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ABSTRACT
Many real-world applications have requirements to support
moving spatial keyword queries. For example a tourist look-
s for top-k “seafood restaurants” while walking in a city.
She will continuously issue moving queries. However exist-
ing spatial keyword search methods focus on static queries
and it calls for new effective techniques to support mov-
ing queries efficiently. In this paper we propose an effective
method to support moving top-k spatial keyword queries.
In addition to finding top-k answers of a moving query, we
also calculate a safe region such that if a new query with
a location falling in the safe region, we can directly use the
answer set to answer the query. To this end, we propose
an effective model to represent the safe region and devise
efficient search algorithms to compute the safe region. We
have implemented our method and experimental results on
real datasets show that our method achieves high efficiency
and outperforms existing methods significantly.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Moving Top-k Spatial Keyword Queries, Safe Region

1. INTRODUCTION
Location based services (LBS) have attracted significant

attention from both industry and academic communities in
recent years, thanks to the modern mobile phones and new
Internet technologies. Many existing systems provide users
with location-aware search experiences based on users’ loca-
tion which can be easily gotten from GPS devices equipped
in modern mobile phones.

Recently there are many studies on location based services
and most of them address the spatial keyword search prob-
lem [9, 4, 2, 7], which, given a set of spatio-textual objects
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with a location and textual description (e.g., points of inter-
est and geo-tagged documents) and a top-k spatial keyword
query with a location and a set of keywords, finds top-k rele-
vant answers. However they focus primarily on static queries
and cannot support moving queries efficiently. Notice that
many real-world applications have requirements to support
moving spatial keyword queries. For example, a housewife
is driving to a supermarket and may want to find the top-
3 “car parking places” near the supermarket. Since she
is driving, her query location is continuously changing. As
another example, a tourist looking for the top-2 “seafood
restaurants” while walking in a city will require a moving
query. Although we can extend existing methods to support
moving queries by repeatedly issuing multiple queries, these
methods have the following limitations. First, it increases
the communication cost between the client (the user who is-
sues the query) and the server (the system that provides the
search service), and also wastes the bandwidth in transmis-
sion. Second, it aggravates the system burden due to issuing
multiple repeated queries.

To address this problem, in this paper we emphasize on
efficiently supporting moving top-k spatial keyword queries.
We adopt a client-server model. The client is moving and
continuously issues a spatial keyword query to the server.
The server returns the top-k answers of the query, as well
as a safe region of the answer set (We will formally define
the safe region in Section 2). Then before the client issues
a new query at another location, it will first check whether
the new location is still in the safe region. If yes, it can
reuse the answer set; otherwise the client needs to issue a
query with the new location to the server. Obviously our
method not only avoids unnecessary communication cost but
also reduces the system burden. Notice that although Wu
et al. [17] studied the moving top-k spatial keyword query,
they used an ad-hoc ranking function (see Section 2). In
contrast, we use a widely adopted ranking function [2, 11].

Different from existing studies [2, 4] which focus on com-
puting the answer set of a query, we emphasize on how to
compute the safe region. There are several research chal-
lenges. First, how to represent the safe region? Tradition-
al studies on spatial data (without textual description) use
Voronoi diagrams to represent the safe region, which can
be pre-computed and materialized for efficient online query
processing. However safe region in our problem depends
on query keywords and cannot be materialized. To address
this issue, we propose an effective representation model in
Section 3. Second, how to compute the safe region? For a
query issued to the server, we need to find its answer set
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and compute the safe region simultaneously. Thus the time
for computing the safe region cannot be large. To address
this issue, we develop efficient algorithms in Section 4. To
summarize, we make the following contributions.

• We propose an effective model to represent the safe
region of a moving top-k spatial keyword query.

• We devise efficient incremental algorithms to efficiently
compute the safe region.

• We develop effective pruning techniques to reduce the
computation time on the server and the verification
time on the client.

• Experimental results show that our method achieves
high efficiency and outperforms existing methods.

The rest of the paper is organized as follows. We first
formulate our problem in Section 2. A model to represent
the safe region is discussed in Section 3. We devise efficient
algorithms to compute the safe region in Section 4. Section 5
extends our techniques to support moving top-k queries. We
conduct experimental results in Section 6 and review related
work in Section 7. Section 8 concludes the paper.

2. PRELIMINARY
2.1 Problem Formulation
We adopt a client-server model. The server contains a set

of spatio-textual objects, O. Each object o ∈ O contains a
location os and textual description ot, denoted by o =(os,
ot). In the paper we consider two-dimensional space, and
use x-coordinate os.x and y-coordination os.y to denote a
location os. We use a set of terms to denote ot. The client
is moving and continuously issues a top-k spatial keyword
query q to the server. Query q consists of a query location
qs, a set of keywords qt, and an integer k to restrict the result
size, denoted by q = (qs, qt, k). For ease of presentation, we
first define the answer of a top-k spatial keyword query.

Definition 1 (Top-k Spatial Keyword Query). Given
an object set O and a query q, the answer of a top-k spatial
keyword query is a subset of O, A, such that

(1) The size of A is k, i.e., |A| = k, and
(2) ∀o∗ ∈ A, ∀o ∈ O −A, score(q, o∗) ≤ score(q, o),

where score is a ranking function to evaluate the relevance
between a query and an object. The smaller the value is, the
more relevant is the object to the query. We will define the
ranking function in Section 2.2.

For example, there is a dataset O as shown in Figure 1 and
a top-k spatial keyword query q = ((0.515, 0.294), {Chinese,
restarant}, 1). We can get A = {o4} under the ranking
function defined in Section 2.2. If k = 2 with the same qs
and qt, then the answer set A = {o4, o9}.
For a moving top-k spatial keyword query q, in addition

to finding the answer set A, we also need to find a safe
region for query q. Note that the safe region depends on the
keyword set qt and k, and we denote it by R(qt, k). For a
query q′ = (q′s, qt, k) with a new location q′s, if q

′
s ∈ R(qt, k),

the answer set of q′ is the same as that of q. Thus we can
use the answer set A to answer q′. If the context is clear,
R(qt, k) and R are used interchangeably. Next we formally
define the safe region R.

Definition 2 (Safe Region). Given an object set O
and a query q, the safe region of query q is

R = {q′s|∀o∗ ∈ A, ∀o ∈ O −A, score(q′, o∗) ≤ score(q′, o)},
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1 o1:〈k1, 1〉, 〈k2, 2〉, 〈k3, 3〉, 〈k4, 4〉
o2:〈k2, 3〉, 〈k4, 1〉, 〈k5, 1〉
o3:〈k1, 1〉, 〈k3, 3〉, 〈k5, 2〉
o4:〈k1, 2〉, 〈k2, 1〉, 〈k3, 4〉, 〈k4, 1〉
o5:〈k3, 1〉, 〈k5, 4〉
o6:〈k1, 1〉, 〈k2, 3〉, 〈k4, 3〉, 〈k5, 3〉
o7:〈k1, 3〉, 〈k2, 2〉, 〈k3, 3〉, 〈k4, 2〉
o8:〈k1, 1〉, 〈k4, 3〉
o9:〈k1, 9〉, 〈k2, 1〉, 〈k3, 8〉, 〈k5, 3〉
o10:〈k1, 2〉, 〈k2, 1〉, 〈k4, 1〉
o11:〈k2, 2〉, 〈k3, 4〉, 〈k4, 1〉, 〈k5, 3〉
o12:〈k3, 1〉, 〈k4, 2〉, 〈k5, 2〉
o13:〈k2, 2〉, 〈k3, 3〉, 〈k4, 3〉, 〈k5, 2〉
o14:〈k1, 4〉, 〈k3, 4〉, 〈k5, 2〉
o15:〈k1, 9〉, 〈k2, 1〉, 〈k3, 6〉, 〈k4, 4〉
o16:〈k2, 2〉, 〈k4, 1〉

Figure 1: Dataset(k1:Chinese,k2:Franch,k3:restarant,
k4:seafood,k5:pastry, numbers in brackets are tf)

where q′ = (q′s, qt, k) and q′s is any location.
For example, in Figure 1, the shadow region in the center

is the safe region for qt = {Chinese, restarant} and k = 1.
Then based on the answer set A and the safe region R, we

define the answer of a moving top-k spatial keyword query.

Definition 3. (Moving Top-k Spatial Keyword Query)
Given an object set O and a moving top-k spatial keyword
query q = (qs, qt, k). As the query is moving, for each new
location q′s, its answer is 〈A,R〉, where A is the top-k result
set of q′ = (q′s, qt, k) and R is the corresponding safe region.

In the client-server model, for a query q, the client first
checks whether qs ∈ R. If yes, A is the answer of query q;
otherwise the client submits the query q to the server which
returns the answer set and the safe region of the query. In
our example in Figure 1, the server will return the answer set
A = {o4} and a safe region R (shaded in the Figure). Next
the client updates its location and checks whether it is still
in R. If yes, {o4} is still the answer; otherwise the answer
changes and the client issues a new query to the server.

Existing studies [2] focus on top-k spatial keyword queries
and they propose efficient algorithms to compute the answer
set A. In this paper we emphasize on how to compute the
safe region R and address the research challenges as dis-
cussed in Section 1.

2.2 Ranking Function
Given a query q and an object o, to compute their rank-

ing score score(q, o), we combine their spatial proximity be-
tween os and qs, denoted by dist(os, qs), and their textual
relevancy between ot and qt, denoted by text(ot, qt). The
ranking function is defined as follows.

score(q, o) = α ·dist(qs, os)+(1−α) ·(1−text(qt, ot)) (1)

where α is a tuning parameter to trade-off the importance
between the spatial distance and textual relevancy. Notice
that in the ranking function, we normalize dist(qs, os) and
text(qt, ot) to [0, 1] using their possible maximum values. In
the paper, we use the Euclidean distance (function dist) to
compute the spatial distance (dist) between two locations,
and adopt the well-known TFIDF function to evaluate the
textual relevancy (text) as follows.

text(qt, ot) =
∑

t∈qt

(tf(t, ot)× idf(t)) (2)

where tf(t, ot) is the term frequency of term t in ot and
idf(t) is the inverse document frequency of term t, i.e., the
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ratio of the number of objects in O to that of objects whose
textual descriptions contain t. For ease of presentation, if
the context is clear, we use text(qt, ot) and text(q, o), and
dist(qt, ot) and dist(q, o) interchangeably.
For the example in Figure 1, assume α = 2

3
. dist(q, o1) =

0.49, text(q, o1) = 0.1, and score(q, o1) = 0.63; dist(q, o4) =
0.21, text(q, o4) = 0.75 and score(q, o4) = 0.22; dist(q, o9) =
0.27, text(q, o9) = 0.85 and score(q, o9) = 0.23. The top-1
answer is {o4} and the top-2 answer is {o4, o9}.
Notice that our ranking function is widely adopted in ex-

isting studies [2, 11]. Although Wu et al. [17] studied the
moving top-k spatial keyword query problem, they used a
very ad-hoc ranking function as defined below.

rank(q, o) =
dist(q, o)

text(q, o)
. (3)

Obviously our ranking function is more general. We will
discuss how to support their ranking function and experi-
mentally compare with their method in Section 6.

3. REPRESENTATION MODEL FOR TOP-
1 QUERIES

In this section, we first introduce a concept dominant re-
gion in Section 3.1, and then based on the definition we
discuss how to represent the safe region in Section 3.2.

3.1 Dominant Region
Given a query q and two objects, o∗ and o, the dominant

region of o∗ to o is a region such that if q is in the region,
o∗ is a better answer than o, as defined below.

Definition 4. Given a query q = (qs, qt, k), the domi-
nant region of o∗ to o is:

Do∗,o = {q′s|score(q′, o∗) ≤ score(q′, o)} (4)

where q′ = (q′s, qt, k).
For example, in Figure 1, the dominant region of o4 to o6

is the region outside the dashed line. That is if a query q is
in the region, o4 is a better answer than o6.

Next we deduce how to represent the dominant region.
We first introduce two notations.

Δd = dist(q′, o∗)− dist(q′, o),

Δt =
1− α

α

(
text(q′, o∗)− text(q′, o)

)
.

(5)

Based on Equation 1, score(q′, o∗) ≤ score(q′, o) if and only
if Δd ≤ Δt. Thus we have Do∗,o = {q′s|Δd ≤ Δt}, according
to Definition 4. Based on the relationship between Δt and
dist(o∗, o), we can determine the shape of the dominant
region as follows (also shown in Table 1 and Figure 2).

Case 1: Δt ≥ dist(o∗, o). Based on the triangle inequal-
ity, Δd = dist(q′, o∗) − dist(q′, o) ≤ dist(o∗, o). If Δt ≥
dist(o∗, o), Δd ≤ Δt is always true, thus the dominant re-
gion is the whole plane.

Case 2: Δt < −dist(o∗, o). Based on the triangle in-
equality, −dist(o∗, o) ≤ Δd = dist(q′, o∗) − dist(q′, o).
If Δt < −dist(o∗, o), Δd ≤ Δt is always false, thus the
dominant region is empty.

Case 3: Δt = −dist(o∗, o). Based on Case 2, only the
points on the half-line starting from o∗ and with direction
from o to o∗ (denoted by Ho∗,−→oo∗) satisfy −dist(o∗, o) ≤

Table 1: Dominant Region
Cases Dominant Region

Δt ≥ dist(o∗, o) whole plane
Δt = −dist(o∗, o) half-line Ho∗,−−→oo∗
Δt < −dist(o∗, o) empty

Δt = 0 half-plane (III ∪ IV in Figure 2)
0 < Δt < dist(o∗, o) outside Ho (II ∪ III ∪ IV in Figure 2)
−dist(o∗, o) < Δt < 0 inside Ho∗ (IV in Figure 2)

(a) -dist(o∗, o) < Δt < 0 (b) 0 < Δt < dist(o∗, o)
Figure 2: Dominant Region

Δd ≤ Δt = −dist(o∗, o), thus the dominant region is half-
line Ho∗,−→oo∗.

Case 4: Δt = 0. Obviously the locus of Δd = 0 is the
perpendicular bisector of segment o∗o which partitions the
space into two half planes. The dominant region for Δd ≤
Δt is the half plane that contains o∗.

Case 5: 0 < Δt < dist(o∗, o). The locus of points satisfy-
ing |Δd| = |dist(q, o∗) − dist(q, o)| = |Δt| is a hyperbola
with o∗ and o as its two focuses as proved in Lemma 1. Let
H denote the hyperbola satisfying |Δd| = |Δt|, Ho∗ denote
the branch nearby the focus o∗ (i.e., satisfying Δd = −Δt),
and Ho denote the branch nearby the focus o (i.e., satisfying
Δd = Δt). L⊥ is the perpendicular bisector of segment o∗o.
L⊥, Ho∗ , Ho divide the plane into four regions I, II, III, IV ,
as shown in Figure 2. Obviously in this case, the dominant
region for Δd ≤ Δt is the region outside Ho (i.e., region
II ∪ III ∪ IV in Figure 2).

Case 6: −dist(o∗, o) < Δt < 0. Similar to Case 5, the
dominant region for Δd ≤ Δt is the region inside Ho∗ (i.e.,
region IV in Figure 2).

Lemma 1. If 0 < Δt < dist(o∗, o) or −dist(o∗, o) <
Δt < 0, the locus of points satisfying |Δd| = |Δt| is a hy-
perbola with o∗ and o as its two focuses. The locus of points
satisfying Δd = Δt is the branch Ho and that for Δd = −Δt
is the branch Ho∗ .

Proof. Due to space constraints, we omit all proofs.

As illustrated in Figure 2, H is the hyperbola derived from
o∗ and o. m is the the center of H, i.e., the midpoint of
segment o∗o. Next we give the basic parameters and their
values of hyperbola H.
Focuses : o∗ and o.

Vertices : The two nearest points located at the two branch-
es: v∗o in Ho∗ and vo in Ho.

Semi-focal Length : The distance from one focus to the

center, denoted by c. c = dist(o∗,o)
2

.

Semi-major Length : The distance from one vertex to
the center, denoted by a. a = 1

2
|Δt|.

Eccentricity : The parameter determines the shape of a
curve (for all conic curves), denoted by e. e = c

a
.
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3.2 Safe Region
In this section, we discuss how to represent the safe region.

Given a query q, suppose its top-1 answer is o∗. Based on the
definition of the dominant region, obviously the safe region
is the intersection of the dominant region of o∗ to all other
objects, i.e., R = ∩o �=o∗Do∗,o as formalized in Lemma 2.

Lemma 2. Given a query q, suppose its top-1 answer is
o∗. R = ∩o �=o∗Do∗,o.

In this way, after finding the top-1 answer o∗, we compute
the dominant region of o∗ to each object o ∈ O − {o∗}.
Then we compute the intersection of these dominant regions.
Notice that the safe region is always not empty and qs is in
R as formalized in Lemma 3.

Lemma 3. For a query q, the safe region R is always not
empty and qs is in R.

Some readers may find that in Case 3 (Δt < −dist(o∗, o)),
the dominant region is empty. Interestingly, we can prove
that for the best answer o∗, there is no such case, that is,
Δt ≥ −dist(o∗, o).

Lemma 4. Given a query q and its best answer o∗, for
any object o ∈ O − {o∗}, Δt ≥ −dist(o∗, o).

Next we discuss how to represent the safe region. Recall
the different shapes of the dominant regions. It is easy to
represent planes, half-planes, and half-lines. However it is
not easy to represent a hyperbola. A hyperbola is a type of
conic section. In a Cartesian coordinate system, it is usual-
ly represented by a second-degree polynomial or a matrix.
However it is very expensive to use such methods and it is
also inefficient to compute the intersection. To address this
issue, we introduce two alternative methods.

Using Polygons to Approximate a Hyperbola: Since
the distance between a hyperbola and its asymptotes tends
to 0 when they approach infinity, we can use asymptotes to
approximate hyperbola.

For the dominant region inside Ho∗ (the shaded region in
Figure 2(a)), consider the two half-lines starting from the
vertex vo∗ with directions the same as the two asymptotes.
LetHa

o∗ denote the region inside the two half-lines (the shad-
ed polygon region in Figure 2(a)). Obviously Ha

o∗ is in the
dominant region and we use it to approximate the region
inside Ho∗ . Similarly for the dominant region outside Ho

(the shaded region in Figure 2(b)), consider the two half-
lines starting from the center m with directions the same as
the two asymptotes. Let Ha

o denote the region outside the
two half-lines (the shaded polygon region in Figure 2(b)).
Obviously Ha

o is in the dominant region and we use it to
approximate the region outside Ho.

Using Polar Coordinates to Denote Hyperbola: We
propose to use the polar coordinate to represent a hyperbola.
Consider two objects o and o∗. Suppose the corresponding
dominant region Do∗,o is a hyperbola, denoted by H. Let
Ho∗(Ho) denote the branch nearby o∗ (o). Let l+d and l−d

denote the two directrices. We construct a coordinate sys-
tem where the origin is the midpoint between o and o∗, and
the x-axis is the line passing o and o∗, the y-axis is the
perpendicular bisector of segment between o∗ and o. The
distance from l+d(l−d) to y-axis is a

e
(− a

e
).

Consider any point p in branch Ho∗ . Let d = dist(p, l+d)
denote the distance from p to directrix l+d and r = dist(p, o).

We have r
d
= dist(p,o)

dist(p,l+d)
= e, where e = c

a
is the eccentricity

as discussed in Section 3.1. Let θ denote the angle between−→
o∗p and x-axis. We have p.x = r ∗ cos θ+ c. As d = p.x− a

e
,

we have d = r ∗ cos θ + c− a
e
. Thus r

r∗cos θ+c− a
e
= e. We can

deduce that

r = f(θ) =
a(e2 − 1)

1− cos θ ∗ e .

where − arccos( 1
e
) ≤ θ ≤ arccos( 1

e
).

In this way, we can use this polar coordinate representa-
tion to denote Ho∗ . Similarly for the other branch Ho,

r′ = f ′(θ) =
a(1− e2)

1 + cos θ ∗ e ,

where π − arccos( 1
e
) ≤ θ ≤ π + arccos( 1

e
).

Similarly we can also use the polar coordinate to represent
the plane, half-planes, and half-lines. The key to use polar
coordinate to represent plane, half-planes or half-lines is to
use it to represent lines. Considering line s, we draw its
perpendicular s⊥ from o∗. s and s⊥ intersect at f . For any
point p on s, the distance from o∗ to p can be represented

as r = dist(o∗,f)
cos θ

, where θ is the angle between lines o∗p and
o∗f . Note that we need to transfer the coordinate. In the
polar coordinate, the new origin is o∗. For all other objects,
the origin is always o∗. We need to prove that o∗ is in A.

Lemma 5. Given a query q, if o∗ is the best answer, the
location of o∗ must be in the safe region R.

To compute the intersection among multiple polar equa-
tions, we use a piecewise function in a polar coordinate with
the origin of o∗. The safe region can be represented by

f1(θ)[θ1 ≤ θ < θ2], f
2(θ)[θ2 ≤ θ < θ3], · · · , fm(θ)[θm ≤ θ < θ1].

4. COMPUTATION OF Safe Region
In this section we study how to calculate the safe region.

4.1 Framework
A naive method to compute the safe region is to first calcu-

late the dominant regions of o∗ to all other objects and then
compute their intersection. To improve the performance,
we propose an effective pruning technique. The basic idea
is as follows. Consider two objects oi and oj . If Do∗,oi ⊆
Do∗,oj , we can prune Do∗,oj since R ⊆ Do∗,oi ∩ Do∗,oj =
Do∗,oi . Notice that it is usually hard to determine whether
Do∗,oi ⊆ Do∗,oj . To utilize this idea, we propose an alterna-
tive method. Consider a region R′ ⊇ R. For any object o,
if R′ ⊆ Do∗,o, we can prune object o since R ⊆ R′ ⊆ Do∗,o
and object o will not affect the safe region.

To achieve our goal, there are two challenges. The first
one is how to find such R′. The second one is how to check
whether R′ ⊆ Do∗,o. To address the first challenge, we
propose an incremental computation method. First, we ini-
tialize the safe region R′ as the minimum bounding rect-
angle of all points. Next for each object o, we compute
Do∗,o. If R′ ⊆ Do∗,o, we prune object o; otherwise we up-
date R′ = R′ ∩Do∗,o.

Next we discuss how to check R′ ⊆ Do∗,o. We introduce
two functions. As o∗ ∈ R′, let dmax = MaxBD(o∗,R′) denote
the maximum distance from o∗ to any point in R′. Given
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an object o, let dmin(o) = MinBD(o∗, Do∗,o) denote the min-
imum distance from o∗ to the boundary of Do∗,o. Notice
that if dmin(o) ≥ dmax, we have R′ ⊆ Do∗,o as formalized
in Lemma 6, and thus we can prune object o.

Lemma 6. Given a region R′ ⊇ R and object o, if dmin(o) ≥
dmax, R′ ⊆ Do∗,o.

Given an object o, next we discuss how to compute the
function dmin(o) = MinBD(o∗, Do∗,o).

Case 1: Δt ≥ dist(o∗, o). Do∗,o is the whole plane, and
MinBD(o∗, Do∗,o) is the minimal distance from o∗ to the bound-
ary of the plane;

Case 2: 0 < Δt < dist(o∗, o). dmin(o) is the distance
from o∗ to the left vertex and MinBD(o∗, Do∗,o) = c + a =
dist(o∗,o)+|Δt|

2
= dist(o∗,o)+Δt

2
;

Case 3: Δt = 0. Do∗,o is a half-plane, and MinBD(o∗, Do∗,o)

is dist(o∗,o)
2

;

Case 4: −dist(o∗, o) < Δt < 0. dmin(o) is the distance
from o∗ to the right vertex and MinBD(o∗, Do∗,o) = c − a =
dist(o∗,o)−|Δt|

2
= dist(o∗,o)+Δt

2
;

Case 5: Δt=−dist(o∗, o). MinBD(o∗, Do∗,o) = 0.

Case 6: Δt < −dist(o∗, o). There will be no such case as
formalized in Lemma 4.

As shown in Figure 1, MinBD(o4, Do4,o3) =
dist(o4,o3)+Δt

2
=

0.153, MinBD(o4, Do4,o15) =
dist(o4,o15)

2
= 0.164.

Here we discuss how to compute MaxBD (o∗, R′). Let I =
{I1, I2, · · · , Im} denote the intersections in R′ among domi-
nant regionsDo∗,o for each object o that has been added into
R′ (also including the intersections with the boundary of the
whole plane and the four vertexes of the plane if they are in
the region). We have MaxBD(o∗,R′) = maxIt∈I dist(o∗, It)
as stated in Lemma 7. We can easily compute the intersec-
tions using the polar coordinate.

Lemma 7. Given a region R′ computed in the incremen-
tal algorithm, we have

dmax = MaxBD(o∗,R′) = max
It∈I

dist(o∗, It).

To facilitate the pruning, we access objects in ascending
order sorted by dmin(o). If dmin(o) ≥ dmax, we can prune all
objects after object o. Based on this idea, we introduce our
framework to compute the safe region and the pseudo-code
is shown in Figure 1. We first initialize R as the whole plane
and dmax (line 3-4). Then we sort the objects by dmin(o)
and create a priority queue (line 5). We dequeue and get
the object o with the minimal value. If dmin(o) ≥ dmax, the
algorithm terminates (line 8); otherwise we update R and
dmax (line 10-11).
For example, in Figure 1, to get the safe region of the

query, we initialize R′ as the whole plane and dmax as the
distance from o4 to the top-right corner of R, i.e., dmax

= 0.84. Then we calculate MinBD (o, Do4,o) for every o ∈
O − {o4} and insert o into the priority queue Q in order.
The first element in Q is o7 with dmin(o7) = 0.12 < dmax.
We dequeue it and update R′ = R′ ∩ Do4,o7 . dmax is stil-
l 0.84 as the top-right corner is still the farthest point to
o4. Next we process objects o3, o15, o14, o9, o13 in the same
way and get dmax = 0.27. For the next object o10, since

Algorithm 1: Sense-NoIndex(O, q)

Input: O: A collection of objects
q: A query

Output: Safe Region R
begin1

o∗ = the best answer for query q;2

R = the whole plane bounding objects o ∈ O ;3

dmax = MaxBD(o∗,R) ;4

Sort object o in O based on MinBD(o∗, Do∗,o), and5

build a priority queue Q with the sorted objects;
while Q is not empty do6

o = Q.dequeue () ;7

if dmin(o) ≥ dmax then break;8

else9

R = R∩Do∗,o ;10

dmax = MaxBD(o∗,R) ;11

end12

Figure 3: Sense (No-Index) Algorithm (Safe-region
construction for moving spatial keyword queries)

dmin(o10) = 0.28 > dmax, the algorithm terminates. Thus
we only compute the dominant regions for 6 objects and
prune the other 9 objects.

4.2 Using Indexes to Improve Our Method
It is usually time-consuming to compute dmin(o) for all

objects since there may be large numbers of objects. To
address this issue, we utilize spatial structures to alleviate
the problem. Without loss of generality, we use the IR-
tree [2] as an example, which is the state-of-the-art index to
answer top-k spatial keyword queries. Our method can be
easily extended to support other indexing structures.

IR-tree incorporates inverted indexes into R-tree nodes.
For each leaf node, in addition to keeping a set of objects in
the minimum bounding rectangle (MBR) of this node, for
each keyword contained in these objects, it also maintains an
inverted list of objects in the node that contain the keyword.
For each internal node, besides keeping a set of objects under
this node, for each keyword, it also maintains an inverted list
which keeps a list of its children which contain the keyword.
Figure 4 shows the IR-tree structure.

The basic idea to use the spatial index to do pruning is
as follows. Each IR-tree node n contains a group of objects
under this node. We can estimate the lower bound of the
dominant regions of objects under this node. If the esti-
mated dominant region covers R′, we can prune the whole
subtree. As the IR-tree uses a hierarchical structure, we can
prune many unnecessary nodes. Next we discuss the details.

Given a node n, we define the minimal bound distance for
node n and object o∗, denoted by MinBD(o∗, n). If MinBD(o∗, n) ≤
min{MinBD(o∗, Do∗,o)|o is an object under node n}, we have
if MaxBD(o∗,R) ≤ MinBD(o∗, n), we can prune node n. This is
because for each object o under node n, we have MaxBD(o∗,R) ≤
MinBD(o∗, Do∗,o) as R is inside Do∗,o. Then we discuss how
to define the function MinBD(o∗, n).

Let mindist(o∗, n) and maxdist(o∗, n) respectively denote
the minimal and maximal distance from node o∗ to the M-
BR of node n. Let nt denote the set of terms under this
node. Notice that for each term t in nt, its term frequen-
cy is the largest term frequency of objects under this n-
ode and its inverse document frequency is still idf(t). Let
Δtmin = 1−α

α
(text(q′, o∗)− text(q′, nt)). For each object o

under node n, we have
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Figure 4: IR-tree

(1) mindist(o∗, n) ≤ dist(o∗, o) ≤ maxdist(o∗, n); and
(2) Δt ≥ Δtmin where Δt = 1−α

α
(text(q′, o∗)−text(q′, o)).

Based on these two notations, we can define MinBD(o∗, n)
as follows.

Case 1: Δtmin ≥ maxdist(o∗, n). MinBD(o∗, n) is the mini-
mal distance from o∗ to the boundary of the whole plane,
denoted by Dmin.

Case 2: 0 < Δtmin < maxdist(o∗, n).

MinBD(o∗, n) = min(
mindist(o∗, n) + Δtmin

2
, Dmin).

Case 3: Δtmin = 0. MinBD(o∗, n) = min(mindist(o∗,n)
2

, Dmin).

Case 4: −mindist(o∗, n) < Δtmin < 0.

MinBD(o∗, n) = min(max(0,
mindist(o∗, n) + Δtmin

2
), Dmin).

Case 5: Δtmin < −mindist(o∗, n). MinBD(o∗, n) = 0.

Lemma 8. Given an object o∗ and a node n, the above-
defined function MinBD (o∗, n) satisfies MinBD(o∗, n)≤
min{MinBD(o∗, Do∗,o)|o is an object under node n}.

We can prove that MinBD(o∗, n) ≤ min{MinBD(o∗, Do∗,o)|o
is an object under node n}. Based on this function, we
can use indexes to prune nodes (groups of objects) and pro-
pose an index-based method. The pseudo-code is shown
in Figure 5. We first initialize R and dmax similar to the
non-index algorithm (line 3-4) and create an empty priority
queue Q (line 5). Then we insert the root of the IR-tree in
to Q (Line 6). We dequeue the top element n in Q until
MinBD(o∗, n) ≥ dmax (line 8). If MinBD(o∗, n) ≥ dmax, the
algorithm terminates (line 9) since all dominant regions of
remaining objects contain the safe region. If n is a node,
we get each of its children n′, calculate its dominant region
Do∗,n and dmin(n

′), and insert n′ into Q with its corre-
sponding dmin(n

′) (line 10-13). If n is an object, we update
R using the intersection between R and its dominant region
(line 15) and also update dmax (line 16).

4.3 Cache-based Improvement
Note that before finding the safe region R, we must com-

pute the answer set A. When computing A, we have already
traversed the IR-tree and visited some nodes and object-
s. To compute the safe region, we may still need to visit
some of these nodes and objects. For example, in Figure 4,
nodes N13, N14, N15 will be visited twice. More important-
ly, to compute the answer set and the safe region, we use
the same keyword set. Based on these observations, we can
cache some information to avoid unnecessary computation

Algorithm 2: Sense-Index(O, q)

Input: O: A collection of objects
q: A query

Output: Safe Region R
begin1

o∗ = the best answer for query q;2

R = the whole plane bounding all o ∈ O ;3

dmax = MaxBD(o∗,R) ;4

Q = an empty priority queue ;5

Build an IR-tree and insert root into Q ;6

while Q is not empty do7

n = Q.dequeue () ;8

if dmin(n) ≥ dmax then break;9

if n is a node then10

for each child n′ of n do11

dmin(n
′) = MinBD(o∗, n′) ;12

Insert n into Q with dmin(n
′) ;13

else14

R = R∩Do∗,n ;15

dmax = MaxBD(o∗,R) ;16

end17

Figure 5: Sense (Index) Algorithm

and facilitate the safe region computation. To this end, we
cache the following information.
(1) Inverted lists: When visiting a node, the answer compu-
tation step needs to load the inverted lists of query keywords.
In the safe region computation step, we may still use such
inverted lists, and thus we can cache them.
(2) Keyword MBR: In order to get MinBD(o∗, n) for a node n,
we have to usemindist(o∗, n) (andmaxdist(o∗, n)). The most
direct way is to use the object which is nearest (and farthest)
to o∗. However this method is inaccurate since some objects
in the MBR may contain no query keyword and this kind
of objects will not affect the safe region. To improve the
accuracy, for a visited node in the answer computation step,
we compute and store the MBR that contain at least one
keyword, called keyword MBR. We use the keyword MBR
to estimate the spatial information of this node.
(3) Score bounds: For a visited node in the answer compu-
tation step, for each node we can cache its virtual textual
information nt and Δt.

Thus during the answer computation step, we cache the
above information. Then in the safe region computation
step, we can utilize such information for pruning and thus
can improve the efficiency. The cache-based method has the
following two advantages. First, as IR-tree is a disk-based
structure, it is expensive to access nodes multiple times from
the disk and the cache-based method can reduce the num-
ber of disk accesses. Second, we can estimate the dominant
region for each object more accurately.
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4.4 Discussions
Checking Safe Region in the Client: In the client, we
need to check whether the current location is in a safe region.
As we use a piecewise function to represent a safe region, it
is very efficient to do the checking as follows. Assume the
current location is q′s, A = {o∗} and R = f i(θ)[θi ≤ θ <
θi+1](1 ≤ i ≤ m, θm+1 = θ1). First, we compute θ′ for q′s
which is the angle from line o∗q′ to the x-axis. Suppose
θ′ ∈ [θj , θj+1), 1 ≤ j ≤ m. We calculate r = f j(θ′) which is
the distance from o∗ to the boundary of R with this angle.
Therefore, if dist(o∗, q′s) ≤ r, q′s is inside A, and thus o∗

is still the best answer. Otherwise, the client should send a
new query to the server.
Supporting other functions: Our framework can be ex-
tended to support the ranking function in Equation 3 which
was used in [17]. Different from our ranking function, the
shape of the safe region of this function is composed of cir-
cles and lines. We can extend our techniques to compute
the dominant region and the safe region. Notice that in
their work, they only use polygons to approximate circles
and they cannot find the exact safe region. However we can
use the polar coordinate to efficiently compute the exact safe
region. Due to space constraints, we omit the details.

5. EXTENDING OUR TECHNIQUES TO SUP-
PORT TOP-K QUERIES

In this section, we extend our techniques to support top-k
queries. We propose an intersection-based method in Sec-
tion 5.1 and an approximate method in Section 5.2.

5.1 Intersection-based Method
To compute the safe region for a top-k query, an intu-

itive way is to first compute the safe region for each objec-
t o∗ ∈ A to the object set O − A (denoted by Ro∗,O−A)
and then compute their intersection (R = ∩o∗∈ARo∗,O−A).
We can compute Ro∗,O−A by intersecting the dominant re-
gion of o∗ to every object o ∈ O − A. Thus we have
R = ∩o∗∈A(∩o∈O−ADo∗,o) as stated in Lemma 9.

Lemma 9. Given a query q and its answer set A, the safe
region can be computed as:

R = ∩o∗∈A(∩o∈O−ADo∗,o). (6)

For example, in Figure 6(a), assume k = 2. The shaded
regions respectively denote Ro4,O−{o9}, Ro9,O−{o4}, and the
safe region for {o4, o9}. Obviously the safe region of {o4, o9}
is the intersection of Ro4,O−{o9} and Ro9,O−{o4}.
Based on Lemma 9, for each object o∗ in A, we first com-

pute Ro∗,O−A and then intersect Ro∗,O−A for every o∗ in
A. For the no-index based algorithm (Algorithm 1), we can
easily compute Ro∗,O−A by replacing O with O−A. For the
index-based algorithm (Algorithm 2), during the traversal of
the indexing structure, if we encounter an object in A, we
just ignore the object. If we encounter a node, we use the
same method, regardless of whether the node contains an
object in A. The main reason is as follows. If we prune a n-
ode n, all objects under the node cover the safe region. Thus
we can use the two algorithms to support top-k queries.
For example in Figure 6(a), consider A = {o4, o9}. We

first compute the safe region for o4, i.e., Ro4,O−{o4,o9}. D-
ifferent from finding the safe region for top-1 answer, we
do not need to compute Do4,o9 . Then, based on the safe
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Figure 6: Supporting top-k queries

region for o4, we traverse the IR-tree again to compute
Ro9,O−{o4,o9}. The intersection between Ro4,O−{o4,o9} and
Ro9,O−{o4,o9} is the safe region.

Next we discuss how to compute the intersection of regions
Ro∗,O−A for o∗ ∈ A. As each region is composed by a set
of hyperbolas, it is expensive to compute the intersection.
Although we use the polar coordination, different regions
have different origins and we have to transfer coordinates.
To alleviate this problem, we use a polygon to approximate
the region as follows. For each curve of the region, if it
is convex, we use the segment between its two end points
to approximate it; if the curve is concave, we use tangents
inside the safe region to approximate it. Notice that if we use
the index-based algorithm, this method needs to access the
index k times. If k is large, the performance will be poor.
To address this issue, we propose an alternative method.
The basic idea is to compute the intersection during the
traversal of the index, we only access the index once. Before
introducing our idea, we first define the dominant region of
an answer set A to an object o �∈ A.

Definition 5. Given a query q = (qs, qt, k), the domi-
nant region of A to o (o /∈ A) is:

DA,o = {q′s|∀o∗ ∈ A, score(q′, o∗) ≤ score(q′, o)}, (7)

where q′ = (q′s, qt, k).

ObviouslyR = ∩o/∈ADA,o. Based on this concept, we pro-
pose two incremental algorithms. For the no-index method,
we only need to use DA,o to replace Do∗,o. For the index-
based method, besides replacing Do∗,o with DA,o for an ob-
ject o, we need to redefine how to prune an object o (node
n). As o∗ may not be in R, we need to reselect a location
which must be in R. Based on Lemma 3, q must be in R.
Thus we use MinBD(q,DA,o) and MaxBD(q,R) to do pruning.
We can easily deduce a lower bound of the distance from q
to the boundary of DA,o based on the triangle inequality,
i.e., we set MinBD(q,DA,o) = MinBD(o∗, DA,o) − dist(o∗, q).
MaxBD(q,R) is the maximal distance from q to the boundary
of R. Then, we can use our framework to compute the safe
region. As DA,o and R are complex regions composed by
a set of hyperbolas, it is expensive to compute the region.
To address this issue, we use polygons to approximate the
regions as described in Section 3.

For example, in Figure 6(a), the dashed lines represent
the boundary of Do4,o1 and Do9,o1 respectively and their in-
tersection is DA,o1 . In the intersection method, we compute
the safe region first for o4 and then for o9. Instead, our in-
cremental method first computes DA,o for o /∈ A, and then
calculates their intersection to get the safe region.
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5.2 Approximate Method
The previous methods compute the global safe region, and

in this section we compute a local safe region (denoted by R̃)
which is a subset of the exact global safe region (R). As the
client’s locations are usually not far away from the current
query, we can use the local safe region to approximate the
safe region. This method has a big advantage that it is very
efficient to compute the local safe region and outperforms
the methods in Section 5.1. Next we discuss the details.

We can transfer our ranking function in Equation 1 into
the following form:

score(q, o) = α× (
dist(q, o) +

1− α

α
· (1− text(q, o)

)
.

In this way we can model each object o as a circle Co with
center o and radius of ro = 1−α

α
(1− text(q, o)). Then,

score(q, o) = α
(
dist(q, o) + ro

)
.

Let rq = max{dist(q, o∗) + ro∗ |o∗ ∈ A} and Cq denote
the circle centered at q and radius of rq. For an object
o∗ ∈ A, we have score(q, o∗) ≤ αrq, which is equivalent to
dist(q, o∗) + ro∗ ≤ rq, thus o∗ ∈ A if and only if the circle
Co∗ are inside Cq. Similarly an object o ∈ O−A if and only
if the circle Co are not inside Cq.
Then suppose the client moves to location q′. Let Cq′

denote the circle centered at q′ and radius of rq−dist(q, q′).
As Cq′ is inside Cq, for each object o∗ ∈ A, if Co∗ is inside
Cq′ , o

∗ is still a top-k answer of q′. Co∗ is inside Cq′ if and
only if

dist(o∗, q′) + ro∗ ≤ rq − dist(q, q′),

which can be written as

dist(o∗, q′) + dist(q, q′) ≤ rq − ro∗ . (8)

Obviously the locus of such points is an ellipse with q and
o∗ as the two focuses, denoted by Eo∗ = {q′s|dist(o∗, q′) +
dist(q, q′) ≤ rq − ro∗}. Obviously E = ∩o∗∈AEo∗ is a local
safe region, that is if q′ ∈ E , A is still the answer set. Since
q ∈ E as stated in Lemma 10, E is not empty.

Lemma 10. Given a query q and its answer set A, E is
not empty and q ∈ E.

We can use the polar coordinate to represent an ellipse.
As q is in each ellipse, we can take q as the origin of the polar
coordinate and thus can efficiently compute the intersection
of the k ellipses. Due to space constraints, we omit the
details about how to use polar coordinates to compute the
intersection. As the local safe region is small, we can enlarge
it as follows. Based on Equation 8, if rq increases, the eclipse
Eo∗ will become larger and so will region E . Thus we can
increase rq to enlarge the safe region as follows (Figure 6(b)).

Let γ = rq +� and Cγ
q denote the circle centered at q and

radius of γ. We compute the ellipse Eγ
o∗ = {q′s|dist(o∗, q′)+

dist(q, q′) ≤ γ−ro∗}, and region Eγ = ∩o∗∈AEγ
o∗ . Obviously

E ⊆ Eγ . Obviously A dominates the objects outside Cγ
q .

Since there may be other objects involved in Cγ
q − Cq, we

need to determine whether A dominates these objects. Let
Cγ
q − Cq denote the set of objects whose corresponding circles

inside circle Cγ
q but not inside Cq and DA,Cγ

q −Cq
denote the

dominant region of A to Cγ
q − Cq which is ∩o∗∈ADo∗,Cγ

q −Cq
.

Let R̃γ = Eγ ∩ DA,Cγ
q −Cq

. We can take R̃γ as a local safe

region since R̃ ⊆ R as formalized in Lemma 11.

Lemma 11. For any γ, we have
(1) R̃γ = Eγ ∩DA,Cγ

q −Cq
⊆ R, and

(2) If γ is ∞, R̃γ = R.

There are two challenges. The first one is how to compute
DA,Cγ

q −Cq
. We can find the objects in Cγ

q -Cq using any spa-

tial index structures (which is the objects with distance to
q between γ and rq). Then based on these objects, we can
efficiently compute DA,Cγ

q −Cq
based on the non-index based

algorithm. The second one is how to select γ. If γ is smal-
l, the local safe region is small, and the client queries have
large probabilities outside the region. If γ is large, there
will be more objects in Cγ

q − Cq, and it will take more time
to compute DA,Cγ

q −Cq
. Thus it is a tradeoff to select an ap-

propriate γ. We can determine the value based on the client
moving speed (e.g., m meter/per second). If we expect the
query location to be still in the safe region after s seconds,
we set γ = rq + k ∗m ∗ s.
6. EXPERIMENT

We implemented our proposed techniques and compared
with the state-of-the-art method MSK [17]. We used disk-
based IR-tree [2] as the index to compute the answers and
safe regions. We fixed the page size at 4KB.We used two real
spatial data sets composed of POIs in California and Beijing.
The details are listed in Table 2. We randomly generated 100
query trajectories and each query had 2-5 keywords. Each
trajectory consisted 1,000 points and the distance between
two consecutive points were 100 meters. All the experiments
were implemented in Java and conducted on a Linux server
with Intel(R) Xeon(R) 2.27GHz CPU and 4GB RAM.

Table 2: Data Sets
data set # of objects # of distinct key-

words
avg # of keywords
per object

California 544,906 132,552 7.39
Beijing 1,056,770 93,543 4.52

6.1 Evaluation of Cache-based Technique
In this section, we evaluate the cache-based technique. We

implemented two algorithms, Sense-Index without cache
and Sense-index with cache, where we used the incremental
intersection methods. Figure 7 shows the results. We can
see that the cache-based technique can significantly improve
the performance. For example, on the California dataset,
when k = 20, the cache-based time reduces the time from
1228 milliseconds to 55 milliseconds. This is because we can
reduce large numbers of IOs by using cached information.

6.2 Evaluation of Computing Algorithms
We first evaluate our different methods to compute the

safe region. We implemented tree algorithms, intersection
based method (Sense-Intersection), incremental intersection-
based method (Sense-IncreIntersection), and approximate-
based method (Sense-Approximate). Figure 8 shows the
experimental results. We can see that Sense-IncreIntersection
and Sense-Approximate outperform Sense-Intersection.
This is because Sense-Intersection has to traverse the
IR-tree k times. If k = 1, Sense-IncreIntersection and
Sense-Intersection achieved nearly the same performance.
Sense-Approximate was better than the other two meth-
ods as it reduces the number of dominant regions and esti-
mates the safe regions using smaller numbers of dominan-
t regions. As Sense-IncreIntersection is always better
than Sense-Intersection, next we only compare Sense-

IncreIntersection and Sense-Approximate.
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Figure 7: Evaluation on cache-based technique
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Figure 8: Evaluation of computing model on server

6.3 Sense-IncreIntersection vs. Sense-Approximate

We further compare Sense-IncreIntersection and Sense-

Approximate in terms of average server elapsed time, aver-
age client elapsed time, average communication cost (bytes)
and the update frequency which is the ratio of the num-
ber of queries issued to the server to the total number of
queries. The client issued a query for each point in a tra-
jectory. For Sense-Approximate, to calculate A and R,
we set s = 1000. Figure 9 shows the results by varying k.
Due to the space constraints, we only show the results on the
California dataset. On the Beijing dataset, we got similar re-
sults. We can see that Sense-Approximate took less server
time as it uses an approximate method to compute the safe
region. Although Sense-Approximate involved more client
time, it only took about 0.006 milliseconds which is negli-
gible. Sense-Approximate involved more communication
overhead since it needs to intersect hyperbolas and ellipses
which results in more vertexes. Sense-Approximate had
larger update frequency as it estimated the safe region which
is much smaller than the real safe region.

To further compare the two methods, we evaluate the
server time and communication cost in a time window (We
do not compare the client time as it is negligible). In our
experiments, the time windows is 10 minutes. We com-
pared the total server elapsed time to answer the queries
in the window. Figure 10 shows the results. We can see
that Sense-Approximate took less server time than Sense-

IncreIntersection, especially for larger k values. This is
because Sense-Approximate estimates the safe regions and
reduces the computation time. Sense-Approximate in-
volved nearly the same communication overhead with Sense-

IncreIntersection, especially for a large k. This is be-
cause our approximate method has better approximation
ratio for larger k, since it enlarges the space for larger k.

6.4 Comparison with state-of-the-art method
As the state-of-the-art method MSK [17] only support-

s the ad-hoc ranking function as discussed in Section 2.2,
we extend Sense-IncreIntersection to support the same
ranking function and compare with it. Figure 11 shows the
results by varying k. We can see that our method signifi-
cantly outperforms MSK in terms of server time, client time,
and communication cost. The main reason is as follows. For
server time, we use polar coordinates to represent the safe
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Figure 10: Sense-IncreIntersection vs. Sense-
Approximate (for 10 minutes, California)

region, which is much more efficient than the approximate
based method. For the communication cost, MSK needs
to return some objects to avoid involving false negatives.
That is also why the client time of MSK is much larger than
Sense: besides checking whether the current location is in
safe region, the client has to examine every returned objects.
Sense and MSK nearly achieve the same update frequency
as they generate similar safe region. The only difference is
that MSK approximates the safe regions using polygons and
our method computes the exact ones. Figure 12 shows the
results by varying velocity. We can see that our method still
significantly outperforms MSK in terms of the server time,
client time, and communication cost.

7. RELATED WORK
There have been many studies on spatial keyword search [9,

7, 22, 19, 18, 10, 13, 1, 3, 21]. Felipe et al. [4] addressed
a k-nearest-neighbor problem which returns k objects that
contain the query keywords and are near to the query loca-
tion. They proposed IR2-tree by adding signature files to
R-tree nodes. Cong et al. [2] proposed the IR-tree which
can support IR-based ranking functions. Zhou et al. [22]
and Hariharan et al. [7] studied range-based spatial key-
word search, which, given a rectangle and a set of keywords,
finds all relevant answers that are located in the rectangle.
Zhang et al. [19] studied collective keyword search, which
finds a set of objects that contain all the query keywords.
Lu et al. [10] studied reverse spatial and textual k nearest
neighbor search. Li et al. [9] studied direction-aware search
by considering directions. Obviously these problems are d-
ifferent from ours.

Wu et al. [17] studied moving spatial keyword search.
However they only supported ad-hoc ranking functions (Sec-
tion 2.2). Instead our method adopts a general ranking func-
tion. When we adapted our method to support their func-
tions, our method significantly outperforms their approach
in terms of both efficiency and communication cost.

Continuous queries have attracted much attention with
the popularity of location-based services. For a continuous
query, the query position was moving while the objects can
be static [15, 14, 16] or moving [6, 8, 5]. We consider the
former case. To avoid repeatedly issuing queries, the safe
region based method was proposed [20, 12]. However these
studies only considered spatial information and did not take
into account textual descriptions.

8. CONCLUSION
In this paper we have studied the moving top-k spatial

keyword search problem. For each query submitted to the
server, besides generating top-k answers we also constructed
its safe region. We proposed to use hyperbolas to represen-
t the safe region. To efficiently calculate the safe region,
we devised effective pruning techniques and utilized index-
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Figure 9: Sense-IncreIntersection vs. Sense-Approximate (varying k, California)
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Figure 11: Comparison with state-of-the-art method (varying k, California)
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Figure 12: Comparison with state-of-the-art method (varying velocity, California)

ing structures to improve the performance. We also devel-
oped incremental algorithms to efficiently compute the safe
region. We have implemented our proposed techniques and
experimental results show that our method significantly out-
performs state-of-the-art approaches.
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