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Abstract—Data labelling is very important in many database
and machine learning applications. Traditional methods rely
on humans (workers or experts) to acquire labels. However,
the human cost is rather expensive for a large dataset. Active
learning based methods only label a small set of data with large
uncertainty, train a model on these labelled data, and use the
trained model to label the remainder unlabelled data. However
they have two limitations. First, they cannot judiciously select
appropriate data (task selection) and assign the tasks to proper
humans (task assignment). Moreover, they independently process
task selection and task assignment, which cannot capture the
correlation between them. Second, they simply infer the truth
of a task based on the answers from humans and the trained
model (truth inference) by independently modeling humans and
models. In other words, they ignore the correlation between them
(the labelled data may have noise caused by humans with biases,
and the model trained by the noisy labels may bring additional
biases), and thus lead to poor inference results.

To address these limitations, in this paper, we propose Crow-
dRL, an end-to-end reinforcement learning (RL) based frame-
work for data labelling. To the best of our knowledge, CrowdRL
is the first RL framework designed for the data labelling work-
flow by seamlessly integrating task selection, task assignment and
truth inference together. CrowdRL fully utilizes the power of
heterogeneous annotators (experts and crowdsourcing workers)
and machine learning models together to infer the truth, which
highly improves the quality of data labelling. CrowdRL uses RL
to model task assignment and task selection, and designs an agent
to judiciously assign tasks to appropriate workers. CrowdRL
jointly models the answers of workers, experts and models, and
designs a joint inference model to infer the truths. Experimental
results on real datasets show that CrowdRL outperforms state-
of-the-art approaches with the same (even fewer) monetary cost
while achieving 5%-20% higher accuracy.

Index Terms—reinforcement learning, crowdsourcing, data
labelling, truth inference

[. INTRODUCTION

Data labelling is important in many database and machine
learning applications, as the quality of labeling data (train-
ing data) could highly influence the performance of model
training [17], [18]. Crowdsourcing has become an important
way for data labelling, because it is easy to recruit workers
on crowdsourcing platforms [10], [20], [23], [28], [33], [40],
[47]. Besides, labels from workers are more accurate than
algorithms, e.g., recognizing an image. However, acquiring
labels from crowdsourcing workers has two challenges.
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Challenge 1: Neglect the Correlations between Task Se-
lection and Task Assignment. Many tasks require qualified
workers with expertises to label. For example, crowdsourcing
workers cannot decide if a medical image contains a tumor.
Thus it requires to involve experts to label the task. There
are two problems we need to address: (1) Task Selection: how
to select appropriate unlabelled data to label [26]; (2) Task
Assignment: how to assign the selected tasks to appropriate
annotators (crowdsourcing workers or experts) [49]. Existing
studies first select some unlabelled tasks with high uncertainty
to label [26] and then assign the selected tasks to appropriate
annotators [49]. However, they neglect the correlation between
task selection and assignment. For example, they first select
some tasks to label but cannot find appropriate annotators for
the selected tasks. Thus it calls for a unified framework for
task selection and assignment.

Challenge 2: Neglect the Correlation between Workers,
Experts, and Learned Models. It is expensive to recruit many
workers to label the data, especially for a large dataset. To
address this problem, active learning (AL) based methods [8],
[26] are proposed. These methods iteratively train a model
using labelled data, select unlabelled data with the maximum
uncertainty, ask humans to label them [26], and then train
a model using the labelled data and use the trained model
to label other remainder unlabelled data. Note that the AL
methods assume the answers from annotators are correct,
but in fact annotators may return noisy results. Thus truth
inference is proposed to infer the truth of each task from the
labelled results of multiple annotators. Existing studies focus
on inferring the truth of labels by annotators, but neglect that
machine learning models trained by the labelled data can also
be used to infer the truth, which could reduce the monetary
cost of recruiting annotators. For example, for an unlabelled
image of tumor, we need 5 medical experts to label it.
Supposing a trained model classifies it as ‘positive’, we recruit
three medical workers and if they all label it as ‘positive’, then
we can label this image as ‘positive’ with fewer cost. A simple
method that involves a trained model into the truth inference is
to take the model as an annotator. However, the labelled data
may have noise caused by annotators with known biases, and
thus the model trained by the noise labels may bring additional
biases. Moreover, the biases of the trained model depend on
the noises of annotators and are hard to model. Thus it calls
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for a joint model to capture the unknown distribution of the
expertises of annotators and the trained model.

An End-to-End Reinforcement Learning Based Data La-
beling Framework. In this paper, we propose CrowdRL,
an end-to-end reinforcement learning (RL) framework for
data labelling. CrowdRL designs a unified data labelling
framework for integrating the processes of task selection, task
assignment and truth inference into a unified framework. In
other words, CrowdRL utilizes both the cost-effectiveness of
machine learning models and high accuracy of human labors,
which is a better trade-off of monetary cost and labelling
quality. Our unified optimization framework can get better
labelling quality than isolating the two steps. Specifically,
CrowdRL first selects a small portion of tasks and asks
annotators to label them. Then CrowdRL iteratively repeats
the following steps until it labels all the data or the budget
is used up: (1) trains a model using labelled data, uses this
model to label some unlabelled tasks with high confidence,
and updates annotators’ quality and the set of unlabelled data;
(2) selects a batch of objects to label and assigns these tasks
to appropriate annotators; (3) infers the true labels of these
objects based on the answers from annotators.

Unified Task Selection and Assignment. CrowdRL uses
RL to model task assignment and task selection, and designs
an agent to judiciously assign tasks to appropriate workers.
Specifically, we formalize the answers of questions that have
been answered by annotators, the cost and quality of anno-
tators as current ‘State’ of CrowdRL. We formalize the
joint operation of task selection and task assignment as the
‘Action’ of CrowdRL. In each iteration of labelling, we
model the policy of taking an action by predicting an expected
optimal action based on the current state using a deep Q-
network [24] (DQN). By replaying the experience of taking
actions of task assignments and task selections, and getting
feedbacks from the labeling history, the policy model will be
iteratively updated and becomes better and better.

Joint Truth Inference Model. CrowdRL fully utilizes the
power of heterogeneous annotators (experts and workers)
and trained models together to infer the data labels, which
highly increases the accuracy of data labelling. Specifically, we
propose a joint inference model to jointly model the unknown
distribution of the expertises of annotators and the model, and
use the joint model to infer the truth of each task.

Main Contributions. We make the following contributions.
(1) We propose CrowdRL, an end-to-end reinforcement learn-
ing model for data labelling. To the best of our knowledge,
we are the first to propose a unified data labelling framework
based on an RL model (Section III).

(2) CrowdRL models task assignment and task selection
together, and designs an agent to judiciously assign tasks to
appropriate workers using a neural network (Section IV).

(3) CrowdRL jointly models the answers of workers, experts
and models, and designs a joint inference model to infer the
truths (Section V).
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Notation Definition

0= {o;} a set of objects

C = {c¢;} a set of classes

W= {w;} a set of annotators

" = {r} ;} | a|C| x |C] confusion matrix of w;

Yi true label of o;

gjj J label of o; from annotator w;

Vi answer set of o; from multiple annotators

() probability function

o} classifier for a multi-class classification

¢c; (04) p(y; = cj; @), i.e., probability of ¢ labels o; as ¢;
budget of cost

S,A E,R state, action, environment and reward of CrowdRL

TABLE I: Table of Notations.
(4) We have conducted experiments on three real-world
datasets, and experimental results show that our method
outperformed state-of-the-art approaches by 5%-20% higher
accuracy while keeping the same (even lower) monetary cost.
(Section VI).

II. PRELIMINARIES
A. Problem Definition

Data Model. Consider a set of objects @ = {o;} where each
object o; has a true label y;. However, the true label of o;
is unknown and we only know y; is in a set of given labels
C = {c;}. We have two ways to get the label of y; — asking
annotators (crowdsourcing workers or experts) to label o; or
using a classifier algorithm to compute a label of o;.

Annotator Model. There are two types of annotators in our
model — workers from crowdsourcing platforms and experts
with domain knowledges on Q. For ease of presentation, we
denote the set of all annotators as W = {w;}. Given an
object o;, if an annotator w; labels the object, s/he returns a
result ;7 € C, and the answer set of object o; from multiple
annotators is denoted as y,.

Following the classical definition [48], [49], the expertise
of annotator w; could be formalized as a |C| x |C| confusion
matrix IT* = {r},}, where 7}, denotes the probability of
acquiring a label c; for an object with true label c; from
annotator w;. Notice that we do not know the true value of
IT? in advance, but we iteratively update the estimation of II’
during the labelling process which is denoted as II'.

Classifier Model. Given an object o0;, a classifier algorithm
¢ predicts a result gf € C of y;, ie., ¢(o;) = 5. Note that
the classifier model may need to train the model with some
training data, which can be gotten by assigning some objects
to some workers/experts and inferring the truth based on these
labelled results.

Labelling Workflow. Usually annotators have higher labelling
quality than classifiers but take more monetary cost, and thus
a labelling process should judiciously select annotators and
classifiers to label the objects. Initially, we select a small
portion of objects in @ and ask annotators to label them. Then,
we iteratively (1) train a classifier ¢ using labelled data and
use ¢ to label some unlabelled objects with high confidence
(labelled set enrichment), (2) select a batch of objects to be
labelled (task selection), (3) assign these tasks to annotators
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Fig. 1: Labelling Example. There are 8 videos of primary school students’ oral reports. We aim to label them for a binary
classification task. The red circles and blue circles represent excellent presentations (positive) and awful presentations (negative)
respectively. Suppose we consider two features, fluency (x-axis) and volume (y-axis) of the videos.

01 | 02 | 03 | 04 | 05 | 0g | 07 | 0g | cost | quality 01 | 00 | 03 | 04| 05 | 05 | O7 | Og
wy(worker) | 1 | 1 | -1 | 1 [0 |-1|-1]|1 1 0.65 wy | X | 3] 1 | x| x| 1]|3]4
we(worker) | 0 | 1 | -1 ] 0] 0 |-1|-1|0 1 0.62 we | X | 1|1 | x| x|2|2]|1
wsg(worker) | -1 | 1 | -1 | 1 | -1|-1|-1]-1 1 0.60 wg | x [ 1|1 | x| x| 1/[]0]3
wy(expert) | 1 | 1 | -1 |-1]-1[-1|-1|0 5 0.985 wy | X | 22 | x| x| 1]1]0
ws(expert) | -1 | 1 [ -1 |-1]0 |-1]-1]-I 5 1.0 ws | X | 24 | x| x| 2]1]2
TABLE II: S(3) (Labelling History and Annotators’ Costs and Qualities) TABLE III: Distribution of Q(S(2),A(2);6)

+ — + — < oo Truth Inference (TI). Given an object o;, it may be labeled
+ 1 0.60 | 040 || + | 098 | 0.02 o by workers, experts and classifier algorithms. We can combine
— 1030|070 || — | 0.01 | 0.99 j X 111) :;Z;l.‘;ee the answer and infer the truth based on the answer set to infer

TABLE IV: Confu- TABLE V: Confu-
sion Matrix of wy sion Matrix of wy

(task assignment), and (4) infer the true labels of these objects
based on the answers from annotators (truth inference). We
repeat these steps until the budget of asking annotators to label
objects is used up.

Labelled Set Enrichment. After a classifier ¢ is trained, it is
used to classify unlabelled objects in Q. However, the objects
classified with low confidence might be wrongly classified.
For example, if o; is classified as positive with a confidence
of 0.52, it might be indeed a negative object. Thus, in the step
of labelled set enrichment, we only use ¢ to label the objects
with high confidence, and the others remain to be unlabelled.

Task Selection (TS). To iteratively label objects, the object
set @ is split into several batches and we ask the annotators
to label a batch of objects in each iteration. Given labelling
history and unlabelled objects, TS considers which unlabelled
objects are selected in each iteration.

Task Assignment (TA). Given annotators with expertises and
a batch of objects selected by a TS algorithm, a TA algorithm
focuses on how to assign these questions to appropriate anno-
tators to obtain the true labels with the maximum probability.

Traditional methods independently process TS and TA,
which neglect their correlation. For example, suppose o; and
o; are top-2 selected objects by a task selection method, e.g.,
bootstrap uncertainty [26]. Suppose o; is hard to be labelled
(all the annotators cannot correctly label it), but o; is easy
to be labelled. If we consider task selection and assignment
independently, they will first select o; but the labelling quality
will be low. However, selecting o; is more useful for the
labelling process. To this end, we jointly process TS and TA
together and model TS and TA as a unified operation.
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a label ;. Given answers from these annotators, a Tl model
aims at inferring y; with the maximum probability. A naive
method is majority voting [48]. However, different annotators
have different expertise for labelling data, e.g., some experts
are more experienced and some workers may be not qualified
for labelling ©@. Moreover the labeling quality of a classifier
depends on the labelling quality of annotators, and in other
words, the annotators and the classifier have correlations. Thus
we integrate the answers from workers, experts and classifier
algorithms by considering their expertises (or confidences).

Problem Formulation. Given a set O of objects and a budget
B, we aim to (1) task selection and assignment: we select
unlabelled objects and assign objects to workers, experts,
classifiers such that the total cost is within B. (2) truth
inference: for each object, we infer the truth in order to
maximize the quality of labeling Q. !

Example 1: As shown in Figure 1. Suppose 8 videos of
students’ oral reports are to be labelled in a binary classi-
fication task, i.e., C={‘positive’, ‘negative’} and |C| = 2.
The ground truth is shown in Figure 1 (a). The red circles
and blue circles represent excellent presentations (positive)
and awful presentations (negative) respectively. Formally, O =
{01,09,...,08} where each o; € O represents a video clip.
Given 3 workers and 2 experts as shown in Table II, denoted
as W = {wy,ws...ws5}. Suppose the true label of oy is
y1 =‘positive’ and we employ w;, wz and wy to label it. The
answers from them are y, = {‘positive’, ‘negative’, ‘positive’ }
and g, =‘positive’. We could infer the true label of o; as
71 ='positive’ using truth inference models, e.g., majority
voting [48]. The confusion matrices of w; and wy, i.e., II' and

In this paper, the workers could not communicate with each other. We
do not make any assumptions that there are some rules to label the datasets
such as CrowdGame [21]. Also, we do not make any assumptions about the
distribution of worker quality or tasks.
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I1* are shown in Tables IV and V. The element 7r§,2 = 0.99
denotes w,4 has a probability of 0.99 to label a negative object
as ‘negative’. The budget is B = 30 and the cost of employing
one worker and expert are 1 and 5 respectively. Initially, we
do not know the true labels of these 8 examples, thus they are
all marked as grey circles as shown in Figure 1(b). Here, we
study how to label all of the 8 videos in @ with maximum
labelling quality before running out 30 units of budget.

B. Related Work

We review related works — crowdsourcing, active learning
and reinforcement learning algorithms for better understanding
of CrowdRL labelling framework.

1) Crowdsourcing Methods: Crowdsourcing aims to har-
ness workers’ knowledge to process machine-hard tasks [6],
[71, [36], [45]. In crowdsourcing, requesters split a complicated
task into many micro-tasks and publish them on crowdsourcing
platforms such as Amazon Mechanical Turk. The employed
workers answer the questions while getting monetary rewards.
Task selection [8], [18], task assignment [32], [43], [49], and
truth inference [3], [19], [27], [48] are three crucial problems.

However, traditional crowdsourcing frameworks consider
TS, TA and Tl independently. Intuitively, the answer quality
of tasks are highly related to selected annotators for answering
them. Thus, CrowdRL integrates these three steps into a uni-
fied RL model. Additionally, existing crowdsourcing methods
do not consider using answers from learning model to infer
the truth. CrowdRL utilizes the data features to infer the true
labels along with annotators’ answers, which is different from
existing studies [29], [39].

2) Active Learning Methods: Active learning (AL) methods
combine both machine and human labors to solve artificial
intelligence tasks in recent years [44]. An AL method aims
at judiciously labelling a small subset of objects in a dataset
and uses these labeled data to train a model [4], [26]. An AL
method iteratively labels a batch of objects and selects the ex-
amples with the highest uncertainties in each iteration. Among
these AL methods, statistical AL model and its variants are
the most popular [4], [8], [26].

Different from traditional AL methods, CrowdRL uses a
deep neural network to select the tasks and integrate TS
and TA as a unified operation. The algorithm of TS and
TA become smarter and smarter as it is integrated into a
reinforcement learning model, which could update the strategy
by considering the feedback in each labelling iteration. To our
best knowledge, we are the first to model a human-in-the-loop
labelling task as a unified reinforcement learning framework
by using heterogeneous annotators. Although Shan et al. [32]
introduced RL techniques for crowdsourcing, it only uses RL
framework for trading-off the benefit of both requesters and
workers in TA. Instead, CrowdRL focuses on building an end-
to-end framework for the whole labelling workflow.

Some existing studies propose the concept of “Al Worker”,
which utilizes learned models (e.g., classification or clustering
methods [15]) as Al workers. In each labelling iteration, the
human workers first labeled some objects and then it learned
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a model based on the labeled data as an Al worker. Then, the
“Al Worker” predicted the labels for the unlabelled objects. For
each object, if the confidence of the prediction was higher than
a threshold, it would be labelled by the AI worker; otherwise
it would be assigned to human workers. However, they assume
the human workers always return correct answers, and they use
learned models and human workers independently. Comparing
with these methods, CrowdRL uses a joint inference model
by integrating answers from human annotators and machine
algorithms, and the model parameter, the quality of human
annotators and the truth of labels will be inferred jointly.

The method of data programming aims at integrating the
results from several weak supervised sources to infer the truth,
e.g., Snorkel [29], Osprey [S] and GOGGLES [9]. They first
define some labelling functions (LFs) or weak rules, and then
use the rules (written by human experts) to infer the truth.
However, in many scenarios, e.g., our audio labeling task, it
is hard to define such rules. Thus our method is more general
for data labeling.

3) Reinforcement Learning: Reinforcement learning (RL)
methods use iteration algorithms (e.g., value iteration, policy
iteration or both) to find the optimal or sub-optimal solution
for an optimization of control problem [35] by iteratively
updating the parameters of RL models and expect the models
to converge to the optimal. Due to the rapid development of
deep learning, the techniques of deep reinforcement learning
(DRL) have attracted the attention of researchers [25]. In the
past decade, DRL and its variants have outperformed both
traditional close-loop control methods, e.g., model predictive
control [11], [14], and supervised learning methods, e.g.,
classical neural network, on many tasks [25], [34], [38].

Traditional algorithms fail to integrate the whole process
of data labelling, and thus TS, TA and Tl are independent,
which may potentially decrease the precision of all of the three
components and finally leads to low labelling accuracy. In this
paper, we model the process of data labelling as an end-to-
end RL model using deep neural network. The challenge is
to model each of the components of RL, e.g., designing the
State and Action of an RL model. Different from other RL
frameworks, the Environment part of CrowdRL, i.e., the
feedback, is determined by labels from annotators. Comparing
with traditional RL problems, the feedback of CrowdRL
includes much uncertainty and need to be well formalized, e.g.,
the feedbacks of playing Go [34] is based on the frequency
of winning the game, the feedback of autonomous driving is
based on physical rules [31].

III. REINFORCEMENT LEARNING FRAMEWORK FOR DATA
LABELLING

A. Overview of CrowdRL

In this section, we propose CrowdRL, which integrates
task selection, task assignment, and truth inference into a
unified end-to-end reinforcement learning framework for data
labelling. The overview design of CrowdRL is shown in Fig 2.
The technical details of the Agent part and Environment
part are discussed in Section IV and V respectively.
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Fig. 2: Reinforcement Learning Based Data Labelling Framework.

CrowdRL uses a unified end-to-end reinforcement learning
framework to jointly address the three problems, task selection,
task assignment, and truth inference. It mainly includes six
components: (1) Environment infers the truth based on the
answers from workers and classifiers; (2) Agent analyzes
the historical process and maintains this information into
States. Then it makes an Action to select objects and
assigns objects to appropriate workers based on the Reward
according to historical labelling qualities and costs; (3) State
captures the labelling history, including annotators’ estimated
qualities and costs; (4) Act ion conducts the joint operation of
task selection and assignment on the Environment by uti-
lizing the State; (5) Reward is formalized as the weighted
summation of the number of objects labelled by classifier ¢
and the cost of future labelling iteration, i.e., the long-term
reward; (6) Policy is a function f : State — Action,i.e.,
the strategy of conducting an Action based on the current
State. CrowdRL uses a deep network to represent policy f.

We formally describe the workflow of CrowdRL in Al-
gorithm 1. First, we initialize state S(0) and initialize it by
annotators’ costs and qualities according to labelling history.
Initially, we select a small portion (with a ratio of « € (0, 1))
of the objects, and ask the annotators to label them. In each
labelling iteration, we train the classifier model using these
labelled objects and label some unlabelled objects with high
confidence, i.e., labelled set enrichment, then the Agent
decides how to make actions of task selection and assignment
based on the feedback (Reward) from the Environment.
Environment conducts truth inference based on the annota-
tors’ answers of these assignments, computes a reward of the
assignment, and updates the classifier. After several labelling
iterations, Agent has enough experience to learn an optimal
policy for task selection and assignment.

B. CrowdRL Modeling

We discuss the details of each component of CrowdRL.

State S. Before the ¢-th iteration of labelling, we could observe
the answered questions and the labels of these questions.
Additionally, we have the estimated qualities and costs of
annotators. Intuitively, we aim at selecting objects which could
be answered with high quality and low cost, by observing
current seen information.

To this end, we consider two important features of states
as shown in Figure 2: (1) Labelling history: we model the
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labelling history as a |O| x |W| matrix, where the element
Sl[i,j] at i-th row and j-th column denotes the answer of
labelling o; from i-th annotator, each value of the elements
S[i, j] has |C| + 1 possibilities:

—1

¢ (#—1) w; labels o; as class ¢, c€ C

w; has not labelled o; until t

S)li, 4] = {

Thus, the labelling history has totally (|C| + 1)I®I"l possi-
bilities, i.e., the scale of state space is (|C| + 1)1V, (2)
Annotator’s cost and quality: S(¢)[i, |O| + 1] denotes the cost
of the ¢-th annotator and S(¢)[, |O] 4 2] denotes the estimated
quality of the i-th annotator. Note that the confusion matrix
IT' is invisible for us, thus we only update the estimation
IT" of II'_at the end of each iteration. We use the value

"EWF,II) = a7 a5 the overall estimated quality of w;

wlhere tr(-) denotes the trace of a matrix, i.e., the summation
of all the elements on the main diagonal of a matrix. The
cost of each annotator is stable over the labelling process.
For example, the state in Table II corresponds to Figure 1
(d), objects 01, 04, 05 and og are labelled by annotators and
09 is labelled by classifier ¢, for oy, it is labelled by wy,
wy and wy as ‘positive’, ‘negative’ and ‘positive’
respectively. The cost of employing a worker and an expert are
1 unit and 5 units respectively. The estimated quality of wy is
w = 0.985 based on the confusion matrix in Table V.

Action A. We combine task selection and task assignment as
a unified joint operation to benefit the process of labelling.
We model the action A(t) as a pair (¢,7j) which denotes
assigning o; to w;. Thus there |O||W/| possibilities of A(t).
As discussed in Section IV, we use a function Q(S(t),A(t))
to denote the ‘Q-value’ (long-term reward) of taking action
A(t) on state S(¢). We would compute the value function of
each Q(S(t),A(t)) and select the combination of tasks and
annotators with biggest ‘Q value’ as the optimal action.

Environment E. At the ¢-th iteration, the Agent conducts an
action A(t) on the environment E and gets feedback including
the reward. Then S(¢) is updated to S(t + 1). Specifically,
the environment E could infer the true labels of the selected
objects from A(t) and update the estimations of annotators’
qualities. Our labelling model considers the prediction from
classifier ¢ in E to infer the true labels of objects. The details
of designing E are demonstrated in Section V.
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Reward R. In the labelling task, we aim to get the highest
labelling quality after running out the budget, thus the long-
term reward at ¢-th iteration is denoted as:

400
R(t) =Y +"'r(T) 1)
T=t
where v € (0, 1] is the discount factor and r(t) is the reward
of the t-th iteration of labelling.

In each iteration, once the labelled set is enriched, we retrain
the classifier ¢ and label some unlabelled objects with high
confidence. Intuitively, if many objects are labelled by ¢, it in-
dicates both high accuracy (the classifier is trained by labelled
data) and low cost of the labelling process. Besides, we also
consider the monetary cost at each iteration, thus we should

integrate the cost of employing annotators into r(¢). We denote

o o __ |labelled objects by ¢|
T(t) - )‘T¢(t) + Teost (t) where 7"¢(t) " |unlabelled objects| °

Tcost(t) is the monetary cost, A and 1 are the weights of 74(t)
and 7., (t) respectively.

Example 2: See the example in Figure 1 (b), (c) and (d).
Initially, for ease of presentation, assume « 0.25, ie.,
labelling 8*0.25=2 objects. We select o; and o4 and ask the
annotators to label them. For each iteration, we select one
object and ask three annotators to label it. After the first
iteration, three objects 01,04 and o5 are labelled as shown
in Figure 1 (c). We use f(S(2)) to predict action A(2).
Suppose our prediction model selects object og and assign it to
annotators w1, w3 and ws. The environment E infers the label
for os, e.g., ‘negative’, and compute 1.5 (2) = 1+145 = T7.
We train a classifier and label 0, as ‘positive’ with high
confidence. We represent such state in Table II. The costs and
qualities of the 5 annotators are also shown in Table II. The
reward of enrichment is r4(2) 1. Then, S(2) would be
updated to S(3) and the third iteration of labelling starts.

C. Modeling of Markov Decision Process

Additionally, we should clarify that our model can be
formalized as a Markov Decision Process (MDP), i.e., current
state is only determined by the state in the last iteration.
Otherwise, we cannot apply iteration algorithms for updating
the policy of State — Action to solve an RL problem.

Considering the ¢-th iteration, CrowdRL takes Action
A(t) based on current State S(t), then Environment
gives feedback — Reward R(¢) to Agent and enriches the
labelled set, and then State S(t) is updated to S(t + 1).

In our labelling model, the States, Actions and
Rewards are sequentially updated,

{S(1),A(1),r(1),S(2),A(2),r(2),...}
After each iteration, A(t) is updated to A(¢ + 1). We have:
p(S(t)) = p(S(t) | S(1),A(1),...S(t—1),A(t —1)) ()

where ¢ > 2 and p(-) is the probability function. When
S = S(t), we take A(t) of task selection and assignment, then
Environment gives feedback to the Agent, i.e., provides
labels from annotators and rewards. Then the State is
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Algorithm 1: Workflow of CrowdRL

Input: A Set of Unlabelled Objects O, budget B.

Output: Labels of Objects in O.
1 Initialize State S(t), t=0;
Sampling « € (0, 1) portion of the objects and ask annotators
to label them;

3 while Some objects are unlabelled or running out B do

4 /I Labelled set Enrichment

5 Train classifier ¢ using labelled data;

6 Rating each unlabelled object o; using ¢;

7 Il ¢c; (0i) denotes the probability of y; = ¢; given by ¢

8 for each o; is not labelled do

9 Find j, k such that ¢, (0i) > bey, (0i) > be, (0;), for

any ¢; € C and | # j, k;

10 if ¢Cj (Ol) — ¢Ck (01) S 4 then

11 0; remains to be unlabelled;

12 else

13 | vi < argmax, {¢c;(0:)}

14 Update S(t);

15 /I Task selection and assignment

16 Conduct A(t) = f(S(t));

17 // Truth Inference

18 Inferring the true labels for selected objects using both
annotators and classifier ¢;

19 | t«t+1

updated into S(¢ + 1). S(¢ + 1) is only determined by S()
and A(t). Thus Equation 2 can be rewritten as

p(S(t)) = p(S(t) | S(t —1),A(t — 1)) 3)

where ¢ > 2. Suppose there is a function f : S(t) — A(t), for
each S(t), f(S(t)) could give the best policy of A(t). Thus
Equation 3 can be rewritten as

p(S(®)) = p(S(t) | S(t=1), f(S(t=1))) = p(S(?) [ S(t-1))

As each o; is labelled by |y;| annotators, once A(t) is
determined by S(t), as the labelling processes of different
annotators are independent from each other, the above equation
could be rewritten as:

p(S(1) = p(: |y S(t—1) = ] (3" | yis1L,S(¢ - 1))
' €Y;

where 1T is the confusion matrix of worker w. The state A(t)
is observable in each iteration and the confusion matrix of
each annotator is stable. Thus the probability distribution from
S(t — 1) to S(¢) are determined. Obviously, our labelling
framework is a Markov Decision Process (MDP). Thus, a
reinforcement learning algorithm for solving the optimal se-
quential actions could be applied.

IV. AGENT: UNIFED TASK SELECTION AND ASSIGNMENT

The Agent in CrowdRL analyzes the historical process
and maintains this information into States S(t), then it
makes an Action to select objects and assigns objects to
appropriate annotators based on the Reward, i.e., using a
policy f : S(t) — A(t). We study how to model policy f
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and compute f which predicts the optimal action A*(¢) from
the Agent perspective as shown in the left part of Figure 2.

A. Modeling of Policy

A naive method to conduct A(t) based on S(t) is enumer-
ating all of the possible sequences of actions and selecting the
optimal action sequence {A*(t), A"(t+1),...}. Based on the
Bellman Equation [31], if this sequence is optimal, the action
A*(t) must be the optimal action which could lead to a maxi-
mal long-term reward. Thus we apply A*(¢) which could lead
to the maximum long-term reward R(t) = 2;2 yT=1p(T).
Formally, we aim to find an ideal f where A*(t) = f(S(t)).

We use Q(S(t),A(t)) to describe the value function (long-
term reward) of taking an action A(¢) on S(t), i.e., using Q
table [25], [30], [31] to describe the distribution of f. Formally,
given S(¢), we aim at finding an action A(t) which could
maximize the long-term reward:

Q" (S(1), A1) = Es(uyn) [r(t)+
Tmax Q' (S(t-+ 1).A)[S(1). A1) @

We iteratively learn the value Q(S(t),A(t)) by conducting
optimal action A*(t) where Q(S(t), A" (¢)) is maximal, i.e.,
A™(t) arg maxa Q(S(t),A"), and then update the Q-
function, i.e., update the policy:
Q(S(1),A(t)) + (1 = B)Q(S(1),A(t)) + B(r(t)
+ymax Q(S(t+1),A))

®)

where 3 € [0,1] is the learning rate.

However, it is impractical because the state space and
action space are too big (recall that the scale of state space
is (|C| 4+ 1)IOWI), and we cannot enumerate all of the
possibilities. Besides, we could not predict all of the cases in
the future. Hence, we introduce Deep Q-Network (DQN) [25],
[34] to describe such relation, i.e., model f(-) as a deep neural
network in place of a Q-table. We approximate Q value as
Q*(S(t),A(t)) ~ Q(S(t),A(t); ), where 6 is the parameter
set of the Q-network as shown in the Agent part of Figure 2.
Comparing with iteratively updating each value in the Q-table,
we iteratively update the parameter 6 to find the optimal policy
by solving the problem of optimization of the loss function:

L(0) =Eg(st),A0),r(),St+1)) [((t) + Y nax, Q*(S(t+1),
A(t+1),0) — Q(S(t),A(t); 0))]

The last issue is to feed training data to iteratively learn the
optimal solution of L(#). Inspired by the classical deep Q-
network [25], which indicates that human make decision by
referring part of the historical experience, we use the strategy
of experience replay i.e., sampling training data from historical
experience pool {(S(t),A(t),r(t),S(t+ 1))} (See Figure 2).

~
~

B. Optimal Action Selection

For each time we select the action, a naive way [25] is using
a greedy method A(t) = argmaxa Q(S(t),A"). However,
it may lead to local optimization rather global optimization
without any ‘exploration’ for better choices, as the Q-value of
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a current optimal action may become bigger and bigger if it
is repeatedly selected. We propose a dynamic action selection
policy inspired by UCB1 algorithm [2]. We select action

2In(n’)

A(t) = arg max[Q(S(1), A') + ] ©
where n represents the times of choosing action A’ for state
S(t) and n’ denotes the total times of updating Q value for
state S(t). It combines both the ‘exploration’ and ‘greedy’
strategies. If an action A" is selected for too many times, the

2ln(n’)
n

term will decrease and A’ will be less likely to be

selected. If Q(S(t), A’) increases, action A" will be more likely
to be selected.

We set the value of Q(S,A) = —oo when A refers to
labelling o;, and o; has been labelled in previous iterations,
in case of duplicated labelling. In our value iteration process,
these Q values would retain to be —oo if we initially set it
as —oo. It helps us filter invalid operations of TS from the
output of the neural network. For example, in the Table II and
II1, if 0; has been labelled, we will set Q(S(2),A(2)) = —o0
if A(2) = (1,4) where j € {1,2,3,4,5}, i.e., each element in
the first column of Table III is —oo.

In this paper, we follow the classical design of DQN [25].
Note that other variants of DQN [13], [38] can also be
integrated into our framework.

Discussion. We need to assign multiple tasks to many annota-
tors in each iteration of labelling, rather than assign an object
to one annotator. Suppose we aim to employ k annotators for
each object, we compute the Top—-k Q values for each object
and compute the summation of these k& values. Then we select
objects with the largest summation of these Top-k Q values
to be labelled by using a “MinHeap” algorithm [1].

Example 3: In the second iteration of labelling in Figure 1,
objects 01, o4 and o5 are labelled and we select an optimal
A(2) based on S(2). We show all of the values Q(S(2),A)
in Table III for all the possibilities of action A. The sign of
‘%’ denotes —oo here, thus we could not select o0y, o4 and
05 again. The summation of the Top-3 Q values of og is 9,
which is the biggest. Thus we select og and assign it to wi,
w3 and ws.

V. ENVIRONMENT: JOINT TRUTH INFERENCE

Recall that the Environment part infers the true labels
of given objects, retrains the classifier to enrich the label set
and gives feedback including Reward to the Agent part.
From the perspective of environment, we propose a novel
truth inference method which integrates the annotator model
and classifier model into a unified truth inference algorithm as
shown in the right part in Figure 2. Then we demonstrate the
process of labelled set enrichment.

A. CrowdRL Truth Inference Model

1) Basic Idea of CrowdRL Truth Inference Model: Given
labels set y; from annotators for o;, traditional truth inference
algorithms mainly use a majority voting (MV) strategy [37],
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i.e., assign the label given by majority of the annotators to
0;, or expectation maximization (EM) algorithm [48], which
computes the weighted summation of labelling answers by
iteratively updating the qualities of annotators and the true
labels, to infer the truth. For example, for the label answers of
07 in Table II, the answer set is {‘positive’, ‘negative’,
‘positive’}, using a majority voting strategy, the inferred
label is ‘positive’.

Note that using labels from annotators only may cause
bias when annotators make mistakes in some cases. For
example, when labelling a tumor in a medical image, if
five medical students are employed and two of them mis-
label it as ‘negative’ while the others correctly label it
as ‘positive’, we cannot give a prediction with a high
confidence. However, if a tumor recognition algorithm trained
by history data classifies it as ‘positive’, combined with
the answers from annotators, we can label it as ‘positive’
with a high confidence. Thus, using the prediction results from
classifier can improve inference quality.

Intuitively, since we have labelled many objects and train
a classifier for them, we could consider how to use not only
the labels from annotators but also the prediction from the
classifier. Notice that the classifier ¢ is trained by labelled
examples, which are gotten from previous labelling iteration.
In a sense, we reuse the human labors of labelling in previous
labelling iterations. A naive method is regarding classifier ¢
as a special ‘annotator’, which could give an label g5 = c;,
where ¢; € C, for object o; with a confidence b, (0;). In
Figure 3(a), workers, experts and the classifier are regards
as annotators with different quality, and the true label y;
would be inferred by the answers from y, and g§ using MV
or EM algorithm. For example, In Figure 1(c) and Table II,
Vs = {‘positive’, ‘negative’ and ‘negative’} respec-
tively, suppose g =‘negative’, we could give a confident
inference for yg =‘negative’ using MV.

However, since the classifier ¢ is trained by labelled data
with noises, these noises are caused by annotators with known
biases. Besides, the learning algorithm of training ¢ would
bring additional biases, thus the biases of ¢, (0;) is composite,
such biases are hard to model and using such a label to infer
the truth is not reasonable.

Thus, we propose to jointly model the unknown distribution
of the expertises of annotators and the classifier. Based on
currently seen labelled objects, we make joint inference for the
parameters of the classifier, the expertises of annotators and
the true labels. Then the biases caused by the classifier and
annotators would be easily to be modeled. Since no composite
biases are introduced, the inference will be more accurate.

2) Learning Algorithm for CrowdRL Truth Inference:
Formally, we use a classifier ¢ for multi-class classification
task with parameter ©. For each object 0;, ¢ could give a
inference ¢5. Since we do not know the true label y;, thus
we regard y; as a latent value. We can only infer y; based
on answers from annotators y; and ;. Recall that we denote
the confusion matrix II/ to denote the expertise of the j-
th annotator. For j-th annotator, the label gy AwJ is the noisy
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Fig. 3: Truth Inference: Traditional Methods V.S. CrowdRL.
(a) Traditional methods simply integrate workers’ answers,
experts’ answers and classifier’s answers by computing a
weighted summation of them; (b) CrowdRL jointly model the
answers of annotators and the classifier, to make joint truth
inference with a maximum probability, which is more accurate.

version of ;. Since the labelling result of different annotators
are independent, the whole likelihood of collected labels from
annotators is:

|| (W]

p(LI©,{17}) = [[[p(vil¢, © Hp”“wyz,njﬂ (7)
=1

where L denotes all the training data labelled by annotators.
We aim at finding the truth of objects which causes to the
observed labels in . with maximum expectation, for ease of
solving the solution of Equation 7, we rewrite the formation
as log-expectation:

Elin(p(L|©, I, ... H'W'))]
IL| v . 3)
—ZZ a(y)n(p(y;| b )H P, [yi, T))

where ¢(y;) is the posterior which could be obtained by using
estimated parameters in the last labelling iteration:

(W]

) X p(yz =cC | ¢lasta elast) HP

j=1

q(y i | Yi =6 Hlast)

where 11}, . and O, are parameters in previous iterations.
For finding a maximum value of Equation 8, we could itera-
tively update the value of © and each Il meanwhile. Finally,

we find the maximum likelihood for the model parameters.
Normally, the annotator expertise is given by:

= St = G = )
| S alyi =)
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where
~ wj _

I(3;” = d)

1 7
{0 otherwise # ¢

For heterogeneous annotators, we believe that experts are
more confident than crowdsourcing workers. Previous meth-
ods regard workers and experts as annotators with different
qualities [29], [39], however, may decrease the confidence
of an expert during the running of an EM-style algorithm.
For example, if an expert makes mistakes, his/her quality
may be updated to be lower and finally s/he would not be
confident. Thus our model designs the mechanism of bounding
the quality of experts. For class ¢;, if the sz < € and annotator
w; is an expert, we set

l=c

l#c

(1-0

where ¢ is a threshold.

Our truth inference algorithm is easy to be integrated into
our CrowdRL framework and converge to a numerical solution
of both annotators’ quality and the true labels. The trinity of
machine learning model inference, answers from workers and
experts are integrated for inferring the truth. The confidence of
experts are also bounded with our framework. See Figure 3(b).

J
el

iy wl ) —md

B. CrowdRL Labelled Set Enrichment

After truth inference, the labelled data set has changed and
since we retrain a classifier ¢ using labelled data, we will use
¢ to label some objects with high confidence. We rate each
unlabelled object o; using ¢, ie., ¢c,(0;) = p(y; = cjl¢).
If there exists |¢c, (0;) — ¢¢, (0s)] < 0, the true label of o;
is ambiguous, thus o; remains to be unlabelled. Otherwise,
we label y; = argmax, {¢,(0;)}. Then the labelled set is
enriched as shown in Figure 2. The pseudo code of the labelled
set enrichment is shown in Algorithm 1.

For example, after inferring og as ‘positive’ in Exam-
ple 3, suppose the trained classifier labels oy as ‘positive’
with a confidence of 0.9 and ‘negative’ with a confidence
of 0.1. The classifier predict o3 as ‘positive’ with a
confidence of 0.55 and ‘negative’ with a confidence of
0.45. If we set € = 0.2, |@positive(02) — Pnegative(02)] =
0.9—0.1 = 0.8 > 0.2, thus we can label yo=‘positive’ with
high confidence and then the labelled set is enriched. Since
|¢positive(03) — ¢negatiue(03)| =0.55-0.45=0.1 < 0.2, we
can not label o3 using the classifier in this iteration.

VI. EXPERIMENTS
A. Experimental Methodology

1) Datasets: We used three real-world datasets including
two datasets of video clips and one image dataset.
Speech12 and Speech3 [41] were collected by the biggest
online education company — TAL?. The datasets contained
many video clips of oral presentations from pupils in Chinese.

Zhttp://www.100tal.com/
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In each video, a pupil was asked to talk about his or her
thinking process of solving a mathematical question. The task
was to assess the student’s oral expression ability and label
each video as either ‘positive’ (excellent presentation) or
‘negative’ (awful presentation). The answers were provided
by both professional teachers in TAL or workers from TAL
crowdsourcing marketplace. The ground truths were generated
by integrating answers from five professional teachers in TAL
using majority voting. Speech12 contained 2344 videos from
the first and second grades and Speech3 contained 1898
videos from the third grade in a primary school, which were
thought to have different abilities of expression.

For video clips, intuitively, the prosodic characters and
the text of the speeches could represent the motions and
contents, thus we extracted two types of features, contextual
features (such as statistics of part-of-speech tags [12], number
of consecutive duplicated words and number of interregnum
words) encoded in 50-dimension float vector and prosodic
features (such as signal energy, loudness, voice speed and
silence duration percentage) encoded in 1582-dimension float
vector. We denoted the contextual, prosodic and concatenated
features of the two types of features as S12C, S12P, S12CP,
S3C, S3P and S3CP respectively.

Fashion [22] was a social image dataset for fashion and cloth-
ing. Each image was published as a question for identifying
whether or not it is fashion-related. There were totally 32,398
questions and each question was answered by 3 annotators.

2) Baselines: In this paper, we focused on building an end-
to-end labeling framework. Thus, we selected four end-to-end
labeling frameworks as baselines.

DLTA [46]. In this framework, the labeling process was
divided into multiple iterations. Each iteration consisted of
two steps, label inference and label acquisition. In the label
inference step, it used an EM (Expectation-Maximization)
algorithm to complete the process of answer aggregation. In
the label acquisition step, given the budget, it selected proper
objects for labeling to maximize the benefits.

OBA [15]. It trained a model based on the labelled data
as “Al workers” (e.g., it used traditional classification or
clustering methods, e.g., KNN). It used a human-in-the-loop
process to label the data. In each labelling iteration, the human
workers first labeled some objects and the labelled set would
be updated. Then, the “Al Worker” predicted the labels for all
of the unlabelled objects. For each object, if the confidence
of the prediction was higher than a threshold, it would be
labelled, otherwise it would be assigned to human workers
in the following iterations. It assumed that the human worker
could always give true labels.

IDLE [16]. It was an end-to-end multi-level classification
framework. On the first level, it collected cost-effective truth
inference from crowdsourcing workers whose answers have
potentially high bias and variance. On the second level, experts
provided confident answers. For ambiguous cases, the objects
would be labeled as “unsolvable”. The task selection process
was random, and it used EM algorithms for truth inference.
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DALC [42]. It provided a unified Bayesian model to infer
the true labels and parameters of the classification model to
reach an optimal learning efficiency simultaneously. In each
labeling iteration, it selected some most informative tasks and
the annotators with the highest expertise for these tasks.

0.

0.

070z 03 04 05
Fashion

T 0z 03 0.4 O
Speech12

Hybrid. Additionally, we constructed a hybrid human-in-the-
loop framework as a baseline. In each labeling iteration, it
used a MinExpError algorithm [26] based on the method
of bootstrap, which selected the object whose labels from
annotators were different from the label predicted by current
classifier with the maximum probability. It used a DQN for
task assignment as used in [32], which outperformed most task
assignment or arrangement algorithms. For truth inference,
it used a PM algorithm [48] by iteratively updating the
annotators’ qualities and the estimated label for an object until
both of them converged.

3) Metrics.: We focused on three metrics: (1) Precision
(Prec), (2) Recall (Rec), (3) F1 Score (F'1).

4) Setting.: We implemented all the algorithms on a Mac-
book pro with 2.4 GHz Intel Core i5 CPU and 16GB RAM
with Intel Iris Plus Graphics 655 1536MB. We used Pytorch
1.6.0 and CUDA 10.1 for our machine learning framework.

As our algorithm was an off-policy reinforcement learning
framework, we trained our deep Q-network offline. In our
experiment, we used a ‘“cross training methodology”, i.e.,
when evaluating one dataset online, we used the other datasets
to train the reinforcement learning model offline in advance.
We used a fully connected neural network with a sigmoid
output layer as the classifier ¢.
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1) Comparing with Different Methods: We evaluated
CrowdRL by comparing it with different baselines. The de-
fault setting was « = 5% and |W| = 5 for SC12 and SC83,
|W| = 3 for Fashion where o was the initial sampling rate,
the costs of employing one worker and expert were 1 unit and
10 units of budget respectively. We set the labelling budget as
10000 units for both SC12 and SC3. We set the budget of
Fashion as 160000 units. The results were shown in Figure 4.

We had the following observations: (1) CrowdRL outper-
formed baselines because CrowdRL used a unified framework
to combine the processes of TS, TA and TI, and thus could
give more reasonable arrangement for the labelling process.
Thus, the labelling quality of CrowdRL would be higher than
baselines; (2) OBA performed the worst because it assumed
that human annotators always gave the true labels, which
was not practical in most cases; (3) CrowdRL gave higher
accuracy than baselines by 5%-20% on the 6 cases for speech
recognition tasks. It indicated that CrowdRL outperformed
baselines for hard tasks. This was because it considered
not only the labels from annotators but also the features
of objects; (4) IDLE performed worse than DLTA, because
IDLE randomly assigned the tasks to annotators, thus it
did not consider to select the best objects to label which
could decrease the uncertainty or bias of labelled data, and
more labelled objects would be required. Besides, the cost of
training domain experts for IDLE was big; (5) Labelling the
two speech recognition datasets with concatenated features,
i.e., S12CP and S3CP, was more effective than using either
contextual or prosodic features only. This was because the
classifier for higher vector space could give better prediction;
(6) Hybrid performed better than the other four baselines most
of the time, because bootstrap uncertainty could highly reduce
the cost in an AL labelling process, which used weighted
sampling techniques as its selection methods. Besides, Hybrid
considered the annotators’ expertises as probability distribu-
tion, and thus could arrange more proper annotators for a task;
(7) CrowdRL performed better on speech recognition than
image classification because we made better jobs on feature
extraction for the two speech recognition datasets.
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Summary. With the same monetary cost, CrowdRL outper-
formed existing algorithms by 5-20% higher quality, because
CrowdRL integrated TS, TA and TI together and used both
human labors and learned models to infer the truth.

2) Varying Parameters: We evaluated CrowdRL with the
five baselines by varying the parameters in the labelling
process. For the cases of video classification, we used con-
catenated features, i.e., S12CP and S3CP. The default setting
was o = 5% (initial sampling rate), |W| = 5 for SC12 and
SC3, |W| = 3 for Fashion. We set the budget as 10000 units
for SC12 and SCS3, 160000 units for Fashion.

Scalability. We evaluated the scalability by using {0.1, 0.2,
0.3, 0.4, 0.5} of the datasets. The precision of the 3 datasets
were shown in Figure 5. We had the following observations:
(1) With the increase of dataset scale, CrowdRL converged to
a high precision though the budget was limited. However, the
precisions of baselines decreased as the data scale increased.
This was because CrowdRL could find the optimal strategy for
task selection and assignment, thus it could find a small portion
of the dataset to label with limited budget, whose distribution
was similar to the population; (2) With the increase of data
scale, all the methods achieved lower precision. This was
because if the dataset was too small, we needed to label nearly
all of the objects. However, if the dataset was too big, we
might just need to label a small portion; (3) The two datasets
of speech recognition were more sensitive for the increase of
data scale, because it was more difficult to answer and needed
more labels for training accurate classifiers.

Varying |W|. We varied |[W| as {3, 5, 7} for the three datasets.
The experimental results were shown in Figure 6. We had
following observations: (1) CrowdRL outperformed baselines
at each settings of the number of annotators because CrowdRL
used the trinity of expert, worker and machine algorithm to
increase the labelling accuracy, thus the accuracy of labelled
data was high. Baselines might need many experts to label
the examples thus the costs were higher; (2) Baselines were
more sensitive for the increase of annotators’ number because
they were not accurate when the annotators were not sufficient.
However, CrowdRL had reached nearly the highest accuracy
and thus has limited space for improvement; (3) The Fashion
dataset was not very sensitive to the increase of number of
annotators but the video datasets were very sensitive. It was
because the task of labelling an object as ‘“Fashion-related”
or not was easier than labelling an oral report of solving a
mathematical problem.
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Fig. 7: Varying o.
Varying «. We set the initial sampling rate as 0.01, 0.05
and 0.1. The experimental results were shown in Figure 7
We observed the changing of precision of the three datasets.
We had following observations. (1) CrowdRL outperformed
baselines especially when « was small, because CrowdRL
could use few labelled objects to infer the truth of unlabelled
objects with the help of our end-to-end framework. (2) When
o was big enough, all of the methods were not sensitive to
the change of a, because all of the human-in-the-loop methods
just needed to label parts of the objects.

Summary. With the same cost, CrowdRL outperformed ex-
isting end-to-end labeling frameworks, e.g., 5-20% higher
quality. CrowdRL could use a limited budget to achieve a
higher labelling performance in different settings.

3) Ablation Experiment: We evaluated the effect of each
component of CrowdRL, i.e., comparing CrowdRL by not
using each of our three main techniques: task selection, task
assignment and join inference model. Let ‘M1’ denoted the
method without using our task selection method (using random
task selection), ‘M2’ denoted the method without using our
task assignment method (using random assignment), and ‘M3’
denoted the model without using our joint inference method
(using PM algorithm [48] as inference model). We compared
the precision of these methods with the same budget and
setting as discussed in Section VI-B1. The experiment results
were shown in Figure 8. We found that each component
of CrowdRL could effect the performance. ‘M1’ and ‘M2’
performed better than ‘M3’ in the datasets of Speech3 and
Fashion, because it was more important to model the task
assignment and selection as a unified operation.

VII. CONCLUSION

We propose CrowdRL, an end-to-end reinforcement learn-
ing framework for labelling datasets using heterogeneous
annotators (experts and workers) with limited budget. We
integrate task selection, task assignment, and truth inference
together, which can judiciously assign tasks to appropriate
workers and infers the truths based on answers from workers,
experts and classifiers. In each iteration, we use a learned deep
Q-network to make decision for task selection and assignment,
then we infer the true labels of these objects by using an
expectation maximization algorithm. CrowdRL considers the
relation between objects and annotators and combine the task
assignment and selection as a unified operation. Experimental
results show that CrowdRL outperforms baselines by 5%-20%
higher accuracy while keeping the same monetary cost.
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Fig. 8: Ablation Experiment for Verifying the Effect of Each
Component (M1: without our task selection; M2: without our
task assignment; M3: without our joint inference).
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