
Vol.:(0123456789)

Data Science and Engineering
https://doi.org/10.1007/s41019-023-00235-6

RESEARCH PAPER

DB‑GPT: Large Language Model Meets Database

Xuanhe Zhou1 · Zhaoyan Sun1 · Guoliang Li1

Received: 6 June 2023 / Revised: 27 June 2023 / Accepted: 26 July 2023
© The Author(s) 2024

Abstract
Large language models (LLMs) have shown superior performance in various areas. And LLMs have the potential to revolu-
tionize data management by serving as the "brain" of next-generation database systems. However, there are several challenges
that utilize LLMs to optimize databases. First, it is challenging to provide appropriate prompts (e.g., instructions and demon-
stration examples) to enable LLMs to understand the database optimization problems. Second, LLMs only capture the logical
database characters (e.g., SQL semantics) but are not aware of physical characters (e.g., data distributions), and it requires to
fine-tune LLMs to capture both physical and logical information. Third, LLMs are not well trained for databases with strict
constraints (e.g., query plan equivalence) and privacy-preserving requirements, and it is challenging to train database-specific
LLMs while ensuring database privacy. To overcome these challenges, this vision paper proposes a LLM-based database
framework (DB-GPT), including automatic prompt generation, DB-specific model fine-tuning, and DB-specific model design
and pre-training. Preliminary experiments show that DB-GPT achieves relatively good performance in database tasks like
query rewrite and index tuning. The source code and datasets are available at github.com/TsinghuaDatabaseGroup/DB-GPT.

Keywords Large language model · Database

1 Introduction

Large language models (LLMs) are pre-trained with a super
large model capacity (e.g., over 170 billion network param-
eters in GPT-3 [1]) and a large data corpus (e.g., over 8
million website pages as training data), which is good at
understanding human knowledge and instructions. Recently,
LLMs have demonstrated superiority in various tasks like
text generation [2], machine translation [3], and program
synthesis [4]. Thus, a natural question is whether LLMs can
be used to accomplish database tasks.

Task 1: Query Rewrite In Fig. 1, the query rewrite task is
described in three parts. (i) Instruction includes the overall pro-
cedure and target of the task. In this case, we aim to write an

equivalent query that can be executed on Postgres and achieves
lower latency than origin query. Note it is critical to ensure the
LLM captures the key points in the instruction, as these points
may be overlooked or misunderstood. (ii) Examples are simpli-
fied demonstrations of query rewrite. These examples teach the
LLM how to use rewrite rules, which cannot be well covered
in the instruction. (iii) Input provides the necessary informa-
tion to accomplish the task (e.g., the SQL query). We input the
three parts in the form of ([Instruction], [Examples],
[Input]) into LLMs, which asks LLMs to rewrite the input
query (e.g., pulling up the nested subquery as table joins) and
append the rewritten query after the input.

Task 2: Index Tuning Similarly, the index tuning task
involves (i) the main procedure (e.g., creating a sequence
of indexes) and task target (e.g., reducing the latency within
limited space) and (ii) examples like inputting a two-table
join query and outputting two indexes that use the columns
in the queries and (iii) the input including some new queries,
for which we need to create suitable indexes. In this case, the
LLM recommends some indexes so as to actually optimize
the bottleneck operators in the input queries (e.g., orderby)
and avoid redundant indexes.

 * Guoliang Li
 liguoliang@tsinghua.edu.cn

 Xuanhe Zhou
 zhouxuan19@mails.tsinghua.edu.cn

 Zhaoyan Sun
 szy22@mails.tsinghua.edu.cn

1 Department of Computer Science, Tsinghua University,
Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00235-6&domain=pdf
http://orcid.org/0000-0002-1398-0621

 X. Zhou et al.

Compared with existing AI4DB works [5–7], LLMs for
database (LLM4DB) have three advantages. (1) Higher
transfer capability: Unlike existing instance-optimal works
that can optimize an instance but cannot be extended to
other instances, LLM4DB demonstrates exceptional trans-
fer capability. By leveraging just a few fine-tuning samples,
LLM4DB can achieve comparable performance on novel
database tasks, making it adaptable to schema, workload, or
even data and hardware changes; (2) User-friendly interface:
LLM4DB offers an intuitive user experience by allowing
users to provide some prompts as hints to guide the model’s
inference. Instead, AI4DB typically requires substantial
amounts of training data (supervised models) or multiple
iterations (reinforcement learning) to capture and incorpo-
rate user feedback. (3) Prior Knowledge Learning: LLM4DB
is capable of extracting insights from existing database com-
ponents, including documents or even code. By integrating
the strengths of these components, LLM4DB can enhance its
performance while mitigating their individual weaknesses.

However, there remain some challenges to achieve com-
parable or even better performance.

C1 How to Generate Input Prompts for Database Tasks?
First, the quality of the instructions provided to the LLM can
affect its performance on a specific task. For instance, the
writing style or complexity of the instructions may not be
well suited for the model’s comprehension, resulting in poor
performance. Therefore, it is crucial to automatically select
suitable task instructions (e.g., “rewrite the SQL query to
reduce complexity and improve performance...”) from a large

pool of candidate instructions. Second, for the same task, it
is important to provide some relevant examples for a given
input (e.g., the rewrites of queries that are similar to the input
query). These examples can provide insights on how to apply
prior knowledge to handle complicated cases (e.g., rewriting
queries that require to apply multiple rules) [8].

C2 How to Fine-Tune the LLMs for Database Tasks? First,
data characters (e.g., data distributions, indexes) may sig-
nificantly affect the optimization decisions of LLMs (e.g.,
building indexes for columns with a large number of distinct
values). However, it is challenging for LLMs to capture the
relations between data distribution and target tasks, e.g.,
describing the critical data characters in natural language or
model-friendly embeddings. Second, since some database
tasks only offer limited high-quality labeled samples (e.g.,
real queries with optimal rewritten strategy) for fine-tuning,
we should explore how to better utilize the training samples.

C3 How to Design a Database-Specific LLM? First, differ-
ent from NLP tasks, database tasks involve strict constraints
(e.g., providing equivalent query plans for query rewrite)
and structural information (e.g., the plan tree of a query),
which are hard to support or learn by only using existing
LLMs. Second, there are numerous public texts in NLP
tasks, which can be taken as the training samples for LLMs.
However, in databases, the data and queries are of high pri-
vacy, and it is vital to ensure the privacy while utilizing them
to train the LLMs.

To tackle these challenges, we propose a database opti-
mization framework by using LLMs (DB-GPT). We have
three main contributions. ❶ We recommend several prompt
generation methods that offer the valuable text information
(e.g., task instructions [9–12], demonstration examples [2,
13–25]) to accomplish database tasks with high perfor-
mance. The proposed methods include (i) automatically
selecting the suitable task instruction, (ii) efficiently select-
ing demonstration examples with an RL model, and (iii)
trading off between prompt length and LLM performance
to reduce the model inference cost. ❷ We provide several
methods to facilitate model fine-tuning using a small num-
ber of labeled samples for specific database tasks [21, 23,
26–29], including (i) non-text data embedding, (ii) annota-
tions for low-quality data samples, (iii) contrastive learning
for additional sample generation, and (iv) delta tuning that
reduces the number of tunable network parameters while
achieving similar performance. ❸ We propose to design
and train a database-specific LLM [30, 31] with (i) validity
checking for the output of LLMs, (ii) structural information
learning from numerous database logs (composed of various
workloads, optimization actions, and even result data) and
(iii) federated learning that preserves data privacy during
training the LLM.

Fig. 1 Large language model for database

DB-GPT: Large Language Model Meets Database

2 Opportunities of Using LLMs for DB

2.1 Overview

As shown in Fig. 2, this section presents three strategies that lev-
erage LLMs to optimize database tasks, including input prompt
generation (Sect. 2.2), database-specific LLM fine-tuning
(Sect. 2.3), and database-specific LLM design and pre-training
(Sect. 2.4). Input prompt generation aims to generate addi-
tional text information to guide LLMs in understanding the task
requirements, which can directly use existing LLMs to optimize
database tasks. Input prompt generation will not re-train LLMs,
making it most efficient to use. However, it requires the LLMs
to own the relevant database knowledge ahead of time, while
only a few advanced LLMs like GPT−3.5 satisfy this require-
ment. LLM fine-tuning updates network parameters (a small
part in delta tuning) so as to memorize task-specific knowledge,
which can accept non-text features with additional embedding
layers and achieve better performance than input prompt genera-
tion. DB-specific LLM design and pre-training require a large
number of database-specific training samples to learn network
parameters, which can serve as the foundation model for data-
bases. That is, by providing essential system characters (e.g.,
equivalence verification) and training mechanisms (e.g., feder-
ated learning) for database tasks, it can enhance the effectiveness
of both input prompt generation and LLM fine-tuning.

2.2 Input Prompt Generation

Motivation With the input x of a database task, we can add
additional text information to the input x, called the input
prompt x′ , which helps LLM to better understand the task
requirements. However, different inputs may correspond to
different optimal prompts (e.g., queries of different struc-
tures may require different rewrite examples) [2, 16, 22, 24,
25, 32, 33], and it is hard and tedious for users to give good

prompts. We need to build a prompt generator to automati-
cally derive the prompt for input x.

Methodology There are mainly two critical parts in prompts:
(i) instruction to guide LLM, and (ii) demonstration exam-
ples for LLM to simulate. The generated prompts should
be validated by the feedback of LLM, based on which we
can optimize the generator for good LLM performance. Fur-
thermore, when we use prompts to interact with LLM, we
should reduce the interaction latency (e.g., reducing interac-
tion rounds) and cost (e.g., the input token number of each
interaction round) for real applications (Table 1).

Challenge 1 How to Automatically Generate Input
Prompt? It is challenging to automatically generate appro-
priate instructions and demonstration examples to guide
LLMs to optimize different database tasks with a limited
number of prompt tokens (or interaction rounds with LLMs).

Vision 1 We can concatenate instruction and demonstration
examples as additional text information in the prompt, which
is organized as “[Instruction] [Examples] Input: [x] Output:.”
Note we place task instruction before demonstration examples
for two reasons: (i) It follows the natural progression of teaching
the model to finish a task, i.e., introducing the problem before
showing how to solve it; (ii) Instruction provides the contextual
information for the examples, making the model easier to build
connection between the examples and task purpose (e.g., given
the query rewrite instruction, the model can focus on the struc-
tural changes in the examples). Next we, respectively, explain
how to automatically generate the instruction and demonstration
examples (Fig. 3).

• Instruction

 The quality of task instructions can impact the performance
of LLM on different tasks. Thus, we present a method to

Fig. 2 Three strategies of using LLM for database tasks

 X. Zhou et al.

automatically generate instructions with a limited number
of samples [10, 11]. First, we utilize LLM to suggest instruc-
tion candidates based on a small set of input–output pairs
(e.g., five pairs for an instruction). Second, we rank these
generated instructions based on a customized scoring func-
tion (e.g., the average performance on test workloads), and
reserve the best instructions (e.g., top-10) as candidates.
Third, we utilize search-based methods (e.g., Monte Carlo
Search) to improve the candidates with LLM (e.g., outputting
instruction variants with similar semantics as a candidate).
Finally, we select the best instruction to serve as the input
for the task.

• Demonstration examples

 are selected from a candidate set {si} . Unlike instruction
generation, example selection depends on the input x. If an
example is more similar to the input, it provides more rel-
evant information to the LLM. Specifically, we learn an input
encoder EX(⋅) and an example encoder ES(⋅) , and calculate the
similarity between EX(x) and ES(si) for all candidate examples
using L2 distance [2, 22, 24]. For instance, if x and si are both
SQLs, they may share similar operators such as COUNT(⋅) or
JOIN. We select the top k examples and place them before x
in ascending order of similarity (i.e., more similar examples
are closer to the input). Since adjacent tokens in an exam-
ple si and x have similar position embeddings, this helps the
LLM focus on the input–output mappings of the most similar
examples [2]. Note that the candidate set of examples is typi-
cally collected from real-world applications, such as the 36
examples that cover typical rules for query rewrite. If there

is no such candidate set for a new task, we can obtain a few
hand-crafted examples from an expert, and use the LLM to
derive more examples from them, (e.g., using prompts like
“generate new queries with different structures but using the
same rewrite rules”).

Challenge 2: How to Efficiently Interact with LLM Using
Prompts? Many database tasks require low latency. How-
ever, there are three factors that can increase the interac-
tion latency and cost with LLM. (i) It can be time-consum-
ing to actively generate prompt for input (e.g., retrieving
suitable examples from candidate ones). (ii) Long prompts
often include more useful information for LLM, but can
take longer processing time for LLM. (iii) Some complex
tasks can be better solved by calling LLM for several
rounds and interactively adjusting the prompt. Thus, it is
important to efficiently generate prompts and reduce the
latency and cost of LLM interactions.

Vision 2 To address the issue of costly prompt genera-
tion, one possible solution is to train a reinforcement learn-
ing (RL) model, such as Q-learning, on a set of candidate
examples. This model can be employed to identify the most
suitable example for selection, thus eliminating the necessity
to search through the entire collection of candidates [20].
By calling the RL model a fixed number of times, which is
equal to the number of examples required in the prompt, we
can generate the prompt more efficiently.

Secondly, it is important to strike a balance between
prompt length and LLM performance. When selecting
instructions and demonstration samples, we should not only
consider their performance on the validation set but also
prioritize shorter ones.

Finally, incorporating information from previous rounds
into the prompt can improve the effectiveness of prompt-
based interactions with LLM. For instance, when adjusting
database knobs based on the outputs of the LLM, we can
record the outputs (e.g., tuned knobs) and their actual per-
formances (e.g., workload throughput under tuned knobs)
from previous rounds, and incorporate them into the prompt.
This can help the LLM make more accurate inferences dur-
ing subsequent rounds of interaction [34].

Table 1 LLM strategy comparison

Input prompt Fine-tuning Pre-training

Tunable param-
eters

Thousands Tens of billion Hundred billion

Data samples Dozens Thousands Millions
Input features Text data Text/non-text

data
Text/non-text

data

Fig. 3 Automatic prompt generator

DB-GPT: Large Language Model Meets Database

2.3 LLM Fine‑Tuning

Motivation Apart from text prompts, some database tasks
(e.g., physical query plan generation) require non-textual
information that is not readily expressible in natural lan-
guage. Moreover, fine-tuning can enhance the task-specific
performance of LLM. However, the effectiveness of the fine-
tuned model is significantly influenced by the size and qual-
ity of the labeled data samples.

Methodology First, we can train non-text embeddings
during fine-tuning and combine them with natural language
embeddings. Second, we should make good utilization of
existing data for model fine-tuning, and continuously collect
new fine-tuning data from application feedbacks of LLM.
Third, we explore new methods to enhance LLM fine-tuning.

Challenge 3 How to Embed Non-text Input Features?
Some database features cannot be directly embedded as text
due to its verbosity (e.g., data distributions), which easily
exceeds the input length limit of LLM (e.g., ~3000 words
for GPT−3.5 [35]). To address this issue, we need to explore
how to embed non-text features and incorporate them with
text input features during fine-tuning.

Vision 3 First, we provide two examples of non-text
embeddings. (i) Data distribution is an important factor that
affects various aspects of database tasks (e.g., operator costs,
query results). We can use a model ED to embed the distribu-
tion of table column data, and the embedding vector for col-
umn t.c is denoted as ED(t.c.data) . For instance, we can first
use quantiles such as (min, p01,..., p99, max) to approximate
the distribution of the column data and then embed them
with models like Transformer [30, 36]. Note that text embed-
dings represent the semantic and syntactic characteristics
of text words. Thus, ED should be trained to convert these
data characteristics into the same embedding space as text
during fine-tuning [37]. (ii) Query correlations reflect the
execution state of workloads in the same database and form
a graph model, which cannot be learned well by sequential
models. Therefore, we can use a model ER to embed the cor-
relations between concurrent queries. The embedding vector
for query q is denoted as ER(q, q.correlated_queries) , where
q.correlated_queries are the queries accessing the same table
columns as q. For instance, we can create a graph where
each query is a node and the query correlations can be repre-
sented by the edge type and weight. With the graph, we can
utilize models like graph neural network to embed the graph
structural information into a vector ER(⋅) [38, 39]. Note that
the reason why non-text features are not described in natural
language is that it may cause extremely long text input (e.g.,
a complex query may involve hundreds of columns and even
more concurrent queries) and the relevant information may
scatter sparsely among the long text, making it difficult for
LLM to capture useful information.

Second, we can set the non-text embeddings to have the
same dimensions as text embeddings, and train the non-text
embedding models together with LLM in fine-tuning. During
usage, we separately embed text features and non-text fea-
tures, and then concatenate the embedding vectors to obtain
an input sequence of LLM, which can be further processed.

Challenge 4 How to Provide Sufficient High-Quality Data
for Fine-Tuning? Some database tasks may lack sufficient
high-quality data (e.g., tens of thousands of samples) to fine-
tune LLM. This may occur for two reasons. First, obtaining
task-specific data is costly. For example, it takes weeks to
collect fine-tuning data for knob tuning, which includes the
target workload, knob settings, and the actual performance.
Second, even with abundant data, there may be lack of high-
quality annotations (e.g., reasoning processes for slow SQL
query diagnosis) to facilitate the learning of task-specific
knowledge by LLM. Therefore, it is essential to explore
methods to make good use of existing data, and continu-
ously collect data from LLM usage feedback.

Vision 4 We propose two potential solutions. First, we
can use contrastive learning to generate additional fine-tun-
ing samples from the dataset [27]. For instance, in knob
tuning, we can obtain k knob settings along with their cor-
responding performance metrics. By using LLM to compare
the performance of each pair of knob configurations, we can

generate
(
k

2

)
 samples (which is significantly larger than k)

for fine-tuning LLM.
Second, for low-quality data samples, we can leverage

LLM to generate annotations, such as the reasoning process
of data sample (chain of thought [23, 26, 40]), which can
help to improve the quality of the data. For example, we can
use LLMs to diagnose the root causes of slow database per-
formance (e.g., the latency of a workload is over 50% higher
than the normal latency), which can be used as annotations
of monitoring metric data. Specifically, we first input the
monitoring data (e.g., system views, query logs) and a set
of potential annotations to LLM. Next, the LLM selects the
annotation with the highest probability of causing the slow
performance as the final annotation.

Third, we can monitor the performance of LLM and
record scenarios where the LLM performs poorly by log-
ging input features and its corresponding outputs. We add
such data samples into fine-tuning data. We not only increase
the size of our fine-tuning data, but also capture weaknesses
in the LLM.

Challenge 5 How to efficiently fine-tune LLM? The large
scale of LLM makes fine-tuning both time-consuming and
costly. Therefore, we need to explore efficient fine-tuning
methods.

 X. Zhou et al.

Vision 5 Traditional fine-tuning allows to tune all the
network parameters. Instead, tuning a small part of the mode
parameters (delta tuning [28]) can achieve similar perfor-
mance for the task and is much more efficient. Here, we
introduce two delta-tuning methods. First, we can add extra
tunable parameters to LLM. For example, we can inject
adapter modules (e.g., small MLP) to each Transformer
model [41]. We only tune these adapter modules during fine-
tuning, and keep the original parameters of LLM frozen.
Note that this method can also reduce the storage cost of
the fine-tuned LLM. If we fine-tune LLM for many tasks,
we can store the parameters of adapter modules and only
store one copy of the original LLM. Second, the fine-tuning
process optimizes parameters from � to �′ , and we denote
the difference of parameters as �� = �

� − � . Then, we can
decompose �� into low-dimensional representations, e.g.,
W = BA , where W denotes weight matrix of �� and B, A
denote the weight parameters we actually tune [42]. We
assume W ∈ Rd×k , B ∈ Rd×r , and A ∈ Rr×k (r ≪ d), where
d, k denote the size of the weight matrix, and r denotes the
decomposed rank. B and A have much fewer parameters than
W and are more efficient to tune.

2.4 DB‑Specific LLM Design and Pre‑training

Motivation Unlike natural language tasks, database tasks
have unique characteristics such as strict output constraints
and a large amount of unique data features (e.g., data distri-
butions, metadata, data statistics, and query logs). However,
existing LLMs only use text data on surface web but do not
capture the data in hidden database, and thus face difficulties
in handling complicated database tasks.

Methodology First, we need a new model design to
ensure the validity of the LLM output. Second, there are
a large-scale diverse data in database, e.g., SQLs and their
physical plans, slow SQLs, database metrics, database statis-
tics, etc. We should collect and organize them into training
samples for LLMs and teach LLMs how databases work.
Third, data in database tasks is often business-sensitive and
mission critical. We should avoid data leakage during both
LLM pre-training and LLM inference.

Challenge 6 How to Ensure the Validity of LLM Output?
Although LLM cannot guarantee 100% accuracy on the
task results, certain database tasks require strict constraints
(e.g., the output of query rewrite must be a semantically
equivalent query and the query must be executable on the
database). It is essential to ensure that all invalid outputs are
detected or avoided.

Vision 6 We propose to adopt a hybrid method to ensure
the validity of model output. First, we should design special
training set so that LLM can maximize the possibility of

generating valid outputs (e.g., queries that satisfy the SQL
syntax). Second, for relatively simple cases, we adopt a non-
learned checking layer to validate the output (e.g., using an
SMT solver for simple SPJ queries [43]). For more complex
cases, we adopt a learned checking layer (e.g., a binary clas-
sifier) to validate the output. Similar to a learned Bloom
filter [44, 45], if the output is judged as "invalid", the learned
checking layer feeds back the illegal result to the LLM, and
the LLM regenerates the output. Otherwise, the output needs
to be double-checked on simplified cases (e.g., comparing
the execution results of the original and rewritten queries on
sampled data) [28].

Challenge 7 How to Train LLM with Database Data? A
significant amount of data is required to train a high-quality
LLM [1, 46–49]. For a database-specific LLM, we expect it
to learn general knowledge that applies to all database tasks.
It can learn basic knowledge from database documents or
blogs by human experts, but such natural language texts are
of a limited size. Thus, it is extremely important to learn a
database-specific LLM.

Vision 7 Training data in databases has different char-
acteristics compared to natural language text corpus. First,
the database training samples may have different formats,
e.g., well-structured SQLs and query plans, semi-structured
logs, and unstructured documents. Thus, we need to well
represent different data samples and concatenate them for
training LLM effectively.

For example, we can record query execution and obtain a
sequence like “[Table Data][Query]→[Logical Plan]→[Phys-
ical Plan]→[Result][Execution Time].” By learning the rel-
evance within such sequences, LLM can automatically learn
how to conduct query optimization. Second, database data
contains plenty of structural information (e.g., tree structure
of query plan). Special designs are required to enable the
DB-specific LLM to better utilize the structure information.
For example, we can combine the design of graph neural net-
works to support complex graph topological structures [50].

Moreover, since some database data is very long and
exceeds the length limit of Transformer-based LLMs, we
can use long-range attention to learn correlations among dis-
tant words [51]. Specifically, we can store the encoded vec-
tors (keys and values) of historical tokens in a large external
memory. When training LLM for a particular token xi , we
can search for the k nearest vectors in the external memory
and use the attention mechanism to encode xi with them.
This enables LLM to learn basic knowledge from long data-
base training samples.

Challenge 8 How to pre-train and apply LLM while ensur-
ing data privacy? User data in a database must be protected
from leakage due to privacy concerns. This prevents user
data from being integrated into the database provider for

DB-GPT: Large Language Model Meets Database

centralized LLM pre-training. Moreover, some users can-
not send their sensitive data as input to DB-GPT through
inference APIs.

Vision 8 To address this challenge, we propose two solu-
tions. First, we can use privacy-preserving federated learning
to train LLM [30, 31]. In this approach, a server (e.g., data-
base provider) collaborates with clients (e.g., users) to train
LLM for several rounds. In each round, the client receives
some server information (e.g., server network parameters)
and updates their local network parameters. They then train
their local model with their local data and send some local
information (e.g., their local gradients) to the server. The
server updates its network parameters by aggregating the
local information from clients, and starts the next round by
sending updated server information. This approach ensures
data privacy since users always manipulate their own data.

Secondly, due to business reasons, we are unable to
directly provide the network parameters in DB-GPT to
users. Instead, we can distill the knowledge of DB-GPT
into a smaller model that performs similarly to LLMs for
desired tasks and provide this model to the user [26, 52].
Specifically, we require the user to provide a dataset of their
database’s application scenarios (e.g., workloads, data dis-
tributions). Using this dataset, we annotate with DB-GPT
output (see details in Sect. 2.2) and train a simplified model
with this new dataset. It is important to note that user appli-
cations are relatively deterministic, which makes a smaller
model sufficient despite its lower generalizability.

3 Practices

We have conducted preliminary practices to show the effec-
tiveness of automatically generated prompts, i.e., LLMs
equipped with these prompts can achieve comparable perfor-
mance as the state-of-the-art methods. To explore the upper
limits of these LLMs, we test with two most advanced mod-
els (checked until June, 2023), including “text-davinci-003’
that owns 175 billion parameters and supports up to 4,097
tokens per request, “gpt-4” that supports up to 8,192
tokens per request and generally can follow more complex
instructions.

3.1 Implementation

There are three main steps in our initial implementation of
DB-GPT. First, we generate the instruction from a small
number of collected samples (splitting into training and
evaluation sets), i.e., deriving several instructions using the
LLM on training set and choosing the best instruction by
evaluating on evaluation set (Sect. 2.2). Second, based on
the task requirements, we collect other input features such
as demonstration examples (e.g., query rewriting pairs) and
data statistics (e.g., distinct value ratios of the columns).
Finally, we concatenate the instruction, collected features,
and the input into a prompt sequence, and rely on the LLM to
output desired results based on the prompt sequence.

3.2 DB-GPT for Query Rewrite

Datasets We generate instructions on the training set and
verify the performance on the evaluation set. (i) The training
set contains 36 query rewrite pairs {(x, y)} , where y is rewrit-
ten from x with a unique rewrite rule. Thus, the training set
covers some frequently used rewrite rules in real usage. (ii)
The evaluation set contains 12 queries sampled from two
real-word datasets: the dataset Shopmall contains 78 tables
and 298,208 sampled tuples; and the dataset Goods contains
41 tables and 683,130 sampled tuples .1

Empirical Analysis As shown in Fig. 4a, DB-GPT
(davinci-003) and DB-GPT (gpt−3.5-turbo) separately out-
perform the PostgreSQL rewriter by 9.8% and 22.4%. First,
DB-GPT (davinci-003) effectively rewrites 6 out of the 12
queries, which results in latency reductions ranging from
0.6% to 82.5%. With the proper instruction, i.e., “Rewrite
the input SQL query to produce an equivalent query that
can be executed on a PostgreSQL database with decreased
latency,” DB-GPT (davinci-003) is inspired to apply more
complex rewrite rules than the built-in rules in PostgreSQL,
such as converting subqueries with aggregations into joins.
Second, DB-GPT (gpt−3.5-turbo) outperforms DB-GPT
(davinci-003) by optimizing some complex queries (e.g.,
queries that involve both join reordering and join predicate

Fig. 4 Performance compari-
son. a Query rewrite on 12 real
queries of the Shopmall and
Goods datasets. b Index tuning
on 10 workloads of the imd-
bload dataset. The index space
is limited within 500 M

1 https:// github. com/ Tsing huaDa tabas eGroup/ DB- GPT/ tree/ main/
prompt_ templ ate_ scrip ts

https://github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/prompt_template_scripts
https://github.com/TsinghuaDatabaseGroup/DB-GPT/tree/main/prompt_template_scripts

 X. Zhou et al.

pushdown), where the davinci-003 model fails to address.
Because gpt-3.5-turbo is trained on larger human language
datasets, enabling it to undertake complex reasoning tasks
(e.g., multi-step rewrites). Moreover, to further optimize the
rewrite performance, we incorporate a demonstration exam-
ple in DB-GPT models’ prompt, which outlines the step-by-
step process for the complex rewrites that DB-GPT without
demonstration example fails to achieve (shown in Fig. 1).

We find the models used in DB-GPT learn to replace
the subquery “sku_id > (...detail.store_id = info.id)” with
INNER JOIN operator, and the subquery no longer depends
on the external query. Note the demonstration example is
not the same as the input query (e.g., no “>” in the example,
and the names are abbreviated), which guides DB-GPT to
rewrite queries involving similar structures. Besides, DB-
GPT can also replace the subquery “exists(...)” with INNER
JOIN operator, which is not included in the example. That
means that DB-GPT can utilize the knowledge from the
example without forgetting the rewrite rules learned from
pre-training.

Limitations First, we should design a candidate example
set for practical usage, which is large enough and covers all
common rewrite skills (e.g., typical rules or even rule com-
binations). Then for an input query, similar examples can
be selected from it, which can guide LLM. Second, query
rewrite is a multi-step reasoning task, and we may inter-
act with LLM for multiple rounds to obtain a better rewrit-
ten query [34]. For instance, we can input the temporarily
rewritten query to LLM, and ask it to further rewrite it. This
process can be repeated until the output query is optimal
(e.g., evaluated by LLM) or reaching time limit.
DB-GPT for Index Tuning
Datasets. We first generate 60 instructions from the 180

pairs (workload, optimal indexes) on the TPC-H and TPC-
DS datasets, from which we take the prompt that achieves
the best performance on the 20 workloads of the IMDB
dataset. Apart from instruction (LLM(TaskeDesc)), we test
the input prompt with table schema (LLM(Schema)) and the
input prompt with data statistics like distinct value ratios and
tuple numbers (LLM(DataStats)).

Empirical Analysis The experimental results are shown in
Fig. 4b. We have two observations. First, the three prompt-
ing methods for DB-GPT all achieve performance improve-
ment over PostgreSQL, which does not recommend indexes
for specific workloads.

Because DB-GPT finds operators that can be enhanced by
indexes and builds indexes on the columns of these operators
(e.g., create index on person_info(person_id, info_type_id) for
the predicate “person_info.person_id > 4158523
AND person_info.info_type_id <> 22”). Second,
for the three different prompts, LLM(DataStats) achieves low-
est estimated costs, while LLM(Schema) works best in actual

latency. Because LLM(Schema) selects many more single-col-
umn indexes than LLM(DataStats), which may achieve higher
estimated cost but are more flexibly used in actual execution.
Thus, we need to judiciously select the data information (e.g.,
column types and data distributions) for prompts. Moreover, it is
noteworthy that the performance of gpt-4 is even inferior to that
of the text-davinci-003 model. This observation suggests that
the relation between desired indexes and the physical constraints
(e.g., storage budget, data characters) cannot be readily acquired
by even extremely powerful language models, and causes mis-
understanding. For example, almost 78% indexes selected by
the gpt-4 model are removed due to storage limit, because their
space consumption cannot be well estimated by the language
model without careful fine-tuning.

Limitations First, DB-GPT should be aware of the stor-
age space for each index, which guides to achieve trade-off
between performance and space consumption. Currently, we
greedily limit the adopted indexes by DB-GPT (i.e., remov-
ing the remaining indexes after the index space is full).
Second, different from query rewrite, index tuning involves
many queries in a workload, which may exceed the input
length limitation in the LLMs. Thus, it is vital to embed
the workload queries into acceptable length or design new
LLMs, especially for high-concurrency transactions. Third,
index tuning also requires iteration mechanism that allows
DB-GPT to update the index set for multiple times before
fully optimizing the performance.

In summary, although LLMs demonstrate potential in
handling database tasks, there are still many opportuni-
ties for further research. Firstly, there is a need for a well-
designed LLM4DB architecture that supports common data-
base functionalities. For instance, a comprehensive LLM
can be designed to forecast and schedule workloads across
different components, with each component or function is
driven by a fine-tuned LLM. Additionally, it is crucial to
improve the efficiency of model inference. This requires the
model to generate reasonable predictions or decisions with-
out excessively consuming system resources. Some potential
approaches include distilling the model into smaller models
and supporting concurrent model inferences.

4 Related Work

Large Language Models
Different from other ML models, large models are designed
to scale with increasing amounts of training data and com-
putation resources [53–56]. There are mainly two types of
large model designs for natural language [57]. (i) Unidi-
rectional language models (e.g., GPT-3 [1]) use a single
direction of text (allowing for efficient parallelization on
increased computation power), i.e., assigning a possibility

DB-GPT: Large Language Model Meets Database

to a token sequence x = (x1, ..., xn) . For instance, if we break
down the sequence from left to right, the model calculates
P(x) = P(x1) × ... × P(xn|x1, ..., xn−1) . Thus, such models
are good at predicting tokens following the input text (e.g.,
text generation tasks). (ii) Masked language models (e.g.,
BERT [58], ERNIE [59]) mask some tokens in the text input,
and aim to predict them based on the contextual information.
For instance, LLM can calculate P(xi|x1, ..., xi−1, xi+1, ..., xn) ,
where xi is the masked token. Such models are more suitable
to fill in the middle of the text (e.g., text classification tasks).

Large Language Models for Databases Some initial
attempts have been made to use large language models for
database [60, 61]. DB-BERT [60] relies on the BERT model
to summarize the database tuning manuals into rules. These
rules can be used to enhance the configuration exploration
procedure, since the RL model only selects rules to tune the
database rather explores the whole space. On the other hand,
CodexDB [61] aims to utilize the GPT-3 model to trans-
late SQL queries into other languages (e.g., Python), which
achieves an accuracy of around 60%. These works show
promise in promoting the use of large models for databases.

5 Conclusion

In this paper, we explored the use of large language models
(LLMs) for accomplishing database tasks. We proposed a
system DB-GPT that effectively uses LLMs for optimiz-
ing database tasks, including prompt generation, fine-tuning
LLM, and database-specific LLM design. In the initial prac-
tice, we verified the relatively good performance of DB-
GPT using prompt generation for database tasks like query
rewrite and index tuning. We believe the use of LLMs will
continue to benefit the field of database systems, including
text2SQL, SQL2Plan, database diagnosis, and data tuning.

Acknowledgements This paper was supported by National Key R\&D
Program of China (2023YFB4503600), NSF of China (61925205,
62232009, 62102215), Zhongguancun Lab, Huawei, TAL education,
and Beijing National Research Center for Information Science and
Technology (BNRist).

Authors' contributions GL makes contributions on the ideas. XZ con-
tribution is fine-tuning LLM. ZS contribution is DB-specific LLM.

Data avilability https://github.com/TsinghuaDatabaseGroup/DB-GPT

Declarations

Competing interest Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Brown Tom B et al (2020) Language models are few-shot learners.
Adv Neural Inf Proc Syst 2020:1877–1901

 2. Liu J, Shen D, Zhang Y, Dolan B, Carin L, Chen W (2022)
What Makes Good In-Context Examples for GPT-3? DeeLIO
2022(3):100–114

 3. Floridi L, Chiriatti M (2020) GPT-3: its nature, scope, limits, and
consequences. Minds Mach 30(4):681–694

 4. Svyatkovskiy A, Deng S K, Fu S, Sundaresan N (2020) Intel-
licode compose: code generation using transformer. In: FSE, pp
1433–1443

 5. Zhou X, Chai C, Li G, Sun J (2022) Database meets artificial intel-
ligence: a survey. IEEE Trans Knowl Data Eng 34(3):1096–1116

 6. Li G, Zhou X, Cao L (2021) AI meets database: AI4DB and
DB4AI. In: SIGMOD ’21: International conference on man-
agement of data, virtual event, China, Jun 20-25. ACM, pp
2859–2866

 7. Zhang X, Wu H, Chang Z, Jin S, Tan J, Li F, Zhang T, Cui B
(2021) restune: resource oriented tuning boosted by meta-learning
for cloud databases. In: SIGMOD ’21: International conference
on management of data, virtual event, China, Jun 20-25. ACM,
pp 2102–2114

 8. Dong Q, Li L, Dai D, Zheng C, Wu Z, Chang B, Sun X, Xu J, Li
L, Sui Z (2022) A survey for in-context learning. arXiv preprint
arXiv: 2301. 00234

 9. Sorensen Taylor et al (2022) An information-theoretic approach
to prompt engineering without ground truth labels. In: Proceed-
ings of the 60th annual meeting of the association for computa-
tional linguistics, vol 1. Association for computational linguistics,
Stroudsburg, pp 819–862

 10. Zhou Y, Muresanu A I, Han Z, Paster K, Pitis S, Chan H, Ba
J (2022) Large language models are human-level prompt engi-
neers. In: The Eleventh International Conference on Learning
Representations

 11. Honovich O, Shaham S R B, Omer L (2022) instruction induction:
from few examples to natural language task descriptions, pp 1–17

 12. Razeghi Y, Logan R L, Wallace E, Singh S (2020) AUTO-
PROMPT : eliciting knowledge from language models with auto-
matically generated prompts, pp 4222–4235

 13. Yao L, Bartolo M, Moore A, Riedel S, Stenetorp P (2022) Fan-
tastically ordered prompts and where to find them: overcoming
few-shot prompt order sensitivity. 1:8086–8098

 14. Zhao T Z, Wallace E, Feng S, Klein D, Singh S (2021) Cali-
brate before use: improving few-shot performance of language
models. In International Conference on Machine Learning, pp
12697–12706

 15. Fu Y, Peng H, Sabharwal A, Clark P, Khot T (2022) Complexity-
based prompting for multi-step reasoning, pp 1–14

 16. Kim H J, Cho H, Kim J, Kim T, Yoo K M, Lee S-G (2022) Self-
generated in-context learning: leveraging auto-regressive language
models as a demonstration generator

 17. Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le
Q, Zhou D (2022) Chain-of-thought prompting elicits reasoning in
large language models. Adv Neural Inf Proc Syst 35:24824–24837

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/2301.00234

 X. Zhou et al.

 18. Press O, Zhang M, Min S, Schmidt L, Smith N A, Lewis M (2022)
Measuring and narrowing the compositionality gap in language mod-
els, pp 1–25

 19. Zhou D, Schärli N, Hou L, Wei J, Scales N, Wang X, Schuurmans
D, Cui C, Bousquet O, Le Q, Chi E (2022) Least-to-most prompting
enables complex reasoning in large language models

 20. Zhang Y, Feng S, Tan C (2022) Active example selection for in-con-
text learning

 21. Wang X, Zhu W, Wang William Y (2023) Large language models are
implicitly topic models: explaining and finding good demonstrations
for in-context learning. arXiv preprint arXiv: 2301. 11916

 22. Wu Z, Wang Y, Ye J, Kong L Self-adaptive in-context learning. arXiv
preprint arXiv: 2212. 10375

 23. Shao Z, Gong Y, Shen Y, Huang M, Duan N, Chen W (2023) Syn-
thetic prompting: generating chain-of-thought demonstrations for large
language models

 24. Rubin O, Herzig J, Berant J (2022) Learning to retrieve prompts for
in-context learning. In: NAACL 2022 - 2022 Conference of the north
American chapter of the association for computational linguistics:
human language technologies, proceedings of the conference, pp
2655–2671

 25. Levy I, Bogin B, Berant J (2022) Diverse demonstrations improve
in-context compositional generalization

 26. Magister L C, Mallinson J , Adamek J , Malmi E, Severyn A (2022)
Teaching small language models to reason. arXiv preprint arXiv: 2212.
08410

 27. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C L, Mishkin P,
Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton
F, Miller L, Simens M, Askell A, Welinder P, Christiano P, Leike
J, Lowe R (2022) Training language models to follow instructions
with human feedback. Advances in Neural Information Processing
Systems, 35, 27730–27744

 28. Ding N, Qin Y, Yang G, Wei F et al (2022) Delta tuning: a compre-
hensive study of parameter efficient methods for pre-trained language
models. CoRR, arXiv: abs/ 2203. 06904

 29. Liu X, Zheng Y, Du Z, Ding M, Qian Y, Yang Z, Tang J (2021) GPT
understands, too. AI Open

 30. Yang Z, Liang E, Kamsetty A, Wu C, Duan Y, Chen X, Abbeel P,
Hellerstein JM, Krishnan S, Stoica I, Berkeley UC (2019) Deep unsu-
pervised cardinality estimation, vol 13

 31. Yin X, Zhu Y, Hu J (2021) A comprehensive survey of privacy-pre-
serving federated learning: a taxonomy, review, and future directions.
ACM Comput Surv 54(6):1

 32. Liu R, Wei J, Gu S S, Wu T-Y, Vosoughi S, Cui C, Zhou D, Dai A M
(2022) Mind’s eye: grounded language model reasoning through simu-
lation, pp 1–18

 33. Liu J, Liu A, Ximing L, Welleck S, West P, Le Bras R, Choi Y,
Hajishirzi H (2022) Generated knowledge prompting for common-
sense reasoning. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (volume 1: Long Papers),
pp 3154–3169

 34. Creswell A, Shanahan M (2022) Faithful reasoning using large lan-
guage models. Number, pp 1–48

 35. https:// platf orm. openai. com/ docs/ models/ gpt-3-5
 36. Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica I

(2020) Neurocard: one cardinality estimator for all tables. In: Proceed-
ings of the VLDB endowment, vol 14, pp 61–73

 37. Bin W, Angela W, Fenxiao C, Wang Yuncheng C (2019) Methods and
experimental results. C. Jay Kuo, Evaluating word embedding models

 38. Zhou J, Cui G, Shengding H, Zhang Z, Yang C, Liu Z, Wang L, Li
C, Sun M (2020) Graph neural networks: a review of methods and
applications. AI open 1:57–81

 39. Zhou X, Sun J, Li G, Feng J (2020) Query performance prediction
for concurrent queries using graph embedding. Proc VLDB Endow
13(9):1416–1428

 40. Wiegreffe S, Hessel J, Swayamdipta S, Riedl M, Choi Y (2022)
Reframing human-AI collaboration for generating free-text explana-
tions. NAACL 2022:632–658

 41. Houlsby N, Giurgiu A, Jastrzçbski S, Morrone B, Laroussilhe Q de,
Gesmundo A, Attariyan M, Gelly S (2019) Parameter-efficient transfer
learning for NLP. In: 36th International conference on machine learn-
ing, ICML 2019, 2019 Jun, pp 4944–4953

 42. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Shean W L, W, and
Weizhu C (2021) LoRA: low-rank adaptation of large language mod-
els. 10:1–26

 43. De Moura L, Bjørner N (2008) Z3: An efficient smt solver. ETAPS.
Springer, Cham, pp 337–340

 44. Kraska T, Beutel A, Chi E H, Dean J, Polyzotis N (2018) The case
for learned index structures. In: Proceedings of the 2018 international
conference on management of data, pp 489–504

 45. Mitzenmacher M (2018) A model for learned bloom filters and related
structures. arXiv preprint arXiv: 1802. 00884,

 46. Sun Y, Wang S, Feng S, Ding S, Pang C, Shang J, Liu J, Chen X,
Zhao Y, Yuxiang L, Liu W, Zhihua W, Gong W, Liang J, Shang Z,
Sun P, Liu W, Ouyang X, Dianhai Y, Tian H, Hua W, Wang H (2021)
Ernie 3.0: large-scale knowledge enhanced pre-training for language
understanding and generation

 47. Zhang S, Roller S , Goyal N, Artetxe M, Chen M, Chen S, Dewan
C, Diab M, Li X, Lin XV, Mihaylov T, Ott M, Shleifer S, Shuster K,
Simig D, Koura PS, Sridhar A, Wang T, Zettlemoyer L (2022) OPT:
open pre-trained transformer language models. arXiv preprint arXiv:
2205. 01068

 48. Zeng A, Liu X, Zhengxiao D, Wang Z, Lai H, Ding M, Yang Z, Yifan
X, Zheng W, Xia X, Tam WL, Ma Z, Xue Y, Zhai J, Chen W, Zhang
P, Dong Y, Tang J (2022) GLM-130B: an open bilingual pre-trained
model. 06

 49. Chowdhery A et al (2022) Palm: scaling language modeling with
pathways

 50. Han J, Rong Y, Xu T, Huang W (2022) Geometrically equivariant
graph neural networks: a survey. arXiv preprint arXiv: 2202. 07230

 51. Wu Y, Rabe M N, Hutchins D, Szegedy C (2022) Memorizing trans-
formers, pp 1–19

 52. Gou J, Baosheng Yu, Maybank SJ, Tao D (2021) Knowledge distilla-
tion: a survey. Int J Comput Vision 129(6):1789–1819

 53. Qiu XP, Sun TX, YiGe X, Shao YF, Dai N, Huang XJ (2020) Pre-
trained models for natural language processing: A survey. Sci Chin
Technol Sci 63(10):1872–1897

 54. De Mulder W, Bethard S, Moens M-F (2015) A survey on the appli-
cation of recurrent neural networks to statistical language modeling.
Comput Speech Language 30(1):61–98

 55. Li J, Tang T, Zhao W X, Wen J-R (2021) Pretrained language models
for text generation: A survey. arXiv preprint arXiv: 2105. 10311,

 56. Jing K, Xu J (2019) A survey on neural network language models.
arXiv preprint arXiv: 1906. 03591

 57. Pengfei L, Weizhe Y, Jinlan F, Zhengbao J, Hiroaki H, Graham N
(2023) Pre-train, prompt, and predict: a systematic survey of prompt-
ing methods in natural language processing 55:1–35

 58. Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina
(2019) Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of NAACL-HLT, pp 4171–4186

 59. Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q (2020) ErniE:
Enhanced language representation with informative entities. ACL,
pp 1441–1451

 60. Trummer I (2022) DB-BERT: a database tuning tool that "reads the
manual”. In: SIGMOD, pp 190–203

 61. Trummer I (2022) Codexdb: synthesizing code for query process-
ing from natural language instructions using GPT-3 codex. Proc
VLDB Endow 15(11):2921–2928

http://arxiv.org/2301.11916
http://arxiv.org/2212.10375
http://arxiv.org/2212.08410
http://arxiv.org/2212.08410
http://arxiv.org/2203.06904
https://platform.openai.com/docs/models/gpt-3-5
http://arxiv.org/abs/1802.00884
http://arxiv.org/2205.01068
http://arxiv.org/2205.01068
http://arxiv.org/2202.07230
http://arxiv.org/abs/2105.10311
http://arxiv.org/abs/1906.03591

	DB-GPT: Large Language Model Meets Database
	Abstract
	1 Introduction
	2 Opportunities of Using LLMs for DB
	2.1 Overview
	2.2 Input Prompt Generation
	2.3 LLM Fine-Tuning
	2.4 DB-Specific LLM Design and Pre-training

	3 Practices
	3.1 Implementation
	3.2 DB-GPT for Query Rewrite

	4 Related Work
	5 Conclusion
	Acknowledgements
	References

