1402.55 ↑2801.12 ↑ 3175

6 128-128-128-128-128-64 6 256-256-256-256-256-64 ↓1255.78 ↑2932.42 ↑ 2564

6 256-256-256-256-256-128 6 512-512-512-512-512-128 ↓1305.96 ↑2976.53 ↑ 3866

AHL and CHL are short for the hidden layer in Actor and Critic respectively. The unit of Thr(Throughput) is txn/sec and Lat(Latency) is ms

Table 7 Comparison of the
methods of processing metrics
using instance CDB-A. The data
in the table is (Throughput
(txn/sec), Latency (ms))

Workload Average Peak Throughput

RW (1559.31, 1086.57) (1276.55, 1648.75) (1388.23, 1574.91)

RO (2736.52, 508.06) (2365.79, 598.43) (2238.32, 581.39)

WO (5396.37, 405.74) (3976.62, 760.79) (3688.12, 823.73)

TPC-C (1598.32, 2616.77) (1124.22, 3211.86) (1315.76, 2916.77)

TPC-H (1633.17, 2545.22) (1237.83, 2876.01) (1026.03, 3098.26)

6.1.6 Varying types of metric data

As mentioned in Sect. 2.2.2, we record the average value for
internal metrics in order to describe the database state, and
feed these into training our model. We also tried other meth-
ods. For example, we replace the average value by taking
the maximum and minimum values of metrics in a period of
time. The corresponding experimental result using database
instance CDB-A is shown in Table 7. We can see that lever-
aging the average value results in better performance than
using the other two values under 6 different workloads. This
approach is inspired by the observation that DBAs often
inspect the average value.

6.2 Effectiveness comparison

In this section, we evaluate the effect of varying numbers
of knobs and discuss the performance of CDBTune, the
DBA, OtterTune and Bestconfig with different workloads.
For the database instance CDB-B, we record the throughput,
latency, and number of iterations for the TPC-C workload
when the model converges. Note that some knobs do not
need to be tuned, e.g., those knobs that do not make sense
(e.g., path names) to tune or those that are not allowed to
tune (which may lead to hidden or serious problems). Such
knobs are added to the black-list according to the DBA or
user’s demand. We finally operate on 266 tunable knobs (the
maximum number of knobs that the DBA uses to tune a
CDB). Note that we also provide more experiments on other
databases and storage media.

6.2.1 Knobs selected by DBAs and OtterTune

Both the DBAs and OtterTune rank the knobs based on their
importance to the performance of the database. We use their
rankings to sort all our 266 knobs, and correspondingly select
different numbers of knobs following the order to tune and
compare different methods. Figures 9 and 10 show the per-
formance of CDB-B under the TPC-C workload based on
the rankings of the DBA and OtterTune respectively. We
can see from the results that CDBTune+ achieves better
performance in all cases. Note that the performance of the
DBA and OtterTune begins to decrease after the number of
their recommended knobs exceeds a certain threshold. The
main reason is that the unseen dependencies between knobs
become more complex in a larger spaces, but the DBA and
OtterTune cannot recommend reasonable configurations in
such a high-dimensional continuous space.

6.2.2 Knobs randomly selected by CDBTune+

CDBTune+ randomly selects different numbers of knobs
(note that the 40 selected knobs must contain the 20 selected
knobs from the previous step) and record the performance of
CDB-Bunder theTPC-Cworkload after executing these con-
figurations. As shown in Fig. 11, when the number of knobs
increases from 20 to 266, the performance of configurations
recommended byCDBTune+ is continuously improved. The
performance is poor at the beginning, because a small number
of the selected knobs have a small impact on performance.
Besides, after the number of knobs reaches a certain number,

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 975

Fig. 9 Performance by increasing number of knobs (knobs sorted by
DBA)

Fig. 10 Performance by increasing number of knobs (knobs sorted by
OtterTune)

Fig. 11 Performance by increasing the number of knobs (knobs ran-
domly selected by CDBTune+)

Fig. 12 Performance comparison for the Sysbench RW, RO and WO
workloads between CDBTune+, MySQL default, BestConfig, CDB
default, DBA and OtterTune

the performance tends to stabilize. In Sect. 6.2.1,CDBTune+
uses the knob importance order DBAs or OtterTune pro-
duced is just to verify that CDBTune+ can work well and
achieves better performance than DBAs and OtterTune in all
cases. Whereas, this experiment demonstrates that DBA and
OtterTune separately rank the importance of knobs, but our
CDBTune+ automatically completes this process as part of
the learning of its deep neural network without an additional
ranking step (as required by a DBA and OtterTune), which
is also in line with our original intention of designing an
end-to-end model.

In addition, the input and output of the network become
larger as the number of knobs increases, having the effect that
CDBTune+ takes more steps in the offline training process.
Therefore, we apply priority experience replay (see Sect. 5.1)
and adopt parallel computing to accelerate the convergence of
ourmodel. According to the time cost of each stepmentioned
in Sect. 6.1, the average time spent on offline training is about
4.7h. This time can be further shortened if a GPU is used, or
via reductions to the restart time of a CDB.

6.2.3 Performance improvement

We also evaluate our method on different workloads with
CDB-A and show the result in Fig. 12. The tuning perfor-
mance improvement percentage is shown in Table 8 and

123

976 J. Zhang et al.

Table 8 Higher throughput and
lower latency of CDBTune+
than BestConfig, DBA and
OtterTune

Workload BestConfig DBA OtterTune
Throughput Latency Throughput Latency Throughput Latency

RW ↑ 68.28% ↓ 51.65% ↑ 4.48% ↓ 8.91% ↑ 29.80% ↓ 35.51%

RO ↑ 42.15% ↓ 43.95% ↑ 4.73% ↓ 11.66% ↑44.46% ↓ 23.63%

WO ↑ 128.66% ↓ 61.35% ↑ 46.57% ↓ 43.33% ↑ 91.25% ↓ 59.27%

compared with BestConfig, the DBA and OtterTune. It can
been seen that CDBTune+ achieves higher performance
than OtterTune, which in turn is better than BestConfig.
Consequently, the learning-based method is more effective
and our algorithm obtains a state-of-the-art result. Besides,
OtterTune performs inferior to the DBA in most cases.
This is because we use the trial-and-error samples in RL
instead of massive amount of high-quality DBA’s experi-
ence tuning data. Compared with BestConfig, we find that
CDBTune+ greatly outperforms it, because in a short time,
BestConfig can hardly find the optimal configurations in a
high-dimensional space without any past experience. This
verifies that the learning-based approach consistently finds
better solutions quickly than search-based tuning, and also
verifies the superiority of CDBTune+.

CDBTune+ is able to achieve better performance than
the other candidates, and especially gains a remarkable
improvement under the write-only workload. We show the
detailed configurations recommended by OtterTune, Best-
Config, DBA, CDB default and CDBTune+ in Tables 11
and 12 in the Appendix. We have following five interesting
observations:

Observation 1 We observe that when the buffer pool size
is expanded, the configurations which CDBTune+ recom-
mended also increase the size of log file correctly. This
indicates that our CDBTune+ can optimize the performance
consider the dependencies between knobs rather than each
independent knob.

Observation 2 innodb_read_io_threads will increase under
the RO workload while both innodb_write_io_threads and
innodb_purge_threads are becoming appropriately larger
when the workload is WO or RW. This demonstrates that
our model can correctly tuning knobs under various work-
loads, improving both the use of the CPU and the efficiency
of the database.

Observation 3 Although tuning the buffer size appropriately
is critical to the performance of a cloud database since mem-
ory is typically the resource bottleneck [51], we do not
tune the innodb_buffer_pool_size significantly for achieving
higher performance.This demonstrates that our CDBTune+
can tune other knobs (except innodb_buffer_pool_size) to
enhance database performance while the memory resource
is the same.

Observation 4 For thoseknobs like innodb_buffer_pool_size,
binlog_cache_size, innodb_log_files_in_group, innodb_file_
per_table, max_binlog_size and skip_name_resolve, we
obtain the similar values as the DBA advisors which indi-
cate that the tuning results are explainable to a certain extent
and guarantee the overall performance does not differ greatly
from the DBAs.

Observation 5 According to theMySQL official manual, the
product of innodb_log_files_in_group and innodb_log_file_size
is not allowed to be greater than the value of disk capacity.
Also, we find that during the real training process of our
model, the CDB’s instance will easily crash once the product
exceeds the threshold, because the log files take up too much
disk space, resulting in a situation where more data cannot be
written.An interestingfinding is that facedwith this situation,
we do not limit the range of these two parameters but give a
large negative reward (e.g.,−100) for punishment. The prac-
tical results verify this method achieves a good effect with
the constant reward feedback in RL and this situation occurs
less, and even disappears as the training process goes on,
although the crash may frequently occur in the initial train-
ing. Ultimately, the product of the two values recommended
by our model is reasonable which will not result in the crash
(which is an indication that our model learns this rule by
itself).

6.2.4 Evaluation on other databases

We evaluate our method on Local MySQL, MongoDB and
Postgres where we tune 72 knobs for MongoDB and 169
knobs for Postgres. Figures 13, 14 and 15 show the results.
Our method also works well on Local MySQL, MongoDB
and Postgres. We find that our method is able to adapt to
YCSB workloads using the trained model on the CDB-E
database instance on MongoDB, to TPC-C workloads using
the trained model on the CDB-D database instance on Post-
gres ,and to the CDB-C database instance on Local MySQL.
CDBTune+ still achieves the best results andoutperforms the
state-of-the-art tuning tools and DBA experts significantly.

6.2.5 Evaluation on different types of storage media

Compared with traditional hard disk drives (HDDs), the
emergence of new storagemedia solid state drives (SSDs) has

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 977

Fig. 13 Performance comparison for the YCSB workload using the
instance CDB-E with CDBTune+, MongoDB default, CDB default,
BestConfig, DBA and OtterTune (on MongoDB)

Fig. 14 Performance comparison for the TPC-C workload using the
instanceCDB-DwithCDBTune+, Postgres default, CDBdefault, Best-
Config, DBA and OtterTune (on Postgres)

Fig. 15 Performance on TPC-C for local MySQL

brought tremendous innovation in I/O performance. In recent
years, SSDs are gradually replacing HDDs. In addition, for
meeting the growing demand for throughout in storage sys-
tems, Non-Volatile Memory Express based SSDs (NVMe
SSDs) are the latest development in this domain and deliver
unprecedented performance. In order to benefit from the out-
standing I/O characteristics of SSDs and NVMe SSDs, SSD
and NVMe SSD are widely adopted in the database as a
cache layer [17,62]. Therefore, we not only evaluate the per-
formance of our method on the HDDs but also evaluated it on
SSDs and NVMe SSDs based databases. Using the database
instances CDB-S-A, CDB-N-B and the TPC-Cworkload, we
record the throughput and latencywhen themodel converges.
As shown in Figs. 16, 17,CDBTune+ achieves higher perfor-
mance than other candidates. Note that the results of DBAs
are not only worse than the results of CDBTune+ but also
worse than that ofOtterTune (theDBAachieved better results
thanOtterTune andworse results thanCDBTune+ in the pre-

Fig. 16 Performance comparison for TPC-C workload using the SSD-
based instance CDB-S-A among CDBTune+, MySQL default, CDB
default, BestConfig, DBA and OtterTune

Fig. 17 Performance comparison for TPC-C workload using the
NVMe-based instance CDB-N-B among CDBTune+, MySQL default,
CDB default, BestConfig, DBA and OtterTune

vious experiments using HDDs). We attribute this to the fact
that DBAs lack tuning experience with SSDs and NVMe
SSDs (less than HDDs) which appear as new media in the
database application. In conclusion, we find that CDBTune+
also outperforms other approaches on databases with differ-
ent storage media.

6.3 Evaluation of reward functions

In this section, we first evaluate the benefits of our custom
reward function, then explore how the coefficients CT and
CL will affect the performance of a DBMS.

6.3.1 Baseline reward functions

For verifying thebenefits of our custom reward function in the
training and tuning process,we compare itwith three baseline
reward functions including (1) RF-A: where the performance
at the current step is compared only to the performance of
the previous step, (2) RF-B: the performance of the current
step is compared only to the performance with the initial set-
tings, and (3) RF-C: if the current performance is lower than
at the previous step, the corresponding reward part will keep
the original method of calculation (for example, its reward
remains unchanged even if Δt→t−1 is negative in Eq. (8)).
We compare the three baseline reward functions to our cho-
sen function RF-CDBTune+ from Sect. 4.2 in terms of the
number of iterations until convergence. After multiple steps,
if the performance change between two steps does not exceed

123

978 J. Zhang et al.

Fig. 18 Number of iterations and performance ofCDBTune+ for TPC-
C (with CDB-C), Sysbench RW and RO workloads (with CDB-A)
respectively using different reward functions. The corresponding num-
ber of iterations and performance are collected under the same knob
settings

Fig. 19 The coefficient CT to optimize throughput and latency. Note
that CT + CL = 1

0.5% in five consecutive steps, we consider the model train-
ing to have converged. Selecting an appropriate threshold for
convergence detection requires a trade-off between training
time andmodel quality. For example, a smaller thresholdmay
give a better result but it will spendmore time onmodel train-
ing. We have conducted extensive experiments, and found a
convergence threshold of 0.5% to be a sweet spot between
convergence time and result quality. Specifically, compared
to the performance of the previous step and the initial set-
tings, the reward (corresponding to throughput or latency)
calculated by RF-CDBTune+ will be set to 0 if the current
performance is lower than that of the previous step but higher
than the initial performance.

As shown in Fig. 18, we adopt three different workloads
on two different instances CDB-A (8G RAM, 100G Disk)
and CDB-C (12G RAM, 200G Disk). In summary, RF-A
shows the longest convergence time. What causes this phe-
nomenon is that RF-A just considers the performance at the
previous time step, neglecting the final goal that we expect to
achieve higher performance than the initial settings as much
as possible. Therefore, there is a high chance that a positive
reward will be given when the current performance is worse
than the initial settings but better than that of the previous
step, causing high convergence time and low performance

to the model. RF-B only achieves a sample target which
obtains a better result than the initial settings regardless of
the previous performance although it takes the shortest con-
vergence time. Instead, RF-B gets the worst performance
because it pays no attention to improving the intermedi-
ate process. RF-C achieves almost the same performance
as RF-CDBTune+, but takes much longer to converge than
RF-CDBTune+. If the current performance is lower than
that of the previous step, the absolute value part of its reward
function is always positive but generally a small number,
which will only have a small impact on the system’s perfor-
mance. However, such reward misleads the learning of the
intermediate process, causing to a longer convergence time
than RF-A. In conclusion, compared with others, our pro-
posed RF-CDBTune+ reword function combines the critical
factors comprehensively and achieves the fast convergence
speed and best performance.

6.3.2 Varying CT and CL

In this section, we investigate our reward function in more
detail. In Eq. 9, we present two weights (CT and CL) to
separately optimize throughput and latency, where CT+CL

=1. In order to explore how these weights will affect the
performance of the DBMS, we compare different setting to
a baseline of CT=CL=0.5. We change the size of CT and
observe the ratio of throughput to latency compared to our
baseline. As shown in Fig. 19, the throughput increases grad-
ually with a largerCT . Besides, observing the slope of curve,
when CT exceeds 0.5, we find the change rate of through-
put to be larger than that of a smaller CT (less than 0.5).
We observe similar effects for the latency. This is because
the changes to CT and CL will affect the contributions of
throughput and latency to the reward. For example, a larger
CT can reduce the sensitivity of CDBTune+ to latency. In
general, we set CT=CL=0.5. But we also allow different
weights (latency or throughput sensitivity) to enable the user
to trade-off latency and throughput (we set CL = 0.6 and
CT = 0.4 in our experiments) according to their specific
requirements.

6.4 Adaptability

We evaluate the adaptability of our system, e.g., how our
method can adapt itself to a new environment or new work-
load.

6.4.1 Adaptability to changes in memory size and disk
capacity

Compared with local self-built databases, one of the biggest
advantages of cloud databases is that data migration or even
downtime for reloading is hardly required when resources

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 979

Fig. 20 Performance comparison for Sysbench WO workload when applying the model trained on 8G memory to (X)G memory hardware
environment

Fig. 21 Performance comparison for Sysbench RO workload when applying the model trained on 200G disk to (X)G disk hardware environment

need to be adjusted. Usually, memory size and disk capacity
are what users prefer to adjust. Thus, in the cloud environ-
ment, the large number of potential combinations of database
memory size and disk capacity prevent us from building
a corresponding model for each individual combination.
Therefore, a cloud environment naturally requires theDBMS
tuning models to adapt well to different configurations. In
order to verify that CDBTune+ can adequately optimize
the database’s performance with different hardware config-
urations, we experiment on database instances CDB-A (8G
RAM, 100G Disk), CDB-X1 (XG RAM, 100G Disk) where
X is selected from (4, 12, 32, 64, 128), CDB-C (12G RAM,
200G Disk) and CDB-X2 (12G RAM, XG Disk) where X
is selected from (32, 64, 100, 256, 512). Note that there is
only a different memory size between CDB-A and CDB-X1
and a disk capacity difference betweenCDB-C andCDB-X2.
For different memory sizes, under write-only workloads, we
first directly utilize the model called M_A→X1 trained on
CDB-A to recommend configurations for CDB-X1 (cross
testing), then use the model called M_X1→X1 trained on
CDB-X1 to recommend configurations for CDB-X1 (normal
testing), and finally compare the performance after applying
these two configurations. Similarly, for different disk capac-
ities, we apply the same method to complete cross testing
and normal testing on CDB-C and CDB-X2. As shown in
Figs. 20 and 21, the cross-testing model almost achieves the
same performance as the normal-testing model. Moreover,
both of the above two models achieve better performance

than OtterTune, BestConfig and the DBAs employed by Ten-
cent’s cloud database, indicating that our CDBTune+ does
not need to establish a new model and exhibits a high adapt-
ability to a new hardware environments independently how
memory size, disk capacity of users change. Note that it
would be interesting in futurework to explore somemonetary
cost metrics to give recommendations as to what hardware
to use.

6.4.2 Adaptability to workload changes

As mentioned above, we adopt a set of standard testing
tools to generate sample data for training in the absence of
sufficient historical data. We investigate whether this is suf-
ficient for CDBTune+ to adapt well to different workloads.
With database instance CDB-C, we utilize the model called
M_TPC-C→TPC-C trained on TPC-C workload to recom-
mend configurations for TPC-C workload (normal testing)
as well as the model called M_RW→TPC-C trained on
the read-write workload contained in Sysbench to recom-
mend configurations for the TPC-Cworkload (cross testing).
After deploying these two configurations recommended by
CDBTune+ onCDB,we record their respective performance
in the last two bars as shown in Fig. 22. The tuning perfor-
mance of the cross-testing model is slightly different from
that of the normal-testing model. This finding indicates that
our CDBTune+ does not need to establish a new model and
adapts well when the workload changes slightly.

123

980 J. Zhang et al.

Fig. 22 Performance comparison when applying the model trained on
Sysbench RW workloads to TPC-C

6.4.3 Adaptability to cross-storage media

With the rapid development of new storage media, many
users will change the storage medium from a HDD to an
SSD or NVMe SSD in order to achieve higher perfor-
mance of the database in a busy I/O scenario. In contrast,
for a database instance with low performance require-
ments, a HDD can be used to replace an SSD or NVMe
SSD to reduce costs for users. To verify the adaptabil-
ity of CDBTune when the storage medium changes, we
use database instances CDB-D(HDD), CDB-S-A(SSD) and
CDB-N-B(NVMe) in this experiment. Note that there is only
a different storage medium between them (same memory
size and disk capacity). We first directly utilize the model
called M_HDD→{SSD, NVMe} trained on CDB_D to rec-
ommend configurations for CDB-S-A or CDB-N-B (cross
testing), then use the model called M_HDD→HDD trained
on CDB_D to recommend configurations for CDB_D (nor-

mal testing), and also finally compare the performance after
executing these two configurations. Similar, for different
storage media, we use the same method to complete cross
testing and normal testing on SSD and NVMe. As shown
in Fig. 23, CDBTune+ not only achieves the best perfor-
mance comparedwith the other candidates but alsomakes the
cross-testing model almost achieves the same performance
as normal-testing model. This demonstrates that when the
user changes the storage medium from a HDD to an SSD or
NVMe SSD, CDBTune+ will quickly adapt to a new stor-
age medium in the online tuning step. For example, when
we changed the storage medium from a HDD to an SSD, we
found that CDBTune+ increases the innodb_log_file_size.
As the number of erase times of the SSD is limited, if a log
file is repeatedly erased and written to the same location,
than this will result in a large number of I/O delays which
may deteriorate database performance. Increasing the value
of innodb_log_file_size recommended by CDBTune+ can
effectively mitigate this situation.

6.4.4 Adaptability to complex setup changes

Users may not only change one of the factors at a time
(memory size, disk capacity and workload), but may change
multiple factors at the same time, inducing more compli-
cated environmental changes. Therefore, in this section, we
will discuss the adaptability of CDBTune+ in this situa-
tion. We adopt three different database instances CDB-A
(8GB, 100GB, HDD), CDB-S-A (16GB, 200GB, SSD)

Fig. 23 Performance comparison for the TPC-C workload on cross-storage media. Note that Y is selected from HDD, SSD and NVMe; !Y refers
to a medium different from Y

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 981

Fig. 24 Performance comparison for the TPC-C workload in light of complex setup changes. Note that Z is selected from CDB-A (A), CDB-S-A
(S_A) and CDB-N-A (N_A), and !Z refers to a database instance different from Z

and CDB-N-A (32GB, 300GB, NVMe SSD) to conduct our
experiments. Note that there are different memory sizes, disk
capacities, and storage media between these three database
instances. We conducted the normal testing and cross testing
experiments and recorded the throughput and latency anal-
ogous to the previous experiments. Moreover, to experience
more complex environmental changes, we trained our model
on the JOB workload in the normal testing to recommend
configurations for the TPC-C workload in cross testing. The
experimental results are shown in the Fig. 24. For these com-
plex environmental changes, the performance ofCDBTune+
in cross testing exhibits a very small decrease compared to the
previous three experiments (where only one environmental
factor is changed at a time). We attribute this to the fact that
CDBTune+ needs a trade off when many environmental fac-
tors are changed at the same time.We note that CDBTune+
still achieves the best performance compared to the other
candidates.
Summary. The results of the above five presented exper-
iments show that (even with limited training data) our
model exhibits strong adaptability to changes in the hard-
ware environment or workload. In comparison, OtterTune
relies highly on training datasets, and uses a simple regres-
sion approach for recommendation. Thus the performance
of the recommended configuration is limited, and Otter-
Tune and BestConfig do not explore the high-dimensional
configuration space when the current workload or hardware
configuration differs from training condition. Especially in a
cloud environment, where we can expect frequent environ-

ment changes, the lack of relevant data in the training dataset
will result in poor recommendations fromOtterTune. Instead,
RL enablesCDBTune+ simulate human brain, learn towards
an optimizing direction, and recommend reasonable knob
settings corresponding to the current workload and hardware
environment. Thus, CDBTune+ exhibits a high adaptabil-
ity in cloud environments. In addition, our end-to-ed model
is more accurate than the pipelined method (OtterTune) or
the heuristic search method (BestConfig), as RL applies an
exploration & exploitation strategy, and thereby reduces the
possibility of falling into a local optimum. This characteristic
results in achieving higher tuning performance but neglects
its explainability (similar to the AlphaGo). This is always a
tradeoff in many recent ML models. Note that we consider
methods to explain the recommendations of our tuningmodel
as an important direction for future work.

7 Related work

Database tuning DBMS tuning has been an interesting and
active area of research in the last twodecades [1,5,6,10,11,19,
25,42,55,60,61,68,69]. Existing work can be classified into
two broad categories: tuning the physical design and tuning
the configuration parameters.
(1) Physical Design Tuning. Major database vendors offer
tools for automating database physical design [5,9,63,69],
and they focused on index optimizations, materialized views
and partitions [1–3,7,26,32,41]. Database cracking is a tech-

123

982 J. Zhang et al.

Table 9 63 metrics include two types: state value and cumulative value

State Cumulative

metadata_mem_pool_size lock_row_lock_current_waits lock_row_lock_time buffer_pages_written os_data_fsyncs

lock_row_lock_time_max buffer_pool_read_ahead_evicted lock_row_lock_waits buffer_pages_read os_log_fsyncs

lock_row_lock_time_avg ibuf_merges_discard_delete_mark buffer_pool_wait_free buffer_data_reads lock_deadlocks

buffer_pool_size innodb_rwlock_s_spin_rounds buffer_pool_read_ahead buffer_data_written lock_timeouts

buffer_pool_pages_total innodb_rwlock_x_spin_rounds adaptive_hash_searches ibuf_merges_insert log_waits

buffer_pool_pages_misc innodb_rwlock_s_os_waits adaptive_hash_searches_btree ibuf_merges_delete log_writes

buffer_pool_pages_data innodb_rwlock_x_os_waits ibuf_merges_delete_mark innodb_dblwr_writes ibuf_merges

buffer_pool_bytes_data innodb_dblwr_pages_written ibuf_merges_discard_insert buffer_pool_reads ibuf_size

buffer_pool_pages_dirty innodb_rwlock_s_spin_waits os_log_pending_fsyncs buffer_pages_created dml_reads

buffer_pool_bytes_dirty innodb_rwlock_x_spin_waits os_log_pending_writes log_write_requests dml_inserts

buffer_pool_pages_free ibuf_merges_discard_delete os_log_bytes_written os_data_reads dml_deletes

trx_rseg_history_len buffer_pool_read_requests innodb_activity_count os_data_writes dml_updates

file_num_open_files buffer_pool_write_requests

innodb_page_size

Table 10 64 commonly used knobs (16 most impactful knobs and other extended ones)

16 most impactful knobs 49 extended knobs

table_open_cache innodb_adaptive_max_sleep_delay innodb_autoextend_increment query_cache_limit

max_connections innodb_change_buffer_max_size innodb_buffer_pool_dump_at_shutdown query_cache_size

innodb_buffer_pool_size innodb_flush_log_at_timeout innodb_buffer_pool_load_at_startup query_cache_type

innodb_buffer_pool_instances innodb_flushing_avg_loops innodb_concurrency_tickets query_prealloc_size

innodb_log_files_in_group innodb_max_purge_lag innodb_large_prefix join_buffer_size

innodb_log_file_size innodb_old_blocks_pct innodb_log_buffer_size tmp_table_size

innodb_purge_threads innodb_read_ahead_threshold innodb_max_dirty_pages_pct max_seeks_for_key

innodb_read_io_threads innodb_replication_delay innodb_max_dirty_pages_pct_lwm innodb_io_capacity

innodb_write_io_threads innodb_rollback_segments innodb_random_read_ahead innodb_lru_scan_depth

innodb_file_per_table innodb_sync_array_size eq_range_index_dive_limit innodb_old_blocks_time

skip_name_resolve innodb_adaptive_flushing_lwm innodb_adaptive_hash_index query_alloc_block_size

binlog_checksum innodb_sync_spin_loops max_length_for_sort_data innodb_purge_batch_size

binlog_cache_size lock_wait_timeout read_rnd_buffer_size innodb_spin_wait_delay

max_binlog_cache_size metadata_locks_cache_size table_open_cache_instances sort_buffer_size

max_binlog_size innodb_adaptive_flushing transaction_prealloc_size thread_cache_size

binlog_format metadata_locks_hash_instances binlog_order_commits max_write_lock_count

innodb_disable_sort_file_cache

nique to create indexes adaptively and incrementally as a
side-product of query processing [22]. Several studies have
proposed different cracking techniques for different aspects
including tuple reconstruction [23], updates [19], and con-
vergence [24]. Schuhknecht et al. conducted an experimental
study on database cracking to identify the potential, and pro-
posed promising directions in database cracking [44]. Richter
et al. presented a novel indexing approach for HDFS and
Hadoop MapReduce to create different clustered indexes
over terabytes of data with minimal costs [42]. Idreos et
al. presented the Data Calculator to enable interactive and

semi-automated design of data structures and performance
by capturing the first principles of data layout design and
using learned cost models, respectively [25]. Sudipto et al.
[12] presented the design, implementation, experience, and
lessons learned from building the first industrial-strength
auto-indexing service for Microsoft Azure SQL Database.
(2) Database configuration tuning Parameter configuration
tuning selects appropriate values of parameters (knobs)
that can improve a DBMS’s performance. Most work in
automated database tuning has either focused on specific

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 983

parameter tuning (e.g., [46]) or holistic parameter tuning
(e.g., [13]).
(i) Specific parameter tuning Techniques for tuning spe-
cific classes of parameters include memory management and
identifying performance bottlenecks [22,24,44]. IBM DB2
released a self-tuning memory manager that uses heuris-
tics to allocate memory to the DBMS’s internal components
[46,52]. Tran et al. used linear and quadratic regression mod-
els for buffer tuning [53].A resourcemonitoring tool has been
used with Microsoft’s SQL Server for the self-predicting
DBMS [38]. Oracle also developed an internal monitor-
ing system to identify bottlenecks due to misconfigurations
[14,29]. The DBSherlock tool helps a DBA diagnose prob-
lems by comparing slow regions with normal regions based
on the DBMS’s time-series performance data [64].
(ii) Holistic parameter tuning There are several works for
the holistic tuning of configuration parameters in modern
database systems.TheCOMFORT tool uses a technique from
control theory that can adjust a single knob up or down at a
time, but cannot discover the dependencies betweenmultiple
knobs [59]. IBM DB2 released a performance Wizard tool
for automatically selecting the initial values for the configu-
ration parameters [30]. BerkeleyDB uses influence diagrams
to model probabilistic dependencies between configuration
knobs, to infer expected outcomes of a particular DBMS
configuration [47]. However, these diagrams must be created
manually by a domain expert. The SARD tool generates a rel-
ative ranking of a DBMS’s knobs using the Plackett-Burman
design [13]. iTuned is a generic tool that continuously makes
minor changes to the DBMS configuration, employing GP
regression for automatic configuration tuning [15].

Our system is designed for holistic knob tuning. Otter-
Tune [55] is most close to our work. It is a multistep tuning
tool to select the most impactful knobs, map unseen database
workloads to previous workloads and recommend knob set-
tings. However, the dependencies between each step make
the whole process relatively complicated. And OtterTune
requires a lot of high-quality samples which are hard to col-
lect in a cloud environment. BestConfig [67] is the closest
work that is related to our goals but the techniques applied
are completely different. It divides the high-dimensional
parameter space into subspaces, and employs search-based
methods. However, it does not use experience from previous
tuning efforts (i.e., even if there are two identical cases, it will
search twice). CDBTune+ is an end-to-end tuning system,
only requiring a few samples to tune cloud databases. The
experimental results show that our method achieves much
better performance than OtterTune and BestConfig.
Deep Learning for Databases.Deep learningmodels define
a mapping from an input to an output, and learn how to
use the hidden layers to produce the corresponding output
[31]. Although deep learning has successfully been applied
to solving computationally intensive learning tasks in many

Table 11 Detailed configurations recommended by OtterTune for the
same workloads in Table 12, while knobs are not identical

Knobs RO WO RW

innodb_buffer_pool_size 6.3G 7.2G 7.3G

innodb_buffer_pool_instances 15 6 4

innodb_log_file_size 1.8G 2.9G 2.2G

innodb_adaptive_flushing_lwm 13 19 23

innodb_max_dirty_pages_pct 19 28 7

innodb_large_prefix OFF OFF OFF

query_cache_size 87M 63M 34M

innodb_io_capacity 24317 37467 17802

thread_cache_size 18 12 26

innodb_log_buffer_size 13M 21M 8M

metadata_locks_cache_size 2041 1532 647

table_open_cache_instances 8 39 38

innodb_disable_sort_file_cache OFF OFF OFF

join_buffer_size 5M 6M 6M

innodb_sync_array_size 3 6 4

sort_buffer_size 35M 31M 87M

domains [18,20,21,28,57], there are few studies that have
used deep learning techniques to solve database tuning prob-
lems [58]. Reinforcement learning is able to discover the best
action through the trial-and-errormethod by either exploiting
current knowledge or exploring unknown states to maximize
a cumulative reward [34,48,49].

Recently, several researches utilized deep learning or RL
model to solve problems in database research. Tzoumas et al.
[54] transformed the query plans building into anRLproblem
where each state represents a tuple alongwithmetadata about
which operators still need to be applied and each action rep-
resents which operator to run next. Basu et al. [4] used an RL
model for adaptive performance tuning of database applica-
tions. Pavlo et al. [40] presented the architecture of Peloton
for workload forecasting and action deployment under the
algorithmic advancements in deep learning. Marcus et al.
[35] used deep RL to determine join orders. Ortiz et al. [39]
used deep RL to incrementally learn state representations of
subqueries for query optimization. It models each state as
a latent vector that is learned through a neural network and
is propagated to other subsequent states. Sharma et al. [45]
used the deepRLmodel to automatically administer aDBMS
by defining a problem environment. Tan et al. [50] proposed
iBTune based on building a pairwise deep neural network to
tune DBMS buffer pool sizes by using a large deviation anal-
ysis for LRU caching models. Their experiment shows that
iBTune can save more than 17% of memory resources com-
pared to the original system that only relies on experienced
DBAs.

123

984 J. Zhang et al.

Ta
bl
e
12

D
et
ai
le
d
co
nfi

gu
ra
tio

ns
re
co
m
m
en
de
d
by

B
es
tC
on
fig

,D
B
A

an
d
C
D
B
T
un
e
fo
r
th
re
e
w
or
kl
oa
ds

of
Sy

sb
en
ch
:
R
O
,W

O
an
d
R
W
,w

hi
le

C
D
B
de
fa
ul
t
is
th
e
de
fa
ul
t
co
nfi

gu
ra
tio

n
se
tti
ng

pr
ov
id
ed

by
C
D
B
fo
r
us
er
s

K
no
bs

C
D
B
de
fa
ul
t

B
es
tC
on
fig

D
B
A

C
D
B
T
un
e

R
O

W
O

R
W

R
O

W
O

R
W

R
O

W
O

R
W

in
no
db
_b
uf
fe
r_
po
ol
_s
iz
e

7.
2G

2.
4G

6.
6G

1.
8G

7.
4G

7.
6G

7.
1G

7.
2G

7.
9G

7.
8G

m
ax
_c
on
ne
ct
io
ns

16
00

34
45
7

87
93
1

13
91
1

85
00

10
24
0

20
00
0

11
00

11
00

36
78
0

ta
bl
e_
op
en
_c
ac
he

51
2

17
14
38

33
91
94

35
50
79

65
53
6

51
20
0

20
48
0

36
51
24

58
99
2

24
00
75

sk
ip
_n
am

e_
re
so
lv
e

O
N

O
FF

O
FF

O
FF

O
N

O
FF

O
FF

O
N

O
FF

O
FF

in
no
db
_b
uf
fe
r_
po
ol
_i
ns
ta
nc
es

8
47

1
52

8
4

1
24

15
6

in
no
db
_l
og
_fi

le
s_
in
_g
ro
up

2
31

78
10

4
5

4
3

3
2

in
no
db
_l
og
_fi

le
_s
iz
e

0.
5G

1G
40
M

0.
9G

4G
4G

2G
5.
6G

6.
2G

4.
7G

in
no
db
_p
ur
ge
_t
hr
ea
ds

1
11

1
20

4
8

2
2

16
8

in
no
db
_r
ea
d_
io
_t
hr
ea
ds

12
18

60
1

8
6

6
68

3
15

in
no
db
_w

ri
te
_i
o_
th
re
ad
s

12
18

60
1

8
10

2
8

29
13

in
no
db
_fi

le
_p
er
_t
ab
le

O
N

O
N

O
FF

O
FF

O
N

O
N

O
N

O
N

O
N

O
N

bi
nl
og
_c
he
ck
su
m

N
O
N
E

N
O
N
E

C
R
C
32

C
R
C
32

N
O
N
E

C
R
C
32

N
O
N
E

C
R
C
32

C
R
C
32

N
O
N
E

bi
nl
og
_c
ac
he
_s
iz
e

32
M

1.
1G

0.
2G

0.
5G

64
M

20
0M

20
0M

89
M

42
7M

13
9M

m
ax
_b
in
lo
g_
ca
ch
e_
si
ze

7.
8G

2.
5G

1.
9G

0.
7G

2G
3G

2G
2.
3G

4.
4G

3.
7G

m
ax
_b
in
lo
g_
si
ze

1G
0.
3G

0.
8G

0.
2G

0.
5G

0.
9G

0.
5G

0.
6G

1G
0.
5G

bi
nl
og
_f
or
m
at

M
IX

E
D

R
O
W

M
IX

E
D

M
IX

E
D

R
O
W

R
O
W

R
O
W

R
O
W

M
IX

E
D

R
O
W

123

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 985

Our tuning system uses a deep reinforcement learning
model for automatic DBMS tuning. The goal of CDBTune+
is to tune the knob settings for improving the performance
of cloud databases. To the best of our knowledge, this is the
first attempt that uses deep RL model for configuration rec-
ommendation in databases.

8 Conclusion

In this paper, we proposed an end-to-end automatic DBMS
configuration tuning system CDBTune+ that can recom-
mend well-working knob settings in complex cloud envi-
ronments. CDBTune+ applies exploration RL to learn the
best settings with limited samples. Moreover, our custom
reward function can effectively improve the tuning efficiency
in high-dimensional continuous space for the knobs. Exten-
sive experimental results showed that CDBTune+ produced
configurations for various workloads that greatly improved
performance with higher throughput and lower latency com-
pared to the state-of-the-art tuning tools andDBAexperts.We
also demonstrated that CDBTune+ adapts well to changes
in the operating environment. In future work, we intend to
explore other ML solutions (transfer learning, meta learning,
genetic algorithms and etc.) to improve the database tuning
performance further.

Acknowledgements Thanks for the research fund of the Intelligent
Cloud Storage Joint Research center of HUST and Tencent, the Key
Laboratory of Information Storage System,Ministry of Education. This
work is supported by the Innovation Group Project of the National Nat-
ural Science Foundation of China, No. 61821003, the National Natural
Science Foundation of China (61632016, 61472198), 973 Program of
China No. 201-5CB358700.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

A introduction of CDB

CDB is redeveloped based on MySQL (now support Mon-
goDB and Postgres) by Tencent. It is a database hosting
service that combines high performance, high availability,

high security, high scalability and ease of use. Users can eas-
ily deploy, use and expand CDB (whose kernel is MySQL,
MongoDB or Postgres) within a few minutes in the cloud.
Moreover, the size of hardware capacity is allowed to be
adjusted flexibly without downtime. CDB for MySQL pro-
vides users with a full set of database maintenance solutions
such as backup, monitoring, rapid expansion, data transmis-
sion and so on in order to simply IT operations for users and
focus more on the business development. At present, CDB
owns more than 200,000 users and 5,000,000 instances from
50 countries around the world.

Bmetrics

This section lists 63 internal metrics which represent the cur-
rent state of a database. They are classified into two types:
state value and cumulative value, as shown in Table 9.

C knobs

CDBTune+ exposes 65 commonly used knobs for users to
tune the performance of their cloud database. As shown in
Table 10, there are 16most impactful knobs selected byDBA
and other expended 49 ones are used in the experiments.

D knob recommendations

This section shows theDBMSconfigurations ofCDBdefault,
and those generated by BestConfig, the DBA, our CDBTune
and OtterTune in Tables 12 and 11 for three workloads of
Sysbench: RO, WO, and RW running on CDB for MySQL.
Table 12 displays the 16most frequently used knobs in CDB.
Table 11 displays the 16 most impactful knobs for Otter-
Tune. For instance, the table_open_cache in common knobs
stands for the number of open tables for all threads and the
query_cache_size stands for the amount ofmemory allocated
for caching query results.

References

1. Agrawal, S., Bruno, N., Chaudhuri, S., et al.: Autoadmin: Self-
tuning database systemstechnology. IEEE Data Eng. Bull. 29(3),
7–15 (2006)

2. Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya,
V., Syamala, M.: Database tuning advisor for microsoft sql server
2005. In: ACM SIGMOD, pp. 930–932. ACM, (2005)

3. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and hor-
izontal partitioning into automated physical database design. In:
ACM SIGMOD, pp. 359–370. ACM, (2004)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

986 J. Zhang et al.

4. Basu, D., Lin, Q., Vo, H.T., Vo, H.T., Yuan, Z., Senellart, P.:
Regularized Cost-Model Oblivious Database Tuning with Rein-
forcement Learning. Springer, Berlin Heidelberg (2016)

5. Belknap, P., Dageville, B., Dias, K., Yagoub, K.: Self-tuning for
sql performance in oracle database 11g. In: ICDE, pp. 1694–1700.
IEEE, (2009)

6. Bernstein, P., et al.: The asilomar report on database research. ACM
Sigmod record 27(4), 74–80 (1998)

7. Bruno, N., Chaudhuri, S.: Automatic physical database tuning:
a relaxation-based approach. In: ACM SIGMOD, pp. 227–238.
ACM, (2005)

8. Cao, W., Liu, Y. et al: POLARDB meets computational storage:
Efficiently support analytical workloads in cloud-native relational
database. In: 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pp. 29–41, Santa Clara, CA, February (2020).
USENIX Association

9. Chaudhuri, S., Narasayya, V.: Autoadmin “what-if” index analysis
utility. In: ACM SIGMOD, pp. 367–378, (1998)

10. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: A
decade of progress. In: VLDB, pp. 3–14, (2007)

11. Chaudhuri, S., Weikum, G.: Rethinking database system architec-
ture: Towards a self-tuning risc-style database system. In: VLDB,
pp. 1–10, (2000)

12. Das, S., Grbic, M. et al.: Automatically indexing millions of
databases in microsoft azure sql database. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD
’19, page 666–679, New York, NY, USA, (2019). Association for
Computing Machinery

13. Debnath B.K., Lilja, D.J., Mokbel, M.F.: Sard: A statistical
approach for ranking database tuning parameters. In: ICDEW, pp.
11–18. IEEE, (2008)

14. Dias, K., Ramacher, M., Shaft, U., Venkataramani, V., Wood, G.:
Automatic performance diagnosis and tuning in oracle. In: CIDR,
pp. 84–94, (2005)

15. Duan, S., Thummala, V., Babu, S.: Tuning database configura-
tion parameters with ituned. VLDB Endowment 2(1), 1246–1257
(2009)

16. Dundar, M., Krishnapuram, B. et al.: Learning classifiers when
the training data is not iid. In: Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, IJCAI’07, page
756–761, San Francisco, CA, USA, (2007). Morgan Kaufmann
Publishers Inc

17. Ghodsnia, P.: Effective use of ssds in database systems, (2018)
18. Goldberg, Y.: A primer on neural network models for natural lan-

guage processing. Computer Science, (2015)
19. Graefe, G., Kuno, H.A.: Self-selecting, self-tuning, incrementally

optimized indexes. In: EDBT, pp. 371–381, (2010)
20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: CVPR, pp. 770–778, (2016)
21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of

data with neural networks. Science 313(5786), 504–507 (2006)
22. Idreos, S., Kersten, M.L., Manegold, Stefan: Database cracking.

In: CIDR, pp. 68–78, (2007)
23. Idreos, S.K., Martin L., Manegold, S.: Self-organizing tuple recon-

struction in column-stores. In: ACM SIGMOD, pp. 297–308,
(2009)

24. Idreos, S., Manegold, S., Kuno, H.A., Graefe, G.: Merging what’s
cracked, cracking what’s merged: Adaptive indexing in main-
memory column-stores. PVLDB 4(9), 585–597 (2011)

25. Idreos, S., Zoumpatianos, K. et al.: The data calculator: Data struc-
ture design and cost synthesis from first principles and learned cost
models. In: ACM SIGMOD, pp. 535–550, (2018)

26. Ilyas, I.F., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: Cords:
automatic discovery of correlations and soft functional dependen-
cies. In: ACM SIGMOD, pp. 647–658. ACM, (2004)

27. Kaelbling, L.P., et al.: Reinforcement learning: A survey. J. Artif.
Int. Res., 4(1):237–285, May (1996)

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In:NIPS, pp. 1097–1105,
(2012)

29. Kumar, S.: Oracle database 10g: The self-managing database,
(2003)

30. Kwan, E., Lightstone, S. et al.: Automatic configuration for ibm
db2 universal database. In: Proc. of IBM Perf Technical Report,
(2002)

31. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436 (2015)

32. Lightstone, S.S., Bhattacharjee, B.: Automated design of multidi-
mensional clustering tables for relational databases. In: VLDB, pp.
1170–1181, (2004)

33. Lillicrap, T.P., Hunt, J.J., Pritzel, A. et al.: Continuous control with
deep reinforcement learning. arXiv:1509.02971 (2015)

34. Maglogiannis, V., Naudts, D., Shahid, A., Moerman, I.: A q-
learning scheme for fair coexistence between LTE and wi-fi in
unlicensed spectrum. IEEE Access 6, 27278–27293 (2018)

35. Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for
join order enumeration. arXiv:1803.00055 (2018)

36. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.A.: Playing atari with deep reinforce-
ment learning. arXiv:1312.5602 (2013)

37. Mohan, C., Haderle, D., et al.: Aries: a transaction recoverymethod
supporting fine-granularity locking and partial rollbacks using
write-ahead logging. Acm Trans Database Syst 17(1), 94–162
(1992)

38. Narayanan, D., Thereska, E., Ailamaki, A.: Continuous resource
monitoring for self-predicting dbms. In: null, pp. 239–248. IEEE,
(2005)

39. Ortiz, J., Balazinska, M., Gehrke, J., Keerthi, S.S.: Learning state
representations for query optimization with deep reinforcement
learning. arXiv:1803.08604 (2018)

40. Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon,
P., Mowry, T.C., Perron, M., Quah, I. et al.: Self-driving database
management systems. In: CIDR, (2017)

41. Rao, J., Zhang, C. et al.: Automating physical database design in a
parallel database. In: ACM SIGMOD, pp. 558–569. ACM, (2002)

42. Richter, S., Quiané-Ruiz, J.-A., et al.: Towards zero-overhead static
and adaptive indexing in hadoop. VLDB J. 23(3), 469–494 (2014)

43. Schaul, T., Quan, J., et al.: Prioritized experience replay. Computer
Science, (2015)

44. Schuhknecht, F.M., Jindal, A., Dittrich, J.: The uncracked pieces
in database cracking. PVLDB 7(2), 97–108 (2013)

45. Sharma, A., Schuhknecht, F.M., Dittrich, J.: The case for automatic
database administration using deep reinforcement learning. (2018)

46. Storm, A.J., Garcia-Arellano, C., Lightstone, S.S., Diao, Y., Suren-
dra, M.: Adaptive self-tuning memory in db2. In: VLDB, pp.
1081–1092. VLDB, (2006)

47. Sullivan, D.G., Seltzer, M.I., Pfeffer, A.: Using probabilistic rea-
soning to automate software tuning, vol. 32. ACM, (2004)

48. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduc-
tion, bradford book. IEEE Transactions on Neural Networks 16(1),
285–286 (2005)

49. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduc-
tion. (2011)

50. Tan, J., Zhang, T., et al.: Ibtune: Individualized buffer tuning for
large-scale cloud databases. Proc. VLDB Endow. 12(10), 1221–
1234 (2019)

51. Tan, J., Zhang, T., Li, F., Chen, J., Zheng, Q., Zhang, P., Qiao, H.,
Shi, Y., Cao,W., Zhang, R.: ibtune: Individualized buffer tuning for
large-scale cloud databases. Proceedings of theVLDBEndowment
12(10), 1221–1234 (2019)

123

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1803.00055
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1803.08604

CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system 987

52. Tian, W., Martin, P., Powley, W.: Techniques for automatically siz-
ing multiple buffer pools in db2. In: Centre for Advanced Studies
on Collaborative research, pp. 294–302. IBM Press, (2003)

53. Tran, D.N., Huynh, P.C., Tay, Y.C., Tung, A.K.H.: A new approach
to dynamic self-tuning of database buffers. TOS 4(1), 3 (2008)

54. Tzoumas, K., Sellis, T., Jensen, C.S.: A reinforcement learning
approach for adaptive query processing. History (2008)

55. Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic
database management system tuning through large-scale machine
learning. In: ACM SIGMOD, pp. 1009–1024, (2017)

56. Verbitski, A., Gupta, A., Saha, D., et al.: Amazon aurora:
Design considerations for high throughput cloud-native relational
databases. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD ’17, page 1041–1052,
(2017)

57. Wang, L., Ye, J., Zhao, Yiyang, W., Wei, L., Ang, S., Shuaiwen L.,
Xu, Z., Kraska, T.: Superneurons: Dynamic gpu memory manage-
ment for training deep neural networks. (2018)

58. Wang,W., Zhang,M., Chen, G., Jagadish, H.V., Ooi, B.C., Tan, K.-
L.: Database meets deep learning: Challenges and opportunities.
ACM SIGMOD Record 45(2), 17–22 (2016)

59. Weikum, G., Hasse, C., Mönkeberg, A., Zabback, P.: The com-
fort automatic tuning project. Information systems 19(5), 381–432
(1994)

60. Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning
database technology and information services: from wishful think-
ing to viable engineering. In: VLDB, pp. 20–31. Elsevier, (2002)

61. Wiese, D., Rabinovitch, G., Reichert, M., Arenswald, S.: Auto-
nomic tuning expert: a framework for best-practice oriented
autonomic database tuning. In: Center for advanced studies on col-
laborative research, page 3. ACM, (2008)

62. Xu, Q., Siyamwala, H., et al.: Performance analysis of nvme ssds
and their implication on real world databases. In: SYSTOR, pp.
6:1–6:11, (2015)

63. Yagoub, K., Belknap, P., Dageville, B., et al.: Oracle’s sql perfor-
mance analyzer. IEEE Data Eng. Bull. 31(1), 51–58 (2008)

64. Yoon, D.Y., et al.: Dbsherlock: A performance diagnostic tool for
transactional databases. In:ACMSIGMOD, pp. 1599–1614.ACM,
(2016)

65. Zhan, C., Su, Ma., et al.: Analyticdb: Real-time olap database sys-
tem at alibaba cloud. 12(12):2059–2070, August (2019)

66. Zhang, H., Wang, J., et al.: Learning to design games: Strategic
environments in reinforcement learning. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18, pp. 3068–3074, 7 (2018)

67. Zhu, Y., Liu, J., Guo,M., Bao, Y., et al.: Bestconfig: tapping the per-
formance potential of systems via automatic configuration tuning.
In: SoCC, pp. 338–350. ACM, (2017)

68. Zilio, D.C.: Physical database design decision algorithms and con-
current reorganization for parallel database systems. (1998)

69. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-
Arellano, C., Fadden, S.: Db2 design advisor: integrated automatic
physical database design. In: VLDB, pp. 1087–1097, (2004)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	CDBTune+: An efficient deep reinforcement learning-based automatic cloud database tuning system
	Abstract
	1 Introduction
	2 System overview
	2.1 CDBTune+ working mechanism
	2.1.1 Offline training
	2.1.2 Online tuning

	2.2 System architecture
	2.2.1 Workload generator
	2.2.2 Metrics collector
	2.2.3 Recommender
	2.2.4 Memory pool

	3 RL in CDBTune+
	3.1 Basic idea
	3.2 RL for CDBTune+
	3.3 RL for tuning

	4 DDPG for CDBTune+
	4.1 Deep deterministic policy gradient with prioritized experience replay
	4.2 Reward function
	4.3 Advantages

	5 Improving the efficiency of CDBTune+
	5.1 Prioritized experience replay in DDPG
	5.2 Instant restart of a CDB

	6 Experimental study
	6.1 Efficiency comparison
	6.1.1 The impact of PER method in CDBTune+
	6.1.2 Breakdown of the execution time in CDBTune+
	6.1.3 Tuning efficiency comparison with baselines
	6.1.4 Varying tuning steps
	6.1.5 Varying neural networks
	6.1.6 Varying types of metric data

	6.2 Effectiveness comparison
	6.2.1 Knobs selected by DBAs and OtterTune
	6.2.2 Knobs randomly selected by CDBTune+
	6.2.3 Performance improvement
	6.2.4 Evaluation on other databases
	6.2.5 Evaluation on different types of storage media

	6.3 Evaluation of reward functions
	6.3.1 Baseline reward functions
	6.3.2 Varying CT and CL

	6.4 Adaptability
	6.4.1 Adaptability to changes in memory size and disk capacity
	6.4.2 Adaptability to workload changes
	6.4.3 Adaptability to cross-storage media
	6.4.4 Adaptability to complex setup changes

	7 Related work
	8 Conclusion
	Acknowledgements
	Appendix
	A introduction of CDB
	B metrics
	C knobs
	D knob recommendations
	References

