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ABSTRACT
In this paper we study the problem of kNN search on road
networks. Given a query location and a set of candidate
objects in a road network, the kNN search finds the k near-
est objects to the query location. To address this problem,
we propose a balanced search tree index, called G-tree. The
G-tree of a road network is constructed by recursively parti-
tioning the road network into sub-networks and each G-tree
node corresponds to a sub-network. Inspired by classical
kNN search on metric space, we introduce a best-first search
algorithm on road networks, and propose an elaborately-
designed assembly-based method to efficiently compute the
minimum distance from a G-tree node to the query location.
G-tree only takes O(|V | log |V |) space, where |V | is the num-
ber of vertices in a network, and thus can easily scale up to
large road networks with more than 20 millions vertices. Ex-
perimental results on eight real-world datasets show that our
method significantly outperforms state-of-the-art methods,
even by 2-3 orders of magnitude.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases

Keywords
KNN search, Road network, Spatial databases

1. INTRODUCTION
Mobile devices (e.g., smartphones) have become more and

more popular in our daily life. To provide users with location-
based search experiences, location-based service(LBS) sys-
tems(e.g., Foursquare and Google Maps for Mobile) have
been widely deployed and accepted by mobile users.

K nearest neighbor (kNN) search on road networks is a
fundamental problem in LBS. Given a query location and a
set of static objects (e.g., gas stations) on the road network,
the kNN search problem finds k nearest objects to the query
location. kNN search on road networks has many real-world
applications. For example, a tourist looking for k nearest
“gas stations”while driving in a city requires a kNN query.
As another example, an ambulance searching for k nearest
“hospitals”in an emergency case also requires a kNN query.
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There are a large number of studies on kNN search on
road networks [3, 8, 9, 14, 15, 16, 20, 23]. However, exist-
ing methods still cannot support very large road networks
(e.g. the whole USA road network). The main limitation
of these approaches is either high memory consumption or
heavy search overhead. Consider the state-of-the-art ap-
proaches, SILC [23] and ROAD [15, 16], SILC requires
O(|V |1.5) space to store all-pair shortest paths and ROAD
employs Dijkstra-like algorithm for kNN finding, which has
very poor scalability and efficiency on large road networks.
For example, for the whole USA dataset(24M vertices), we
estimate that ROAD needs over 105 days for pre-processing,
and SILC consumes approximately 618GB memory!

In this paper, our goal is to design an elegant index which
supports efficient kNN search on large road networks. In-
spired by the classical R-tree on Euclidean space, we design
our index on road networks by considering two core features.
The first one is a balance tree structure, and we propose a
balanced search tree index, called G-tree. The G-tree of
a road network is constructed by recursively partitioning
the road network into sub-networks and each G-tree node
corresponds to a sub-network. The second one is to enable
best-first search on such tree-based index, since the best-first
algorithm has been widely applied and shown to be superior
in performance [7]. However, it is non-trivial to devise the
best-first search algorithm on G-tree since it is not easy to
efficiently calculate the graph distance between the query lo-
cation and a tree node, which is an essential operation in the
best-first search algorithm. To address this issue, we define
a shortest-path distance function which returns the mini-
mum distance between a tree node and the query location,
and propose an elaborately-designed assembly-based method
to efficiently implement this function. The assembly-based
method employs a dynamic-programming algorithm rather
than the conventional network-expansion search algorithm,
thus significantly reduces the overhead for calculating this
function. G-tree only takes O(|V | log |V |) space, hence, it
can easily handle very large road networks, even with more
than 20 million vertices. Experiments on eight real-world
datasets show that our method significantly outperforms
state-of-the-art methods, even by 2-3 orders of magnitude.
To summarize, we make the following contributions.

• We propose a balanced search tree index, G-tree, which
has high pruning power and a small index size.

• Based on the G-tree, we propose the dedicated assembly-
based method to efficiently compute the minimum dis-
tance between the query location and a G-tree node.
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Then, we devise a best-first search algorithm to re-
trieve the top-k answers on road networks.

• Our method has theoretical and practical superiority
over existing methods. To our best knowledge, this is
the first work challenging large data sets with more
than 20M vertices for kNN search on road network.

The structure of this paper is organized as follows. We
define the kNN search problem and review related works in
Section 2. We present our G-tree index and and an efficient
search algorithm in Section 3&4. We discuss the path recov-
ery, G-tree construction, maintenance and extension issues
in Section 5. Experiment results are reported in Section 6.

2. PRELIMINARIES

2.1 Problem Formulation
Data Model. We model a road network as an undirected
weighted graph G = 〈V, E〉, where V is a set of vertices and
E is a set of edges. Each edge (u, v) in E has a weight (e.g.,
distance, travel time, etc.), which is a positive value. Given
a path between vertex u and vertex v, the sum of weights
of edges along the path is called the distance of the path.
A path with the shortest distance is called a shortest path.
Let SP(u, v) denote a shortest path between u and v, and
SPDist(u, v) denote the shortest-path distance between u
and v. We will discuss how to extend our method to support
directed graphs in Section 5.4.

For example, Figure 1 shows a road network. The weight
of edge (v2, v6) is 3. SP(v4, v9) = v4v3v2v6v7v8v9 is a shortest
path between v4 and v9 and SPDist(v4, v9) = 15.
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Figure 1: A road network.

Query Model. Given a graph G, a query q is a triple
q = 〈vq, C, k〉, where vq is a query location, C is a subset of
vertices in G (e.g., gas stations), and k is an integer. Each
vertex in C is called an object.

Top-k Answers. Given a graph G and a query q = 〈vq, C, k〉,
the answer, denoted by R, is a set of k nearest objects to
the query location such that,

(1) The size of R is k, i.e., |R| = k;
(2) Each answer is an object, i.e., R ⊆ C;
(3) ∀v ∈ R, ∀u ∈ C −R, SPDist(vq, v) ≤ SPDist(vq, u).

For simplicity, in the paper we assume that both the query
location and the objects are at vertices. If not, we can use
heuristic method, e.g. to place them on the nearest vertex.

For example, in Figure 1, consider q = 〈v4, {v3, v9, v15}, 2〉.
There are three objects (which are denoted by solid rectan-
gles). We have SPDist(v4, v3) = 2, SPDist(v4, v9) = 15 and
SPDist(v4, v15) = 21. The top-2 answers are R = {v3, v9}.
2.2 Related Works
Existing studies [15, 16, 20, 23] addressed the same prob-

lem as ours. INE [20] extended the Dijkstra algorithm [4]

by expanding neighbor vertices from the query location un-
til kNN answers have been found. IER [20] improved INE
by utilizing spatial pruning techniques, e.g, taking the Eu-
clidean distance as a bound, to prune unpromising expan-
sions. IER and INE are ‘blind’ algorithms since they can
neither capture the global distance from objects to the query
location nor prune unnecessary objects efficiently.

ROAD [15, 16] also extended the Dijkstra algorithm by us-
ing a hierarchical structure. ROAD recursively partitions a
road network into sub-networks, pre-computes the shortest-
path distances of “shortcuts” within a sub-network, and or-
ganizes them in a hierarchical manner. By using Dijkstra-
like network expansion, ROAD can skip sub-networks which
do not contain an object. However it cannot prune sub-
networks with objects which are widely scattered. For ex-
ample, if the objects are uniformly distributed (e.g., Mcdon-
ald’s or gas stations), ROAD will degenerate to the Dijkstra
algorithm and have to traverse the whole network. Thus
ROAD performs poorly, especially on large networks. We
call ROAD a ‘half-blind’ algorithm as it partially captures
global distance information.

Although ROAD uses a hierarchical structure, it is differ-
ent from our method as follows. First, the tree structures
are different. G-tree is a balanced search tree while ROAD
is not. Second, the kNN finding paradigms are fundamen-
tally different. ROAD employs an expansion-based method
and cannot utilize the global distance information, e.g., the
shortest-path distance from a query location to tree nodes,
to do effective pruning. G-tree adopts a best-first search
algorithm which only accesses tree branches containing ob-
jects and thus reduces the space space significantly. Thus
our method significantly outperforms ROAD (see Section 6).

SILC [23] pre-computes the shortest paths between all
vertex pairs and uses a quadtree-based encoding to store
the shortest paths. It utilizes the materialized pairs to find
k nearest neighbors by using Euclidean distance and stores
the shortest-path distance as a bound. However if there are
large numbers of objects clustered in a small region, SILC
is inefficient. Moreover, SILC consumes O(|V|1.5) storage
space and incurs high pre-processing overhead, and thus it
is impractical for large road networks.

There are some studies which assume that the object set
is given [3, 8, 9, 14]. They pre-compute and materialize
results of potential queries on the graph. However these ap-
proaches highly depend on the given object set. In addition
they involve high pre-computation cost and large memory
overhead.

[21, 17, 28] studied spatial keyword search on road net-
works and in metric space. Their problem is different from
ours. They focused on how to combine keyword information
and distance information to compute top-k answers, while
we emphasized on finding k nearest neighbors.

kNN Queries for Moving Objects on Road Networks:
There are quite a number of studies on kNN queries for
moving objects monitoring [10, 19, 26, 27]. These works
studied the problem of finding nearest moving objects (e.g.,
taxies) to a location and focused on dealing with frequent
updates of moving objects. In our case, we emphasize on
the efficiency of the kNN queries on the static objects (e.g.,
gas stations), of which the ideas and implementations are
totally different.

Single-Pair Shortest Path Queries: Many previous stud-
ies [1, 2, 6, 11, 12, 24, 25] addressed the problem of shortest
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Figure 2: A G-tree (The solid vertices in the graph are borders. f = 2 and τ = 4.).

path queries between two vertices on road networks. How-
ever, it is worth noting that kNN search is radically different
from single-pair shortest path solution. Though kNN search
involves shortest path computation, the key point of kNN
search is to quickly find those promising top-k objects rather
than to calculate the shortest path from the query location
to all candidate objects then rank them. Therefore, it is not
feasible to apply them to handle the kNN search on road
networks effectively. Although HEPV [11] and HiTi [12]
also organize the road network into a hierarchical structure,
they still use ‘half-blind’ Dijkstra-like network expansion,
while G-tree is fundamentally different which fully utilizes
the best-first search and employs dedicated assembly-based
method to calculate the distance between the query location
to a tree node.

3. GRAPH TREE
In Euclidean space, tree structured indices, e.g., R-tree,

have salient features to support kNN search. We would like
to incorporate two of these features in our G-tree to sup-
port kNN search on road networks. The first feature is the
balanced tree structure that can help to prune subtrees. We
will discuss it in this section. The second feature is the effi-
cient computation of the minimum distance from the query
location to tree nodes which is used for best-first search,
which will be discussed in Section 4.

3.1 G-tree
Before we present the G-tree structure, for ease of pre-

sentation, we first introduce some important concepts which
will be used throughout the paper.

Definition 1 (Graph Partition). Given a graph G =
〈V, E〉, where V is the vertex set and E is the edge set of G, a
partition of G is a set of subgraphs, i.e., G1 = 〈V1, E1〉,G2 =
〈V2, E2〉, . . . ,Gf = 〈Vf , Ef 〉 such that

(1)
⋃

1≤i≤f Vi = V,
(2) For i �= j, Vi ∩ Vj = ∅, and
(3) ∀u, v ∈ Vi, if (u, v) ∈ E, then (u, v) ∈ Ei.
Vertices in different subgraphs may be connected in the

original graph G but be separated in different subgraphs
after partitioning. To differentiate such vertices from others,
we define a concept, called borders.

Definition 2 (Borders). Given a subgraph Gi of G, a
vertex u ∈ Vi is called a border if ∃(u, v) ∈ E and v /∈ Vi.
We use B(Gi) to denote the border set in graph Gi.
A subgraph Gi is called a super-graph of another subgraph
Gj if Vi ⊇ Vj and Ei ⊇ Ej . Based on these concepts, next
we formally define the G-tree structure.

Definition 3. A G-tree is a balanced search tree that
satisfies the following properties.

(1) Each node represents a subgraph. The root node cor-
responds to the graph G. The subgraph of a parent node is a
super-graph of those of its child nodes.

(2) Each non-leaf node has f(≥ 2) children.

(3) Each leaf node contains at most τ(≥ 1) vertices. All
leaf nodes appear at the same level.

(4) Each node maintains its border set and a distance ma-
trix. In the distance matrix of a non-leaf node, the columns/rows
are all borders in its children and the value of each entry is
the shortest-path distance between the two borders. In the
distance matrix of a leaf node, the rows are all borders in
the node, columns are all vertices in the node, and the value
of each entry is the shortest-path distance between the border
and the vertex.

Conditions (1)-(3) ensure that the G-tree has a balanced
search tree structure. It is worth noting that for each node
we do not maintain the physical subgraph. Instead, we only
maintain a dummy subgraph ID. As there is a one-to-one
correspondence between a node and a subgraph, for simplic-
ity, “nodes” and “subgraphs” are interchangeably used if the
context is clear. In the paper “nodes” refer to G-tree nodes
and“vertices” refer to vertices in the graph. Condition (4) is
used to efficiently compute the shortest-path distance from
a vertex u to a vertex v, i.e., SPDist(u, v). We will use it
to compute the minimal distance from a vertex u to a node
n, i.e., SPDist(u, n) = min{SPDist(u, v)|v is a vertex in n},
which will be discussed in Section 4.

Example 1. Figure 2(b) shows the G-tree of the road
network in Figure 2(a). The borders of each node are shown
in the rectangle box under the node. For example, G1 has
three borders {v1, v6, v10}. The distance matrix of each
node is listed around the tree node. For G1, its children
G3 and G4 contain five borders {v1, v6, v7, v8, v10}, thus the
rows/colmuns of G1’s distance matrix are the five borders.
The set of vertices of each leaf node are shown in the circled
numbers. For instance, G4 contains two borders {v8, v10}
and four vertices {v8, v9, v10, v11}. In G4’s distance matrix,
the rows are borders {v8, v10} and the columns are vertices
{v8, v9, v10, v11}. The entry (v8, v11) = 11 since the shortest
distance between border v8 and v11 is 11.

3.2 G-tree Construction
We use a graph partition based method to build the G-

tree. Initially, we take the graph G as the root. Then we
partition G into f equal-sized subgraphs (i.e., |V1| ≈ . . . ≈
|Vf |) and take them as the root’s children. Next we recur-
sively partition the children and repeat this step until each
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leaf-node’s subgraph has no more than τ vertices. Notice
that during the partitioning, for each subgraph, we will add
its borders into the corresponding node. For example, in
Figure 2(a), suppose f = 2 and τ = 4, the original graph G0
is partitioned into two subgraphs G1 and G2. G1 is further
partitioned into G3 and G4. G2 is partitioned into G5 and G6.
Graph partitioning is an important step in G-tree con-

struction. The optimal one should not only generate ap-
proximately equal-sized subgraphs, but also minimize the
number of borders. However, it has been proven that the
optimal graph partitioning is NP-Hard [5]. In this paper,
we adopt a famous heuristics algorithm, called the multi-
level partitioning algorithm [13]. The multilevel partition
algorithm can guarantee that each subgraph nearly has the
same size and thus G-tree is a balanced search tree.

For distance matrices of G-tree, we need to compute the
shortest-path distance between a border and a border/vertex(non-
leaf/leaf). We can use a single source shortest-path algo-
rithm, e.g. Dijkstra algorithm, to compute the graph dis-
tance. It starts from each border/vertex within one G-tree
node, expands the edges until if all borders of such node have
been reached. In Section 5.2, we will introduce an efficient
bottom-up algorithm to speed up this procedure.

Notice that we focus on the memory-based index in this
paper and leave the disk-based index as our future work.

3.3 Space Complexity of The G-tree
Height: The height of the G-tree is H = logf

|V|
τ

+ 1.

Number of Nodes: At level 0, there is one node (the root).

In level i, there are f i nodes. There are |V|
τ

leaf nodes. Thus

the total number of nodes is O( f
f−1

|V|
τ
) = O( |V|

τ
).

Number of Borders: A road network is usually modeled
as a planar graph [23]. We also consider the planar graph in
the space analysis. Consider a node on the i-th level. Its bor-
ders are generated by its parent which has |V|/f i−1 vertices.
According to the Planar Separator Theorem [18], the f -

partition on the parent totally involves O(log2 f ·
√|V|/f i−1)

borders. Hence, the total number of borders in the G-tree
is O(∑1≤i≤H log2 f ·

√|V|f i−1) = O( log2 f√
τ
|V|).

Distance Matrix: The average number of borders in a
leaf node is O(log2 f ·

√|V|/fH+1) = O(log2 f ·
√
τ). Thus,

the total distance-matrix size of all leaf nodes is O(log2 f ·
τ1.5 |V|

τ
) = O(log2 f ·

√
τ |V|). For each non-leaf node, the

rows/columns of its distance matrix are the union of borders
in its children. Each node on level i generates O(log2 f ·√|V|/f i) borders. Thus the matrix size of each node at

level i is O(log22 f · |V|/f i). As there are f i nodes at level i,
the distance-matrix size at level i is O(log22 f · |V|). Hence
the total matrix size of non-leaf nodes is O(H log22 f · |V|) =
O(log22 f · logf |V|

τ
· |V|).

Overall Space: The overall size of the G-tree is O( |V|
τ

+
log2 f√

τ
|V|+log2 f ·

√
τ |V|+ log22 f · logf |V|

τ
· |V|) = O(log2 f ·√

τ |V|+log22 f ·logf |V|
τ
·|V|). It is worth noting that log22 f,

√
τ

and logf
|V|
τ

are small, thus G-tree is scalable.

4. SEARCH ALGORITHM
In this section, using the G-tree index, we propose a best-

first kNN search algorithm for road networks.

4.1 Algorithm Overview
The basic idea of our algorithm is as follows. Suppose

we can use function SPDist(vq, n) to compute the minimum

distance between the query location vq and a tree node n.
Given a query q = 〈vq, C, k〉, we first locate the leaf nodes of
query location and objects using a hash table which maps a
vertex to the corresponding leaf node. For each leaf node n
found, we construct an occurrence list L(n) which is com-
posed of IDs of objects that appear in the leaf node (line 1).
Then for each ancestor na of such a leaf node, we also con-
struct an occurrence list L(na), which is composed of IDs of
na’s children that contain objects. Thus from the root, we
can easily figure out which nodes contain objects based on
the occurrence list. Figure 7(a) illustrates an example for
C = {v3, v9, v15}. For example, for G5, its occurrence list is
{v3} as vertex v3 is an object. For G2, its occurrence list is
{G5,G6} as nodes G5 and G6 contain objects.

Then we initialize a priority queue Q and a result set R
(line 2). Initially we put 〈root, SPDist(vq, root) = 0〉 into
Q (line 3). We iteratively dequeue the first element e of Q
and handle it separately according to whether e is an object,
a leaf node or a non-leaf node(line 4 to line 18). Figure 3
shows the pseudo-code of our algorithm.

It is worth noting that if R has k answers, the algorithm
can safely terminate. This is because the distance from the
query location vq to the kth answer is currently the best.
Thus our algorithm can correctly find the top-k answers.

Example 2. Consider the query q = {v4, {v3, v9, v15}, 2}
on the graph in Figure 1. We first construct the occurrent
list and then compute the top-2 answers as follows.

Step 1: Enqueue the root node, i.e. 〈G0, 0〉.
Queue: 〈G0, 0〉
Step 2: Dequeue 〈G0, 0〉. Find two child nodes in the occur-
rence list of G0, i.e. G1 and G2. Get SPDist(v4,G1) = 7 and
SPDist(v4,G2) = 0. Enqueue G2,G1.
Queue: 〈G2, 0〉 〈G1, 7〉
Step 3: Dequeue 〈G2, 0〉. Find two child nodes in the occur-
rence list of G2, i.e. G5 and G6. Get SPDist(v4,G5) = 0 and
SPDist(v4,G6) = 16. Enqueue G5,G6.
Queue: 〈G5, 0〉 〈G1, 7〉 〈G6, 16〉
Step 4: Dequeue 〈G5, 0〉. Find a vertex v3 ∈ G5. Get
SPDist(v4, v3) = 2. Enqueue v3.
Queue: 〈v3, 2〉 〈G1, 7〉 〈G6, 16〉
Step 5: Dequeue 〈v3, 2〉. R = {v3}.
Queue: 〈G1, 7〉 〈G6, 16〉
Step 6: Dequeue 〈G1, 7〉. Find a child in the occurrence list
of G1, i.e., G4. Get SPDist(v4,G4) = 13 and enqueue G4.
Queue: 〈G4, 13〉 〈G6, 16〉
Step 7: Dequeue 〈G4, 13〉. Find a vertex v9 ∈ G4. Get
SPDist(v4, v9) = 15. Enqueue v9.
Queue: 〈v9, 15〉 〈G6, 16〉
Step 8: Dequeue v9. R = {v3, v9}. Top-2 answers have
been generated. Algorithm terminates.

The biggest challenge in the algorithm is to efficiently im-
plement SPDist(vq, e) under three circumstances: MinDist-
Inside-Leaf,MinDist-Outside-Leaf, andMinDist-Outside-
NonLeaf. To address this problem, we will present our
dedicated assembly-based method in next section.

4.2 Implementing SPDist Function
One significant issue remained in Algorithm 1 is to calcu-

late the SPDist(vq, e) where e is a vertex or node. This is
the most important part in the framework of G-tree, since it
will greatly affect the efficiency of kNN search. In this sec-
tion, we discuss how to efficiently implement the function
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Algorithm 1: KNNSearch (q = 〈vq, C, k〉, G)
Input: q = 〈vq, C, k〉: A query; G: A G-tree
Output: R: The top-k result list;
Compute the occurrence list L based on C ;1

Initialize priority queue Q = φ and result set R = φ ;2

Q.Enqueue(〈G.root, 0〉) ;3

while R.Size() < k & Q is not empty do4

e← Q.Dequeue() ;5

if e is an object then Insert e into R;6

else if e is a leaf node then7

if vq ∈ e then MinDist-Inside-Leaf (vq, e);8

else MinDist-Outside-Leaf (vq, e) ;9

foreach v ∈ L(e) do10

Q.Enqueue(〈v, SPDist(vq, v)〉) ;11

else if e is a non-leaf node then12

foreach child node c ∈ L(e) do13

if vq is in c then14

Q.Enqueue(〈c, SPDist(vq, c) = 0〉) ;15

else16

MinDist-Outside-NonLeaf (vq, c) ;17

Q.Enqueue(〈c, SPDist(vq, c)〉) ;18

Figure 3: KNNSearch Algorithm

SPDist(vq, e). First, we introduce two naive methods, and
then we present our dedicated assembly-based method.

Naive Method 1: A naive solution is to pre-calculate the
minimum distances between all vertices and nodes/vertices.
In this case, we can use O(1) time to implement the SPDist

function. Obviously the space complexity isO(|V|2+ |V|
τ
|V|) =

O(|V|2). Apparently when |V| becomes large, this method
may incur an unacceptable memory cost and is not scalable.

Naive Method 2: Another naive method is to utilize bor-
ders based on the following “closure” property.

Lemma 1 (Closure). Given a subgraph Gi = 〈Vi, Ei〉,
for any vertex u /∈ Vi and v ∈ Vi, any shortest path between
u and v must contain a border in B(Gi), i.e., for any shortest
path SP(u, v), ∃w ∈ B(Gi), w ∈ SP(u, v).

Proof. We omit the proof due to space constraints.

As shown in Figure 2(a), consider v9 ∈ G1 and v4 ∈ G5. As
v4 and v9 are not within the same subgraph, any path from
v4 to v9 must contain a border in G1, e.g., v6. Similarly, any
path must contain a border in G4, e.g., v8.
Consider a query location vq, a vertex v, and vq /∈ leaf(v),

where leaf(v) denotes the leaf node of v. Based on Lemma 1,
we can decompose SPDist(vq, v) into two sub-paths. The
first one is from vq to B(leaf(v)) and the second one is
from B(leaf(v)) to v. Thus we have

SPDist(vq, v) = min
w∈B(leaf(v))

(
SPDist(vq, w) + SPDist(w, v)

)
.

(1)
Similarly, given a query location vq and a tree node n such

that vq /∈ n, we have

SPDist(vq, n) = min
w∈B(n)

SPDist(vq, w). (2)

Based on this property, we propose another naive method.
We pre-compute and store the shortest-path distances of
all vertex-border pairs. Thus we can efficiently implement
MinDist-Outside-Leaf andMinDist-Outside-NonLeaf.
The space complexity is O(|V|log2 f · |V|√

τ
= log2 f√

τ
|V|2). To

supportMinDist-Inside-Leaf, we need to pre-compute and
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Figure 4: An Assembly-based Method.

store shortest-path distance between all vertexes in the same
leaf node. The space complexity is O(τ |V|). Thus the to-

tal space complexity is O( log2 f√
τ
|V|2 + τ |V|). Although this

method reduces the storage space, it is still not scalable to
large graphs.

Assembly-based Method: We have an observation that
many shortest paths share common sub-paths, and we do not
need to store shortest-path distances for all pairs between
vertices and borders. Instead we only materialize some pairs
and assemble these pairs to implement the SPDist function.
We use an example to show our idea. For example, in Fig-
ure 2(a), consider two vertices v4, v5 and a border v8. The
shortest path from v4 to v8 is v4v3v2v6v7v8 and the shortest
path from v5 to v8 is v5v3v2v6v7v8. The two paths share
one of the common sub-path v2v6v7v8 which is the shortest
path from border v2 to border v8. This common path can
be used to compute the shortest path from v4 to v8 and the
shortest path from v5 to v8. This implies us to only store
the shortest-path distances of pairs between borders (e.g.,
(v2, v8)) within one G-tree node.

Thus, we pre-compute and store the following pairs. (1)
For a leaf node, we maintain the vertex-border pairs in the
same leaf node, e.g., (v4, v2); (2) For a non-leaf node, we
maintain the border-border pair, where the borders are from
its children, e.g., (v2, v6) in node G0, (v6, v8) in node G1.
For each node, we use a distance matrix to maintain the
shortest-path distances between such pairs on the G-tree
(Section 3.1). Based on the distance matrix, we can as-
semble these pairs and compute the shortest-path distance
from a vertex to a node/vertex. For example, to compute
the shortest path from v4 to v9, we can assemble (v4, v2),
(v2, v6), (v6, v8), and (v8, v9) (as shown in Figure 4). Next
we formally introduce our method based on three cases.

MinDist-Outside-Leaf: Consider two vertices u, v in two
different leaf nodes. Let LCA(u, v) denote the least common
ancestor of nodes leaf(u) and leaf(v). Let LCA(u, v),G1(u),
G2(u), · · · ,Gx(u) = leaf(u) denote the ancestors of leaf(u)
from LCA(u, v) to leaf(u) as illustrated in Figure 5. Let
LCA(u, v),G1(v),G2(v), · · · ,Gy(v) = leaf(v) denote the an-
cestors of leaf(v) from LCA(u, v) to leaf(v).

We consider two general cases. The first one is within one
branch, i.e., Gx(u) to G1(i) or Gy(v) to G1(v). Given two
adjacent levels of nodes, e.g., Gi(u) and Gi−1(u), 1 < i ≤ x,
the shortest path from u to Gi−1(u) must contain a border
in Gi(u) based on the closure property, thus

SPDist(u,Gi−1(u)) = min
ui∈B(Gi(u))

(
SPDist(u, ui) + SPDist(ui,Gi−1(u))

)
.

(3)

The second case is between two branches, i.e., from G1(u)
to G1(v). Similarly, we have
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Figure 5: MinDist-Outside-Leaf.

SPDist(u,G1(v)) = min
u1∈B(G1(u))

(
SPDist(u, u1) + SPDist(u1, v1)

)
.

(4)

Equations 3 and 4 indicate that calculating SPDist(u, ux−1)
is only related to those of adjacent level, i.e. SPDist(u, ux).
Thus, we can implement a dynamic-programming algorithm
to efficiently calculate SPDist(u, v). Consider the nodes
Gx(u) = leaf(u), Gx−1(u), · · · ,G1(u), G1(v),G2(v), · · · ,Gy(v) =
leaf(v). We first compute SPDist(u, ux) for ux ∈ Gx(u).
Then based on these results, we move forward to the next
level to compute SPDist(u, ux−1) for ux−1 ∈ Gx−1(u). Then
we cross from G1(u) to G1(v), and move to the other branch.
Iteratively, we can finally get SPDist(u, v). Figure 5 shows
the entire procedure.

Lemma 2. Consider a border b of node n. The border has
the following properties. (1) For any child of n, e.g., c, if b
is in node c, b must be a border of node c. (2) b must be a
border of one of n’s children.

Note that, for any border-border pair in SPDist of Equa-
tions 3 and 4, e.g., (u2 ∈ G2(u), u1 ∈ G1(u)), they must
appear in the distance matrix of a node (e.g., G1(u), since
u1 must be a border of a child of G1(u) based on Lemma 2
and u2 is a border of G1(u)’s child G2(u)). Thus we can ef-
ficiently get the shortest-path distance of each pair from a
distance matrix on the G-tree.

To summarize, given a query location vq and a vertex
v where vq /∈ leaf(v), to compute SPDist(vq, v), we first
compute their least common ancestor and the nodes on the
paths from LCA(vq, v) to leaf(vq) and leaf(v). Then we use
the dynamic programming to compute SPDist(vq, v).

Example 3. Figure 6 and Figure 7(b) illustrate how to
compute the shortest-path distance from v4 to v9. Initially
we locate leaf nodes G5 (for v4) and G4 (for v9) by the hash
table we mentioned at Section 4.1. Their LCA is G0. We
use G5,G2,G1,G4 to compute the minimum distance. Each
element in Figure 6 represents 〈vi, SPDist(vq, vi)〉. By dy-
namic programming, we can finally get SPDist(v4, v9) = 15.
The shortest-path contains vertices v4, v2, v6, v8 and v9.

MinDist-Outside-NonLeaf: Given a query location vq,
a node n, and vq �∈ n, we compute SPDist(vq, n) based
on SPDist(vq, n) = minw∈B(n) SPDist(vq, w). Since each
SPDist(vq, w ∈ B(n)) can be computed using the MinDist-
Outside-Leaf function, we can easily compute SPDist(vq, n).

MinDist-Inside-Leaf: Given a query location vq, a vertex
v, and vq ∈ leaf(v), consider a shortest path SP(vq, v) be-
tween vq and v. There are two cases: (1) SP(vq, v) does not
contain a vertex outside node leaf(vq). In this case, we use
the Dijkstra algorithm to compute the shortest path in node
leaf(vq). Let DijkDist(vq, v) denote the distance. Since
the subgraph w.r.t. the leaf node is not large, the Dijkstra
algorithm is efficient enough. (2) SP(vq, v) contains a vertex
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Figure 6: An Example of MinDist-Outside-Leaf.

outside node leaf(vq). In this case, SP(vq, v) must contain
two borders b1, b2 in leaf(vq). Let BorderDist(vq, v) denote
the shortest distance from vq to v with outside vertices and,

BorderDist(vq, v) = min
b1,b2∈B(leaf(vq))

(
SPDist(vq, b1)+

SPDist(b1, b2) + SPDist(b2, v)
)
.

(5)

Based on the two cases, we have,

SPDist(vq, v) = min
(
BorderDist(vq, v), DijkDist(vq, v)

)
.

(6)
Our method can correctly compute the shortest-path dis-

tance as formalized in Theorem 1.

Theorem 1. Given a query location vq and a node/vertex
e, the shortest-path distance between vq and e computed by
our algorithm is exactly SPDist(vq, e).

Materialization-based Improvement: Although we can
useMinDist-Outside-Leaf andMinDist-Outside-NonLeaf
to calculate SPDist(vq, e), implementing them individually
will result in many duplicated computations. For example,
in Figure 7(b), if we calculate SPDist(v4, v9) and SPDist(v4, v15)
separately, we have to compute SPDist(v4, bi ∈ G2) twice.
Obviously, given a query location vq, we only need to cal-
culate SPDist(vq, bi ∈ Gi) once. Hence, we materialize 〈bi,
SPDist(vq, bi)〉 on the G-tree nodes which have been visited
(see Figure 7(b)). Obviously this materialized method can

avoid the duplicated computations, with space costO( log2 f√
τ
|V|)

(see Section 4.3).
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Figure 7: Occurrence List and kNN Search.
Compared with the network-expansion search approach,

our assembly-based method has two superior advantages.
First, our method significantly reduces the overhead for cal-
culating SPDist(vq, e). It is easy to see that we only traverse
subtrees of G-tree which contain promising objects, and each
tree node is only accessed once. Second, since SPDist(vq, v)
is computed by means of step-by-step dynamic program-
ming algorithms, and those materialized intermediate results
SPDist(vq, bi) on G-tree node are indispensable for effective
pruning in best-first search (i.e., SPDist(vq, n)), therefore,
there are no redundant computations for kNN search, which
makes our method very efficient for large road networks.

4.3 Time and Space Complexity of kNN Search
Time Complexity: The kNN search consists of two parts.
The first one is the local Dijkstra search within MinDist-
Inside-Leaf. The time complexity is O(τ log τ). The sec-
ond one is MinDist-Outside-Leaf. Since the dynamic-
programming algorithm will only access each node of G-tree

44



v2

v3 v4

v6
v7

v8

v9

v1

(a) Paths on Graph.

v3 Matrix(    ) that,
(v4,v3)+(v3,v2)=(v4,v2)

v4 v2 v6 v8 v9

v7 Matrix(    ) that,
(v6,v7)+(v7,v8)=(v6,v8)

v4 v2v3
v6 v8v7

(b) Path Recovery.

Figure 8: An Example of Shortest-path Recovery.

once and each time it only scans the distance matrix of
the tree node, the worst-case time complexity of MinDist-
Outside-Leaf is the total size of the distance matrices
of G-tree, i.e., O(log22 f · logf |V|

τ
· |V|). To sum up, the

worst-case time complexity of the assembly-based method

is O(τ log τ +log22 f · logf |V|
τ
· |V|). In practice, the complex-

ity is much smaller than the worst-case complexity.

Space Complexity: For each node of G-tree, the dynamic-
programming algorithm maintains SPDist(vq, bi), where bi
is a border. Thus, the worst-case space complexity is the
total number of borders, i.e. O( log2 f√

τ
|V|).

5. DISCUSSIONS
5.1 Path Recovery
It is worth noting that Algorithm 1 only returns distance

rather than vertex-by-vertex path. However, the latter is
sometimes very useful (e.g., in navigation system). In this
section, we briefly discuss how to recover the path from the
query location vq to an answer va ∈ R selected by a user.
Since we use assembly-based method for the kNN finding,

we can only get a list of selected borders from vq to va, i.e.
the imperfect shortest path SP′(vq, va) = vqb1b2 · · · bmva. As
there may be no direct edges between two adjacent vertices,
e.g., 〈bi, bi+1〉, we need to add some other vertices between
them to generate the real shortest path SP(vq, va).
The main idea is to apply divide-and-conquer to itera-

tively add new vertices into the SP′(vq, va). For example,
in Figure 8, to compute the shortest-path distance from v4
to v9, we get SP′(v4, v9) = v4v2v6v8v9. As there is no edge
between v4 and v2, we need to find a vertex, i.e. v3, to
add between them(since SPDist(v4, v2) = SPDist(v4, v3) +
SPDist(v3, v2)). Similarly we add vertex v7 between v6 and
v8. Thus the shortest path is SP(v4, v9) = v4v3v2v6v7v8v9.
Luckily, we can always find a border bw to split 〈bi, bi+1〉

into 〈bi, bw〉 and 〈bw, bi+1〉, where bi, bw, bi+1 must all appear
in the same distance matrix from LCA(G(bi),G(bi+1)) to the
root node of G-tree. Thus, each vertex finding only costs
O(HBmax). However, due to lack of space, we have to omit
the details and proofs here. Any interested readers may
contact the authors for further information.

5.2 Computing Distance Matrix Efficiently
We propose a bottom-up method to efficiently compute

the distance matrix. The basic idea is that we first compute
the shortest-path distance of borders of nodes in the lower
level and then use these distances to compute the shortest-
path distance of borders of nodes in the upper level. For
example, in Figure 9, to compute the shortest-path distance
between borders v2 and v10. A naive method needs to access
v6 and v7. As we have calculated the shortest-path distance
between v6 and v10 in G1, we skip vertex v7 and directly
use 〈v6, v10〉 in G0. We use this property to compute the
distance matrix. Our algorithm works as follows.

(1) Initially, for each leaf node, we use the Dijkstra algo-
rithm to compute the shortest-path distance between any
two borders in the leaf node.

(2) We remove all non-border vertices in the leaf node and
add shortcuts between any two borders of the leaf node.

(3) We move to the parent of leaf nodes and use the Dijkstra
algorithm to compute the shortest-path distance between
any two borders in the parent based on the updated graph.

(4) We repeat steps 2 and 3 and terminate the algorithm if
we have processed the root node.
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v12v6

v10

v7

(a) Naive Method.

v1

v2

v12

v6

v10

(b) A Bottom-up Method.

Figure 9: Distance Matrix Computation (Distances
of Borders to v2).

5.3 G-treeMaintenance for Network Updates
We discuss how to maintain the G-tree for network up-

dates. Although it is a very hard problem to support up-
dates for shortest-path queries in graphs [22], we propose a
feasible method to adjust the G-tree with a low overhead
for network updates. We consider four basic operations and
other operations can be split into these basic operations.

Insert a new vertex u with an edge to an existing
vertex v: We first locate the leaf node leaf(v) and insert
u into leaf(v). If leaf(v) has more than τ vertices, we
partition the leaf(v) into f nodes. Then, we recursively
repartition the ancestor of leaf(v) until all nodes have no
more than τ children. Distance matrices are also updated.

Remove a vertex u with only one edge to another
vertex v: We first locate node leaf(u) and remove u from
leaf(u) and the corresponding distance matrix. If leaf(u)
is empty, we recursively repartition the ancestor of leaf(u).

Add an edge (u, v): If u (or v) becomes a border from
a non-border vertex, we add it into the corresponding dis-
tance matrix. If weight(u, v) ≥ SPDist(u, v), we do not up-
date the G-tree; otherwise we update the distance matrix
as follows. Consider a pair 〈bi, bj〉 in a distance matrix. We
check whether SPDist(bi, u)+weight(u, v)+SPDist(v, bj) ≤
SPDist(bi, bj). If so, we directly update SPDist(bi, bj) =
SPDist(bi, u) + weight(u, v) + SPDist(v, bj).

Remove an edge (u, v): If u (or v) becomes a non-border
vertex from a border, we remove it from the corresponding
distance matrix. If weight(u, v) ≥ SPDist(u, v), we do not
update the G-tree; otherwise we update the distance matrix
as follows. Consider a pair 〈bi, bj〉 in a distance matrix. If
SPDist(bi, u) + weight(u, v) + SPDist(v, bj)>SPDist(bi, bj),
we do not update SPDist(bi, bj) as we will not use (u, v) to
compute SPDist(bi, bj); otherwise we recompute SPDist(bi, bj).

5.4 Extension to Directed Graphs
In this section we discuss how to use the G-tree to support

directed graphs with a minor change. First, in the distance
matrix, we keep the shortest distances of directed paths from
a vertex to a border/vertex. We only need to slightly modify
the pre-computation method in Section 5.2 to compute the
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Table 1: Datasets.
Data Description # Vertices # Edges

CAL California(Undirected) 21,048 21,693
SF San Francisco(Undirected) 174,956 223,001
COL Colorado(Undirected) 435,666 528,533
FLA Florida(Undirected) 1,070,376 1,356,399
E-USA East USA(Undirected) 3,598,623 4,389,057
C-USA Center USA(Undirected) 14,081,816 17,146,248
USA USA(Undirected) 23,947,347 29,166,672
WA Washington(Directed) 514,654 1,246,353

directed distances. Second, our method relies on using the
assembly based algorithm to implement the SPDist func-
tion. Nevertheless, the assembly based method still works
for directed graphs based on the following reasons. (1) The
closure property (Lemma 1) still holds for directed graphs,
i.e., given a subgraph G′ = 〈V ′, E ′〉, any directed path from
u ∈ V ′ to v /∈ V ′ must contain at least one border in B(G′).
(2) We can still use the dynamic-programming algorithm in
Section 4.2 to compute the shortest distance of a directed
path. Third, we slightly modify the Dijkstra algorithm to
support the directed graphs.

6. EXPERIMENTS
Datasets: We used eight real-world datasets with various
sizes from 20,000 vertices to 24 million vertices. CAL con-
sists of highways and main roads in California and SF con-
tains detailed street networks in San Francisco 1, which are
widely used in previous studies [15]. COL, FLA, E-USA,
C-USA and USA are road networks of USA2, which are
composed of detailed streets, roads and highways. WA is
the road network of a directed graph of Washington State3.
The statistics of these datasets is illustrated in Table 1.
Query Sets: To evaluate the kNN search performance, we
randomly chose 100 vertices as the query location, and for
each query location we generated 100 groups of objects, thus
we had 10,000 queries for each query set. For objects we
uniformly selected 0.0001, 0.001, 0.01, 0.05, 0.1 of vertices
from the dataset as objects (the default value is 0.01). For
k, we used 1, 5, 10, 20, 50 (the default value is 10).
We compared with state-of-the-art methods SILC [23] and

ROAD [15, 16]. SILC was implemented by ourselves and
ROAD was provided by the authors. All the algorithms
were implemented in C++. In G-tree, the default fanout is
f = 4 and τ is set to 64, 128, 128, 256, 256, 512 and 512 re-
spectively for the first seven datasets. For implementing the
SPDist function, as two naive methods were not scalable in
space(O(c|V|2)), we only used the assembly-based method.
For SILC and ROAD , we used default settings as stated in
the original papers and both were conducted under memory-
based setting. All experiments were conducted on a Linux
computer with Intel 2.50GHz CPU and 16GB memory.

6.1 Evaluation on Parameters: Fanout and τ
G-tree has two parameters - fanout f and the number of

vertices in a leaf node τ . We tested the effect on the two
parameters. We varied τ in {32, 64, 128, 256, 512} and f in
{2, 4, 8, 16}. We evaluated the number of borders, the index
size, index build time, and the average k nearest neighbors
search performance of 10,000 queries. We used the COL
dataset. Figure 10 shows the results.

We made two observations. First, with the increase of f ,
the number of borders, the index size, the index build time
and the query time first decreased and then increased. Our

1http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm
2http://www.dis.uniroma1.it/challenge9/index.shtml
3http://depts.washington.edu/giscup/roadnetwork

 0.01

 0.1

 1

 10

 100

 1000

 10000

CAL SF COL FLA

B
ui

ld
 T

im
e(

M
in

s)

Data Set

SILC
ROAD
GTree

(a) Build Time.

 1

 10

 100

 1000

 10000

CAL SF COL FLA

In
de

x 
S

iz
e(

M
B

s)

Data Set

GTree
ROAD

SILC

(b) Index Size.
Figure 11: Index Comparison.

method achieved the best results when f = 4. The main
reasons are as follows. On the one hand larger fanouts will
generate larger numbers of borders to partition a subgraph.
On the other hand, larger fanouts will reduce the height of
G-tree and the number of nodes that need to be partitioned.

Second, with the increase of τ , the number of borders de-
creased. This is because bigger τ results in smaller tree size.
Besides, the index size and construction time also decreased,
as the index size depends on the number of borders. With
the increase of τ , the search time first decreased and then
increased. Because if τ is larger, it takes more time on the
Dijkstra search in large leaf nodes; if τ is smaller, it involves
large numbers of borders. We selected τ = 128 as a trade
off between query efficiency and indexing size.

6.2 Comparison with State-of-the-art Schemes
We compared our proposed method against state-of-the-

art methods SILC [23] and ROAD [15, 16], in terms of in-
dex overhead and kNN search time. Our method can pro-
cess all datasets. Since ROAD and SILC took a mass of
pre-processing time and consumed large amount of mem-
ory, both schemes failed on E-USA, C-USA and USA. In
addition, SILC also failed to run on FLA. For example, on
E-USA, we estimated 4.8 days to be required for ROAD ,
and 36.5GB memory cost for SILC .

Evaluation on Index Construction: We first evaluated
the time and space overhead of indexing. Figure 11 illus-
trates the index sizes and index build time.

We can see that G-tree outperformed ROAD and SILC in
index build time and sizes. On COL, the index build time of
G-tree was better than ROAD by an order of magnitude and
nearly three orders of magnitude better than SILC . For in-
dex sizes, on COL, G-tree consumed 45.5 MB, ROAD took
up 145 MB and SILC required 1535 MB. This is because
the space overhead of SILC is O(|V|1.5) and it is rather ex-
pensive to compute all-pair shortest paths. ROAD involved
larger numbers of borders than our methods and needed
to store shortest-path distances of all border pairs. Thus
ROAD took more space and time than ours. Furthermore,
G-tree only took 16.8 hours to build index on USA.

Evaluation on kNN Search: We evaluated the kNN search
efficiency of G-tree, ROAD and SILC by varying the num-
ber of answers k, the number of objects |C|, datasets, and
distances from query location to top-k answers.

kNN Search by Varying k: We used the COL dataset and
evaluated the average search time of 10,000 queries. We set
|C| = 0.01|V|. Figure 12(a) shows the results.

We can see that G-tree outperformed the two state-of-
the-art methods for different k, and even by 2-3 orders of
magnitude for k ≥ 10. The main reason is as follows. Since
SILC had to search multiple quadtrees to find distances be-
tween query location and objects, this operation was very
costly and inefficient for larger k. As ROAD employs an
expansion-based method, it only pruned the nodes which
have no objects and cannot use distance-based pruning. On
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Figure 10: Evaluation on Parameters: f and τ (COL dataset, k = 10, 1% uniform vertices as objects).
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Figure 12: Performance Comparison on kNN Search (COL dataset, k = 10, 1% uniform vertices as objects).

the contrary, G-tree used the SPDist function to prune un-
promising nodes. Thus if k is larger, the improvement of
G-tree over SILC and ROAD becomes larger too.

kNN Search by Varying Object Sizes: We evaluated the kNN
search performance by varying object sizes. We used the
COL dataset. We generated five sets of objects with different
sizes, where the sizes are respectively 0.0001, 0.001, 0.01,
0.05 and 0.1 of the number of the vertices in the dataset.
Note that, we stopped at 0.1 as candidate objects are usually
in small quantity compared with vertex size. We randomly
generated 10,000 queries, set k = 10, and evaluated the
average time. Figure 12(b) shows the results.

We made two observations. First, with the increase of the
number of objects, the elapsed time of the three algorithms
decreased. This is because for smaller number of objects, the
objects are sparse and uniformly distributed in the dataset,
and the average distance from the query location to the near-
est neighbor tends to be larger. Thus the algorithms need
to visit more vertices. Second, G-tree outperformed SILC
and ROAD a lot. With G-tree, we can directly locate the
promising tree nodes and prune unpromising ones by best-
first search, while this is what ROAD and SILC fail to do.
Therefore, changing the sizes of objects has no significant
effect on our G-tree.

kNN Search by Varying Datasets: We tested the perfor-
mance of three algorithms on four datasets CAL, SF , COL
and FLA. We set k=10 and |C|=0.01|V|. Figure 12(c) shows
the results. We can see that G-tree outperformed ROAD
and SILC on every dataset. For example, on FLA, ROAD
took about 1000 milliseconds, SILC cannot support this
large road network as it consumed too much memory. G-
tree only took 2 milliseconds. Notice that with the increase
of the dataset size, the improvement of G-tree over SILC
and ROAD becomes large, because G-tree can efficiently
prune unnecessary subgraphs based on the SPDist function.

kNN Search by Varying Object Distances: We generated four
query sets based on the distances from the query location
to the objects on COL dataset. We first computed the min-
imum bounding box of the geometric coordinates for all the
vertices on the dataset and then calculated the length of the
diagonal line denoted by ld. Next, we generated four query
sets where the distances of objects to the query location are
respectively larger than ld

8
, ld

4
, ld

2
, 3ld

4
. Each query set con-

tained 10,000 queries. The four query sets are respectively
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Figure 13: Evaluation on Path Recovery.
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Figure 14: Scalability on Performance of G-tree.

called “near”, “far”, “farther”, “farthest”. Figure 12(d)
shows the results. We can see that G-tree significantly out-
performed ROAD and SILC , even in 2-3 orders of magni-
tude. SILC and ROAD achieved very poor performance
since they had to traverse long distance paths before they
accessed all top-k answers.

6.3 Evaluation on Path Recovery
We evaluated the efficiency of our path-recovery algo-

rithm. As ROAD cannot support path recovery4, we only
compared with SILC . We used the same setting as the kNN
search. The result is shown in Figure 13.

In the figure we show both the search time and the path
recovery time. We can see that our algorithm can efficiently
find the path. For example, on the FLA dataset, it only took
0.1 milliseconds. With the increase of the distance from the
objects to the query location, the path recovery took more
time as our method will access more vertices. However, Our
method was still much better than SILC .

6.4 Scalability
We evaluated the time and space scalability of the G-tree.

As the first seven datasets had various sizes, we evaluated
the scalability using the first seven datasets. We set k = 10
and |C| = 0.01|V|. Figure 14(a) shows the efficiency results.

4In the ROAD paper, the authors did not discuss the path
recovery issue.
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Figure 15: Evaluation on G-tree Maintenance Cost.

We can see that G-tree scaled well as the data size in-
creased from 0.01 million to 24 million. The average search
time on the USA dataset 24 million vertices was only 20 mil-
liseconds. Table 2 shows the space scalability of the G-tree.
We can see that the index size of G-tree increased linearly
with the increases of the data size.
Table 2: Scalability on Index Sizes(MB) of G-tree.
Size CAL SF COL FLA E-USA C-USA USA

Data 1.13 11.7 28.0 70.8 244.3 990 1725
Index 1.34 22.4 45.5 109 425.5 1943 3184

We evaluated the scalability on the USA dataset by par-
titioning the dataset into five equal-sized subgraphs. Then
we merged 1, 2, 3, 4, 5 subgraphs to test the scalability.
Figure 14(b) shows the results and G-tree scaled well.

6.5 Evaluation on G-tree for Updates
We evaluated the G-tree maintenance cost for network

updates by inserting/deleting vertices and edges. Figure 15
shows the results. Our method can efficiently support up-
dates. For vertex updates, the average time was 10 millisec-
onds on the FLA dataset. For edge updates, the average
time was 200 milliseconds. Notice that it is a very hard
problem to support edge updates [22]. As road networks are
not updated frequently, the update time is acceptable.

6.6 Evaluation on Directed Graph
We evaluated the search efficiency of G-tree on a directed

graph WA. We set f = 4 and τ = 128. Table 3 shows the
overview of the G-tree on dataset WA.

Table 3: G-tree Overview on Dataset WA.
Data Size Index Size Build Time # Borders

47.55(MB) 52.13(MB) 688(s) 55875

We compared the kNN performance with SILC and ROAD
by varying k and object size |C|, as shown in Figure 16. G-
tree still significantly outperformed existing methods. The
results are consistent with those on undirected graphs.

7. CONCLUSION
In this paper we have studied the problem of kNN search

on road networks. We proposed a balanced search tree struc-
ture G-tree and devised an efficient best-first search algo-
rithm on the basis of the assembly-based method. Exper-
imental results show that G-tree significantly outperforms
state-of-the-arts in terms of both efficiency and index sizes.
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