
Domain Adaptation for Deep Entity Resolution
Jianhong Tu

Renmin University, China

tujh@ruc.edu.cn

Ju Fan
∗

Renmin University, China

fanj@ruc.edu.cn

Nan Tang

QCRI, Qatar

ntang@hbku.edu.qa

Peng Wang

Renmin University, China

lisa_wang@ruc.edu.cn

Chengliang Chai

Tsinghua University, China

ccl@mail.tsinghua.edu.cn

Guoliang Li

Tsinghua University, China

liguoliang@tsinghua.edu.cn

Ruixue Fan

Renmin University, China

fanruixue@ruc.edu.cn

Xiaoyong Du

Renmin University, China

duyong@ruc.edu.cn

ABSTRACT
Entity resolution (ER) is a core problem of data integration. The

state-of-the-art (SOTA) results on ER are achieved by deep learning

(DL) based methods, trained with a lot of labeled matching/non-

matching entity pairs. This may not be a problem when using well-

prepared benchmark datasets. Nevertheless, for many real-world

ER applications, the situation changes dramatically, with a painful

issue to collect large-scale labeled datasets. In this paper, we seek

to answer: If we have a well-labeled source ER dataset, can we train
a DL-based ER model for a target dataset, without any labels or with
a few labels? This is known as domain adaptation (DA), which has

achieved great successes in computer vision and natural language

processing, but is not systematically studied for ER. Our goal is to

systematically explore the benefits and limitations of a wide range

of DAmethods for ER. To this purpose, we develop a DADER (Domain

Adaptation for Deep Entity Resolution) framework that significantly

advances ER in applying DA. We define a space of design solutions

for the three modules of DADER, namely Feature Extractor, Matcher,
and Feature Aligner. We conduct so far the most comprehensive

experimental study to explore the design space and compare dif-

ferent choices of DA for ER. We provide guidance for selecting

appropriate design solutions based on extensive experiments.

CCS CONCEPTS
• Information systems→ Entity resolution.

KEYWORDS
Domain adaptation; Data integration; Deep learning

ACM Reference Format:
Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Chengliang Chai, Guoliang Li,

Ruixue Fan, and Xiaoyong Du. 2022. Domain Adaptation for Deep Entity

Resolution. In Proceedings of the 2022 International Conference on Manage-
ment of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.3517870

∗
Ju Fan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517870

Reducing
Domain Shift

Minimizing
Matching Errors

Source

Target

Source

Target

(a) (b)
Figure 1: DA for ER. (a) A Matcher learned from labeled
source cannot perform well on unlabeled target due to do-
main shift. (b) Domain adaptation learns better representa-
tions to reduce domain shift andminimize matching errors.

1 INTRODUCTION
Entity resolution (ER) determines whether two data instances refer

to the same real-world entity. With the many decades of efforts of

approaching ER from the model-centric point of view, there has

been a considerable amount of literature, ranging from rule-based

methods (e.g., disjunctive normal form [59] and general boolean

formula [59]), ML-based methods (such as SVM [5] and random

forests [20]), to DL-based methods (such as DeepMatcher [49],

DeepER [21], and Ditto [42]). The state-of-the-art (SOTA) results

are, not surprisingly, achieved by DL-based solutions.

However, DL-based ER methods typically need a large amount

of labeled training data. For example, even by piggybacking pre-

trained language models such as Ditto [42], thousands of labels are

still needed to achieve a satisfactory accuracy. In fact, the main

pain point for ER practitioners is that they would need substantial

labeling efforts for creating enough training data.

Fortunately, the big data era makes a lot of labeled ER datasets

available in the same or relevant domains, either from public bench-

marks (e.g.,WDC [52] and DBLP-Scholar [49]) or within enterprises.

Hence, a natural question is: can we reuse these labeled source ER
datasets for a new target ER dataset? An affirmative answer to

the above question has the potential to dramatically reduce the

expensive human effort for data labeling.

Domain adaptation. The key challenge of reusing labeled source

data is that there may be distribution change or domain shift be-
tween the source and the target, which would degrade the perfor-

mance. Figure 1 (a) shows an example of a labeled source dataset

(circles) and an unlabeled target dataset (squares). As the source

and target datasets may not be from the same domain, they do not

https://doi.org/10.1145/3514221.3517870
https://doi.org/10.1145/3514221.3517870

id title category brand price

𝑎&' balt wheasel ... stationery ... balt 239.88

𝑎(' kodak esp ... printers NULL 58.0

𝑎)' hp q3675a ... printers hp 194.84

id title category brand price

𝑏&' balt inc. ... laminating ... mayline 134.45

𝑏(' kodak esp 7 ... kodak NULL 149.29

𝑏)' hewlett ... cleaning repair hp NULL

(𝑎&', 𝑏&', 1)

id name description price

𝑎&* samsung 52 ' series 7
black flat ...

samsung 52 ' series 7
black flat panel lcd ...

NULL

𝑎(* sony 46 ' bravia ... bravia z series ... NULL

𝑎)* linksys wirelessn ... security router ... NULL

id name description price

𝑏&* samsung ln52a750 ... dynamic contrast ratio
120hz 6ms respons ...

2148.99

𝑏(* sony bravia ... ntsc 16:9 1366 x 768 ... 597.72

𝑏)* linksys wirelessg ... 54mbps NULL

(a) Labeled Source Dataset

(b) Unlabeled Target Dataset

(𝑎(', 𝑏(', 0)

(𝑎)', 𝑏)', 1)

(𝑎&*, 𝑏&*, ?)

(𝑎(*, 𝑏(*, ?)

(𝑎)*, 𝑏)*, ?)

Figure 2: A running example of DA for ER with a labeled source dataset DS and an unlabeled target dataset DT.

follow the same distribution. As a result, an ER model (the green

line) trained from the source cannot correctly predict the target. To

address the challenge, domain adaptation (DA) is extensively stud-

ied to utilize labeled data in one or more relevant source domains

for a new dataset in a target domain [25, 45, 64, 69]. Intuitively, DA

is to learn from data instances what is the best way of aligning

distributions of the source and the target data, such that the models

trained on the labeled source can be used (or adapted) to the unla-

beled target. As illustrate in Figure 1 (b), the advantage of DA is its

ability to learn more domain-invariant representations that reduce
the domain shift between source and target, and to improve perfor-

mance of the ER model, e.g., the green line can correctly classify

data instances in both source and target datasets.

However, despite some very recent attempts [35], as far as we

know, the adoption of DA in ER is not systematically studied un-

der the same framework, and thus it is hard for practitioners to

understand DA’s benefits and limitations for ER. To bridge this gap,

this paper introduces a general framework, called DADER (Domain

Adaptation for Deep Entity Resolution) that unifies a wide range of
choices of DA solutions [73, 74]. Specifically, the framework con-

sists of three main modules. (1) Feature Extractor converts entity
pairs to high-dimensional vectors (a.k.a. features). (2) Matcher is
a binary classifier that takes the features of entity pairs as input,

and predicts whether they match or not. (3) Feature Aligner is the
key module for domain adaptation, which is designed to alleviate

the effect of domain shift. To achieve this, Feature Aligner adjusts

Feature Extractor to align distributions of source and target ER

datasets, which then reduces domain shift between source and

target. Moreover, it updates Matcher accordingly to minimize the

matching errors in the adjusted feature space.

Design space exploration. Based on our framework, we system-

atically categorize and study the most representative methods in

DA for ER, and focus on investigating two key questions.

First, DA is a broad topic in machine learning (e.g., computer

vision and natural language processing), and there is a large set

of design choices for domain adaptation. Thus, it is necessary to

ask a question that which DA design choices would help ER. To

answer the question, we have extensively reviewed existing DA

studies, and then focus on the most popular and fruitful directions

that learn domain-invariant and discriminative features. Based on

this, we provide a categorization for each module in DADER and

define a design space, by summarizing representative DA techniques.

Specifically, Feature Extractor is typically implemented by recurrent

neural networks [38] and pre-trained language models [19, 44, 55].

Matcher often adopts a deep neural networks as a binary classifier.

Feature Aligner is implemented by three categories of solutions:

(1) discrepancy-based, (2) adversarial-based, and (3) reconstruction-

based. As the concrete choices of Feature Extractor and Matcher

have been well studied, our focus is to identify methods for Feature

Aligner, for which we develop six representative methods that cover

a wide range of SOTA DA techniques.

The second question is whether DA is useful for ER to utilize la-

beled data in relevant domains. To answer this, this paper considers

two settings: (1) the unsupervised DA setting without any target

labels, and (2) the semi-supervised DA setting with a few target

labels. Moreover, we also compare DADER with SOTA DL solutions

for ER, such as DeepMatcher [49] and Ditto [42]. Based on the

comparison, we provide comprehensive analysis on the benefits

and limitations of DA for ER.

Contributions: (1) As far as we know, we are the first to formally

define the problem of DA for deep ER (Section 3) and conduct so

far the most comprehensive study for applying DA to ER.

(2) We introduce a DADER framework that supports DA for ER,

which consists of three modules, namely Feature Extractor, Matcher

and Feature Aligner. We systematically explore the design space of

DA for ER by categorizing each individual module in the framework

(Section 4). In particular, we develop six representative methods
for Feature Aligner (Section 5).

(3) We conduct a thorough evaluation to explore the design space

and compare the developed methods (Section 6). The source code

and data have been made available at Github
1
. We find that DA is

very promising for ER, as it reduces domain shift between source

and target. We point out some open problems of DA for ER and

identify research directions (Section 8).

2 DEEP ENTITY RESOLUTION
We formally define entity resolution and present a framework of

using deep learning for entity resolution (or Deep ER for short).

Entity resolution. Let𝐴 and 𝐵 be two relational tables with multi-

ple attributes. Each tuple 𝑎 ∈ 𝐴 (or𝑏 ∈ 𝐵) is also referred to as an en-
tity consisting of a set of attribute-value pairs {(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 ,
where attr𝑖 and val𝑖 denote the 𝑖-th attribute name and value re-

spectively. The problem of entity resolution (ER) is to find all the

1
https://github.com/ruc-datalab/DADER

https://github.com/ruc-datalab/DADER

Feature Extractor
ℱ

Matcher
ℳ

Gradients

…

𝐴S

(𝑎S, 𝑏S, 1)

Labeled
Source Data 𝒙𝐒

Feature Extractor
ℱ

Feature Aligner
𝒜…

𝒙𝑻

Gradients

(𝑎T, 𝑏T, ?)

Unlabeled
Target Data

1/0

𝐵S

𝐴T 𝐵T

Shared
Weights

(a) Deep ER

(b) DA for Deep ER

Figure 3: Domain adaptation for deep entity resolution. (a) A
general framework for deep entity resolution. (b) Our DADER
framework of domain adaption for deep entity resolution.

entity pairs (𝑎, 𝑏) ∈ 𝐴 × 𝐵 that refer to the same real-world objects.

An entity pair is said to be matching (resp. non-matching) if they
refer to the same (resp. different) real-world objects.

A typical ER pipeline consists of two steps, blocking and match-
ing. The blocking step generates a set of candidate pairs with high

recall, i.e., pruning the entity pairs which are unlikely to match

(see [67] about DL for ER blocking). The matching step takes the

candidate set generated from the blocking step as input and deter-

mines which candidate pairs are matchings or non-matchings. Our

focus is on the domain adaption for the ER matching step.

Training data for ER.We denote a labeled training set as (D,Y),
where D ⊂ 𝐴 × 𝐵 is a set of entity pairs and Y is a label set. Each

entity pair (𝑎, 𝑏) ∈ D is associated with a label 𝑦 ∈ Y that denotes

whether the pair of entities 𝑎 and 𝑏 is matching (i.e., 𝑦 = 1) or non-

matching (i.e., 𝑦 = 0). Figure 2 (a) shows an example training set.

Each pair consists of two entities from different tables, e.g., (𝑎S
1
, 𝑏S

1
),

and is associated with a 1/0 label.
Deep entity resolution. Existing Deep ER solutions [21, 42, 49]

typically utilize a framework that consists of a Feature Extractor and
aMatcher, as shown in Figure 3 (a). Specifically, given an entity pair

(𝑎, 𝑏), a Feature Extractor F (𝑎, 𝑏) : 𝐴 × 𝐵 → R𝑑 , converts this pair
into 𝑑-dimensional vector-based representation (a.k.a. features),
denoted by x, i.e., x = F (𝑎, 𝑏). Then, features x will be fed into an

ERMatcherM, which is a DL-based binary classificationmodel. The

ER MatcherM takes features x as input, and predicts a probability

𝑦 of matching,

𝑦 =M(x) =M(F (𝑎, 𝑏)) . (1)

Given a training set (D, Y), by iteratively applying minibatch

stochastic gradient descent, parameters of both F andM are opti-

mized, and thus they are improved to distinguish matching entity

pairs from the non-matchings.

Example 1. Consider the ER dataset in Figure 2 (a). Suppose that
we use the pre-trained language model Bert [19] to implement Feature
Extractor F , like Ditto [42]. Given an entity 𝑎, F first serializes all
attribute-value pairs {(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 of 𝑎 into a token sequence
(i.e., text) by applying the following function,

S(𝑎) = [ATT] attr1 [VAL] val1 . . . [ATT] attr𝑘 [VAL] val𝑘 ,

where [ATT] and [VAL] are two special tokens for start-
ing attributes and values respectively. For example, we
serialize entity 𝑎S

1
into a token sequence, i.e., S(𝑎S

1
) =

[ATT] title [VAL] balt . . . [ATT] price [VAL] 239.88 .
Then, F converts (𝑎S, 𝑏S) into token sequence S(𝑎S, 𝑏S) =

[CLS] S(𝑎S) [SEP] S(𝑏S) [SEP], where [SEP] is a special token sep-
arating the two entities and [CLS] is a special token in Bert to encode
the entire sequence. Finally, we feed S(𝑎S, 𝑏S) into Bert and obtain
a vector-based representation x (e.g., the embedding of [CLS]). After
that, we can use a fully connected layer to implement MatcherM,
which then produces matching probability 𝑦 from x. Thus, given all
the labeled pairs {(𝑎S, 𝑏S, 𝑦S)} in Figure 2 (a), we can train both F
andM by minimizing a loss function over {(𝑦S, 𝑦)}.

3 DOMAIN ADAPTATION FOR DEEP ER
Next we describe domain adaptation for deep ER. We consider a

labeled source ER dataset (DS,YS) = {(𝑎S, 𝑏S, 𝑦S)} and an unla-
beled target dataset DT = {(𝑎T, 𝑏T)}, and aim to find the best Fea-

ture Extractor and Matcher for producing accurate matching/non-

matching results on target DT
. A crude method is to directly use

Feature Extractor F and MatcherM trained using DS
to predict

DT
. However, because source and target data may not come from

the same domain, the features extracted by F for the source and the

target may not follow the same data distribution, leading to a do-
main shift problem. Consequently,M trained using the source data

cannot correctly predict the target data. To address this obstacle,

we study the problem of domain adaptation for ER, and introduce a

framework DADER that unifies the representative methods.

High-level idea of DA for ER. Figure 3 (b) shows the DADER
framework. The high-level idea is to learn from data instances what

is the best way of generating and aligning the features for the source

and the target entity pairs, such that the Matcher trained on the

labeled source can be used (or adapted) to the unlabeled target. To

this end, DADER introduces a Feature Aligner A, which guides Fea-

ture Extractor F to generate domain-invariant and discriminative
features and updates MatcherM accordingly. Formally, we define

the alignment loss and the matching loss as follows.

(1) Domain-invariant. Intuitively, we would like the distributions of
source features xS and target features xT to be as close as possible.

To this end, the Feature Aligner A(xS, xT) : R𝑑 × R𝑑 → R, is
utilized to produce an alignment loss L𝐴 . For example, a simple

method for L𝐴 is to define a distance between the means of source

and target distributions. A more comprehensive design exploration

for fulfilling L𝐴 will be discussed in Section 4.

(2) Discriminative. We also consider a matching loss L𝑀 that mea-

sures the difference between predicted and ground-truth results on

the source. Recall that, given an entity pair (𝑎S, 𝑏S) in the source

dataset, our MatcherM makes a prediction as 𝑦 =M(F (𝑎S, 𝑏S)).
Thus, matching lossL𝑀 is defined asL𝑀 = loss({(𝑦,𝑦S)}), where
loss is a function, such as cross entropy.

Now, we are ready to present the goal of DA for ER as finding

the best Feature Extractor F ∗ and MatcherM∗ that minimize both

alignment loss L𝐴 and matching loss L𝑀 , i.e.,

F ∗,M∗ = arg min

F,M
aggregate(L𝐴,L𝑀) . (2)

Table 1: The design space of DA solutions for ER in this pa-
per (MMD: Maximum Mean Discrepancy. 𝐾-order: 𝐾-order
Statistics. GRL: Gradient Reversal Layer. InvGAN: Inverted
Labels GenerativeAdversarial Network. KD: KnowledgeDis-
tillation. ED: Encoder-Decoder).

Modules Categorization
Feature Extractor

(F)
(I) Recurrent neural network (RNN)

(II) Pre-trained language models (LMs)

Matcher
(M) Multi-layer Perceptron (MLP)

Feature
Aligner
(A)

(1) Discrepancy-based

(a) MMD

(b) 𝐾-order

(2) Adversarial-based

(c) GRL

(d) InvGAN

(e) InvGAN+KD

(3) Reconstruction-based (f) ED

Here, aggregate is a function that combines these two losses,

which is determined by various feature alignment strategies. To

achieve the objective in Equation (2), we leverage back-propagation

to update parameters of F andM, as shown in Figure 3. In such a

way, F could be improved to produce domain-invariant features

across source and target, whileM can be updated accordingly to

improve ER matching on both source and target datasets.

After that, bothM and F are ready for use on the target dataset.

Specifically, given each target entity pair (𝑎T, 𝑏T), they can work

together to make a prediction asM(F (𝑎T, 𝑏T)).

Example 2. Consider our example in Figure 2. Suppose that F
maps entity pairs in both source (i.e., circles) and target (i.e., squares)
into a 2-dimensional space, as shown in Figure 1 (a). Then, we can see
an example of domain shift between source and target datasets. This
may be because F pays much attention to the specific attributes in
the source that are not in the target, e.g., category and brand. As a
result, MatcherM (i.e., the dotted line) is not directly suitable forDT

and produces non-match results for all the target entity pairs. To solve
this problem, Feature AlignerA is introduced to achieve the following
two objectives: (1) it adjusts F to align distributions of source and
target entity pairs, e.g., making full use of the shared attributes, and
(2) it updatesM accordingly to minimize the matching errors in the
newly generated feature space. Based on this, A makes the updated
F andM to produce more accurate ER results, as shown in Figure 1
(b). For better illustration, we also provide several real examples on
our experimental datasets in Section 6.2.1.

Remarks. Note that domain adaptation is a broad topic in machine

learning, and gains great success in both CV and NLP (cf. recent

surveys [73, 74]). In our ER scenario, we adopt the most popular

and fruitful family of domain adaptation techniques, i.e., learning
domain-invariant and discriminative features [25, 45, 69]. However,

there is a larger set of choices of domain adaptation, and many DA

techniques are not covered by this paper, e.g., generating pseudo
labels [26], reweighting source samples [8, 16], etc. Please refer to

Section 7 for a more comprehensive discussion.

4 A DESIGN SPACE OF DA FOR DEEP ER
Entity resolution has its own characteristics that make the appli-

cation of DA for ER challenging. First, each data instance in ER,

i.e., an entity pair, is complicated, as it represents two entities from

relational tables with multiple attributes. Thus, it is non-trivial for

Feature Extractor F to convert each entity pair to a vector-based

representation. Second, it remains unexplored which DA methods

are adequate for the ER scenario.

To address the challenges, we propose a categorization of design

choices for each module in DADER, which forms a design space as

shown in Table 1. We note that DADER is extensible, i.e., it is possible
to incorporate new modules, new categories, or new methods or

variants of existing methods. Moreover, it is possible to define the

search space from a different angle; that is, we contend that our

proposal is rational, but may not be unique.

4.1 Design of Feature Aligner
Feature Aligner A is the key module to reduce the domain shift

between source and target. Following the widely-recognized cate-

gorization of DA for CV and NLP [73, 74], we consider discrepancy-

based, adversarial-based and reconstruction-based methods, as sum-

marized in Table 1. The difference among these methods is how

they define the alignment loss L𝐴 that is defined in Section 3.

(1) Discrepancy-based methods measure alignment loss L𝐴 by

computing distribution discrepancy between source and target. In-

tuitively, considering our example in Figure 1, discrepancy-based

methods aim at making the circles (source) and the squares (tar-

get) as close as possible. The key technical issue is how to de-

fine the distribution discrepancy. Existing works have proposed

some statistical metrics, among which Maximum Mean Discrep-

ancy (MMD) [29, 45] and 𝐾-orders [61, 62] are the most effective.

Thus, we realize these two techniques as representative methods

for discrepancy-based feature alignment.

(2) Adversarial-based methods measure alignment loss L𝐴 by

introducing a domain classifier and an adversarial training process

inspired by generative adversarial networks (GAN) [28]. Intuitively,

the domain classifier is trained to distinguish features from source

or target, while the Feature Extractor F tries to generate the fea-

tures that can confuse this domain classifier. We implement three

representative adversarial-based methods, namely gradient rever-

sal layer (GRL) [25], inverted labels GAN (InvGAN) [53, 69] and

InvGAN+KD (an improved version of InvGAN).

(3) Reconstruction-based methods fulfill alignment loss L𝐴 by in-

troducing an auxiliary unsupervised reconstruction task. Specifically,
Feature Aligner A is used as the decoder to reconstruct the input

of feature extractor F , to ensure that features extracted by F con-

tain useful and shared information across source and target. This

technique has achieved superior performance in CV [27, 73]. We

implement the Encoder-Decoder (ED) networks [39], which realize

the reconstruction task in NLP as the representative method.

We will describe design details of the above discrepancy-based,

adversarial-based and reconstruction-based methods in Section 5.

4.2 Design of Feature Extractor and Matcher
Feature Extractor F . Recall that Feature Extractor x = F (𝑎, 𝑏)
aims at representation learning, i.e., converting a pair of entities

𝑎 and 𝑏 into a vector-based representation x. Existing studies for

deep ER utilize the following two common and effective solutions.

ℱ
𝐷!

𝐷"

ℳ ER label
Loss ℒ#

𝑥!

𝑥"
MMD

Loss ℒ$=ℒ##% (𝑥! ,𝑥")

ℱ
𝐷"

ℳ ER label
Loss ℒ#

𝑥!

𝑥"
K-order

Loss ℒ$=ℒ&'($) (𝑥!,𝑥")

Non-parameters Non-parameters

𝒜

ℱ
𝐷!

𝐷"

ℳ ER label
Loss ℒ#

𝑥!

𝑥"

GR
L

domain
label

Loss ℒ$

𝐷! ℱStep1: ℳ
ER label
Loss ℒ#

𝑥!

𝐷!

(initiated by ℱ)

Step2:

𝑥!

𝑥"

ℱ

ℱ*
𝒜

domain
label

Loss ℒ$

𝐷! ℱStep1: ℳ ER label
Loss ℒ#

𝑥!

𝐷!

(initiated by ℱ)

Step2:

𝐷"

𝑥!

𝑥"

ℱ

ℱ* 𝒜
domain

label
Loss ℒ$

𝑥!*
ℳ Loss ℒ+%

𝒜

ℱ
𝐷!

𝐷"

ℳ ER label
Loss ℒ#

𝑥!

𝑥"
Decoder

Reconstruction
Loss ℒ$

𝐷!

𝐷"

(a) (b) (c)

(d) (e) (f)

Figure 4: Architectures of six representative Feature Alignermethods. (a) MaximumMean Discrepancy (MMD) and (b)𝐾-order
are discrepancy-based; (c) Gradient Reversal Layer (GRL), (d) Inverted Labels GAN (InvGAN) and (e) InvGAN + Knowledge
Distillation (KD) are adversarial-based; and (f) Encoder-Decoder (ED) is reconstruction-based.

(1) Recurrent neural network (RNN) is a well-adopted solution

for encoding variable-length text into features, and achieves good

performance in NLP tasks [57, 77] and ER [21, 35, 49]. Now we

specifically describe the process of RNN feature extraction. Given

an entity pair (𝑎, 𝑏) with 𝑘 aligned attributes, the RNN network

will be used to compute an embedding for each attribute value,

resulting in 𝑘 embeddings for each entity, i.e., {e𝑎
1
, . . . , e𝑎

𝑘
} for 𝑎

and {e𝑏
1
, . . . , e𝑏

𝑘
} for 𝑏, which are known as attribute embeddings.

Afterwards, it computes upon the above two sets of embeddings,

one entity similarity embedding to be used by theMatcher. To do this,

there are two ways: (1) It computes a similarity vector s𝑖 for each
pair of attributes e𝑎

𝑖
and e𝑏

𝑖
, for 𝑖 ∈ [1, 𝑘] and then aggregates these

𝑘 similarity vectors into one entity pair similarity embedding s. (2) It
aggregates the𝑘 attribute embeddings for each entity into one entity

embedding, e.g., aggregating {e𝑎
1
, . . . , e𝑎

𝑘
} (resp. {e𝑏

1
, . . . , e𝑏

𝑘
}) and

resulting in e𝑎 (resp. e𝑏). Then, e𝑎 and e𝑏 will be used to compute

the entity pair similarity embedding s. Note that the entity pair

similarity embedding s is the feature x we need. Please refer to the

existing ER studies [21, 35, 49] for more details.

(2) Pre-trained language models (LMs) have achieved superior

performance for representing entity pairs in ER [42, 65]. Represen-

tative LMs include Bert [19], RoBerta [44], DistilBert [55], etc. We

take Bert as an example to illustrate how it encodes an entity pair

(𝑎, 𝑏) into a vector-based representation, while the other LMs are

very similar. Bert provides a simple text feature extraction model.

Please refer to Example 1 that illustrates how Bert works for ER.

MatcherM.MatcherM is a binary classifier, which takes a feature

x as input and classifies it as 1 (matching) or 0 (non-matching). In

this work, we adopt MLP, the most common choice used in existing

DL-based ER (e.g., DeepMatcher [49], DeepER [21] and Ditto [42]).

Note that we do not consider other choices forM, because the

design of Matcher is not the focus of domain adaptation for ER.

5 DESIGN CHOICES OF FEATURE ALIGNER
We describe the six representative methods for Feature Aligner.

Figure 4 shows the architectures of six representative methods,

where arrows with different colors represent the data flows of

source/target datasets. During training, loss is calculated and the

corresponding network parameters are updated. Note that only

the parameters in the solid line boxes need to be updated, and the

dotted line boxes indicate that their parameters do not need to be

updated or they have no parameters. After training, the obtained

MatcherM and Feature Extractor F are used for target dataset

DT
for prediction. Briefly, we use 𝑥S and 𝑥T to represent entity

pairs (𝑎S, 𝑏S) and (𝑎T, 𝑏T), respectively. The corresponding feature

spaces generated by F are denoted as 𝑝S and 𝑝T, respectively.

5.1 Discrepancy-based Methods
Figures 4 (a) and (b) correspond to the discrepancy-based methods,

MMD and 𝐾-order, respectively. The high-level idea is to use sta-

tistical metrics to minimize the domain distribution discrepancy

between source and target. Thus, Feature AlignerA is a fixed func-

tion to calculate the discrepancy value, without parameters. During

training, DS
and DT

are fed into F for generating features {xS}
and {xT}, and their feature spaces are 𝑝S and 𝑝T. Then, A com-

putes a distribution discrepancy (denoted as L𝐴) between 𝑝S and
𝑝T. Meanwhile, MatcherM gives ER label prediction and computes

the matching loss L𝑀 over labeled data DS
. The optimization ob-

jective is to simultaneously reduce L𝐴 and L𝑀 , with the goal of

learning domain-invariant and discriminative features, i.e.,

min

F,M,A
𝑉 (F,M,A) = L𝑀 (F,M) + 𝛽L𝐴 (F,A), (3)

L𝑀 = 𝐸 (𝑥S,𝑦S)∼(DS,YS) [L𝐶𝐸 (M(F(𝑥S)), 𝑦S)], (4)

where L𝐶𝐸 is the cross-entropy loss that is commonly used in DL,

and 𝛽 is the hyper-parameter that controls the trade-off between

matching and domain confusion. 𝐸 [·] denotes the expectation.
Based on Equation (3), we introduce Algorithm 1 as a template to

unify the discrepancy-based, GRL-based and reconstruction-based

methods (the latter two will be discussed later).

Algorithm 1: Line 1 first initializes the Feature Extractor, the

Matcher and the Feature Aligner. For each iteration (lines 2–13),

lines 3–4 first sample one mini-batch from the labeled source

and one mini-batch from the unlabeled target. Lines 5–6 com-

pute the loss of the Matcher according to Equation (4) and use

Algorithm 1 Discrepancy/GRL/Reconstruction-based Methods

Input: (DS,YS): labeled source data; DT
: unlabeled target data;

𝛽 : the weight of alignment loss; 𝜇: learning rate

Output: F ,M.

1: Initialize F ,M and A;

2: for pre-defined number of iterations do
3: Sample one minibatch BTS = {(𝑥S, 𝑦S)} from (DS,YS);
4: Sample one minibatch BTT = {𝑥T} from DT

;

5: Compute L𝑀 according to Equation (4);

6: 𝜃M ← 𝜃M − 𝜇 𝜕L𝑀

𝜕𝜃M
;

7: if Discrepancy/Reconstruction-based methods then
8: NoAdvAdapt(F , A, BTS, BTT, L𝑀);

9: end if

10: if GRL-based methods then
11: GRLAdapt(F , A, BTS, BTT, L𝑀);

12: end if
13: end for

Procedure 1 NoAdvAdapt (F , A, BTS, BTT, L𝑀)

1: Generate features by F and compute L𝐴 using Equation (5),

(6) for MMD and K-order, or compute L𝐴 using Equation (15)

for reconstruction-based methods;

2: 𝜃A ← 𝜃A − 𝜇𝛽 𝜕L𝐴

𝜕𝜃A
; /* update only ifA is a neural network*/

3: 𝜃F ← 𝜃F − 𝜇 (𝜕L𝑀

𝜕𝜃F
+ 𝛽 𝜕L𝐴

𝜕𝜃F
);

back-propagation to tune the Matcher. Lines 7–9 are for discrep-

ancy and reconstruction-based methods, which invoke Procedure 1

NoAdvAdapt. Lines 10–12 are for GRL-based methods that invoke

Procedure 2 GRLAdapt (which will be discussed later).

In the procedure NoAdvAdapt, line 1 computes alignment

loss L𝐴 , depending on different methods. Then, line 2 uses back-

propagation to tune Feature Aligner only if it is a neural network;

otherwise, this line will not be executed as the Feature Aligner is a

fixed function. Finally, line 3 uses back-propagation to tune Feature

Extractor by considering a linear combination of L𝑀 and L𝐴 .
Next we describe the characteristics of MMD and 𝐾-order, and

explain how they implement the calculation of L𝐴 .
(a) MMD.MMD is an effective metric to measure distribution dis-

crepancy by a kernel two-sample test [29]. If and only if the two

distributions are the same, the value of MMD is 0. Because of the

characteristic of MMD, the MMD metric can be computed between

the features of two domains (denoted by LMMD) to reduce the distri-

bution mismatch in the latent space, which is defined as:

LMMD = 𝑠𝑢𝑝
∥𝜙 ∥𝐻 ≤1

∥𝐸xS∼𝑝S [𝜙 (x
S)] − 𝐸xT∼𝑝T [𝜙 (x

T)] ∥2𝐻 , (5)

where 𝜙 represents the kernel function that maps xS (xT) to a re-

producing kernel Hilbert space (RKHS). ∥𝜙 ∥𝐻 ≤ 1 defines a set

of functions in the unit ball of RKHS (𝐻). In particular, when the

distributions of 𝑝S and 𝑝T are same, LMMD is zero.

(b) 𝐾-order. 𝐾-order is another effective metric to reduce distribu-

tion mismatch of domains. CORAL [61] learns a linear transforma-

tion that aligns the second-order statistics (covariance) between

domains. DeepCORAL [62] learns a nonlinear transformation based

on CORAL, and achieves good performance. More specifically, the

distance between the second-order statistics of the two domains

(denoted as LCORAL) is defined as:

LCORAL =
1

4𝑑2
∥𝐶S −𝐶T∥2𝐹 , (6)

where 𝑑 is the dimention of x, 𝐶S (𝐶T) is the covariance matrices

calculated by the features xS (xT), and ∥ · ∥2
𝐹
denotes the squared

matrix Frobenius norm. More detailed equation derivation can be

found in DeepCORAL [62].

As shown in Figures 4 (a, b), L𝐴 can be directly computed by

LMMD and LCORAL. As these two Feature Aligner methods are non-

parameterized, only F andM will be tuned during training.

5.2 Adversarial-based Methods
Figures 4 (c, d, e) correspond to the three representative methods

of adversarial-based: GRL, InvGAN and InvGAN+KD. Because they

need to use a domain classifier to distinguish features from source

or target, Feature Aligner A is a binary classifier implemented by

fully-connected layers. During training, the optimization objective

ofA is to minimize the domain classification loss (which is denoted

by L𝐴 now), while F is generating the indistinguishable features

that confuse A. There are different training modes to achieve this

goal, amongwhich GRL-based and GAN-based are themost popular.

The adversarial objective function is:

min

F,M
max

A
𝑉 (F,M,A) = L𝑀 (F,M) + 𝛽L𝐴 (F,A), (7)

L𝐴 = 𝐸𝑥S∼DSlogA(F(𝑥S)) + 𝐸𝑥T∼DTlog(1 − A(F(𝑥T))), (8)

where 𝛽 is the hyper-parameter that controls the trade-off between

matching and domain classification, and L𝐴 is the adversarial loss.

(c) GRL. As shown in Figure 4 (c), this method adds a gradient

reversal layer between F and A, which is the key layer to realize

the minimax adversarial training objective between F and A. The

gradient reversal layer has no parameters to update, which acts as

an identity transformation in forward-propagation.A gives domain

prediction for xS and xT and computes domain classification loss

L𝐴 . During back-propagation, the gradient from A multiplies a

certain negative constant in the gradient reversal layer. Meanwhile,

the labeled xS is inputted intoM and computes matching loss L𝑀 .

Specifically, the loss function of GRL is :

max

F
min

A
L (1)
𝐴

= −𝐸𝑥S∼DSlog(A(F(𝑥S)))−𝐸𝑥T∼DTlog(1 − A(F(𝑥T))) .
(9)

Algorithm 1 can also be applied to GRL where lines 10–12 are spe-

cially designed for GRL-based methods, i.e., Procedure 2 GRLAdapt.

Procedure 2: First, lines 1 computes alignment loss L𝐴 according

to Equation (9). Then, line 2 uses back-propagation to tune Feature

Aligner. Finally, line 3 uses back-propagation to tune Feature Ex-

tractor, where the gradient for F from A has been reversed via

multiplying a parameter −𝛽 .
(d) Inverted Labels GAN (InvGAN): To achieve the adversarial

training objective, we adopt the original GAN-based architecture

Procedure 2 GRLAdapt (F , A, BTS, BTT, L𝑀)

1: Compute L𝐴 according to Equation (9);

2: 𝜃A ← 𝜃A − 𝜇𝛽 𝜕L𝐴

𝜕𝜃A
;

3: 𝜃F ← 𝜃F − 𝜇 (𝜕L𝑀

𝜕𝜃F
− 𝛽 𝜕L𝐴

𝜕𝜃F
);

as one representative method, which uses inverted labels [28] to
learn Feature Extractor. The architecture is proposed in ADDA [69]

in CV and proved to be effective. The original GAN consists of two

parts: Generator and Discriminator. The training process of GAN

is to use the Generator to generate “fake data” to simulate the “real

data”, and the Discriminator is trained to distinguish them. The two

parts are trained alternately. In our scenario, we regard xS as the
“real data”, Feature Extractor as the Generator that makes xT and
xS as similar as possible (i.e., these features are domain invariant),

and regard Feature Aligner as Discriminator.

To implement the training process, as shown in Figure 4 (d), there

are two training steps for ER problem. The first step is using labeled

source data to train Feature Extractor F and MatcherM. Hence,

M can give accurate prediction on xS. The second step is as follows.
Since we need to use xS as our “real data”, which is generated by

the original F , we clone a F ′ from F . In the following training

process, we train F ′ and keep F unchanged. We consider F ′ as
the Generator, and A as the Discriminator. At first, 𝑥S is inputted

into F to generate the “real example” xS, and 𝑥T is inputted into F ′
to generate the “fake example” xT. The goal is to train parameters

of F ′ andA to generate xT and xS that are alike. Specifically,A is

trained according to the following loss function:

min

A
L (2)
𝐴

= −𝐸𝑥S∼DSlog(A(F(𝑥S)))−𝐸𝑥T∼DTlog(1 − A(F′ (𝑥T))) .
(10)

F ′ is trained with inverted labels with the loss function as

min

F′
L (1)
𝐹 ′ = −𝐸𝑥T∼DTlog(A(F′ (𝑥T))) . (11)

Algorithm 2: We propose an algorithm template for InvGAN.

Line 1 first initializes the Feature Extractor, the Matcher and the

Feature Aligner. It then contains two steps. Step 1 is to only train

F andM using the labeled source, such thatM can converge on

the source feature xS (lines 2-7). Line 8 initializes F ′ with the pa-

rameters of F . Step 2 is for adversarial training, which adjusts F ′
to make xT and xS as similar as possible (lines 9-16).

One problem of InvGAN is that the xT may lose all discrimina-

tive information (e.g., generating constants), which results in the

performance degradation of M. AAD [53] proposes to add one

Kullback-Leibler divergence loss to avoid this problem.

(e) InvGAN+Knowledge Distillation (KD) [32]. To alleviate the
above problem of possibly losing all discriminative information,

we propose to use KD that learns a new “student” model from

the “teacher” model and retains the classification ability of teacher

model. This is applicable to our scenario because we want the

performance of F ′ andM to be close to that of F andM. The loss

function of KD is:

LKD = 𝑡2 × 𝐸𝑥S∼DS

∑
−softmax(M(F(𝑥S))/𝑡)

×log(softmax(M(F′ (𝑥S))/𝑡)),
(12)

Algorithm 2 GAN-based Methods: InvGAN/InvGAN+KD

Input: (DS,YS
): labeled source data; DT

: unlabeled target data;

𝛽 : the weight of alignment loss; 𝜇: learning rate

Output: F ′,M.

1: Initial F ,M and A;

2: for pre-defined number of iterations do
3: Sample one minibatch BTS = {(𝑥S, 𝑦S)} from (DS,YS);
4: Compute L𝑀 according to Equation (4);

5: 𝜃M ← 𝜃M − 𝜇 𝜕L𝑀

𝜕𝜃M
;

6: 𝜃F ← 𝜃F − 𝜇 𝜕L𝑀

𝜕𝜃F
;

7: end for
8: F ′ ← F ;
9: for pre-defined number of iterations do
10: Sample one minibatch BTS = {(𝑥S, 𝑦S)} from (DS,YS);
11: Sample one minibatch BTT = {𝑥T} from DT

;

12: Compute L𝐴 according to Equation (10) or (13);

13: 𝜃A ← 𝜃A − 𝜇𝛽 𝜕L𝐴

𝜕𝜃A
;

14: Compute L𝐹 ′ according to Equation (11) or (14);

15: 𝜃F′ ← 𝜃F′ − 𝜇𝛽
𝜕L𝐹 ′
𝜕𝜃F′

;

16: end for

where 𝑡 is a hyper-parameter to determine how much the model

softens [32] the distributions. LKD can be derived from the Kullback-

Leibler divergence of the predicted distribution byM(F (·)) and
M(F ′(·)) since theM(F (·)) is fixed during training.

In the adaptation step (i.e., Step 2) in Figure 4 (e), F ′ is ini-
tialized by F at beginning, then 𝑥S is inputted into F and F ′ to
generate xS and xS

′
, which are inputted intoM to compute LKD

according to Equation (12). The LKD can ensure that the features

generated by F ′ can be distinguished byM, i.e., learning discrim-

inative features, while the confrontation between F ′ and A can

learn domain-invariant features. We use xS
′
and xT generated by

F ′ to train A, so the loss functions for A and F ′ are:
min

A
L (3)
𝐴

= −𝐸𝑥S∼DSlog(A(F′ (𝑥S)))−𝐸𝑥T∼DTlog(1 − A(F′ (𝑥T))),
(13)

min

F′
L (2)
𝐹 ′ = −𝐸𝑥T∼DTlog(A(F′ (𝑥T))) + LKD . (14)

5.3 Reconstruction-based Methods
As shown in Figure 4 (f), the Feature Aligner is realized as a Decoder,

which reconstructs the input data DS
and DT

. The reconstruction

task ensures to learn a shared hidden representation space between

domains. This is intuitive that the auxiliary reconstruction task can

facilitate the learning of domain-invariant features – the reconstruc-

tion loss LREC can ensure the shared F to extract important and

shared information from both domains. Meanwhile, the matching

loss L𝑀 can ensure thatM works for the shared feature.

(f) Encoder-Decoder (ED). The Encoder-Decoder network is suit-
able for reconstruction-based methods, which takes F as the En-

coder and A as the Decoder. The existing text Encoder-Decoder

models include VAE [56], Bart [39], SDA [72], etc. Algorithm 1

provides a template for this. For each minibatch, 𝑥S and 𝑥T are

inputted into F to generate features F (𝑥S) and F (𝑥T), and F (𝑥S)
is inputted intoM to get matching loss L𝑀 . Then, in Procedure 1,

A decodes these features to recover data 𝑥S and 𝑥T, which are

then used to compute the reconstruction loss LREC according to

Equation (15). Then the parameters can be updated.

LREC = 𝐸𝑥∼DS∪DT [L𝐶𝐸 (A(F(𝑥)), 𝑥)] (15)

Take Bart [39] as an example, the architecture consists of a bi-

directional transformer Encoder and an auto-regressive transformer

Decoder. The Encoder is used as Feature Extractor, which generates

hidden representation for the original input text, and the Decoder

inputs the hidden representation, then outputs the reconstructed

text. The reconstruction loss LREC can be calculated between the

generated and the original text, i.e., the entity pairs. More details of

the architecture can be referred to the original paper of Bart [39].

6 EVALUATION
We present the experimental setup in Section 6.1 and report the

overall result of DA for ER in Section 6.2. Then, we explore the de-

sign space of DADER by evaluating Feature Aligner in Section 6.3 and
Feature Extractor in Section 6.4. Next, we compare our framework

with the state-of-the-art DL-based ER approaches in Section 6.5.

6.1 Experimental Setup
Datasets: We use the benchmark datasets from DeepMatcher [49]

and Magellan [20], which cover a variety of domains, such as prod-

uct, citation and restaurant. Each dataset contains entities from

two relational tables with multiple attributes, and a set of labeled

matching/non-matching entity pairs. Take the DBLP-Scholar (DS)

dataset in Table 2 as an example: there are two tables extracted

from DBLP and Scholar respectively, each of which has four aligned

attributes (Title, Authors, Venue, Year). This dataset contains
28,707 entity pairs, where 5,347 entity pairs are labeled as match-

ing and the remaining pairs are non-matching. Moreover, we also

consider four WDC product datasets [52], which are also used in

Ditto [42]. The WDC datasets are collected from e-commerce web-

sites, which contain four categories: computers, cameras, watches,

and shoes, where each category has 1100 labeled entity pairs. We

also note that, since the original version of Zomato-Yelp dataset is

simple and all the methods perform well on this dataset, following

the existing work DeepMatcher [49], we utilized a dirty version of

the Zomato-Yelp dataset for evaluation. Please refer to Table 2 for

more details of the datasets. For ease of presentation, we use the no-

tation DS→DT
, e.g., Walmart-Amazon→ Abt-Buy, to represent

that DS
is the source and DT

is the target.

Evaluation method. We implement our DADER framework of DA

for ER, as shown in Figure 3. To evaluate the performance of DA for

ER, we select one dataset as labeled source (DS,YS) and another

dataset as unlabeled target DT
. We split target dataset DT

into a

validation set DT
val and a test set DT

test with the ratio of 1:9. Note

that labels of test target dataset DT
test are not used in DADER for

domain adaptation. Instead, we use the labels as ground-truth for

evaluating the performance. Based on this, we evaluate a method

of DA for ER in the following way.

First, we train our framework based on (DS,YS) and DT
. For

fairly comparing the design solutions presented in Section 4, during

the training process, we divide the training iterations into 40 epochs

and evaluate the performance of DA model snapshot of each epoch

Table 2: Real-world ER datasets for our evaluation: #Pairs,
#Matches and #Attrs represent the numbers of entity pairs,
matching pairs, and attributes respectively.

Datasets Domain #Pairs #Matches #Attrs
Walmart-Amazon (WA) Product 10,242 962 5

Abt-Buy (AB) Product 9,575 1,028 3

DBLP-Scholar (DS) Citation 28,707 5,347 4

DBLP-ACM (DA) Citation 12,363 2,220 4

Fodors-Zagats (FZ) Restaurant 946 110 6

Zomato-Yelp (ZY) Restaurant 894 214 3

iTunes-Amazon (IA) Music 532 132 8

RottenTomatoes-IMDB (RI) Movies 600 190 3

Books2 (B2) Books 394 92 9

WDC-Computers (CO) Product 1,100 300 2

WDC-Cameras (CA) Product 1,100 300 2

WDC-Watches(WT) Product 1,100 300 2

WDC-Shoes (SH) Product 1,100 300 2

on the validation set DT
val. We select the DA model snapshot with

the best performance across all epochs, and use the corresponding

optimized Feature Extractor F and Matcher M. After that, we

use the obtained Feature Extractor F and Matcher M to make

prediction on the target dataset DT
test to produce matching/non-

matching results for evaluation.

Evaluationmetric. Following most ER works [21, 42, 49], we eval-

uate the above prediction results using F1 score, which is harmonic

mean of precision and recall for the matching pairs. Specifically,

let TP denote true positives, which are matching pairs correctly

outputted by MatcherM. Let FP denote false positives, which are

non-matching pairs incorrectly outputted by M. Let FN denote

false negatives, which are matching pairs omitted byM. Then, we

can respectively compute precision and recall as P = TP/(TP + FP)
and R = TP/(TP + FN). Based on this, we can compute F1 score as

F1 = 2 · P · R/(P + R).
Comparison approaches.We present the implementation details

of the approaches compared in our experiments as follows.

(1) DA: We implement the design choices in Table 1 for Feature

Extractor F , Feature Aligner A and MatcherM. For implement-

ing RNN for F , we use the Hybrid model in DeepMatcher [49]

implemented by a bidirectional RNN. For implementing LMs for F ,
following Ditto [42], we use a Bert model [19] with 12 transformer

layers and output a 768 dimensional feature vector. We set the max

sequence length fed into Bert to be 256 (for WDC datasets) and

128 (for other datasets), as the text of WDC datasets is generally

long. For implementing MatcherM, we follow Ditto [42] to use

one fully connected layer and a Softmax output layer. For imple-

menting discrepancy-based Feature Aligner A, we calculate MMD

and 𝐾-order directly on the output layer of Feature Extractor F
according to Equations (5) and (6). For adversarial-based Feature

Aligner, we use one fully connected layer with Sigmod activation
function in GRL, which is followed by three fully connected layers

with LeakyReLU as activation function and a Sigmod layer for In-
vGAN and InvGAN+KD. Note that the hyper-parameters are chosen

according to validation set, as mentioned above. For reconstruction-

based Feature Aligner, we take a pre-trained model Bart [39] with

its default settings to realize the reconstruction task in ED.

We use validation set DT
val for choosing hyper-parameters.

Specifically, for choosing 𝛽 , we first give a candidate set of values

{0.001, 0.01, 0.1, 1, 5}, then run experiments for each value, and se-

lect the one with the highest F1 score onDT
val for different datasets.

Similarly, we set learning rate as 1e-5 or 1e-6, and batchsize as 32,

on various datasets.

(2) NoDA: This is a baseline method without applying DA for

ER. Specifically, it utilizes our DADER framework without Feature

Aligner A, where theM and F are totally the same with DA.
(3) Reweight: We consider an alternative solution of DA for

ER [68], which is denoted as Reweight for ease of presentation.

Different from DADER that focuses on feature learning, it aims at

reweighting source entity pairs to emphasize the ones similar to the

target. To this end, Reweight first uses word embedding techniques

to convert an entity pair into a feature vector, and then measures

similarity between source and target entity pairs in such feature

space. Next, it computes weights of source entity pairs according to

the obtained similarity scores, and trainsMatcherM by considering

the weights. We use the code provided from [68]. We use fastText to

convert an entity pair into a 300 dimensional vector, which achieved

the best performance. We run the default four machine learning

classifiers for Matcher and report the best result.

(4) DeepMatcher: We use the best Hybrid method with the

default settings in the original code [1]: the learning rate is 1e-3 by

default, and the batch size is the same as DA.

(5) Ditto: We run its original code from [2], which uses the pre-

trained Roberta [44] model and three optimization operators by

default, together with learning rate 3e-5.

All the methods are implemented using PyTorch [51] and the

Transformers library [75]. All the experiments are evaluated on a

server with 4 CPU cores (Intel Xeon Gold 6138 CPU @ 2.00GHz), 4

NVIDIA RTX 24GB GPUs and 1024GB memory, and the version of

Python is 3.6.5. All the experiments are repeated in three times and

the average results as well as standard deviations are reported.

6.2 Overall Results of DA for ER
6.2.1 Overall Performance. As the effect of domain adaptation may

depend on the degree of domain shift between source and target

datasets, we consider the following two settings to provide a more

comprehensive evaluation. (1) Similar Domains: We select datasets

from the same domain (such as product and citation as shown in

Table 2), e.g., Walmart-Amazon→ Abt-Buy. (2) Different Domains:
We select datasets across domains to prepare source and target

datasets, e.g., RottenTomatoes-IMDB (movie)→ Abt-Buy (product).

Note that we use the Pre-trained LMs as default Feature Extractor,

and will discuss other design choices in Section 6.4.

Similar domains: Table 3 shows that, when the source and target

datasets are from the similar domain, DA can get obvious improve-

ment. In this setting, although DS
and DT

describe entities in the

similar domain, these entities may have various attributes or dif-

ferent textual styles in the same attribute, which may cause the

domain shift effect. Due to this effect, NoDA trained only on DS

may focus on the information (i.e., attributes, values, text, etc.) that
is only useful to the source, leading to performance degradation

on target dataset DT
. The experimental results show that DA can

help to adjust the model to utilize the information shared by DS

and DT
, so as to reduce the domain shift.

(a) NoDA (b) DA (InvGAN+KD)

Figure 5: Visualization of the effect of DA for Abt-Buy →
Walmart-Amazon. Distributions of source (yellow) and tar-
get (blue) are much closer after DA (b) than without DA (a).

Take Abt-Buy andWalmart-Amazon as an example. The datasets

share two attributes (Title, Price), while Abt-Buy has one textual
attribute Description and Walmart-Amazon has three structural

attributes (Category, Brand, Modelno). Table 3 shows that DA can

improve performance by 6.8 and 14.2 on the basis of NoDA for

Walmart-Amazon→ Abt-Buy and Abt-Buy→Walmart-Amazon

respectively. This is because DA guides F andM to make full use

of the shared attributes (Title, Price), instead of paying much

attention to the specific attributes in the source. Another inter-

esting example is DBLP-Scholar and DBLP-ACM which have the

same attributes (Title, Authors, Venue, Year) and different tex-

tual styles in attribute Authors, i.e., abbreviation in DBLP-Scholar

(e.g. "m stonebraker") and full name in DBLP-ACM (e.g. "michael
stonebraker"). The result shows that DA can also help F andM to

gain useful information for DT
from DS

in this case.

Different domains: As shown in Table 4, when source and target

datasets are from different domains, DA can obtain more signifi-

cant improvements, i.e., from 11.0 to 43.9 on the basis of the low

performance of NoDA. The main reason is that, the source and

target datasets in this setting are quite different, i.e., their attributes
may be completely different and describe totally different contents.

Thus, the effect of domain shift would be more significant than the

previous setting, which results in low performance of NoDA. The

gains of DA in this set of experiments show that DA is helpful on

datasets with significant differences on data distribution.

In order to help us understand how DA reduces domain shift,

we use t-SNE [71], a well-adopted method for visualizing high-

dimensional feature distributions [25, 45], to map the features of

source and target datasets into two-dimensional space. Due to space

limitation, we only show the case of Abt-Buy→Walmart-Amazon.

We show their distributions in Figure 5, where yellow crosses and

blue points respectively represent source and target entity pairs.

The left corresponds to NoDA (i.e., Feature Extractor F is only

trained on source), while the right corresponds to DA (i.e., Feature
Extractor F has been adapted with the InvGAN+KD method in

DA). We can see that source and target entity pairs are obviously

more mixed when we apply DA. This results show that DA can

guide F to make feature distributions of source and target much

closer, which helpsM make correct prediction on target DT
.

Finding 1: DA works well for the ER problem both on the
datasets from similar domains (Table 3) and the datasets
from different domains (Table 4).

Table 3: Similar domains: overall result of domain adaptation for entity resolution datasets, where Δ 𝐹1 denotes the 𝐹1 im-
provement achieved by the best DA method compared with the NoDA method.

Datasets NoDA Discrepancy-based Adversarial-based Reconstruction-based
Δ 𝐹1Source Target MMD 𝐾-order GRL InvGAN InvGAN+KD ED

Walmart-Amazon Abt-Buy 65.8 ± 4.6 72.6 ± 3.0 68.3 ± 0.3 68.4 ± 2.2 56.0 ± 31.7 69.6 ± 4.6 39.4 ± 8.4 6.8

Abt-Buy Walmart-Amazon 56.9 ± 3.4 71.1 ± 2.1 62.0 ± 2.6 66.3 ± 0.8 47.5 ± 25.2 63.5 ± 3.1 45.7 ± 2.5 14.2

DBLP-Scholar DBLP-ACM 97.2 ± 0.1 97.2 ± 0.1 96.2 ± 1.0 96.9 ± 0.1 97.1 ± 0.4 97.2 ± 0.0 96.8 ± 0.1 0.0

DBLP-ACM DBLP-Scholar 77.8 ± 6.0 91.5 ± 0.2 88.9 ± 1.6 84.2 ± 3.9 92.1 ± 0.6 92.3 ± 0.6 90.5 ± 0.6 14.5

Zomato-Yelp Fodors-Zagats 85.4 ± 16.2 92.2 ± 4.8 87.7 ± 4.3 89.1 ± 4.4 94.5 ± 1.8 93.5 ± 2.5 78.0 ± 5.1 9.1

Fodors-Zagats Zomato-Yelp 47.6 ± 33.6 64.5 ± 6.3 72.6 ± 5.2 49.6 ± 28.2 29.7 ± 18.9 75.0 ± 12.7 0.0 ± 0.0 27.4

Table 4: Different domains: overall result of domain adaptation for entity resolution datasets, where Δ 𝐹1 denotes the 𝐹1
improvement achieved by the best DA method compared with the NoDA method.

Datasets NoDA Discrepancy-based Adversarial-based Reconstruction-based
Δ 𝐹1Source Target MMD 𝐾-order GRL InvGAN InvGAN+KD ED

RottenTomatoes-IMDB Abt-Buy 40.6 ± 12.0 43.6 ± 10.2 41.4 ± 11.8 42.7 ± 17.8 23.8 ± 6.1 53.9 ± 5.9 13.8 ± 7.7 13.3

RottenTomatoes-IMDB Walmart-Amazon 38.4 ± 9.0 41.5 ± 8.4 41.9 ± 8.0 49.0 ± 8.8 35.1 ± 3.4 49.4 ± 2.1 30.7 ± 3.3 11.0

iTunes-Amazon DBLP-ACM 80.3 ± 8.4 94.5 ± 0.1 86.9 ± 4.8 92.1 ± 2.1 57.7 ± 46.9 94.4 ± 0.6 77.5 ± 5.5 14.1

iTunes-Amazon DBLP-Scholar 68.2 ± 9.8 86.9 ± 2.7 80.4 ± 6.2 85.4 ± 5.8 59.6 ± 47.7 89.1 ± 0.7 42.8 ± 11.7 20.9

Book2 Fodors-Zagats 49.6 ± 9.3 91.5 ± 0.8 78.2 ± 11.4 84.2 ± 7.1 93.5 ± 2.2 93.4 ± 1.7 78.1 ± 17.4 43.9

Book2 Zomato-Yelp 67.4 ± 3.3 73.0 ± 19.1 68.0 ± 21.0 54.0 ± 24.3 63.3 ± 10.7 81.8 ± 10.0 19.7 ± 14.0 14.4

Table 5: Results for WDC: Similar domains - different categories within the same website.
Datasets NoDA Discrepancy-based Adversarial-based Reconstruction-based

Δ 𝐹1Source Target MMD 𝐾-order GRL InvGAN InvGAN+KD ED

computers watches 88.6 ± 1.4 83.2 ± 2.3 87.1 ± 0.4 86.7 ± 1.6 86.2 ± 3.0 86.4 ± 1.1 76.5 ± 4.0 -1.5

watches computers 82.1 ± 0.5 85.6 ± 0.6 82.9 ± 1.1 83.3 ± 0.8 80.6 ± 6.0 84.6 ± 0.6 64.9 ± 0.9 3.5

cameras watches 87.1 ± 1.9 84.2 ± 1.7 86.0 ± 1.6 84.3 ± 2.1 85.9 ± 3.0 88.3 ± 0.3 68.5 ± 10.8 1.2

watches cameras 86.1 ± 0.9 86.0 ± 0.2 85.4 ± 1.1 86.7 ± 0.7 85.2 ± 2.9 83.9 ± 3.1 71.3 ± 4.9 0.6

shoes watches 83.6 ± 1.6 83.2 ± 1.2 82.6 ± 2.4 84.2 ± 1.8 83.3 ± 0.3 83.5 ± 3.2 69.7 ± 9.3 0.6

watches shoes 76.3 ± 1.5 74.7 ± 2.3 76.9 ± 0.3 76.5 ± 2.6 74.0 ± 1.7 77.0 ± 4.4 65.7 ± 4.2 0.7

computers shoes 71.6 ± 3.6 75.2 ± 2.3 74.5 ± 2.3 76.3 ± 2.2 72.9 ± 3.8 76.5 ± 3.2 62.1 ± 2.7 4.9

shoes computers 83.3 ± 2.1 85.8 ± 0.9 83.7 ± 2.6 83.8 ± 2.1 85.0 ± 1.9 82.3 ± 2.6 58.7 ± 2.4 2.5

cameras shoes 74.0 ± 2.6 65.5 ± 2.9 77.6 ± 0.1 76.9 ± 1.0 74.7 ± 3.7 76.5 ± 0.3 58.6 ± 6.9 3.6

shoes cameras 79.4 ± 0.8 81.9 ± 6.3 82.0 ± 1.8 83.2 ± 4.1 85.0 ± 1.4 87.6 ± 1.0 69.5 ± 4.4 8.3

computers cameras 83.9 ± 3.5 84.0 ± 1.2 85.7 ± 0.8 84.3 ± 0.9 85.6 ± 2.4 86.7 ± 1.7 75.5 ± 2.9 2.8

cameras computers 87.0 ± 1.7 88.0 ± 0.2 87.1 ± 1.7 87.2 ± 1.3 86.4 ± 0.2 87.8 ± 1.3 71.9 ± 3.0 1.1

We notice that the improvement of DA is not always significant.

For example, as shown in Table 3, for DBLP-Scholar → DBLP-

ACM, DA achieves the same results as NoDA. The main reason is

that the models originally trained on source DS
already predict

target DT
well. To further investigate this, we evaluate the WDC

datasets in Table 5, and the results show that the gain of DA is not

obvious (from −1.5 to 8.3). This is because the four WDC datasets,

although correspond to different categories, have a same textual

attribute (i.e., Title) that follows the same word vocabulary. Thus,

the data distribution of different WDC datasets would be very

similar. This can be validated by some results of NoDA on target

DT
(e.g., computers → watches: 88.6, watches → cameras: 86.1,

watches→ shoes: 76.3 and cameras→ computers: 87.0), which are

better than that of the state-of-the-art ER model [42] trained on

their own training sets (computers: 80.8, cameras: 80.9, watches:

85.1, and shoes: 75.9). The results indicate that the domain shift

may not be significant in this case, and thus there is little space for

DA to improve.

6.2.2 In-Depth Analysis. The above finding inspires us to conduct

an in-depth analysis to examine whether the “distance” between

source and target affects the DA performance. We calculate the dis-

tance between source and target datasets by using maximum mean

discrepancy (MMD) [30], as discussed in Section 5. Specifically, for

both source and target, we use a pre-trained Bert [19] as Feature

Extractor to obtain a 768-dimensional feature space. The smaller

the MMD is, the closer distance the datasets have. The result is

shown in Figure 6. Given a same target dataset DT
, we can clearly

observe that DA achieves higher F1 scores when the source and

target are closer to each other. This indicates a possibility of using

such distance to select better source datasets for a given target,

which will be studied in the future work.

Finding 2: DA achieves higher F1 scores when the source
dataset is closer to the target dataset, which identifies a pos-
sible research direction on source data selection, e.g., choos-
ing a “close” domain for DA to improve the performance.

6.3 Evaluation on Feature Aligner A
This section explores the benefits and limitations of the design

choices for Feature Aligner A shown in Table 1. Specifically, we

Figure 6: Evaluation on distance (MMD) between source and
target and the DA performance. The result shows that, given
a same target dataset, DA achieves higher F1 scoreswhen the
source and target have a smaller MMD distance.

analyze the successful cases whereA improves the ER performance,

and the failure cases where A does not.

6.3.1 Successful Cases Analysis. As observed from Tables 3 and 4,

MMD and InvGAN+KD outperform NoDA in nearly all the cases,

while these twomethods seem to be much of a muchness. To further

compare them, we investigate their training epochs with different

learning rates by using Books2 as source and Fodors-Zagats as

target. Figure 7 shows that MMD can always be convergent with

enough epochs, while InvGAN+KD is oscillate. When the learning

rate is 1e-5, NoDA and MMD converge to F1 scores 25 and 78

respectively, while InvGAN+KD first reaches a high F1 score at

epoch 6 and then drops sharply. With a smaller learning rate, e.g.,
1e-7 in Figure 7(c), InvGAN+KD does not vibrate violently and has

a convergence trend. However, the epoch corresponding to the best

F1 score changes from 6 to 12. It is reasonable, smaller learning rate,

longer training time.

Finding 3: Discrepancy-based DA performs well to be con-
vergent with enough training epochs and achieves obvious
improvements, while adversarial-based DAmay be oscillate.
The oscillation may be reduced by reducing learning rate,
which may lead to more training epochs.

The above finding implies that InvGAN+KD is sensitive to the

hyper-parameters (e.g., learning rate), and thus a small validation

set is necessary to InvGAN+KD. If the researcher has small labeled

target validation set or enough experience and time to adjust the

hyper-parameters, we suggest a more promising adversarial-based

method (InvGAN+KD). On the contrary, it is suggested to use the

discrepancy-based method with stable performance.

6.3.2 Failure Cases Analysis. We observe from Tables 3 and 4 that

some methods are worse than NoDA. Thus, we provide an in-depth

analysis to discuss why the methods fail in some cases.

InvGAN. We can see that InvGAN is worse than NoDA in many

cases. For example, for Fodors-Zagats→ Zomato-Yelp, the result

of InvGAN is 29.7 while NoDA achieves 47.6. To investigate the

reason, we examine the training epochs of InvGAN for Fodors-

Zagats→ Zomato-Yelp. As shown in Figure 8, with the increase

of training epochs, the F1 scores of both source and target drop

sharply and become very oscillate. The main reason is that, as

discussed in Section 5.2, InvGAN only adjusts Feature Extractor to

make target features xT as similar to source features xS as possible,
while ignoring whether the adjusted features are discriminative or

not. Thus, the obtained features may damage the performance of

M. This can be reflected by the result that, after the adaptation,

M becomes dramatically worse even on the source dataset. On the

other hand, we also observe from Figure 8 that InvGAN+KD can

effectively address this problem to achieve much higher and more

stable performance. This is attributed to the knowledge distillation

used in InvGAN+KD for retaining the classification ability ofM.

ED. The reconstruction-based method ED also achieves inferior

performance in almost all the cases, which is quite different from

the case of DA for CV [27, 73]. This is attributed to the encoder-

decoder approach that is hard to capture and reconstruct the textual

information of original entity pairs. This result shows that the

reconstruction-based method may not be readily applicable to ER.

GRL. GRL is generally good, while failing to outperform NoDA

in a few cases, e.g., Book2 → Zomato-Yelp. This is because the

GRL training is usually not stable, as pointed out by many existing

studies [9, 34]. During training, the confrontation between A and

F may lead to the failure of convergence of F and M. Either

the selection of hyper-parameters or the initialization of model

parameters may have a great impact on the final results.

Finding 4: Not all successful DAmethods in CV and NLP are
applicable to ER. It is necessary to ensure that the learned
features satisfy both domain-invariant and discriminative
characteristics, while the balance between these two factors
is the key for DA for ER.

6.4 Evaluation on Feature Extractor F
After using Pre-trained LMs (i.e., Bert) as default F in the pre-

vious sections, we next explore the performance of using other

choices. We examine a bidirectional RNN, because, as reported in

DeepMatcher [49], a hybrid method using bidirectional RNN with

decomposable attention achieves the best ER performance. Thus,

in this paper, we use the same hybrid architecture as the Feature

Extractor based on its code [1]. For dealing with the situation that

DS
and DT

have different attributes, we learn a universal RNN,

instead of learning a separate RNN for each attribute, following

the existing work DTAL [35]. Figure 9 shows that Bert is better

than RNN in all of the three dataset groups. The F1 scores are lower

and the improvements of DA are not obvious with RNN as Feature

Extractor. This suggests that the transfer ability of RNN is weak,

so the model trained on source DS
relies heavily on itself, and can

not work well on target DT
. As a result, it is hard for DA to adjust

RNN to extract domain-invariant features.

Finding 5: When Feature Extractor is a bidirectional RNN,
the gains of DA are not obvious. The improvement of DA
for ER depends on the transferability of Pre-trained LMs.

6.5 Comparison with Existing Approaches
This section compares our DADER approach with existing ap-

proaches. Note that we use the result of InvGAN+KD, which

achieves the best performance under the DADER framework.

6.5.1 Comparison among Alternative DA Solutions. We first com-

pare DADER with the alternative DA for ER approach Reweight,

5 10 15 20 25 30 35 40
Epoch

0

20

40

60

100

80

F1
-S

co
re NoDA

InvGAN+KD
MMD

(a) Learning Rate = 1e-5

5 10 15 20 25 30 35 40
Epoch

0

60

40

20

80

100

F1
-S

co
re

NoDA
InvGAN+KD
MMD

(b) Learning Rate = 1e-6

5 10 15 20 25 30 35 40
Epoch

0

60

40

20

80

100

F1
-S

co
re

NoDA
InvGAN+KD
MMD

(c) Learning Rate = 1e-7

Figure 7: Convergence comparison of MMD and InvGAN+KD. Each figure shows the changes of F1 score with epochs. The red
line corresponds to InvGAN+KD, the blue line corresponds to MMD, and the green line corresponds to NoDA.

5 10 15 20 25 30 35 40
Epoch

0

60

40

20

80

100

F1
-S

co
re

InvGAN-Source
InvGAN-Target
InvGAN+KD-Source
InvGAN+KD-Target

(a) Fodors-Zagats→ Zomato-Yelp

5 10 15 20 25 30 35 40
Epoch

0

60

40

20

80

100

F1
-S

co
re

InvGAN-Source
InvGAN-Target
InvGAN+KD-Source
InvGAN+KD-Target

(b) Zomato-Yelp→ Fodors-Zagats

Figure 8: The F1 score curves of InvGAN and InvGAN+KD
on source and target datasets.

which is described in Section 6.1. Figure 10 shows that DADER is

much better than Reweight. This is attributed to the different do-

main adaptation strategies used in these two approaches. Reweight

focuses on an instance-level approach that reweights source entity

pairs and adapts them to be alike the target. This approach may not

be effective when the similarity between source and target is hard

to measure or there is a small amount of source data. In contrast,

DADER adopts a feature-level approach that learns domain-invariant

and discriminative features, which has been shown to be more

promising in many applications, such as CV and NLP.

Finding 6: Feature-level DA approaches that learn domain-
invariant and discriminative features are better than
instance-based approaches that reweight source data.

6.5.2 Comparison with Using Some Target Labels. We explore the

performance of different methods with some labeled target data. For

fair comparison, the target datasets are the original experimental

datasets [49] provided byDeepMatcher, which are divided into train,

valid and test by 3:1:1. We select the labeled data from the train set

and record the F1 score on the test set. Due to the limitation of space,

we report four datasets with large amount of data in Figure 11.

The green and red lines correspond to NoDA and InvGAN+KD

respectively. In addition, we compare our method with Ditto [42]

(i.e., blue line) and DeepMatcher [49] (i.e., brown line). We select the

labeled data according to the maximum entropy principle, which is

the basic principle in active learning. We label 200 of the training

set per round, with a total of 4 rounds.

When the number of labeled data is small, InvGAN+KD is ob-

viously better than other methods. With the increase of the label

number, Ditto and DeepMacher get improved, but the overall per-

formance of DeepMacher is lower than other methods. The results

show that, to achieve good performance, DeepMacher needs more

labeled data, and Ditto can perform well with a few labeled data.

However, DADER gets the highest F1 scores in various cases.

Finding 7: The performance of the model after DA can al-
ways be maintained at a high level with some labeled data,
while outperforming state-of-the-art DL-based ERmethods,
DeepMatcher [49] and Ditto [42].

7 RELATEDWORK
Entity resolution. There have been rule-based methods [23, 58],

matching functions [4, 5, 20, 60], crowd-based methods [11, 12, 17,

22, 40, 41, 76] and traditional ML-based models [3, 15, 47, 66] for ER

(see the book [50] for more details). Recently, DL-based methods

have been widely used in ER, and achieved the state-of-the-art

results. DeepER [21] designs two deep neural networks to extract

features of entity pairs, and models ER as a binary classification

task. DeepMatcher [49] systematically defines the architecture and

design space of DL solutions for ER. Ditto [42] first applies pre-

trained language models to ER, which can reduce the number of

training data needed. Even though, a lot of training entity pairs are

still needed for DL-based methods.

Domain adaptation. Domain adaptation (DA) [25, 43, 45, 64, 69],

which is a case of transfer learning [36, 80], is an effective way to

reuse labeled source data to (possibly) different target data. Existing

DA solutions can be broadly categorized into instance-level, feature-
level and others. (1) Instance-level: these methods aim at reusing

source data instances by adapting them to target distribution. To

this end, traditional studies reweight source data instances to em-

phasize the ones similar to the target [8, 16]. Recent DL methods

are proposed to learn a mapping function to adapt source data in-

stances to be alike the target [13, 33], or generate pseudo labels for

target data [26]. (2) Feature-level: these methods focus on learning

domain-invariant and discriminative features. Existing feature-level
methods can be divided into three categories. Discrepancy-based

methods utilize various metrics, e.g., MMD [45, 46, 70], second-

order statistics [61, 62] and higher-order moment [78], to compute

and reduce distribution discrepancy between source and target.

Adversarial-based methods leverage the adversarial learning frame-

work, e.g., gradient reverse [25] and GAN-based minimax train-

ing [69] to learn domain-invariant features, which is followed by

many studies [6, 10, 24, 37, 48, 53]. Reconstruction-based methods

introduce data reconstruction as auxiliary task to boost the fea-

ture learning process [7, 27, 79]. (3) Others: there are many other

DA studies, such as meta-learning with DA dealing with multiple

CO
-W
T

W
T-
CO

CA
-W
T

W
T-
CA

SH
-W
A

W
A-
SH

CO
-S
H

SH
-C
O

CA
-S
H

SH
-C
A

CO
-C
A

CA
-C
O

0

20

40

60

80

F
1-
S
co
re

(c)WDC

W
A-
AB

AB
-W
A

DS
-D
A

DA
-D
S

ZY
-F
Z

FZ
-Z
Y

0

20

40

60

80

100

F
1-
S
co
re

(a)Similar domains

RI
-A
B

RI
-W
A

IA
-D
A

IA
-D
S

B2
-F
Z

B2
-Z
Y

0

20

40

60

80

F
1-
S
co
re

(b)Different domains

RNN NoDA RNN MMD RNN InvGAN+KD Bert NoDA Bert MMD Bert InvGAN+KD

Figure 9: The performance comparison of Pre-trained LMs and RNN. Each dataset has six bars, where the left three take RNN
as F and the right three take Bert as F .

W
A-
AB

AB
-W
A

DS
-D
A

DA
-D
S

ZY
-F
Z

FZ
-Z
Y

0

20

40

60

80

100

F
1-
S
co
re

(a)Similar domains

RI
-A
B

RI
-W
A
IA
-D
A
IA
-D
S

B2
-F
Z

B2
-Z
Y

0

20

40

60

80

F
1-
S
co
re

(b)Different domains

Reweight InvGAN+KD

Figure 10: Comparison between DADER and Reweight.

200 800400 600
Target Labels

20

0

40

60

80

F1
-S

co
re

NoDA
InvGAN+KD
Ditto
DeepMatcher

(a) Abt-Buy

200
0

20

80

60

40

F1
-S

co
re

NoDA
InvGAN+KD
Ditto
DeepMatcher

400 600 800
Target Labels

(b) Walmart-Amazon

75
200

80

85

95

90

F1
-S

co
re

NoDA
InvGAN+KD
Ditto
DeepMatcher

400 600 800
Target Labels

(c) DBLP-ACM

200

80

85

95

90

F1
-S

co
re

NoDA
InvGAN+KD
Ditto
DeepMatcher

400 600 800
Target Labels

(d) DBLP-Scholar

Figure 11: Comparison with using some target labels.

tasks [54] and multi-step DA [14, 63]. Moreover, many pretraining-

based solutions are proposed, such as selecting source pretraining

data to benefit the target [18] and performing pretraining task on

the target [31]. Among the above DA approaches, we select the

feature-level methods, which are the most fruitful and successful

ones (see recent surveys [73, 74]), and examine which DA design

choices are helpful for ER, the core data integration task.

Domain adaptation for entity resolution. Due to the good per-
formance of DA in CV and NLP, there are some attempts to apply

DA to ER. Thirumuruganathan et al. introduce an instance-level

method to reweight source data instances and make them adapt-

able for the target [68]. Kasai et al. apply DA to ER with gradient

reverse [35], which is one special case in our proposed design space.

However, there is no research to systematically study DA for ER,

especially comparing various DA solutions under the same frame-

work. Thus, it is hard for practitioners to understand benefits and

limitations of applying DA to ER.

8 CONCLUSIONS
In this paper we have advanced the SOTA in applying DA to ER, by

defining a large space of DA solutions, and developing six represen-

tative methods for Feature Aligner.We have conducted extensive ex-

periments to evaluate different combinations of the methods in the

design space (Section 6) with insightful empirical findings. DA can

significantly improve ERwhen the model trained on the source does

not perform well on the target (Finding 1), and may be more ben-

eficial when choosing a “close” source domain for DA (Finding 2).
For the Feature Aligner methods, discrepancy-based methods (e.g.,
MMD) are more stable but adversarial-based method InvGAN+KD

works the best when carefully tuning hyper-parameters (Finding
3). Moreover, not all successful DA methods in CV and NLP are suit-

able to ER (Finding 4) and pre-trained LM Feature Extractor works

better than RNN based methods (Finding 5). Although there may

be different methods for DA for ER, feature-level DA approaches

that learn domain-invariant and discriminative features are better

than instance-based approaches (Finding 6). Last, when the labels

for target datasets are available, using DA requires much less train-

ing data from the target to achieve a high accuracy, comparing with

the SOTA DL based methods with/without pre-trained languages

models (Finding 7).
This research has thrown up several questions in need of further

investigation. For example, whether DA using multiple labeled

source data can further help ER? If so, shall we use them all or a

subset of source datasets? How to combine the DADER framework

with the ER blocking to build a scalable ER framework?

Acknowledgement. This work was partly supported by NSF of

China (62122090, 62072461, 61925205, 62102215, U1911203), Huawei,

TAL education, Beijing National Research Center for Information

Science and Technology (BNRist), China National Postdoctoral

Program for Innovative Talents (BX2021155), China Postdoctoral

Science Foundation(2021M691784), Shuimu Tsinghua Scholar and

Zhejiang Lab’s International Talent Fund for Young Professionals.

REFERENCES
[1] 2018. Code of DeepMatcher. https://github.com/anhaidgroup/deepmatcher

[2] 2020. Code of Ditto. https://github.com/megagonlabs/ditto

[3] Fabio Azzalini, Songle Jin, Marco Renzi, and Letizia Tanca. 2021. Blocking

techniques for entity linkage: A semantics-based approach. Data Science and
Engineering 6, 1 (2021), 20–38.

[4] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eui-

jong Whang, and Jennifer Widom. 2009. Swoosh: a generic approach to entity

resolution. The VLDB Journal 18, 1 (2009), 255–276.
[5] Mikhail Bilenko and Raymond JMooney. 2003. Adaptive duplicate detection using

learnable string similarity measures. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. 39–48.

[6] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey,

Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige,

et al. 2018. Using simulation and domain adaptation to improve efficiency of deep

robotic grasping. In 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 4243–4250.

[7] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krish-

nan, and Dumitru Erhan. 2016. Domain separation networks. arXiv preprint
arXiv:1608.06019 (2016).

[8] Lorenzo Bruzzone and Mattia Marconcini. 2009. Domain adaptation problems: A

DASVM classification technique and a circular validation strategy. IEEE transac-
tions on pattern analysis and machine intelligence 32, 5 (2009), 770–787.

[9] Guanyu Cai, Yuqin Wang, Lianghua He, and MengChu Zhou. 2019. Unsuper-

vised domain adaptation with adversarial residual transform networks. IEEE
transactions on neural networks and learning systems 31, 8 (2019), 3073–3086.

[10] Zhangjie Cao, Mingsheng Long, JianminWang, andMichael I Jordan. 2018. Partial

transfer learning with selective adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2724–2732.

[11] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2016. Cost-

effective crowdsourced entity resolution: A partial-order approach. In Proceedings
of the 2016 International Conference on Management of Data. 969–984.

[12] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng. 2018. A

partial-order-based framework for cost-effective crowdsourced entity resolution.

The VLDB Journal 27, 6 (2018), 745–770.
[13] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and

Jaegul Choo. 2018. Stargan: Unified generative adversarial networks for multi-

domain image-to-image translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 8789–8797.

[14] Sumit Chopra, Suhrid Balakrishnan, and Raghuraman Gopalan. 2013. Dlid: Deep

learning for domain adaptation by interpolating between domains. In ICML
workshop on challenges in representation learning, Vol. 2. Citeseer.

[15] Peter Christen. 2008. Automatic record linkage using seeded nearest neighbour

and support vector machine classification. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. 151–159.

[16] Wen-Sheng Chu, Fernando De la Torre, and Jeffery F Cohn. 2013. Selective

transfer machine for personalized facial action unit detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 3515–3522.

[17] Lizhen Cui, Jing Chen, Wei He, Hui Li, Wei Guo, and Zhiyuan Su. 2021. Achiev-

ing Approximate Global Optimization of Truth Inference for Crowdsourcing

Microtasks. Data Science and Engineering 6, 3 (2021), 294–309.

[18] Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Cecile Paris. 2019. Using similarity

measures to select pretraining data for NER. arXiv preprint arXiv:1904.00585
(2019).

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[20] AnHai Doan, Pradap Konda, Paul Suganthan GC, Yash Govind, Derek Paulsen,

Kaushik Chandrasekhar, Philip Martinkus, and Matthew Christie. 2020. Magellan:

toward building ecosystems of entity matching solutions. Commun. ACM 63, 8

(2020), 83–91.

[21] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad

Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity

resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454–1467.
[22] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. 2015. icrowd:

An adaptive crowdsourcing framework. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 1015–1030.

[23] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. 2009. Reasoning about record

matching rules. Proceedings of the VLDB Endowment 2, 1 (2009), 407–418.
[24] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by

backpropagation. In International conference on machine learning. PMLR, 1180–

1189.

[25] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.

Domain-adversarial training of neural networks. The journal of machine learning
research 17, 1 (2016), 2096–2030.

[26] Yixiao Ge, Dapeng Chen, and Hongsheng Li. 2020. Mutual mean-teaching: Pseudo

label refinery for unsupervised domain adaptation on person re-identification.

arXiv preprint arXiv:2001.01526 (2020).
[27] Muhammad Ghifary,W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, andWen

Li. 2016. Deep reconstruction-classification networks for unsupervised domain

adaptation. In European Conference on Computer Vision. Springer, 597–613.
[28] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

networks. arXiv preprint arXiv:1406.2661 (2014).
[29] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723–773.

[30] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2020. Multi-source domain

adaptation for text classification via distancenet-bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34. 7830–7838.

[31] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, and Noah A Smith. 2020. Don’t stop pretraining: adapt language

models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020).
[32] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[33] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,

Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-consistent adversarial

domain adaptation. In International conference on machine learning. PMLR, 1989–

1998.

[34] Constantinos Karouzos, Georgios Paraskevopoulos, and Alexandros Potamianos.

2021. UDALM: Unsupervised Domain Adaptation through Language Modeling.

arXiv preprint arXiv:2104.07078 (2021).
[35] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.

Low-resource deep entity resolution with transfer and active learning. arXiv
preprint arXiv:1906.08042 (2019).

[36] Atsutoshi Kumagai, Tomoharu Iwata, and Yasuhiro Fujiwara. 2020. Transfer

metric learning for unseen domains. Data Science and Engineering 5, 2 (2020),

140–151.

[37] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Roge-

rio Feris, William T Freeman, and Gregory Wornell. 2018. Co-regularized align-

ment for unsupervised domain adaptation. arXiv preprint arXiv:1811.05443 (2018).
[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature

521, 7553 (2015), 436–444.

[39] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. arXiv preprint arXiv:1910.13461 (2019).
[40] Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li, Yudian Zheng,

Yuanbing Li, Xiang Yu, Xiaohang Zhang, and Haitao Yuan. 2017. CDB: optimizing

queries with crowd-based selections and joins. In Proceedings of the 2017 ACM
International Conference on Management of Data. 1463–1478.

[41] Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li, Yudian Zheng,

Yuanbing Li, Xiang Yu, Xiaohang Zhang, and Haitao Yuan. 2018. CDB: A crowd-

powered database system. Proceedings of the VLDB Endowment 11, 12 (2018),

1926–1929.

[42] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

2020. Deep entity matching with pre-trained language models. arXiv preprint
arXiv:2004.00584 (2020).

[43] Tongyu Liu, Ju Fan, Yinqing Luo, Nan Tang, Guoliang Li, and Xiaoyong Du.

2021. Adaptive data augmentation for supervised learning over missing data.

Proceedings of the VLDB Endowment 14, 7 (2021), 1202–1214.
[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[45] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning

transferable features with deep adaptation networks. In International conference
on machine learning. PMLR, 97–105.

[46] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep

transfer learning with joint adaptation networks. In International conference on
machine learning. PMLR, 2208–2217.

[47] Andrew McCallum and Ben Wellner. 2004. Conditional models of identity un-

certainty with application to noun coreference. Advances in neural information
processing systems 17 (2004), 905–912.

[48] Saeid Motiian, Quinn Jones, Seyed Mehdi Iranmanesh, and Gianfranco Doretto.

2017. Few-shot adversarial domain adaptation. arXiv preprint arXiv:1711.02536
(2017).

[49] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19–34.

[50] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.

2021. The Four Generations of Entity Resolution. Synthesis Lectures on Data
Management 16, 2 (2021), 1–170.

https://github.com/anhaidgroup/deepmatcher
https://github.com/megagonlabs/ditto

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[52] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC training

dataset and gold standard for large-scale product matching. In Companion Pro-
ceedings of The 2019 World Wide Web Conference. 381–386.

[53] Minho Ryu and Kichun Lee. 2020. Knowledge Distillation for BERT Unsupervised

Domain Adaptation. arXiv preprint arXiv:2010.11478 (2020).
[54] Doyen Sahoo, Hung Le, Chenghao Liu, and Steven CH Hoi. 2018. Meta-learning

with domain adaptation for few-shot learning under domain shift. (2018). https:

//openreview.net/pdf?id=ByGOuo0cYm

[55] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-

tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[56] Iulian Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau,

Aaron Courville, and Yoshua Bengio. 2017. A hierarchical latent variable encoder-

decoder model for generating dialogues. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31.

[57] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi

Zhang. 2018. Disan: Directional self-attention network for rnn/cnn-free language

understanding. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

[58] Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo Papotti,

Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Gener-

ating concise entity matching rules. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1635–1638.

[59] Rohit Singh, Venkata VamsikrishnaMeduri, Ahmed Elmagarmid, Samuel Madden,

Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang.

2017. Synthesizing entity matching rules by examples. Proceedings of the VLDB
Endowment 11, 2 (2017), 189–202.

[60] Parag Singla and Pedro Domingos. 2006. Entity resolution with markov logic. In

Sixth International Conference on Data Mining (ICDM’06). IEEE, 572–582.
[61] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of frustratingly easy

domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30.

[62] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for deep

domain adaptation. In European conference on computer vision. Springer, 443–450.
[63] Ben Tan, Yu Zhang, Sinno Pan, and Qiang Yang. 2017. Distant domain transfer

learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.
[64] Hui Tang and Kui Jia. 2020. Discriminative adversarial domain adaptation. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5940–5947.
[65] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, XiaoyongDu, Guoliang Li, SamMadden,

and Mourad Ouzzani. 2020. RPT: relational pre-trained transformer is almost all

you need towards democratizing data preparation. arXiv preprint arXiv:2012.02469
(2020).

[66] Sheila Tejada, Craig A Knoblock, and Steven Minton. 2002. Learning domain-

independent string transformationweights for high accuracy object identification.

In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. 350–359.

[67] Saravanan Thirumuruganathan, Han Li, Nan Tang,MouradOuzzani, Yash Govind,

Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep learning for blocking in

entity matching: a design space exploration. Proceedings of the VLDB Endowment
14, 11 (2021), 2459–2472.

[68] Saravanan Thirumuruganathan, Shameem A Puthiya Parambath, Mourad Ouz-

zani, Nan Tang, and Shafiq Joty. 2018. Reuse and adaptation for entity resolution

through transfer learning. arXiv preprint arXiv:1809.11084 (2018).
[69] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversar-

ial discriminative domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7167–7176.

[70] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.

Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[71] Laurens Van Der Maaten. 2013. Barnes-hut-sne. arXiv preprint arXiv:1301.3342
(2013).

[72] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine

Manzagol, and Léon Bottou. 2010. Stacked denoising autoencoders: Learning

useful representations in a deep network with a local denoising criterion. Journal
of machine learning research 11, 12 (2010).

[73] Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey.

Neurocomputing 312 (2018), 135–153.

[74] Garrett Wilson and Diane J Cook. 2020. A survey of unsupervised deep domain

adaptation. ACM Transactions on Intelligent Systems and Technology (TIST) 11, 5
(2020), 1–46.

[75] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.

2019. Huggingface’s transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771 (2019).
[76] Jingru Yang, Ju Fan, ZheweiWei, Guoliang Li, Tongyu Liu, and Xiaoyong Du. 2018.

Cost-effective data annotation using game-based crowdsourcing. Proceedings of
the VLDB Endowment 12, 1 (2018), 57–70.

[77] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. 2017. Compara-

tive study of CNN and RNN for natural language processing. arXiv preprint
arXiv:1702.01923 (2017).

[78] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and

Susanne Saminger-Platz. 2017. Central moment discrepancy (cmd) for domain-

invariant representation learning. arXiv preprint arXiv:1702.08811 (2017).
[79] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. 2015.

Supervised representation learning: Transfer learning with deep autoencoders.

In Twenty-Fourth International Joint Conference on Artificial Intelligence.
[80] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu

Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.

Proc. IEEE 109, 1 (2020), 43–76.

https://openreview.net/pdf?id=ByGOuo0cYm
https://openreview.net/pdf?id=ByGOuo0cYm

	Abstract
	1 Introduction
	2 Deep Entity Resolution
	3 Domain Adaptation for Deep ER
	4 A Design Space of DA for Deep ER
	4.1 Design of Feature Aligner
	4.2 Design of Feature Extractor and Matcher

	5 Design Choices of Feature Aligner
	5.1 Discrepancy-based Methods
	5.2 Adversarial-based Methods
	5.3 Reconstruction-based Methods

	6 Evaluation
	6.1 Experimental Setup
	6.2 Overall Results of DA for ER
	6.3 Evaluation on Feature Aligner A
	6.4 Evaluation on Feature Extractor F
	6.5 Comparison with Existing Approaches

	7 Related Work
	8 Conclusions
	References

