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Abstract
Large language models (LLMs) have shown superior performance in various areas. And LLMs have the potential to revolu-
tionize data management by serving as the "brain" of next-generation database systems. However, there are several challenges 
that utilize LLMs to optimize databases. First, it is challenging to provide appropriate prompts (e.g., instructions and demon-
stration examples) to enable LLMs to understand the database optimization problems. Second, LLMs only capture the logical 
database characters (e.g., SQL semantics) but are not aware of physical characters (e.g., data distributions), and it requires to 
fine-tune LLMs to capture both physical and logical information. Third, LLMs are not well trained for databases with strict 
constraints (e.g., query plan equivalence) and privacy-preserving requirements, and it is challenging to train database-specific 
LLMs while ensuring database privacy. To overcome these challenges, this vision paper proposes a LLM-based database 
framework (DB-GPT), including automatic prompt generation, DB-specific model fine-tuning, and DB-specific model design 
and pre-training. Preliminary experiments show that DB-GPT achieves relatively good performance in database tasks like 
query rewrite and index tuning. The source code and datasets are available at github.com/TsinghuaDatabaseGroup/DB-GPT.
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1 Introduction

Large language models (LLMs) are pre-trained with a super 
large model capacity (e.g., over 170 billion network param-
eters in GPT-3 [1]) and a large data corpus (e.g., over 8 
million website pages as training data), which is good at 
understanding human knowledge and instructions. Recently, 
LLMs have demonstrated superiority in various tasks like 
text generation [2], machine translation [3], and program 
synthesis [4]. Thus, a natural question is whether LLMs can 
be used to accomplish database tasks.

Task 1: Query Rewrite In Fig. 1, the query rewrite task is 
described in three parts. (i) Instruction includes the overall pro-
cedure and target of the task. In this case, we aim to write an 

equivalent query that can be executed on Postgres and achieves 
lower latency than origin query. Note it is critical to ensure the 
LLM captures the key points in the instruction, as these points 
may be overlooked or misunderstood. (ii) Examples are simpli-
fied demonstrations of query rewrite. These examples teach the 
LLM how to use rewrite rules, which cannot be well covered 
in the instruction. (iii) Input provides the necessary informa-
tion to accomplish the task (e.g., the SQL query). We input the 
three parts in the form of ([Instruction], [Examples], 
[Input]) into LLMs, which asks LLMs to rewrite the input 
query (e.g., pulling up the nested subquery as table joins) and 
append the rewritten query after the input.

Task 2: Index Tuning Similarly, the index tuning task 
involves (i) the main procedure (e.g., creating a sequence 
of indexes) and task target (e.g., reducing the latency within 
limited space) and (ii) examples like inputting a two-table 
join query and outputting two indexes that use the columns 
in the queries and (iii) the input including some new queries, 
for which we need to create suitable indexes. In this case, the 
LLM recommends some indexes so as to actually optimize 
the bottleneck operators in the input queries (e.g., orderby) 
and avoid redundant indexes.
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Compared with existing AI4DB works [5–7], LLMs for 
database (LLM4DB) have three advantages. (1) Higher 
transfer capability: Unlike existing instance-optimal works 
that can optimize an instance but cannot be extended to 
other instances, LLM4DB demonstrates exceptional trans-
fer capability. By leveraging just a few fine-tuning samples, 
LLM4DB can achieve comparable performance on novel 
database tasks, making it adaptable to schema, workload, or 
even data and hardware changes; (2) User-friendly interface: 
LLM4DB offers an intuitive user experience by allowing 
users to provide some prompts as hints to guide the model’s 
inference. Instead, AI4DB typically requires substantial 
amounts of training data (supervised models) or multiple 
iterations (reinforcement learning) to capture and incorpo-
rate user feedback. (3) Prior Knowledge Learning: LLM4DB 
is capable of extracting insights from existing database com-
ponents, including documents or even code. By integrating 
the strengths of these components, LLM4DB can enhance its 
performance while mitigating their individual weaknesses.

However, there remain some challenges to achieve com-
parable or even better performance.

C1 How to Generate Input Prompts for Database Tasks? 
First, the quality of the instructions provided to the LLM can 
affect its performance on a specific task. For instance, the 
writing style or complexity of the instructions may not be 
well suited for the model’s comprehension, resulting in poor 
performance. Therefore, it is crucial to automatically select 
suitable task instructions (e.g., “rewrite the SQL query to 
reduce complexity and improve performance...”) from a large 

pool of candidate instructions. Second, for the same task, it 
is important to provide some relevant examples for a given 
input (e.g., the rewrites of queries that are similar to the input 
query). These examples can provide insights on how to apply 
prior knowledge to handle complicated cases (e.g., rewriting 
queries that require to apply multiple rules) [8].

C2 How to Fine-Tune the LLMs for Database Tasks? First, 
data characters (e.g., data distributions, indexes) may sig-
nificantly affect the optimization decisions of LLMs (e.g., 
building indexes for columns with a large number of distinct 
values). However, it is challenging for LLMs to capture the 
relations between data distribution and target tasks, e.g., 
describing the critical data characters in natural language or 
model-friendly embeddings. Second, since some database 
tasks only offer limited high-quality labeled samples (e.g., 
real queries with optimal rewritten strategy) for fine-tuning, 
we should explore how to better utilize the training samples.

C3 How to Design a Database-Specific LLM? First, differ-
ent from NLP tasks, database tasks involve strict constraints 
(e.g., providing equivalent query plans for query rewrite) 
and structural information (e.g., the plan tree of a query), 
which are hard to support or learn by only using existing 
LLMs. Second, there are numerous public texts in NLP 
tasks, which can be taken as the training samples for LLMs. 
However, in databases, the data and queries are of high pri-
vacy, and it is vital to ensure the privacy while utilizing them 
to train the LLMs.

To tackle these challenges, we propose a database opti-
mization framework by using LLMs (DB-GPT). We have 
three main contributions. ❶ We recommend several prompt 
generation methods that offer the valuable text information 
(e.g., task instructions [9–12], demonstration examples [2, 
13–25]) to accomplish database tasks with high perfor-
mance. The proposed methods include (i) automatically 
selecting the suitable task instruction, (ii) efficiently select-
ing demonstration examples with an RL model, and (iii) 
trading off between prompt length and LLM performance 
to reduce the model inference cost. ❷ We provide several 
methods to facilitate model fine-tuning using a small num-
ber of labeled samples for specific database tasks [21, 23, 
26–29], including (i) non-text data embedding, (ii) annota-
tions for low-quality data samples, (iii) contrastive learning 
for additional sample generation, and (iv) delta tuning that 
reduces the number of tunable network parameters while 
achieving similar performance. ❸ We propose to design 
and train a database-specific LLM  [30, 31] with (i) validity 
checking for the output of LLMs, (ii) structural information 
learning from numerous database logs (composed of various 
workloads, optimization actions, and even result data) and 
(iii) federated learning that preserves data privacy during 
training the LLM.

Fig. 1  Large language model for database
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2  Opportunities of Using LLMs for DB

2.1  Overview

As shown in Fig. 2, this section presents three strategies that lev-
erage LLMs to optimize database tasks, including input prompt 
generation (Sect. 2.2), database-specific LLM fine-tuning 
(Sect. 2.3), and database-specific LLM design and pre-training 
(Sect. 2.4). Input prompt generation aims to generate addi-
tional text information to guide LLMs in understanding the task 
requirements, which can directly use existing LLMs to optimize 
database tasks. Input prompt generation will not re-train LLMs, 
making it most efficient to use. However, it requires the LLMs 
to own the relevant database knowledge ahead of time, while 
only a few advanced LLMs like GPT−3.5 satisfy this require-
ment. LLM fine-tuning updates network parameters (a small 
part in delta tuning) so as to memorize task-specific knowledge, 
which can accept non-text features with additional embedding 
layers and achieve better performance than input prompt genera-
tion. DB-specific LLM design and pre-training require a large 
number of database-specific training samples to learn network 
parameters, which can serve as the foundation model for data-
bases. That is, by providing essential system characters (e.g., 
equivalence verification) and training mechanisms (e.g., feder-
ated learning) for database tasks, it can enhance the effectiveness 
of both input prompt generation and LLM fine-tuning.

2.2  Input Prompt Generation

Motivation With the input x of a database task, we can add 
additional text information to the input x, called the input 
prompt x′ , which helps LLM to better understand the task 
requirements. However, different inputs may correspond to 
different optimal prompts (e.g., queries of different struc-
tures may require different rewrite examples) [2, 16, 22, 24, 
25, 32, 33], and it is hard and tedious for users to give good 

prompts. We need to build a prompt generator to automati-
cally derive the prompt for input x.

Methodology There are mainly two critical parts in prompts: 
(i) instruction to guide LLM, and (ii) demonstration exam-
ples for LLM to simulate. The generated prompts should 
be validated by the feedback of LLM, based on which we 
can optimize the generator for good LLM performance. Fur-
thermore, when we use prompts to interact with LLM, we 
should reduce the interaction latency (e.g., reducing interac-
tion rounds) and cost (e.g., the input token number of each 
interaction round) for real applications (Table 1).

Challenge 1 How to Automatically Generate Input 
Prompt? It is challenging to automatically generate appro-
priate instructions and demonstration examples to guide 
LLMs to optimize different database tasks with a limited 
number of prompt tokens (or interaction rounds with LLMs).

Vision 1  We can concatenate instruction and demonstration 
examples as additional text information in the prompt, which 
is organized as “[Instruction] [Examples] Input: [x] Output:.” 
Note we place task instruction before demonstration examples 
for two reasons: (i) It follows the natural progression of teaching 
the model to finish a task, i.e., introducing the problem before 
showing how to solve it; (ii) Instruction provides the contextual 
information for the examples, making the model easier to build 
connection between the examples and task purpose (e.g., given 
the query rewrite instruction, the model can focus on the struc-
tural changes in the examples). Next we, respectively, explain 
how to automatically generate the instruction and demonstration 
examples (Fig. 3).

• Instruction

 The quality of task instructions can impact the performance 
of LLM on different tasks. Thus, we present a method to 

Fig. 2  Three strategies of using LLM for database tasks
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automatically generate instructions with a limited number 
of samples [10, 11]. First, we utilize LLM to suggest instruc-
tion candidates based on a small set of input–output pairs 
(e.g., five pairs for an instruction). Second, we rank these 
generated instructions based on a customized scoring func-
tion (e.g., the average performance on test workloads), and 
reserve the best instructions (e.g., top-10) as candidates. 
Third, we utilize search-based methods (e.g., Monte Carlo 
Search) to improve the candidates with LLM (e.g., outputting 
instruction variants with similar semantics as a candidate). 
Finally, we select the best instruction to serve as the input 
for the task.

• Demonstration examples

 are selected from a candidate set {si} . Unlike instruction 
generation, example selection depends on the input x. If an 
example is more similar to the input, it provides more rel-
evant information to the LLM. Specifically, we learn an input 
encoder EX(⋅) and an example encoder ES(⋅) , and calculate the 
similarity between EX(x) and ES(si) for all candidate examples 
using L2 distance [2, 22, 24]. For instance, if x and si are both 
SQLs, they may share similar operators such as COUNT(⋅) or 
JOIN. We select the top k examples and place them before x 
in ascending order of similarity (i.e., more similar examples 
are closer to the input). Since adjacent tokens in an exam-
ple si and x have similar position embeddings, this helps the 
LLM focus on the input–output mappings of the most similar 
examples [2]. Note that the candidate set of examples is typi-
cally collected from real-world applications, such as the 36 
examples that cover typical rules for query rewrite. If there 

is no such candidate set for a new task, we can obtain a few 
hand-crafted examples from an expert, and use the LLM to 
derive more examples from them, (e.g., using prompts like 
“generate new queries with different structures but using the 
same rewrite rules”).

Challenge 2: How to Efficiently Interact with LLM Using 
Prompts? Many database tasks require low latency. How-
ever, there are three factors that can increase the interac-
tion latency and cost with LLM. (i) It can be time-consum-
ing to actively generate prompt for input (e.g., retrieving 
suitable examples from candidate ones). (ii) Long prompts 
often include more useful information for LLM, but can 
take longer processing time for LLM. (iii) Some complex 
tasks can be better solved by calling LLM for several 
rounds and interactively adjusting the prompt. Thus, it is 
important to efficiently generate prompts and reduce the 
latency and cost of LLM interactions.

Vision 2  To address the issue of costly prompt genera-
tion, one possible solution is to train a reinforcement learn-
ing (RL) model, such as Q-learning, on a set of candidate 
examples. This model can be employed to identify the most 
suitable example for selection, thus eliminating the necessity 
to search through the entire collection of candidates [20]. 
By calling the RL model a fixed number of times, which is 
equal to the number of examples required in the prompt, we 
can generate the prompt more efficiently.

Secondly, it is important to strike a balance between 
prompt length and LLM performance. When selecting 
instructions and demonstration samples, we should not only 
consider their performance on the validation set but also 
prioritize shorter ones.

Finally, incorporating information from previous rounds 
into the prompt can improve the effectiveness of prompt-
based interactions with LLM. For instance, when adjusting 
database knobs based on the outputs of the LLM, we can 
record the outputs (e.g., tuned knobs) and their actual per-
formances (e.g., workload throughput under tuned knobs) 
from previous rounds, and incorporate them into the prompt. 
This can help the LLM make more accurate inferences dur-
ing subsequent rounds of interaction [34].

Table 1  LLM strategy comparison

Input prompt Fine-tuning Pre-training

Tunable param-
eters

Thousands Tens of billion Hundred billion

Data samples Dozens Thousands Millions
Input features Text data Text/non-text 

data
Text/non-text 

data

Fig. 3  Automatic prompt generator
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2.3  LLM Fine‑Tuning

Motivation Apart from text prompts, some database tasks 
(e.g., physical query plan generation) require non-textual 
information that is not readily expressible in natural lan-
guage. Moreover, fine-tuning can enhance the task-specific 
performance of LLM. However, the effectiveness of the fine-
tuned model is significantly influenced by the size and qual-
ity of the labeled data samples.

Methodology First, we can train non-text embeddings 
during fine-tuning and combine them with natural language 
embeddings. Second, we should make good utilization of 
existing data for model fine-tuning, and continuously collect 
new fine-tuning data from application feedbacks of LLM. 
Third, we explore new methods to enhance LLM fine-tuning.

Challenge 3 How to Embed Non-text Input Features? 
Some database features cannot be directly embedded as text 
due to its verbosity (e.g., data distributions), which easily 
exceeds the input length limit of LLM (e.g., ~3000 words 
for GPT−3.5 [35]). To address this issue, we need to explore 
how to embed non-text features and incorporate them with 
text input features during fine-tuning.

Vision 3  First, we provide two examples of non-text 
embeddings. (i) Data distribution is an important factor that 
affects various aspects of database tasks (e.g., operator costs, 
query results). We can use a model ED to embed the distribu-
tion of table column data, and the embedding vector for col-
umn t.c is denoted as ED(t.c.data) . For instance, we can first 
use quantiles such as (min, p01,..., p99, max) to approximate 
the distribution of the column data and then embed them 
with models like Transformer [30, 36]. Note that text embed-
dings represent the semantic and syntactic characteristics 
of text words. Thus, ED should be trained to convert these 
data characteristics into the same embedding space as text 
during fine-tuning [37]. (ii) Query correlations reflect the 
execution state of workloads in the same database and form 
a graph model, which cannot be learned well by sequential 
models. Therefore, we can use a model ER to embed the cor-
relations between concurrent queries. The embedding vector 
for query q is denoted as ER(q, q.correlated_queries) , where 
q.correlated_queries are the queries accessing the same table 
columns as q. For instance, we can create a graph where 
each query is a node and the query correlations can be repre-
sented by the edge type and weight. With the graph, we can 
utilize models like graph neural network to embed the graph 
structural information into a vector ER(⋅)  [38, 39]. Note that 
the reason why non-text features are not described in natural 
language is that it may cause extremely long text input (e.g., 
a complex query may involve hundreds of columns and even 
more concurrent queries) and the relevant information may 
scatter sparsely among the long text, making it difficult for 
LLM to capture useful information.

Second, we can set the non-text embeddings to have the 
same dimensions as text embeddings, and train the non-text 
embedding models together with LLM in fine-tuning. During 
usage, we separately embed text features and non-text fea-
tures, and then concatenate the embedding vectors to obtain 
an input sequence of LLM, which can be further processed.

Challenge 4 How to Provide Sufficient High-Quality Data 
for Fine-Tuning? Some database tasks may lack sufficient 
high-quality data (e.g., tens of thousands of samples) to fine-
tune LLM. This may occur for two reasons. First, obtaining 
task-specific data is costly. For example, it takes weeks to 
collect fine-tuning data for knob tuning, which includes the 
target workload, knob settings, and the actual performance. 
Second, even with abundant data, there may be lack of high-
quality annotations (e.g., reasoning processes for slow SQL 
query diagnosis) to facilitate the learning of task-specific 
knowledge by LLM. Therefore, it is essential to explore 
methods to make good use of existing data, and continu-
ously collect data from LLM usage feedback.

Vision 4  We propose two potential solutions. First, we 
can use contrastive learning to generate additional fine-tun-
ing samples from the dataset [27]. For instance, in knob 
tuning, we can obtain k knob settings along with their cor-
responding performance metrics. By using LLM to compare 
the performance of each pair of knob configurations, we can 

generate 
(
k

2

)
 samples (which is significantly larger than k) 

for fine-tuning LLM.
Second, for low-quality data samples, we can leverage 

LLM to generate annotations, such as the reasoning process 
of data sample (chain of thought [23, 26, 40]), which can 
help to improve the quality of the data. For example, we can 
use LLMs to diagnose the root causes of slow database per-
formance (e.g., the latency of a workload is over 50% higher 
than the normal latency), which can be used as annotations 
of monitoring metric data. Specifically, we first input the 
monitoring data (e.g., system views, query logs) and a set 
of potential annotations to LLM. Next, the LLM selects the 
annotation with the highest probability of causing the slow 
performance as the final annotation.

Third, we can monitor the performance of LLM and 
record scenarios where the LLM performs poorly by log-
ging input features and its corresponding outputs. We add 
such data samples into fine-tuning data. We not only increase 
the size of our fine-tuning data, but also capture weaknesses 
in the LLM.

Challenge 5 How to efficiently fine-tune LLM? The large 
scale of LLM makes fine-tuning both time-consuming and 
costly. Therefore, we need to explore efficient fine-tuning 
methods.
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Vision 5  Traditional fine-tuning allows to tune all the 
network parameters. Instead, tuning a small part of the mode 
parameters (delta tuning [28]) can achieve similar perfor-
mance for the task and is much more efficient. Here, we 
introduce two delta-tuning methods. First, we can add extra 
tunable parameters to LLM. For example, we can inject 
adapter modules (e.g., small MLP) to each Transformer 
model [41]. We only tune these adapter modules during fine-
tuning, and keep the original parameters of LLM frozen. 
Note that this method can also reduce the storage cost of 
the fine-tuned LLM. If we fine-tune LLM for many tasks, 
we can store the parameters of adapter modules and only 
store one copy of the original LLM. Second, the fine-tuning 
process optimizes parameters from � to �′ , and we denote 
the difference of parameters as �� = �

� − � . Then, we can 
decompose �� into low-dimensional representations, e.g., 
W = BA , where W denotes weight matrix of �� and B, A 
denote the weight parameters we actually tune [42]. We 
assume W ∈ Rd×k , B ∈ Rd×r , and A ∈ Rr×k ( r ≪ d ), where 
d, k denote the size of the weight matrix, and r denotes the 
decomposed rank. B and A have much fewer parameters than 
W and are more efficient to tune.

2.4  DB‑Specific LLM Design and Pre‑training

Motivation Unlike natural language tasks, database tasks 
have unique characteristics such as strict output constraints 
and a large amount of unique data features (e.g., data distri-
butions, metadata, data statistics, and query logs). However, 
existing LLMs only use text data on surface web but do not 
capture the data in hidden database, and thus face difficulties 
in handling complicated database tasks.

Methodology First, we need a new model design to 
ensure the validity of the LLM output. Second, there are 
a large-scale diverse data in database, e.g., SQLs and their 
physical plans, slow SQLs, database metrics, database statis-
tics, etc. We should collect and organize them into training 
samples for LLMs and teach LLMs how databases work. 
Third, data in database tasks is often business-sensitive and 
mission critical. We should avoid data leakage during both 
LLM pre-training and LLM inference.

Challenge 6 How to Ensure the Validity of LLM Output? 
Although LLM cannot guarantee 100% accuracy on the 
task results, certain database tasks require strict constraints 
(e.g., the output of query rewrite must be a semantically 
equivalent query and the query must be executable on the 
database). It is essential to ensure that all invalid outputs are 
detected or avoided.

Vision 6  We propose to adopt a hybrid method to ensure 
the validity of model output. First, we should design special 
training set so that LLM can maximize the possibility of 

generating valid outputs (e.g., queries that satisfy the SQL 
syntax). Second, for relatively simple cases, we adopt a non-
learned checking layer to validate the output (e.g., using an 
SMT solver for simple SPJ queries [43]). For more complex 
cases, we adopt a learned checking layer (e.g., a binary clas-
sifier) to validate the output. Similar to a learned Bloom 
filter [44, 45], if the output is judged as "invalid", the learned 
checking layer feeds back the illegal result to the LLM, and 
the LLM regenerates the output. Otherwise, the output needs 
to be double-checked on simplified cases (e.g., comparing 
the execution results of the original and rewritten queries on 
sampled data) [28].

Challenge 7 How to Train LLM with Database Data? A 
significant amount of data is required to train a high-quality 
LLM  [1, 46–49]. For a database-specific LLM, we expect it 
to learn general knowledge that applies to all database tasks. 
It can learn basic knowledge from database documents or 
blogs by human experts, but such natural language texts are 
of a limited size. Thus, it is extremely important to learn a 
database-specific LLM.

Vision 7  Training data in databases has different char-
acteristics compared to natural language text corpus. First, 
the database training samples may have different formats, 
e.g., well-structured SQLs and query plans, semi-structured 
logs, and unstructured documents. Thus, we need to well 
represent different data samples and concatenate them for 
training LLM effectively.

For example, we can record query execution and obtain a 
sequence like “[Table Data][Query]→[Logical Plan]→[Phys-
ical Plan]→[Result][Execution Time].” By learning the rel-
evance within such sequences, LLM can automatically learn 
how to conduct query optimization. Second, database data 
contains plenty of structural information (e.g., tree structure 
of query plan). Special designs are required to enable the 
DB-specific LLM to better utilize the structure information. 
For example, we can combine the design of graph neural net-
works to support complex graph topological structures [50].

Moreover, since some database data is very long and 
exceeds the length limit of Transformer-based LLMs, we 
can use long-range attention to learn correlations among dis-
tant words [51]. Specifically, we can store the encoded vec-
tors (keys and values) of historical tokens in a large external 
memory. When training LLM for a particular token xi , we 
can search for the k nearest vectors in the external memory 
and use the attention mechanism to encode xi with them. 
This enables LLM to learn basic knowledge from long data-
base training samples.

Challenge 8 How to pre-train and apply LLM while ensur-
ing data privacy? User data in a database must be protected 
from leakage due to privacy concerns. This prevents user 
data from being integrated into the database provider for 
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centralized LLM pre-training. Moreover, some users can-
not send their sensitive data as input to DB-GPT through 
inference APIs.

Vision 8  To address this challenge, we propose two solu-
tions. First, we can use privacy-preserving federated learning 
to train LLM  [30, 31]. In this approach, a server (e.g., data-
base provider) collaborates with clients (e.g., users) to train 
LLM for several rounds. In each round, the client receives 
some server information (e.g., server network parameters) 
and updates their local network parameters. They then train 
their local model with their local data and send some local 
information (e.g., their local gradients) to the server. The 
server updates its network parameters by aggregating the 
local information from clients, and starts the next round by 
sending updated server information. This approach ensures 
data privacy since users always manipulate their own data.

Secondly, due to business reasons, we are unable to 
directly provide the network parameters in DB-GPT to 
users. Instead, we can distill the knowledge of DB-GPT 
into a smaller model that performs similarly to LLMs for 
desired tasks and provide this model to the user [26, 52]. 
Specifically, we require the user to provide a dataset of their 
database’s application scenarios (e.g., workloads, data dis-
tributions). Using this dataset, we annotate with DB-GPT 
output (see details in Sect. 2.2) and train a simplified model 
with this new dataset. It is important to note that user appli-
cations are relatively deterministic, which makes a smaller 
model sufficient despite its lower generalizability.

3  Practices

We have conducted preliminary practices to show the effec-
tiveness of automatically generated prompts, i.e., LLMs 
equipped with these prompts can achieve comparable perfor-
mance as the state-of-the-art methods. To explore the upper 
limits of these LLMs, we test with two most advanced mod-
els (checked until June, 2023), including “text-davinci-003’ 
that owns 175 billion parameters and supports up to 4,097 
tokens per request, “gpt-4” that supports up to 8,192 
tokens per request and generally can follow more complex 
instructions.

3.1  Implementation

There are three main steps in our initial implementation of 
DB-GPT. First, we generate the instruction from a small 
number of collected samples (splitting into training and 
evaluation sets), i.e., deriving several instructions using the 
LLM on training set and choosing the best instruction by 
evaluating on evaluation set (Sect. 2.2). Second, based on 
the task requirements, we collect other input features such 
as demonstration examples (e.g., query rewriting pairs) and 
data statistics (e.g., distinct value ratios of the columns). 
Finally, we concatenate the instruction, collected features, 
and the input into a prompt sequence, and rely on the LLM to 
output desired results based on the prompt sequence.

3.2  DB-GPT for Query Rewrite

Datasets We generate instructions on the training set and 
verify the performance on the evaluation set. (i) The training 
set contains 36 query rewrite pairs {(x, y)} , where y is rewrit-
ten from x with a unique rewrite rule. Thus, the training set 
covers some frequently used rewrite rules in real usage. (ii) 
The evaluation set contains 12 queries sampled from two 
real-word datasets: the dataset Shopmall contains 78 tables 
and 298,208 sampled tuples; and the dataset Goods contains 
41 tables and 683,130 sampled tuples .1

Empirical Analysis As shown in Fig.  4a, DB-GPT 
(davinci-003) and DB-GPT (gpt−3.5-turbo) separately out-
perform the PostgreSQL rewriter by 9.8% and 22.4%. First, 
DB-GPT (davinci-003) effectively rewrites 6 out of the 12 
queries, which results in latency reductions ranging from 
0.6% to 82.5%. With the proper instruction, i.e., “Rewrite 
the input SQL query to produce an equivalent query that 
can be executed on a PostgreSQL database with decreased 
latency,” DB-GPT (davinci-003) is inspired to apply more 
complex rewrite rules than the built-in rules in PostgreSQL, 
such as converting subqueries with aggregations into joins. 
Second, DB-GPT (gpt−3.5-turbo) outperforms DB-GPT 
(davinci-003) by optimizing some complex queries (e.g., 
queries that involve both join reordering and join predicate 

Fig. 4  Performance compari-
son. a Query rewrite on 12 real 
queries of the Shopmall and 
Goods datasets. b Index tuning 
on 10 workloads of the imd-
bload dataset. The index space 
is limited within 500 M

1 https:// github. com/ Tsing huaDa tabas eGroup/ DB- GPT/ tree/ main/ 
prompt_ templ ate_ scrip ts

https://github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/prompt_template_scripts
https://github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/prompt_template_scripts
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pushdown), where the davinci-003 model fails to address. 
Because gpt-3.5-turbo is trained on larger human language 
datasets, enabling it to undertake complex reasoning tasks 
(e.g., multi-step rewrites). Moreover, to further optimize the 
rewrite performance, we incorporate a demonstration exam-
ple in DB-GPT models’ prompt, which outlines the step-by-
step process for the complex rewrites that DB-GPT without 
demonstration example fails to achieve (shown in Fig. 1).

We find the models used in DB-GPT learn to replace 
the subquery “sku_id > (...detail.store_id = info.id)” with 
INNER JOIN operator, and the subquery no longer depends 
on the external query. Note the demonstration example is 
not the same as the input query (e.g., no “>” in the example, 
and the names are abbreviated), which guides DB-GPT to 
rewrite queries involving similar structures. Besides, DB-
GPT can also replace the subquery “exists(...)” with INNER 
JOIN operator, which is not included in the example. That 
means that DB-GPT can utilize the knowledge from the 
example without forgetting the rewrite rules learned from 
pre-training.

Limitations First, we should design a candidate example 
set for practical usage, which is large enough and covers all 
common rewrite skills (e.g., typical rules or even rule com-
binations). Then for an input query, similar examples can 
be selected from it, which can guide LLM. Second, query 
rewrite is a multi-step reasoning task, and we may inter-
act with LLM for multiple rounds to obtain a better rewrit-
ten query [34]. For instance, we can input the temporarily 
rewritten query to LLM, and ask it to further rewrite it. This 
process can be repeated until the output query is optimal 
(e.g., evaluated by LLM) or reaching time limit.
DB-GPT for Index Tuning
Datasets. We first generate 60 instructions from the 180 

pairs (workload, optimal indexes) on the TPC-H and TPC-
DS datasets, from which we take the prompt that achieves 
the best performance on the 20 workloads of the IMDB 
dataset. Apart from instruction (LLM(TaskeDesc)), we test 
the input prompt with table schema (LLM(Schema)) and the 
input prompt with data statistics like distinct value ratios and 
tuple numbers (LLM(DataStats)).

Empirical Analysis The experimental results are shown in 
Fig. 4b. We have two observations. First, the three prompt-
ing methods for DB-GPT all achieve performance improve-
ment over PostgreSQL, which does not recommend indexes 
for specific workloads.

Because DB-GPT finds operators that can be enhanced by 
indexes and builds indexes on the columns of these operators 
(e.g., create index on person_info(person_id, info_type_id) for 
the predicate “person_info.person_id > 4158523 
AND person_info.info_type_id <> 22”). Second, 
for the three different prompts, LLM(DataStats) achieves low-
est estimated costs, while LLM(Schema) works best in actual 

latency. Because LLM(Schema) selects many more single-col-
umn indexes than LLM(DataStats), which may achieve higher 
estimated cost but are more flexibly used in actual execution. 
Thus, we need to judiciously select the data information (e.g., 
column types and data distributions) for prompts. Moreover, it is 
noteworthy that the performance of gpt-4 is even inferior to that 
of the text-davinci-003 model. This observation suggests that 
the relation between desired indexes and the physical constraints 
(e.g., storage budget, data characters) cannot be readily acquired 
by even extremely powerful language models, and causes mis-
understanding. For example, almost 78% indexes selected by 
the gpt-4 model are removed due to storage limit, because their 
space consumption cannot be well estimated by the language 
model without careful fine-tuning.

Limitations First, DB-GPT should be aware of the stor-
age space for each index, which guides to achieve trade-off 
between performance and space consumption. Currently, we 
greedily limit the adopted indexes by DB-GPT (i.e., remov-
ing the remaining indexes after the index space is full). 
Second, different from query rewrite, index tuning involves 
many queries in a workload, which may exceed the input 
length limitation in the LLMs. Thus, it is vital to embed 
the workload queries into acceptable length or design new 
LLMs, especially for high-concurrency transactions. Third, 
index tuning also requires iteration mechanism that allows 
DB-GPT to update the index set for multiple times before 
fully optimizing the performance.

In summary, although LLMs demonstrate potential in 
handling database tasks, there are still many opportuni-
ties for further research. Firstly, there is a need for a well-
designed LLM4DB architecture that supports common data-
base functionalities. For instance, a comprehensive LLM 
can be designed to forecast and schedule workloads across 
different components, with each component or function is 
driven by a fine-tuned LLM. Additionally, it is crucial to 
improve the efficiency of model inference. This requires the 
model to generate reasonable predictions or decisions with-
out excessively consuming system resources. Some potential 
approaches include distilling the model into smaller models 
and supporting concurrent model inferences.

4  Related Work

Large Language Models
Different from other ML models, large models are designed 
to scale with increasing amounts of training data and com-
putation resources [53–56]. There are mainly two types of 
large model designs for natural language [57]. (i) Unidi-
rectional language models (e.g., GPT-3 [1]) use a single 
direction of text (allowing for efficient parallelization on 
increased computation power), i.e., assigning a possibility 
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to a token sequence x = (x1, ..., xn) . For instance, if we break 
down the sequence from left to right, the model calculates 
P(x) = P(x1) × ... × P(xn|x1, ..., xn−1) . Thus, such models 
are good at predicting tokens following the input text (e.g., 
text generation tasks). (ii) Masked language models (e.g., 
BERT [58], ERNIE [59]) mask some tokens in the text input, 
and aim to predict them based on the contextual information. 
For instance, LLM can calculate P(xi|x1, ..., xi−1, xi+1, ..., xn) , 
where xi is the masked token. Such models are more suitable 
to fill in the middle of the text (e.g., text classification tasks).

Large Language Models for Databases Some initial 
attempts have been made to use large language models for 
database [60, 61]. DB-BERT [60] relies on the BERT model 
to summarize the database tuning manuals into rules. These 
rules can be used to enhance the configuration exploration 
procedure, since the RL model only selects rules to tune the 
database rather explores the whole space. On the other hand, 
CodexDB [61] aims to utilize the GPT-3 model to trans-
late SQL queries into other languages (e.g., Python), which 
achieves an accuracy of around 60%. These works show 
promise in promoting the use of large models for databases.

5  Conclusion

In this paper, we explored the use of large language models 
(LLMs) for accomplishing database tasks. We proposed a 
system DB-GPT that effectively uses LLMs for optimiz-
ing database tasks, including prompt generation, fine-tuning 
LLM, and database-specific LLM design. In the initial prac-
tice, we verified the relatively good performance of DB-
GPT using prompt generation for database tasks like query 
rewrite and index tuning. We believe the use of LLMs will 
continue to benefit the field of database systems, including 
text2SQL, SQL2Plan, database diagnosis, and data tuning.
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