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ABSTRACT
Location-Based Services (LBS) have been widely accept-
ed by mobile users recently. Existing LBS-based system-
s require users to type in complete keywords. However
for mobile users it is rather difficult to type in complete
keywords on mobile devices. To alleviate this problem, in
this paper we study the location-aware instant search prob-
lem, which returns users location-aware answers as users
type in queries letter by letter. The main challenge is to
achieve high interactive speed. To address this challenge,
in this paper we propose a novel index structure, prefix-
region tree (called PR-Tree), to efficiently support location-
aware instant search. PR-Tree is a tree-based index struc-
ture which seamlessly integrates the textual description and
spatial information to index the spatial data. Using the PR-
Tree, we develop efficient algorithms to support single prefix
queries and multi-keyword queries. Experiments show that
our method achieves high performance and significantly out-
performs state-of-the-art methods.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Type-ahead search, Keywords search, Spatial databases

1. INTRODUCTION
Location-Based Services (LBS) have become more and

more popular and attracted significant attention from both
academic and industrial communities recently. Many LBS
based systems, such as AT&T Location Information Ser-
vices1, have been deployed to provide users with location-
aware experiences, and they are widely accepted by millions
of mobile users, thanks to the modern mobile devices.

1http://www.wireless.att.com/lbs/
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Most of the existing studies adopt a spatial keyword search
based method to help users retrieve location-aware answer-
s [7, 5]. Given a set of objects with spatial information
and textual description (e.g., points-of-interest (POIs)) and
a user query with location and keywords, spatial keyword
search finds top-k relevant objects by considering the dis-
tance and textual relevance between the query and objects.
For example, if a user wants to find a gas station nearby, she
can issue a keyword query “gas station” to a LBS system,
which returns the relevant gas stations by considering the
user’s location and keywords.

Traditional spatial keyword search method requires users
to type in complete keywords for finding location-aware an-
swers. However for mobile users, typing a complete keyword
is tedious and also susceptible to errors. To alleviate this
problem, instance search (also known as type-ahead search
or search-as-you-type) [1, 17, 16, 3, 15, 14, 18] is proposed
to provide users with new search experiences, which return-
s relevant answers as users type in queries letter by letter.
Recently many systems, e.g., Google, have been deployed to
support instant search.

It is very natural to extend instant search to support s-
patial keyword search. To this end, in this paper we study
the location-aware instant search problem. In our method,
as a user types in queries letter by letter, the system re-
turns the location-aware answers on-the-fly, and provides
the user with instant replies. Figure 1 provides an exam-
ple of location-aware instant search over 13 POIs. At ev-
ery keystroke a user types in our system, the system takes
her current input string as a query and returns the relevant
location-aware answers instantly. For instance, as shown in
Figure 1(b), when the user types in a partial query“park s”,
the nearest objects containing complete keyword“park” and
the prefix “s”, i.e., o9 and o8, are returned. Obviously this
new search method can help users to find desired answers in
a more friendly way than the traditional methods.

(a) Data Sample. (b) Search Scenario.

Figure 1: An example for location-aware instant
search on query “park s” and located at “×”.
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It is rather challenging to support location-aware instant
search due to the requirement of a high interactive speed.
Existing studies [13, 21] devise hybrid index structures to
address this challenge. However, [13] has very limited filter-
ing power for short or frequent query prefixes. [21] cannot
support multi-keyword queries and it also consumes a large
amount of memory. Moreover, both of them cannot perfor-
m well for large data sets since they fail to fully utilize the
textual and spatial pruning simultaneously.

To address these limitations, in this paper, we propose a
novel index structure, prefix-region tree (called PR-Tree), to
efficiently support location-aware instant search. PR-Tree
is a tree-based index structure. Different from traditional
indices, PR-Tree considers both textual partitioning and s-
patial partitioning simultaneously to build the index. Thus
it can achieve great improvement of efficiency for location-
aware instant search.

Our contributions are summarized as follows.

• We propose a novel data structure, called PR-Tree. It
seamlessly integrates the spatial information and tex-
tual description to index the spatial data.

• Using our PR-Tree index structure, we develop ef-
fective algorithms to efficiently answer single prefix
queries and multi-keyword queries.

• We have conducted thorough experiments and the ex-
perimental results show that our method achieves high
performance and significantly outperforms state-of-the-
art methods.

The rest of this paper is organized as follows. We formu-
late the problem of location-aware instant search and discuss
related work in Section 2. We introduce our proposed index
structure PR-Tree in Section 3. We develop efficient search
algorithms in Section 4. In Section 5, we discuss how to
support sophisticated ranking functions in PR-Tree. Exper-
iments are provided in Section 6. Finally, we conclude the
paper in Section 7.

2. PRELIMINARIES
In this section, we first formalize the problem of location-

aware instant search in Section 2.1, and review related work
in Section 2.2.

2.1 Problem Definition
Data Model. Our work considers a set of objects, O =
{o1, o2, . . . , o|O|} in a spatial database. Each object o ∈ O
consists of spatial information o.l and textual information
o.W , denoted by o = (l,W ). Specifically, the spatial in-
formation o.l represents a location in the two-dimensional
geographic space, and the textual information o.W is a set
of distinct words, denoted by o.W = {w1, w2, . . . w|o.W |}.
For example, Figure 1 shows 13 objects, each of which has a
location and a set of words, e.g., o2 = (l2, {palace, street}).
Query Model. Our paper focuses on supporting location-
aware instant query q that consists of a location q.l, a set of
complete keywords q.W = {w1, w2, . . . , w|q.W |} that a user
has typed, a prefix q.p that the user is typing in and an
integer k, denoted by q = (l,W, p, k). Given a set of objects
O, the answer of q, denoted by R, is the k nearest objects
sorted by their distances to query location q.l, where each
object o satisfies

(1) object o contains all complete keywords in the query, i.e.,
o.W ⊇ q.W , and
(2) o has at least one word with q.p as its prefix, i.e., ∃w ∈
o.W, p � w, where p � w denotes that p is a prefix of w.

We assume that ∀wi, wj ∈ q.W that wi(wj) is not a prefix
of wj(wi). Let dist(q, o) represent the distance between
query location q.l and object location o.l. In this paper, we
use Euclidean distance as the distance measurement.

Problem Formulation. Based on these notations, we for-
mulate the location-aware instant search problem.

Definition 1 (Location-Aware Instant Search).

Consider a set of objects O = {o1, o2, . . . , o|O|} and a location-
aware instant query q = (l,W, p, k). It returns the top-k ob-
jects R ⊆ O such that each object o ∈ R satisfies o.W ⊇ q.W
and ∃w ∈ o.W, p � w, sorted by their distances to the query
location.

To make it consistent with existing work [13, 21], we only
use the distance to rank the answers. We will discuss how
to support other complex ranking functions in Section 5.

2.2 Related Work
Location-Aware Instant Search: Existing studies de-
vised different index structures [13, 21] to support location-
aware instant search.

Ji et al. [13] proposed an R-tree based method called
Filtering-Effective Hybrid Indexing (FEH). The method first
builds an R-tree on top of locations of all objects. Then, in
each R-tree node, it adds textual filters with possible prefix-
es contained by the objects in this node. Given a query,
it traverses the R-tree from the root to the leaves using
the best-first-search strategy [10]. Whenever a tree node is
reached, it first employs the filter to decide whether to insert
its child nodes or objects into a priority queue. The search
stops when the first k answers have been found. However,
the FEH algorithm is very expensive for short and frequent
prefixes, since the number of the potential candidate objects
is extremely large, and the filters have poor pruning power.

Materialized Trie (MT) is a trie based method [21]. First,
it builds a trie structure on top of words of all objects.
Each leaf node has an inverted list to record those object-
s which contain the corresponding word. To incorporate
spatial pruning power into the trie structure, spatial infor-
mation is added in each trie node. For a trie node with a
prefix p, it divides the whole query space into R regions and
maintains an upper-bound score for each region to indicate
that a query with prefix p will reach the maximal score in
this region. However it is rather expensive to materialize
the information for all trie nodes. Thus it proposes to s-
elect M nodes for materialization. The main problem for
MT is that it will consume a large amount of memory. To
achieve high performance, it needs to divide the space into a
large number of smaller regions, thus incurs significant of s-
pace utilization. Another limitation of MT is that it cannot
support multi-keyword queries, which is common in many
applications.

Spatial Keyword Search: Spatial keyword search has
been widely studied in the database community [24, 4, 9,
7, 5, 23, 22, 20, 19, 6, 11]. Given a set of points-of-interest
(POIs) and a query with keywords and location, the spatial
keyword search aims to find the relevant POIs by consider-
ing both spatial proximity and textual relevance. [24, 9, 4]
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(a) Spatial partition for the
same prefix “s”.

(b) Textual partition for a
specific region.

Figure 2: Spatio-textual partition.

solved the range query problem by the use of R-tree. Fe-
lipe et al. [7] integrated signature files into R-tree. Cong et
al. [5] proposed the IR-tree by combining the inverted files
and R-tree. Yao et al. [23] studied how to support approxi-
mate string matching. Wu et al. [22] studied spatial keyword
search for moving objects and Lu et al. [20] tracked reverse
spatial and textual k nearest neighbor search.

Traditional spatial keyword search method requires users
to type in complete keywords to find location-aware answers.
In this paper, we study a more user-friendly search method,
location-aware instant search. The method returns relevant
POIs on-the-fly when users type in keywords letter by letter,
which helps users find information with less typing efforts.

3. PREFIX-REGION TREE
In this section, we introduce a novel index structure, called

prefix-region tree, to support efficient location-aware instan-
t search. We first introduce our basic idea in Section 3.1
and give an overview of the prefix-region tree in Section 3.2.
Then, we respectively discuss the tree construction and up-
date in Section 3.3 and Section 3.4. Finally we discuss some
issues on PR-Tree in Section 3.5.

3.1 Basic Idea
We can extend existing textual index structures (e.g., trie)

or spatial index structures (e.g., R-Tree) to support location-
aware instant search. Using a trie index based on the textual
information of objects, we can adopt a text-only strategy to
obtain the top-k answers as follows. Given a query q, we first
retrieve the objects which satisfy the textual constraints, i.e.,
such o ∈ O that o.W ⊇ q.W and ∃w ∈ o.W, q.p � w, and
then sort them in ascending order by their distances to q.l to
get the top-k answers. Obviously, this method is inefficient
since it never considers the spatial pruning, and may involve
a huge number of objects which are not the top-k answers.

On the other hand, using an R-tree index based on the
spatial information of objects, we can employ a spatial-only
strategy. Specifically, we can adopt the best-first traversal
method [10] to iteratively find the nearest objects. Then, we
examine whether the objects satisfy the textual constraints
mentioned above. However, this method fails to consider the
textual pruning since the traversal over the R-tree ignores
the words of the underlying objects.

To address these problems, we aim to build a more effec-
tive index structure which integrates both the textual and
spatial information seamlessly. To achieve this goal, we have
the following observations.

(1) Given a specific prefix p, the objects with p may scatter
in different areas. Based on the spatial distribution, we can
partition the objects into several regions to facilitate effec-
tive spatial pruning. Figure 2(a) shows objects containing
prefix “s” (represented by circles), which can be partitioned

Figure 3: Prefix region.

into three regions. Using these regions, we can estimate
objects’ distance bounds to the query location, and utilize
spatial pruning to efficiently obtain top-k answers.
(2) Given a specific region r, the objects in r may contain
different prefixes but it is hard to distinguish them by spa-
tial information only. Thus, we can partition the objects
based on the prefixes, in order to facilitate effective textu-
al pruning. Figure 2(b) provides some objects in a region.
We can partition the objects based on different prefixes they
contain, e.g., “s” and “p”, and efficiently prune the objects
dissatisfying the textual constraints.

If we partition the objects by simultaneously using the
textual and spatial information, we can fully utilize the spa-
tial textual pruning at query time. However it is non-trivial
to devise an index structure that seamlessly combines tex-
tual and spatial partitions. To address this challenge, we
propose the prefix-region tree in the following sections.

3.2 Prefix-Region Tree
For ease of presentation, we first introduce an important

concept, called prefix region. Intuitively, a prefix region con-
sists of a prefix for textual partition and a region for spatial
partition. Formally, the prefix region is defined as follows.

Definition 2 (Prefix Region). Let p denote a prefix
and r denote an MBR(Minimum Bounding Rectangle). A pre-
fix region is defined as a combination of prefix p and region
r, denoted by f = 〈p, r〉.

Given a prefix region f , we use Of to represent the ob-
jects satisfying f , that is, each object o ∈ Of has prefix f.p
and its location o.l is within region f.r. Take Figure 3 as
an example. Consider a prefix region f = 〈“s”, r〉 and a set
of objects O = {o1, o2, o3, o4, o7, o8, o9, o10, o13}. We have
Of = {o1, o2, o4, o8, o9, o13} since all objects in Of have pre-
fix “s” and their locations are within r, as illustrated by the
dashed-line rectangle labelled with prefix “s” in Figure 3. In
addition, we define that a prefix region f1 is subsumed by
another prefix-region f2, if and only if 1) f2.p is a prefix
of f1.p, denoted by f2.p � f1.p, and 2) f2.r encloses f1.r,
denoted by f1.r ⊆ f2.r.

Then, we define the prefix-region tree (or PR-Tree for
short) as follows. PR-Tree organizes all objects in O in
a hierarchical manner, where each node is a prefix region2.
In the PR-Tree, each non-leaf node subsumes all its child
nodes. Each leaf node, say fl = 〈pl, rl〉 is associated with
an object list, denoted by ObjectList, which contains the
objects with prefix pl located within region rl. In particular,
the root is froot = 〈∅, rall〉, where rall represents the MBR of
all objects in O. Obviously, in a PR-Tree, the region sizes of
nodes in lower levels are smaller than those in higher levels.

2For ease of presentation, we use “prefix region” and PR-
Tree node interchangeably.
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Figure 4: A PR-tree.

In order to avoid large tree depths, we introduce a param-
eter M to allow at most M objects contained in every leaf.
Figure 4 provides an example of a PR-Tree. The string on
the top-left of the node box denotes the prefix f.p, and the
inner frame denotes the region f.r.

3.3 Tree Construction
We construct a PR-Tree in a top-down manner. We first

initialize the root node froot = 〈∅, rall〉 with object set O.
Then, we split O into subsets to generate child nodes. Simi-
larly, we recursively split the generated nodes until the num-
ber of objects in each leaf node is not greater than M . Ob-
viously, the essential task is how to split a node f . To this
end, we consider both textual and spatial partitioning.

Textual partitioning groups the objects Of of node f
based on the textual information. Specifically, consider a
set of words Wf with prefix f.p contained by the objects
in Of . Based on Wf , we can construct a radix trie3 where
each path from the root to a node corresponds to a prefix.
Using the radix trie, we can define Next(f.p) as the child
nodes of f.p in the trie. For example, given a set of key-
words Wf ={pavement, palace, park, parliament, po-

lice, post}, we have Next(“p”) ={pa, po} and Next(“pa”)=
{pavement, palace, par}. Based on prefixes in Next(f.p),
we can partition objects Of into subsets for generating child
nodes in the PR-Tree. Figure 5(a) provides an example of
textual partitioning. The root node “∅” is partitioned in-
to two child nodes respectively with prefixes “s” and “p” in
Next(∅). Then, node with prefix “p” is further partitioned
into two child nodes respectively having “pa” and “po”.

Spatial partitioning groups objects Of of node f based on
the spatial information. Specifically, we partition region f.r
into subregions, each of which contains subsets of Of . In
this paper, we consider one of the most fundamental strate-
gies, i.e., to partition one region into four non-overlapped
subregions by splitting at a central point horizontally and
vertically. We omit discussing other partitioning methods
in this paper due to the space limitation.

More formally, we partition region f.r into four regions,
rll (lower left), rul (upper left), rlr (lower right) and rur

(upper right), and respectively represent the object sets in
the regions as Oll

f , Oul
f , Olr

f and Our
f . A straightforward

method is to simply partition r into four regions of the same
size, which is used in a quad-tree [8]. However, this method
may result in skew distribution of objects, that is, some
regions may contain more objects than the others. To make
the partitioning as even as possible, i.e., each subset contains
nearly the same number of objects, we select the centroid as

3A radix trie is a space-optimized trie structure where each
node with only one child is merged with its child.

(a) Textual Partition.

s

(b) Spatial Partition.

Figure 5: Textual partition and spatial partition.

the center for spatial splitting. As shown in Figure 5(b), the
objects are partitioned into four sub-regions. Note that the
partition strategies may produce less than four sub-regions,
since some regions contain no object.

Based on the textual and spatial partitioning, we present
the algorithm for constructing a PR-Tree, as shown in Algo-
rithm 1. The algorithm first initializes a root node froot =
〈∅, rall〉, and puts the root with its corresponding objects
O into a stack. Then, the algorithm iteratively employs the
following textual and spatial partitioning operations on each
node f , which is illustrated in Figure 6.

1) The algorithm employs textual partitioning to obtain sev-
eral intermediate nodes, i.e. 〈p1, rp1〉, 〈p2, rp2〉, . . . , 〈pk, rpk 〉,
where pi ∈ Next(f.p).

2) For each intermediate node 〈pi, rpi〉, the algorithm em-
ploys spatial partitioning to further generate four nodes,
〈pi, rllOpi

〉, 〈pi, rulOpi
〉, 〈pi, rlrOpi

〉 and 〈pi, rurOpi
〉. These nodes

are then assigned to be the children for the node 〈p, rO〉.
This above node-splitting procedure stops when every leaf

node contains no more than M objects.

Algorithm 1: ConstructPRTree (O, M)

Input: O: An object set; M : a parameter
Output: T : A constructed PR-Tree
begin1

Initialize a PR-Tree T .root ← 〈∅,rO〉 ;2

Initialize a stack, Stack← ∅ ;3

Stack.Push(〈 T .root, O 〉 ) ;4

while Stack not empty do5

〈 n, On 〉 ← Stack.Pop() ;6

if |On| ≤M then7

n.ObjectList ← On ;8

else9

Ct ← TextPartition (n.p, On) ;10

foreach c ∈ Ct do11

Cts ← SpatialPartition (c) ;12

n′ ← CreateTreeNode ( Cts ) ;13

Stack.Push( 〈n′, Cts〉 ) ;14

end15

3.4 Tree Update
In this section, we discuss the update operations, i.e., in-

sertion and deletion of the PR-Tree.

3.4.1 Insertion
We discuss an algorithm to insert an object o = (l,W )

into a PR-Tree. The basic idea is to traverse the PR-Tree
and select an appropriate node for insertion. Specifically, for
every word wi in o.W , the algorithm traverses the PR-Tree
from the root. For a visited node f , the algorithm identifies
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Figure 6: PR-tree construction.

the nearest child node fc that fc.p � wi with respect to o.l.
After selecting the child node fc, the algorithm updates fc
as follows. If o.l is not contained within region fc.r, the al-
gorithm enlarges region fc.r to a region containing o.l. We
can recursively apply the above procedure until reaching a
leaf node fl. If fl contains less than M objects, we simply
insert o into fl’s object list. Otherwise, we employ the tex-
tual and spatial partitioning in Section 3.3 to further split
fl, and insert o into a new leaf node.

The time complexity scales to the height of the PR-Tree
tree. Formally, it takes O(logN) to finish an insertion op-
eration, where N is the number of objects.

3.4.2 Deletion
We propose a bottom-up algorithm for deleting an object

from a PR-Tree. When deleting an object o, the algorithm
first finds all the leaf nodes which containing o, and removes
it from the object list in the leaf nodes. Then, it updates the
intermediate nodes of the PR-Tree in a bottom-up way. The
basic idea is to examine whether the MBRs of intermediate
nodes are affected by the object deletion. Specifically, if o.l
is located at the border of the MBR of a given intermediate
node, the MBR needs to be re-calculated based on the MBRs
of its child nodes. The algorithm terminates when reaching
the root of the PR-Tree.

Note that, according to our tree construction, a node must
have at least two child nodes. Therefore, if a node f is empty
after deletion, we examine the number of its child nodes for
the parent node of f . If f is an only child, we merge the
node f to its parent node.

Then we analyse the time complexity. Since a deletion
operation needs to examine |o.W | paths from leaves to root,
the time complexity is bounded to O(|o.W | logN).

3.5 Discussion on PR-Tree
In this section, we discuss three issues on PR-Tree. The

first is on the balancing issue, the second is on the space
complexity and the third is on the storage alternatives.

3.5.1 Balancing Issue
PR-Tree is not a balanced tree, since the textual partition-

ing cannot guarantee that each child node contains the same
number of objects4. However, it does not affect the search-
ing efficiency on the PR-Tree due to the following reasons.

1) The height of our PR-Tree is not very large since the
fanout of each intermediate node is large. Let Σ denote the
alphabet generating all words. The fanout of each interme-
diate node is at most |Σ| × 4, which is usually large. We
constructed PR-Trees on two real datasets in our experi-
ments, and the heights were respectively 6.35 and 5.29.

2) There are no rather long branches due to our spatial
partitioning strategies. Since we choose centroid as the cen-

4It is similar to a radix-tree since we employ Next() function.

ter for spatial partitioning, the descendant nodes would con-
tain roughly the same number of objects, leading to the
maximum length of branches scaling to logN . For exam-
ple, in our experiments, the maximum branch lengths of the
PR-Trees on the two datasets were respectively 12 and 14.

Therefore, although the PR-Tree is not balanced, the time
of traversing different branches would differ insignificantly.

3.5.2 Space Complexity
In this section, we analyse the space complexity of the

PR-Tree. Recall that the partitioning process of a node
terminates when it contains at most M objects. Therefore,
we can prove that the upper bound of the total number

of leaf nodes in a PR-tree is within [
∑ |oi.W |

M
,
∑ |oi.W |], as

shown in Lemma 1.

Lemma 1. The bound for the total number of leaf nodes

in a PR-tree is [
∑ |oi.W |

M
,
∑ |oi.W |]

Proof. We first prove that any object will appear in at
most |o.W | leaf nodes of the PR-tree. According to the
building process, the regions for the nodes with the same
prefix will never be overlapped. Each word of the objects
in O will finally be included in one leaf node, and hence an
object o is contained in at most |o.W | leaf nodes. Thus the
upper bound is

∑ |oi.W |.
On the other hand, each leaf node contains M objects,

thus the lower bound is
∑ |oi.W |

M
.

Based on Lemma 1, the indexing size is scalable to the
volume of the data set, i.e.,

∑ |o.W |.
3.5.3 Storage Alternatives
In this paper, we only consider maintaining the PR-Tree

in memory. Nevertheless, PR-Tree is feasible to be disk-
based. Since each non-leaf node only needs to store a few
number of attributes, i.e., prefix, MBR and child list, and each
leaf node needs to store the ObjectList, the information
on one node is possible to be stored in one page of disk.
However, in this paper, we mainly focus on devising the
PR-Tree in memory and demonstrate its supreme efficiency,
while taking the disk-based alternative as future work.

4. SEARCH ALGORITHMS
In this section, we first propose an algorithm for single-

prefix queries in Section 4.1, and then extend the algorithm
to support multi-keyword queries in Section 4.2.

4.1 Algorithm for Single-Prefix Queries
We first consider a single prefix query q with empty complete-

keyword set, i.e., q.W = ∅. Given the query, we employ the
effective best-first traversal algorithm (BFT) [10], to effi-
ciently retrieve the top-k answers using the PR-Tree. The
BFT algorithm uses a priority queue for maintaining the
nodes and objects in the PR-Tree that need to be visited.
For each node f in the queue, we compute the minimum
distance between query location q.l and the corresponding
MBR f.r, denoted by MIND(q.l, f.r). For each object o in the
queue, we compute its distance to q.l, i.e., dist(q, o). Then,
we sort the elements in the queue in ascending order by their
minimum distances.

Due to the space limitation, we omit the details for BFT
and only show an example of Algorithm 2 in this section.
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Figure 7: Multi-keyword query processing.

Example 1. Consider the objects in Figure 1 and the
PR-Tree in Figure 4. For a query q = {(40.5,−74.0), ∅,
‘p’, 2}, we compute top-2 answers as follows.
Step 1: Enqueue root node with 〈∅,0〉.
Queue: 〈∅,0〉
Step 2: Dequeue the top element 〈∅,0〉, expand its child n-
odes containing prefix ‘p’, calculate their minimal distances
to q.l and enqueue them.
Queue: 〈p,0〉 〈p,1.19〉
Step 3: Dequeue the 〈p,0〉, expand all objects containing
prefix ‘p’, and enqueue them.
Queue: 〈o10,0.38〉 〈o12,0.54〉 〈p,1.19〉
Step 4: Dequeue 〈o10,0.38〉. Since it is an object, we direct-
ly put it into the result list. So does 〈o12,0.54〉. Now, top-2
answers have been retrieved. Algorithm terminates.

Algorithm 2: kNNQuery (p, l, k, T )

Input: p : Prefix; l: Location; k: Number; T : PR-Tree
Output: R: The top-k result list
begin1

Initialize a priority queue Q ← ∅ ;2

Q.Enqueue(〈 T .root, 0〉) ;3

while R.Size() < k & Q not empty do4

n← Q.Dequeue() ;5

if n is an object then Insert n into R ;6

else if n is a leaf node then7

foreach Object o contains prefix p do8

Q.Enqueue(〈 o, dist(l, o.l)〉);9

else if n is an intermediate node then10

foreach Child node c ∈ of n do11

if c.p � p or p � c.p then12

Q.Enqueue(〈 c, MIND(l, c.r)〉) ;13

end14

4.2 Algorithm for Multi-Keyword Queries
In this section, we extend our algorithm to support queries

with multiple keywords, i.e., q.W = ∅. We first introduce
an intersection-based method and then propose a cost-based
method to improve the performance.

4.2.1 An Intersection-based Method
To support multi-keyword queries by PR-Tree, a straight-

forward method is to simply extend the algorithm for single-
prefix queries. Specifically, consider a query q = (l,W, p, k)
where q.W = ∅. Each time when a dequeued element is a
leaf node, we can only enqueue the objects which contain all
keywords in q.W . To efficiently examine whether an object
contains all keywords in q.W , we pre-compute and maintain
a global inverted list that maps each word to the objects
containing such word, denoted by I(w). Thus, we can effi-
ciently obtain the promising objects containing the q.W by
computing the intersection of I(wi).

Φ

{palace}

s
1 2 3

(a) Rare word “palace”. (b) Frequent word “park”.

Figure 8: Two circumstances for occurrence list.

Figure 7 provides an example to illustrate the method.
Consider a query with W = {park} and prefix “s”. We
first obtain the object list using inverted list I(park), i.e.,
{o4, o8, o9}. Then, we examine each object contained in a
leaf node, say “st”, and only enqueue the objects contained
in I(park), i.e., o4.

Next, we analyse the time complexity of the above method.
Since the size of ObjectList in a leaf is strictly less than or
equal to M , and the size of the I(w) is maximally equal to
the size of the data N , thus the time complexity for inter-
section on one node is O(M logN · |W |).

However, in the worst case, we have to examine all the leaf
nodes, which leads to low performance. Thus, according to
Lemma 1, the overall time complexity is O(NM logN ·|W |).
Obviously, this method visits many unnecessary leaf nodes
which do not contain all keywords in q.W . For example, giv-
en query “palace s”, for the prefix “s”, there may be many
leaf nodes that need to be visited. However, the number
of leaf nodes containing word “palace” is rather small (See
Figure 8(a)). We can see that the expanding child nodes
labelled with ‘2’, ‘3’ is useless for producing the answers.

4.2.2 A Cost-based Method
To avoid unnecessary traversal, we must include addition-

al textual information for early termination. Inspired by our
observation in Figure 8(a), for any keyword w on node n,
we can explicitly use a child list to indicate that only the
children of n in the list will contain the keyword w. We call
such a list an occurrence list, denoted by OL(n, w). Thus,
when traversing to such a node n, we only need to expand
∩ OL(n,wi), wi ∈ q.W into the priority queue to prune the
unpromising descendants.

Obviously, if we store occurrence lists for all possible key-
words on every tree node, the pruning power will be fully
utilized. However, it will result in high memory cost, since
the space requirement for storage will be N · |V ocabulary|
in a worst case. In fact, sometimes occurrence list may have
no effect on the performance. It happens when a keyword is
frequent in the spatial database, and thus many leaf nodes
may contain such word. Figure 8(b) shows this case. The
keyword “park” appears in the sub-tree of every child of the
root node, and thus it is useless to store occurrence list for
“park” on the root node.

Therefore, we need to judiciously select keywords and n-
odes for storing occurrence lists. To this end, we first con-
sider the cost of storing OL(n,w) as its length.

Definition 3 (Cost).

Cost(OL(n,w)) = Length(OL(n,w))

Each OL(n, w) will benefit query processing by ignoring
those child nodes of n which do not contain keyword w.
Therefore, the benefit can be described in two parts: (1)
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the overhead saved on priority queue operations, e.g. en-
queue or dequeue, and (2) the overhead saved on leaf nodes
intersection. Let CL(n) denote the original children list for
node n. Let PQO(n′) denote the overhead on priority queue
operations for all nodes rooted at n′ and LNO(n′) denote the
overhead on intersection for all leaf nodes in sub-tree of n′,
we define the benefit of OL(n, w) as:

Definition 4 (Benefit).

Benefit(OL(n,w)) =

Σ{n′|n′∈CL(n)∧n′ /∈OL(n,w)}(PQO(n
′) + LNO(n′)),

where p(w) is the probability for word w being queried.

Conventionally, PQO(n′) is equal to the number of tree
nodes under n′, and PQO(n′) is estimated by the number of
objects under n′.

Finally, for a given amount of memory budget B, we want
to maximize the overall benefit for different selected key-
words and nodes. The formal problem is stated as follows.

Definition 5. (Memory-Constrained Keywords N-

odes Selection Optimization) Given the budget B, the
keyword set K and the node set N , we want to find a collec-
tion of keyword-node pairs, that achieve maximum benefits
within the budget B.

(n∗, w∗)← argmax
∀(n,w)∈K×N

Benefit(OL(n,w))

s.t.
∑

Cost(OL(n,w)) ≤ B .

We now prove this problem is NP-Complete.

Theorem 1. Memory-Constrained Keywords and Nodes
Selection Optimization is NP-Complete.

Proof. The problem can be reduced from the 0-1 K-
napsack Problem. Since the budget B is equivalent to the
knapsack’s volume, Cost(OL(n,w)) is the size of the items
and Benefit(OL(n,w)) can be looked as item’s value. Thus,
proof is done.

We propose a greedy heuristic algorithm to solve this

problem. We sort all the (n,w) by Benefit(OL(n,w))
Cost(OL(n,w)

in de-

scending order, then choose the current best (n,w) so long
as the budget is not exhausted. Previous study [12] showed
that the approximate ratio for greedy algorithm is 2. Note
that, the Cost(OL(n,w) is far smaller than the budget B,
thus the results would not be bad. Example 2 shows a sce-
nario for multi-keyword search on a materialized PR-Tree.

Example 2. Consider a multi-keyword query “palace s”
at location (40.5,-74.0).
Step 1: We start to push the 〈∅,0〉 into the queue:
Queue: 〈∅,0〉
Step 2: 〈∅,0〉 is dequeued, and we check child nodes 〈s,1.84〉,
〈s,1.22〉 and 〈s,1.38〉. Since only the node 〈s,1.84〉 has been
materialized with keyword “palace”, we discard the other t-
wo unpromising nodes and only enqueue node 〈s,1.84〉.
Queue: 〈s,1.84〉
Step 3: The objects list for node 〈s,1.84〉 is {2,4,13}, and we
intersect it with the global inverted list for keywords “palace”
{2}. Finally only object o2 has been enqueued;
Queue: 〈o2,2.76〉
Thus, we get the answers for query “palace s” on the ma-
terialized PR-Tree.

5. EXTENSION ON RANKING FUNCTIONS
Existing studies on keyword search in spatial database [5]

can support more sophisticated ranking functions, which
consider not only the spatial proximity but also textual rel-
evancy between queries and objects. Here we discuss how
to use our PR-Tree to support such ranking functions.

Given a query q and an object o, a general ranking func-
tion Dst to compute their similarity can be defined as

Dst(q, o) = α(1− dist(q, o)

maxDs
) + (1− α)

rel(q, o)

maxDt
,

where maxDs is the maximum distance on space, maxDt

is the maximum distance on text, and rel(q, o) is the tf*idf
based textual relevance between q and o.

rel(q, o) =
∑

s∈q.W

tf(s, o) ∗ idf(s,O),

where tf(w, o) is the term frequency of term w in object o
and idf(w,O) is the inverse document frequency of term w
in the object set O.

Next we discuss how to use the PR-Tree to support the
new ranking function. We add a list of 〈keyword,weight〉
pairs on each node of the PR-Tree, which indicates that for
all objects in the sub-tree of this node, the maximum tf*idf
for keyword is weight. Formally speaking, on a tree node f
and for a specific keyword w, the weight is calculated by:

weight(w, f) = max
o∈SubTreeObj(f)

tf(w, f) ∗ idf(w,O).

where SubTreeObj(f) denotes all the objects in the sub-tree
of node f .

At query time, we can compute the textual relevancy by∑
w∈q.W weight(w, f), then aggregate the spatial distance

to obtain the ranking score Dst(q, f). This overall value can
be used as the maximum boundary value for a given query
q at node f on the PR-Tree, facilitating effective pruning.

Similarly, our PR-Tree is also capable of supporting the
ranking function in [21].

6. EXPERIMENT
In this section, we report the experimental results. We im-

plemented two baseline algorithms, FEH [13] and MT [21],
as mentioned in Section 2.2. For FEH, we used R*-tree [2]
as reported in the paper. We compared our PR-Tree based
method (denoted by PRT) with the two baseline methods.

6.1 Experiment Setup
We used two real datasets in our experiments.

1) OpenStreet: We extracted 2 million POIs for day-life
in USA, such as government buildings, parking lots, schools,
etc., from the OpenStreet open-source spatial database5.

2) Business: We obtained 5 million POIs for business in
USA, such as cafe, company, restaurant, etc., from a popular
directory website, Factual6.

Table 6.1 provides some statistics of the two data sets,
such as number of objects, data size, etc.

All baseline indices and our PR-Tree were memory-resident.
The parameters of the baseline algorithms were set as the
default values in the original papers. All the algorithms
were implemented in C++, and all the experiments were

5http://planet.openstreetmap.org
6http://www.factual.com

391



Table 1: Statistics of the two datasets.
Dataset OpenStreet Business

Number of objects 2,003,608 5,073,369
Original Data Size 183M 1,461M
# of distinct words 97,342 565,510

Avg. # of words per object 3.23 5.45

conducted on an 2.66MHz Intel Xeon processor and 24GB
RAM, running on Ubuntu 11.04.

6.2 Comparison for Single-Prefix Queries
We evaluated the query performance for single prefix queries.

Since the MT algorithm could not support word segmenta-
tion on text, we conducted the following two experiments.
We first compared our method PRT with FEH under the
word-segmentation setting, and then compared PRT with
MT by taking the whole text of each object as a single string.

6.2.1 PRT vs. FEH
We randomly chose 1000 words from the vocabulary, and

generated three prefixes from one selected word. For exam-
ple, consider a selected word “park”. We generated three
prefixes, i.e., “p”, “pa” and “par” for query evaluation. Com-
pared with long prefixes, the short prefixes were much better
for evaluating the query performance, since users always s-
tart from scratch when typing to search.
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(b) Business dataset.

Figure 9: PRT vs. FEH for single-prefix queries
with different k (prefix lengths are within [1, 3]).

Figure 9 shows the experimental results on the two dataset-
s with different k. We can see that our algorithm outper-
formed the FEH algorithm in both datasets. On the Open-

Street dataset, our PRT algorithm is about 15 times faster
than FEH. On theBusiness dataset, PRT was about 5 times
faster than FEH. The improvement of the performance was
mainly attributed to our novel index structure, since PR-
Tree can utilize both textual and spatial pruning simultane-
ously. Using the PR-Tree, we can efficiently find the promis-
ing objects which not only contain the query prefix, but also
are near our query location. In contrast, FEH only utilizes
a pure spatial index and does not consider textual pruning.
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(b) Business dataset.

Figure 10: PRT vs. FEH for single-prefix queries
with different prefix lengths (k = 20).

We also conducted an experiment to evaluate the perfor-
mance on different prefix lengths between PRT and FEH.

Given 1,000 selected words mentioned above, we generated
all possible prefixes for each word. Figure 10 provides the
results for k = 20. Though there were lots of candidates
for shorter prefixes, they could still be distinguished by d-
ifferent nodes on PR-Tree that represent different regions.
Thus, PRT achieved better performance than FEH.

6.2.2 PRT vs. MT
To compare PRT and MT, we took the text of each POI as

a single string without word-segmentation. Similar to pre-
vious experiments, we generated 1000 prefixes whose length
were within [1, 3]. Figure 11 provides the experimental re-
sults on both datasets for different k values.

We can see that the PRT algorithm was much more ef-
ficient than the MT algorithm. The poor performance of
MT was due to its trie-based index structure, which failed
to utilize effective spatial pruning.
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Figure 11: PRT vs. MT for single-prefix queries
with different k (prefix lengths are within [1, 3]).

6.2.3 Index Sizes
We then examined the space complexity of different in-

dices. Table 2 provides the memory usage on two data sets.
As shown, PRT consumed less memory, compared with FEH
and MT. To achieve better performance, FEH maintained
two filters on each R-Tree node for a huge amount of pre-
fixes, and MT materialized a lot of tree nodes with a small
granularity of regions. Compared with these algorithms, our
method only maintained a PR-Tree, which scaled to the size
of original data as proved in Section 3.5.2.

Table 2: Index size for three algorithms (MB).
Data Size PRT FEH MT

OpenStreet 183 122 223 231
Business 1,461 487 1,328 2,344

6.3 Comparison for Multi-Keyword Queries

6.3.1 Tuning of Materialization Size
We examined the query performance of our cost based

algorithm (Section 4.2) by varying memory budget B, to
investigate the impact of materialization size on the perfor-
mance. On each data set, we randomly selected 1000 objects
and randomly chose 3 keywords from o.W in each selected
objects as a query. Then, we took the first two keywords
as complete words, and generated a random length of pre-
fix from the last keyword. For example, given an object
with text “Washington State Driving School”, one possi-
ble keyword query generated from it was “Driving Wash-

ington Sc”.
Figure 12 provides the experimental results for multi-keyword

queries on the OpenStreet dataset. We can see that differ-
ent materialization sizes had great impact on query perfor-
mance. Specifically, we can see that the average query time
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with different budgets.
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Figure 13: Time Scala-
bility.
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tial partition strategies
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ranking function.

varies dramatically when B is 0% to 60% of the original
data size. When B is larger, the difference is not significan-
t. Based on this observation, we could judiciously select a
proper memory budget in practice, in order to balance the
space and time. In the remainder of our experiments, we set
the budget percentage as 70%.

6.3.2 Efficiency on Multi-Keyword Search
We evaluated performance for multi-keywords queries for

our intersection-based method (denoted by PRT-I), cost-
based method (denoted by PRT-C) and the baseline FEH
algorithm. All the settings were the same as those in Sec-
tion 6.3.1
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Figure 16: PRT vs. FEH for multi-keyword queries
with different k (2 complete keyword and 1 prefix).

Figure 16 provides the experimental results on the two
datasets for different k values. We can see that our PRT-C
algorithm was approximately 100 times faster than the FEH
algorithm for both data set. This significant improvement
results from the fact that PR-Tree has guaranteed that the
visited leaf nodes satisfy the constraints on query prefix q.p,
thus it would not bring any unnecessary work of traversal.
On the other hand, FEH might traverse many unpromising
leaf nodes which could not produce any top-k answer. More-
over, the PRT-I algorithm achieved poor performance. This
is because that PRT-I did not utilize the occurrence list and
a lot of unnecessary nodes might be visited at query time.

In addition, we compare the algorithms by varying dif-
ferent numbers of complete keywords. Figure 17 provides
the experimental results. As PRT-C was always better than
PRT-I, in the figure we only show the results of PRT-C and
FEH. We can see that the time of PRT increases sub-linearly
with the increase of complete keyword numbers. This shows
that our cost-based method of materialization achieves good
performance on multi-keywords queries.

6.4 On Spatial Partitioning Strategies
We evaluated the query performance on two spatial parti-

tioning settings, i.e., planar center or centroid as the quad-
split point, which mentioned in Section 3.3. We first built
two different PR-Trees, then applied single prefix and multi-
keyword queries to make comparisons. All the query settings
were the same as those in Sections 6.2 and 6.3.
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Figure 17: PRT vs. FEH for multi-keyword queries
with different keyword numbers.

Figure 14 shows the results, where “PLNC” denotes the
“planar center” and “CTND” denotes the “centroid”. We
can see that, by using centroid as the splitting point, we
could achieve about 40% speed improvement for single pre-
fix query compared to planar center. This is because using
the centroid will result in a more even partitioning of objects
on space. However, for multi-keyword queries, the improve-
ment is not significant. The reason is that utilization of
occurrence list results in early terminations, and thus long
branches have little effect on the query time.

6.5 Scalability
We examined the scalability of our best algorithm on the

Business dataset, since it contains POIs in the whole re-
gion of USA. We used the same experimental settings as we
applied in Sections 6.2 and 6.3.

6.5.1 Time Scalability
We first evaluated the time scalability for single-prefix and

multi-keyword queries with different sizes of the original da-
ta. Figures 13 shows the experimental results. We can see
that the query time for both queries increased sub-linearly
when the data size increased from 1 to 5 millions. From the
results we can see that our PRT algorithm could support
location-aware instant search on large datasets.

6.5.2 Space Scalability
We evaluated the space scalability of PRT. Figure 18(a)

provides the experimental results for single-prefix queries.
We can see that with the increase of data sizes, both the size
of the PR-Tree and the inverted lists in the leaf nodes in-
creased sub-linearly, which was consistent with the analysis
on space complexity mentioned in Section 3.5.2. To further
improve the storage utility, we can store the inverted list in
disk, and only maintain the PR-Tree in memory.

Figure 18(b) provides the experimental results for multi-
keyword queries, where the global keyword inverted index
and keyword occurrence materialization were included. We
can see that the size of the global keyword inverted index
consumed little memory, and the total materialization size
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was adjusted linearly to the size of the data. Thus the in-
dexing memory of our PR-tree also scaled to the data size.
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Figure 18: Space Scalability.

6.6 Evaluation on Construction and Updates
In this section, we evaluated the performance of PR-Tree

operations, i.e., construction, insertion, deletion, on the two
datasets. We first conducted 1000 insertion and deletion
operations for testing. Figure 3 shows that the PR-Tree can
be efficiently maintained.

Table 3: Performance of tree operations.
Operation OpenStreet Business

Construction 147 s 1066 s
Materialization 432 s 6559 s

Insertion per Object 0.480 ms 2.940 ms
Deletion per Object 0.093 ms 0.290 ms

We also conducted the throughput experiments on PRT.
We generated a series of operations, i.e., 10% insertions, 10%
deletions and 80% random queries. Figure 19 shows the high
throughput of our PRT algorithm.
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Figure 19: Evaluation on throughput (10% inser-
tions, 10% deletions, 80% top-k queries).

6.7 Evaluating Ranking Functions
We evaluated the efficiency of the tf*idf based ranking

function mentioned in Section 5. We generated 1000 queries,
each of which only contained complete words(the length var-
ied from 1 to 3).

Figure 15 provides the experimental results on the Open-

Street dataset with different k values. We can see that
with the increase of parameter α, the average query time
decreased. This is because for large parameter α, the impact
of spatial filtering became insignificant. The experimental
results showed that although we focus on prefix search, the
PR-Tree can still support the tf*idf ranking function.

7. CONCLUSIONS
In this paper, we have studied the problem of location-

aware instant search. We proposed a novel indexing struc-
ture PR-Tree to support location-aware instant search. We
used prefix-regions to partition the spatial data by consid-
ering the spatial information and textual description simul-
taneously. We discussed how to construct and update the
PR-Tree. Using the PR-Tree, we devised effective algorithm-
s to support single prefix queries and multi-keyword queries.

We proposed a best-first traversal based algorithm to answer
single prefix queries. We developed an intersection-based al-
gorithm and a cost-based algorithm to answer multi-keyword
queries. We have implemented our techniques and experi-
mental results show that our method achieved high perfor-
mance and outperformed state-of-the-art approaches.
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