
Learned Index: A Comprehensive Experimental Evaluation
Zhaoyan Sun

Tsinghua University
Beijing, China

szy22@mails.tsinghua.edu.cn

Xuanhe Zhou
Tsinghua University

Beijing, China
zhouxuan19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

Beijing, China
liguoliang@tsinghua.edu.cn

ABSTRACT
Indexes can improve query-processing performance by avoiding
full table scans. Although traditional indexes (e.g., B+-tree) have
been widely used, learned indexes are proposed to adopt machine
learning models to reduce the query latency and index size. How-
ever, existing learned indexes are (1) not thoroughly evaluated
under the same experimental framework and are (2) not compre-
hensively compared with different settings (e.g., key lookup, key
insert, concurrent operations, bulk loading). Moreover, it is hard
to select appropriate learned indexes for practitioners in different
settings. To address those problems, this paper detailedly reviews
existing learned indexes and discusses the design choices of key
components in learned indexes, including key lookup (position
inference which predicts the position of a key, and position refine-
ment which re-searches the position if the predicted position is
incorrect), key insert, concurrency, and bulk loading. Moreover, we
provide a testbed to facilitate the design and test of new learned in-
dexes for researchers. We compare state-of-the-art learned indexes
in the same experimental framework, and provide findings to select
suitable learned indexes under various practical scenarios.

PVLDB Reference Format:
Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. Learned Index: A
Comprehensive Experimental Evaluation. PVLDB, 16(8): 1992 - 2004, 2023.
doi:10.14778/3594512.3594528

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/curtis-sun/TLI.

1 INTRODUCTION
Indexes are vital to improve query performance by avoiding full
table scans. Traditional indexes (e.g., B+tree) build additional data
structures to guide key search. However, additional indexes not only
take additional space but also are inefficient due to pointer chasing
and cache miss. To address those problems, learned indexes are
proposed recently (e.g., one-dimensional index [1, 7, 9–13, 16–18,
24, 27–29, 38, 40, 41, 43, 46, 47, 49, 50, 53, 58, 59], multi-dimensional
index [6, 8, 25, 34, 36, 54], Bloom filter [5, 26, 33, 37, 44]), which
adopt machine learning models to replace the additional structures
[19, 42, 45, 51, 56, 57] such that the models can not only reduce the
index size but also improve the key lookup efficiency [23, 30, 48, 60].

Given a sorted list of key-position pairs, a learned index aims to
use machine learning models to predict the position of a query key.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 8 ISSN 2150-8097.
doi:10.14778/3594512.3594528

F10(k)

Block 3

F12(k)F11(k)

(k, v)

Lookup

Position
Search

Insert/Delete

Keys

Block 1

F110(k) F111(k)

Block 3Block 0 Block 1 Block 2Origin Pairs

…Buf1 …Buf1Concurrency

Bulk
Loading

Bufn Bufn

F0(k)

Figure 1: A General Learned Index Structure. Dotted rectan-
gles denote some indexes have no keys in internal nodes.

Five important factors should be considered in designing a learned
index (as shown in Figure 1).
(1) Key Lookup. It aims to identify the query key position effi-
ciently. It includes position prediction and position search. The
former adopts a machine learning model to predict the key position.
If the prediction is correct, it can easily identify the key; otherwise
it calls the latter step to re-search the key position based on the
predicted position. There are different choices on model design for
position prediction and position search algorithms. For model de-
sign, existing learned indexes mainly adopt a hierarchy of multiple
models where each internal model predicts the position of a key in
its child models and each leaf model predicts the real key position.
For position search, there are various search methods (e.g., linear
and binary searches), which are suitable for different scenarios (e.g.,
linear search works well for small ranges and small prediction er-
rors, while binary search performs better for large ranges). Thus
it is vital to select proper position search methods based on the
prediction errors of machine learning models in learned indexes.
(2) Key Insert. Inserting a new key may change the index structure
(e.g., node split) and lead to model retraining (for changes of key
positions). Mutable learned indexes are proposed to address these
problems in two ways. (𝑖) In-place insert learned indexes reserve
some gaps in the index in order to postpone index structure change
and model retraining. (𝑖𝑖) Delta-buffer insert indexes use the pair-
level/node-level/index-level buffer to allow key inserts.
(3) Key Delete.Deleting a key may change the index structure (e.g.,
node merge) and may also lead to model retraining. Key deletes
can be handled similarly as key inserts.

https://doi.org/10.14778/3594512.3594528
https://github.com/curtis-sun/TLI
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3594512.3594528

(4) Concurrency. To support concurrent operations, learned in-
dexes use different granularities of buffers to improve the through-
put. On one hand, to enable intra-node concurrent queries, learned
indexes maintain a buffer for each key in the node, and the up-
dates across different keys can be concurrent. On the other hand, to
enable concurrent queries across different nodes, learned indexes
maintain a temporary buffer for each node and use the buffer to
(1) support concurrent operations during nodes split/merge and (2)
merge the buffer with the new node after the nodes splits/merge.
(5) Bulk Loading. It builds the learned index for a batch of key-
position pairs. There are two types of methods. (𝑖) Top-down meth-
ods initialize the root, split its pairs to child nodes, and process the
pairs in the child nodes recursively. (𝑖𝑖) Bottom-up methods split
the pairs to leaf nodes, extract the minimal or maximal keys from
each node, and recursively process the extracted pairs. To decide
how to split the pairs, there are many algorithms that consider the
split overhead to effectively build the tree structure.

1.1 Our Motivation
(1) Existing Learned Indexes Are Not Evaluated Under The
Same Evaluation Framework. Although there are dozens of
learned indexes, there is a lack of a comprehensive evaluation
framework to thoroughly compare them.
(2) There Is No Guideline To Help Practitioners Select Suit-
able Learned Indexes. There are multiple factors that affect the
learned indexes, and it is rather hard for practitioners to select a
suitable learned index in different scenarios.
(3) There Is No Testbed To Design New Learned Indexes. De-
signing a new learned index should implement multiple compo-
nents and if there is no testbed, the researchers/practitioners have
to re-design all the components which are tedious and needless.

1.2 Our Contribution
Some existing works have evaluated a subset of above index fac-
tors [2, 30, 48]. First, SOSD [30] evaluated immutable learned in-
dexes, but did not compare the mutable learned indexes. Besides,
although SOSD [30] and the workshop paper [2] evaluated learned
indexes with micro-architectural metrics (e.g., cache misses), SOSD
(𝑖) did not cover some important metrics (e.g., instruction fetching,
instruction encoding) and (𝑖𝑖) did not evaluate the execution time
ratios of these metrics, which are vital to analyze the effects to
index performance. And the evaluation in [2] only supported one
learned index (ALEX) and did not evaluate other important learned
indexes. Second, GRE [48] evaluated the mutable learned indexes,
particularly in concurrency scenarios. However, GRE neither thor-
oughly summarized above index factors of learned indexes, nor
conducted fine-grained evaluations of these factors. Different from
those works, our main contributions are as follows:
(1) A Comprehensive Evaluation. We have constructed an eval-
uation framework and compared state-of-the-art learned indexes
and traditional indexes on various datasets and workloads.
(2) An Extensive Set of Findings.We have extensively compared
existing learned indexes from various aspects. We also summarize
the evaluation results so as to guide practitioners to select proper
indexes under various practical scenarios.

(𝑖) Some learned indexes can outperform traditional indexes
for simple data distributions (e.g., relatively smooth CDF without
abrupt shifts) and read-heavy scenarios, for which they utilize ma-
chine learning models to quickly locate the key positions. However,
existing learned indexes have no advantages for complicated data
distributions (because the machine learning models cannot fit well)
and write-heavy workloads (because tree structures should be up-
dated and the models should be retrained).

(𝑖𝑖) Learned indexes have no significant advantage against tra-
ditional indexes for range queries, where most of the time is spent
in scanning the sorted pairs in leaf nodes.

(𝑖𝑖𝑖) Learned indexes have no advantage on string keys, because
it is rather hard to model and predict complicated string keys.

(𝑖𝑣) Learned indexes have no advantage on bulk loading, which
need to iterate many times per node to determine the structure.

(𝑣) Non-linear models often achieve higher prediction accuracy
than linear models, with which learned indexes can reduce position
searches and gain lower lookup latency. However, non-linear mod-
els take more training overhead and slow down the write operations
during structural modifications.

(𝑣𝑖) Indexes often use additional structures (e.g., ART adopts
hash tables in some nodes) to reduce insert/lookup latency, and
thus involve large index sizes. However, learned indexes like XIn-
dex and FINEdex gain both large index size and high insert/lookup
latency, because they use extra space (e.g., pair-level buffers) to sup-
port concurrent operations, which may slow down insert/lookup
operations as the search involves both the index and buffers.

(𝑣𝑖𝑖) The micro-architectural metrics like retiring (instruction
count), bad speculation (branch-instruction misprediction), fron-
tend bound (instruction fetching/encoding) and DRAM bound
(cache miss) can reveal the read/write performances of learned
indexes (e.g., reducing branch-instruction misprediction by search-
ing only at the leaf nodes).

(𝑖𝑥) Learned indexes cannot outperform traditional indexes for
concurrent lookups/writes, which need to (𝑖) search both the index
and delta buffers and (𝑖𝑖) retrain models during structural modifi-
cation. However, learned indexes and traditional indexes achieve
similar concurrency performance for range queries, which could
incur thread collisions and are hard to optimize. For non-concurrent
scenarios, DPGM has better performance for write-only workloads;
LIPP is a better choice for workloads without range queries; ALEX
has better performance for hybrid insert/lookup/range workloads.
(3) A Unified Testbed. We provide a testbed with many reusable
components (e.g., workload generation, hyper-parameter tuning,
performance evaluation), which can facilitate researchers to design
and test new learned index structures with lower overhead on
design, evaluation and implementation.

2 LEARNED INDEXES
In this section, we first give the definition of learned indexes. Next
we describe the key factors in designing a learned index (Table 1).
Note we focus on one-dimensional in-memory learned indexes [1,
7, 9, 11–13, 16, 18, 24, 40, 41, 43, 46, 47, 49, 50, 53, 58].

2.1 Learned Indexes
A learned index usually adopts a hierarchical structure, where all
the original data (key-position pairs) are maintained in leaf nodes.

Table 1: Technical differences of evaluated indexes. The thick line separates immutable (top) and mutable indexes (down).

Le
ar
ne
d

Index Insert Lookup Concurrency Bulk LoadingInsert Strategy Structural Modification Data Fitting Model Position Search
RMI [18] No No Simple neural network At leaf nodes No Top-down

PLEX [41] No No Non-linear model [4]
Linear interpolation At all nodes No Greedy split

Bottom-up

PGM [11] No No Linear model At all nodes No Greedy split
Bottom-up

DPGM
(Dynamic PGM [11]) Delta-buffer Buffer merge [35] Linear model At all nodes No Greedy split

Bottom-up

XIndex [43] Delta-buffer Buffer merge
Error-based node split

RMI
Piecewise linear regression At all nodes Temporary buffer Even split

Bottom-up

FINEdex [24] Delta-buffer Fullness-based
buffer train&merge Piecewise linear regression At all nodes Pair-level buffer

Buffer train&merge
Greedy split
Bottom-up

SIndex [46] Delta-buffer Buffer merge (Piecewise) linear regression At all nodes Temporary buffer Greedy split
Bottom-up

ALEX [7] In-place Fullness&cost based
node expand/split/rebuild Linear model At leaf nodes No Cost-based split

Top-down

MAB+tree [1] In-place Fullness-based node split Linear interpolation At all nodes No Greedy split
Bottom-up

LIPP [49] In-place Conflict&fullness based
subtree rebuild Non-linear model No No Conflict-based split

Top-down

Tr
ad
iti
on

al FAST [14] No No No At all nodes No Bottom-up

ART [20] In-place Fullness&prefix based
node expand/split No At most nodes No Top-down

B+tree [3] In-place Fullness-based node split No At all nodes No Bottom-up
Wormhole [52] In-place Fullness-based node split No At all nodes RCU [32] hash table Bottom-up

Each node in the hierarchy contains a machine learning model that
predicts the position of a key. Note, for simplicity, we assume there
is no duplicated key in the original data and will explain how to
solve the issue in Section 2.2.2.

Definition 2.1 (Learned Index). Let 𝐷 = {(𝑘0, 𝑝0), (𝑘1, 𝑝1), · · · }
be a sorted list of key-position pairs, where 𝑘𝑖 denotes a key and 𝑝𝑖
is the position value of 𝑘𝑖 . Let 𝐾 denote the set of keys and 𝑃 denote
the set of positions in 𝐷 . Let 𝐻 : 𝐾 → 𝑃 denote a mapping from 𝐾

to 𝑃 , where for a key 𝑘 , 𝐻 (𝑘) is the first position in 𝐷 whose key
is not smaller than 𝑘 . A learned index 𝐼 adopts a machine learning
model 𝐹 to fit the mapping 𝐻 , and uses position search to correct
the fitting error |𝐹 (𝑘) − 𝐻 (𝑘) |.

Similar to traditional indexes, the learned index 𝐼 also requires
to resolve the following key factors:

(1) lookup (𝑘): It uses the learned model 𝑓 to identify the position
of 𝑘 . For each internal node from the root, it uses the model 𝑓 to
predict the child node 𝑘 belongs to. For the leaf node, it uses the
model 𝑓 to predict the key position. Note that if the predicted
position is incorrect, it needs to re-search the position, e.g., using
the binary search algorithms as the keys are sorted (see Section 2.2).

(2) range (𝑘𝑙𝑒 𝑓 𝑡 , 𝑘𝑟𝑖𝑔ℎ𝑡): It first obtains the position of 𝑘𝑙𝑒 𝑓 𝑡 via
𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘𝑙𝑒 𝑓 𝑡). Note if 𝑘𝑙𝑒 𝑓 𝑡 is not within 𝐷 , it finds the first po-
sition whose key is larger than 𝑘𝑙𝑒 𝑓 𝑡 . From the found position, it
sequentially scans the leaf nodes until the key of the scanned pair
is larger than 𝑘𝑟𝑖𝑔ℎ𝑡 .

(3) insert (𝑘𝑖 , 𝑝𝑖) : It first obtains the leaf node that 𝑘𝑖 belongs to.
Then it inserts the key-position pair into the node. If the node is full,
it needs to split the node and retrains the model (see Section 2.3).

(4) delete (𝑘𝑖 , 𝑝𝑖) : It first obtains the position of 𝑘𝑖 via 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘𝑖).
Then if (𝑘𝑖 , 𝑝𝑖) exists, it removes (𝑘𝑖 , 𝑝𝑖) from 𝐷 . Note that it may
need to merge the nodes and retrain the model (see Section 2.4).

(5) concurrency: The concurrent operations on the index (e.g.,
insert, delete) may have conflicts, and it aims to process them in
parallel while keeping transaction correctness (see Section 2.5).

(6) bulk loading: It builds the index for a batch of key-position
pairs by utilizing the key distributions in the batch (see Section 2.6).

2.2 Lookup Design
Most of learned indexes use a hierarchical structure, where each
node adopts a machine learning model to fit the key-to-position
mapping (data fitting model). As shown in Figure 2 (a), in the lookup
phase, the model of a leaf node predicts the position of the query
key and the model of an internal node predicts its child node that
contains the query key. Note that the complexity of the prediction
is 𝑂 (1), which is better than binary search in a node. Next, if there
exists an error in the predicted position, position search is used to
re-search the key position.
2.2.1 Data FittingModel. It aims to fit the key-to-positionmapping.
Existing models can be broadly categorized into linear models [1,
7, 11, 24, 41, 43, 46] and non-linear models [18, 41, 43, 49]. The
former is lightweight and most widely adopted, while the latter
aims to achieve high prediction accuracy for a large node with
many key-position pairs (which can reduce the index height).

(1) Linear Model. Most learned indexes adopt a linear model in
each node, assuming linear relations between the keys and positions
for leaf nodes (children IDs for internal nodes). There are two main
types of linear models, i.e., the linear interpolation model and linear
regression model. The linear interpolation model [1, 7, 41] extracts
several pairs (e.g., the two endpoint pairs in a node and one median
pair in MAB+tree [1]) and computes a piecewise linear model (e.g.,
a linear equation for every two adjacent pairs). The linear regression
model [7, 24, 46] computes the minimal sum of squared differences
of all the pairs in the node by adjusting the slope and intercept
parameters (e.g., 𝑦 = 0.5𝑥 − 0.5 for leaf node in Figure 2 (a)).

(2) Non-linear Model. There are two types of non-linear models,
polynomial fitting models and neural network models. The former
extends the linear regression model to polynomial models [49].
LIPP [49] extends the linear function as 𝐹 (𝑥) = 𝑘 ·𝐺 (𝑥) + 𝑏, where
𝑘 is the slope, 𝑏 is the intercept and 𝐺 (𝑥) is any monotonically in-
creasing function that helps to learn more complex key-to-position

mappings. The latter adopts neural-network models as the data
fitting models, e.g., RMI [18], which are trained by gradient descent
to minimize the prediction error.

(3) Hybrid Model. Some works adopt both linear and non-linear
models in the learned indexes. For example, XIndex [43] adopts a
two-layer hierarchical structure, where the first-layer uses an RMI
model (as the first layer contains many pairs) and the second-layer
nodes use piecewise linear models.
Linear vs Non-linear. First, non-linear models often achieve better
prediction accuracy than linear models. However, the training and
prediction of non-linear models often take more time. Second, non-
linear models can support a larger number of keys than linear
models, and thus each node can contain more keys and the tree
depth can be smaller.
2.2.2 Position Search. Given a key, suppose its correct position is
𝑝 . If a model predicts an incorrect position 𝑝′, we need to re-search
the true position 𝑝 based on 𝑝′. There are three cases. (𝑖) All model
predictions are correct and it does not need to conduct re-search
(e.g., LIPP [49]). (𝑖𝑖) The predictions of internal nodes are correct
and the prediction of leaf nodes may be incorrect. Thus it only
searches leaf nodes (e.g., RMI [18], ALEX [7]). (𝑖𝑖𝑖) The prediction
of both leaf nodes and internal nodes may be incorrect. It needs to
search both internal nodes and leaf nodes [1, 11, 24, 24, 41, 43, 46].
Position SearchMethods. There are two steps in a position search.
First, it needs to determine the search range. Given the sorted key-
position pairs 𝐷 [0 : 𝑁] and query key 𝑘 , if the key of the predicted
pair 𝐷 [𝑝′] is larger than 𝑘 , the search range is 𝐷 [0 : 𝑝′]; otherwise,
the search range is 𝐷 [𝑝′ + 1 : 𝑁], where 𝑁 is the number of pairs
in 𝐷 . Second, with the search range, its chooses proper search
approaches. There are two types of methods. (𝑖) Linear Search.
If the error is relatively small, a linear search can perform well,
since it can sequentially scan the pairs from the predicted position
and quickly find the accurate position. (𝑖𝑖) Binary Search. If the
error is large, it can use a binary search to find the key. Moreover,
other variants of binary search, e.g., exponential search (searching
positions of 1, 2, 4, · · ·) and interpolation search (computing the
probe position using interpolation on the two endpoints), are used
to accelerate the binary search for some specific key distributions
(e.g., interpolation search is better for uniform key distribution).

2.2.3 Supporting RangeQuery. Given a range query [𝑘𝑙𝑒 𝑓 𝑡 , 𝑘𝑟𝑖𝑔ℎ𝑡],
it first identifies the first key that is not smaller than 𝑘𝑙𝑒 𝑓 𝑡 , and then
scans the sorted pairs until reaching the key larger than 𝑘𝑟𝑖𝑔ℎ𝑡 .

2.2.4 Supporting Duplicated Key. The difference between dupli-
cated key and distinct key is that there may be multiple positions for
a duplicated key. As a model predicts one position for each key, it re-
quires to re-search positions even if the predicted position is correct,
as it requires to find other positions for the key [1, 7, 11, 18, 41].

2.3 Insert Design
Given an insert pair (𝑘, 𝑝), the learned index first finds the position
of 𝑘 , and then inserts the pair into the corresponding leaf node. If
the number of pairs in the leaf node exceeds a threshold or the data
fitting model is of low quality, the index has to perform structural
modifications (e.g., splitting the node into two nodes and retrain
the models) to keep high performance. Besides, since the structural

modifications often take long time, learned indexes develop effective
insert strategies to reduce the possibility of structural modification
and model retraining.
2.3.1 Insert Strategies. There are two insert strategies. (𝑖) The
delta-buffer insert strategy keeps delta buffers, inserts a new pair
into the buffers and periodically merges them into the existing index
structure (Figure 2 (b)). (𝑖𝑖) The in-place insert strategy preserves
some gaps in the leaf nodes and the new pairs can be directly
inserted into the gaps (Figure 2 (c)).

(1) Delta-buffer Insert Strategy. There are three buffering granu-
larities, including index-level, node-level, and pair-level. First, the
index-level method (e.g., DPGM [11]) shares one buffer for all the
insert operations. Second, the node-level method (e.g., XIndex [43],
SIndex [46]) maintains a delta buffer for each leaf node to cache
the inserted pairs. Third, the pair-level method (e.g., FINEdex [24])
has finer-grained delta buffers, and allocates a buffer for each key
in the leaf node. Compared with node-level buffer, pair-level buffer
achieves higher concurrency performance, but may incur extra
storage overhead.

(2) In-place Insert Strategy. To accommodate an insert, we can
reserve some gaps for each node (e.g., inserting one key occupies
two positions). For each insert, if there exists a gap in the target
position, the pair can be directly inserted; otherwise, there are two
strategies to resolve the conflict. First, ALEX [7] shifts the pairs
between the target position and the closest gap to make space for
the new pair. (Note that if the insert cost is too large, it may trigger
structural modification). Second, LIPP [49] creates a new node with
both the inserted pair and the existing pair in the target position,
and replaces the target position with a pointer to the new node.
2.3.2 Structural Modification. If a node cannot accommodate the
inserted pairs, it needs to update the index structure (e.g., splitting
the node). There are four cases to trigger the update. (𝑖) The fullness-
based method triggers the structural modification if the number of
pairs in the node or buffer exceeds a threshold. (𝑖𝑖) The error-based
method triggers the structural update if the model prediction error
exceeds a threshold. (𝑖𝑖𝑖) The cost-based method uses a cost model
to trigger the structural update, which estimates the cost value of an
index node based on both the lookup costs (position searches) and
insert costs (position searches and pair shifts). It updates the local
structures if the cost of a node exceeds a threshold. (𝑖𝑣) The conflict-
based method records the number of pairs that are mapped to the
same position, and triggers the structural update if the number of
conflict pairs in the subtree rooted at the node exceeds a threshold.

(1) Fullness-based StructuralModification. It can be further divided
into three classes. First, for the delta-buffer insert indexes [11, 24,
43, 46], if the buffer has no space left, they should merge the buffer
with the index node and retrain the model. Second, if the number
of pairs in the node exceeds a threshold, it will split the node. For
instance, MAB+tree [1] splits the target index node into two nodes,
which become the child nodes of the target node’s parent. Third,
if the number of pairs in the subtree rooted at the node exceeds a
threshold, LIPP will adopt the bulk loading algorithm to rebuild the
subtree with all of pairs under this node (see Section 2.6).

(2) Error-based Structural Modification. If the prediction error of
a node exceeds a threshold, XIndex will split the node. The keys in
the node are evenly divided into two child nodes, and each child
node trains a piecewise linear model with linear regression.

loading, learned indexes train the models and split the key-position
pairs into nodes according to the model prediction, which takes
much time. Second, learned indexes using greedy split have lower
bulk loading time than others. That is because greedy split has
the smallest time complexity. On contrary, ALEX using cost-based
split has the longest bulk loading time, since it iterates many times
per node to determine the index structure. Third, recall the lookup
evaluation results (see Section 4.2.1), learned indexes that do not
using greedy split have higher lookup throughput than others.
Because greedy split is relatively simple. Instead, more effective
index structure will be built if it considers the cost and the pair
conflict for the nodes.
Block-wise Loading. Figure 18 shows the insert and lookup la-
tency during inserting pairs block by block. The loaded ratio is the
loaded pair number divided by the dataset size. We have three ob-
servations. (𝑖) The insert/lookup latency of most indexes increases
slowly during block-wise loading, because their structural modifica-
tion methods can adapt to the increasing data size (e.g., maintaining
low prediction error and index height). (𝑖𝑖) As the loaded ratio in-
creases, the insert latency of ALEX increases most greatly in Face
and Osmc datasets. Because ALEX splits the nodes and increases
the index height, such that maintaining accurate model predictions
and enough gaps for in-place inserts. (𝑖𝑖𝑖) DPGM’s lookup latency
varies greatly during block-wise loading. Because DPGM adopts the
logarithmic merge method, and its PGM components can greatly
change during inserts.

Finding 6. Learned indexes do not outperform traditional indexes
for bulk loading time. Among learned indexes, those using the
greedy split method gain faster bulk loadings, but at the cost of
worse lookup performances. The insert/lookup latency of most
indexes increases slowly during block-wise loading, while DPGM’s
lookup latency could significantly changes.

4.7 String Index Evaluation
Figure 19 shows the throughput of indexes supporting strings keys
on Url workloads. We observe that learned indexes do not out-
perform traditional indexes in all cases. There are two reasons. (𝑖)
Since the string keys are much longer than the integer keys, the
model prediction and position search require more overhead. (𝑖𝑖)
SIndex deals with the string key as the high-dimensional integers,
and adopts multi-variant linear models to fit the key-to-position
mapping. However, the high-dimensional data has more compli-
cated distribution, and the prediction error is relatively large. In
contrast, Wormhole adopts a trie to deal with the keys with variable
lengths, and adopts hash table to accelerate the search of the keys,
which accelerate both the lookup and insert throughput.

Finding 7. Learned indexes cannot outperform traditional indexes
on string keys, because the string keys are of long length and the
distribution is complicated to predict.

4.8 Learned Index Selection Guidance
Based on the experimental results, we summarize how to select
learned indexes (Figure 20). First, learned indexes can replace tra-
ditional indexes for simple datasets (e.g., relatively smooth CDF

Thread NumberWorkload

DPGM LIPP

Trad

Key Type
Integer String

Single

MultiRead HeavyWrite Only

Lookup (+Insert)

ALEX

Range+Lookup/Insert

Trad

Range Only

OperationInsert Pattern

Trad

UniformSkewed

TradDataset
Write Heavy

Trad

Complicated

Simple

Figure 20: Learned index selection (‘Trad’: traditional).

without abrupt shifts), uniform inserted pairs, and read-heavy work-
loads. However, learned indexes have no advantage against tradi-
tional indexes for complex datasets, skewed insert patterns, and
workloads with many range queries, heavy writes, concurrent oper-
ations, or string keys. Second, for learned indexes in single-thread
scenarios, we consider three cases. (𝑖) If there are only inserts,
DPGM [11] is the best choice, which efficiently supports inserts with
delta buffers. (𝑖𝑖) If there are both inserts and lookups, LIPP [49]
is the most suitable, which locates keys for inserts/lookups with-
out position searches. (𝑖𝑖𝑖) If there are inserts, lookups and range
queries, ALEX [7] is most suitable, which conducts minor positions
searches and uses a linked list of leaf nodes for range queries.

5 CONCLUSION AND FUTUREWORK
We have systematically reviewed existing learned indexes and eval-
uated them under the same evaluation framework. We have tested
three typical scenarios (static, dynamic, concurrency) with real
datasets. The results and findings can guide researchers and practi-
tioners in selecting appropriate learned indexes for their applica-
tions. We have also provided a unified testbed to help researchers
design new learned indexes that can reduce the overhead of design
and implementation.

Based on our findings, there are still some open problems and
research challenges. First, existing learned indexes struggle to per-
form well in different scenarios. For example, (𝑖) for static sce-
narios, learned indexes have similar or even worse range query
performance than traditional indexes; (𝑖𝑖) for dynamic scenarios,
learned indexes sometimes fail to outperform traditional indexes
in write-heavy workloads; (𝑖𝑖𝑖) for concurrency scenarios, most of
existing learned indexes adopt delta-buffer to store inserted pairs,
which slows down the lookups. Besides, the insert performance of
learned indexes drop greatly for highly skewed inserted data, while
traditional indexes achieve more stable performance. It requires
new index designs to solve above performance issues (e.g., design-
ing in-place insert learned index to efficiently support concurrent
lookups/inserts). Second, learned indexes lack practical features,
such as recovery from system failures and persistence [27, 28, 59].
Third, there is a need for guidelines and best practices for imple-
menting learned indexes in real databases (e.g., estimating index
benefits based on model retraining issues).

ACKNOWLEDGEMENTS
This paper was supported by NSF of China (61925205, 62232009,
62102215), Huawei, TAL education, and Beijing National Research
Center for Information Science and Technology (BNRist). Guoliang
Li is the corresponding author.

REFERENCES
[1] A. H. 0001 and T. Heinis. MADEX: Learning-augmented Algorithmic Index

Structures. In B. He, B. Reinwald, and Y. Wu, editors, AIDB@VLDB 2020, 2020.
[2] M. M. Andersen and P. Tözün. Micro-architectural analysis of a learned index.

In Exploiting Artificial Intelligence Techniques for Data Management, pages 1–12,
2022.

[3] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. In SIGMOD, SIGFIDET ’70, page 107–141, New York, NY, USA, 1970.
Association for Computing Machinery.

[4] A. Crotty. Hist-Tree : Those Who Ignore It Are Doomed to Learn. In 11th Annual
Conference on Innovative Data Systems Research (CIDR), 2021.

[5] Z. Dai and A. Shrivastava. Adaptive learned bloom filter (Ada-BF): Efficient
utilization of the classifier with application to real-time information filtering
on the web. In Advances in Neural Information Processing Systems, volume
2020-Decem, pages 1–11, 2020.

[6] A. Davitkova, E. Milchevski, and S. Michel. The ML-index: A multidimensional,
learned index for point, range, and nearest-neighbor queries. In EDBT, volume
2020-March, pages 407–410, 2020.

[7] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang, B. Chandramouli,
J. Gehrke, D. Kossmann, D. Lomet, and T. Kraska. ALEX: An Updatable Adaptive
Learned Index. In SIGMOD, pages 969–984, 2020.

[8] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska. Tsunami: A learned multi-
dimensional index for correlated data and skewed workloads. In Proceedings of
the VLDB Endowment, volume 14, pages 74–86, 2020.

[9] J. Dittrich, J. Nix, and C. Schön. The next 50 Years in Database Indexing or: The
Case for Automatically Generated Index Structures. In VLDB, volume 15, pages
527–540, 2021.

[10] P. Ferragina, F. Lillo, and G. Vinciguerra. Why are learned indexes so effective?
ICML 2020, PartF16814:3104–3113, 2020.

[11] P. Ferragina and G. Vinciguerra. The PGM-index: A fully-dynamic compressed
learned index with provable worst-case bounds. In VLDB, volume 13, pages
1162–1175, 2020.

[12] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska. Fiting-tree:
A data-aware index structure. In SIGMOD, SIGMOD ’19, page 1189–1206, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] A. Hadian and T. Heinis. Interpolation-friendly B-trees: Bridging the gap between
algorithmic and learned indexes. In EDBT, volume 2019-March, pages 710–713,
2019.

[14] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, and P. Dubey. Fast: Fast architecture sensitive tree search on modern
cpus and gpus. In SIGMOD, SIGMOD ’10, page 339–350, New York, NY, USA,
2010. Association for Computing Machinery.

[15] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neu-
mann. SOSD: A Benchmark for Learned Indexes. In MLForSystems@NeurIPS
2019, 2019.

[16] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neu-
mann. Radixspline: A single-pass learned index. In Exploiting Artificial Intel-
ligence Techniques for Data Management, aiDM ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[17] E. M. Kornaropoulos, S. Ren, and R. Tamassia. The price of tailoring the index to
your data: Poisoning attacks on learned index structures. In SIGMOD, SIGMOD
’22, page 1331–1344, New York, NY, USA, 2022. Association for Computing
Machinery.

[18] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned
index structures. In SIGMOD, pages 489–504, 2018.

[19] H. Lan, Z. Bao, and Y. Peng. A survey on advancing the DBMS query optimizer:
Cardinality estimation, cost model, and plan enumeration. Data Sci. Eng., 6(1):86–
101, 2021.

[20] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful indexing
for main-memory databases. In Proceedings - International Conference on Data
Engineering, pages 38–49. IEEE, 2013.

[21] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The art of practical synchro-
nization. In Data Management on New Hardware, pages 1–8, 2016.

[22] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of
the news cycle. In SIGKDD, KDD ’09, page 497–506, New York, NY, USA, 2009.
Association for Computing Machinery.

[23] G. Li, X. Zhou, and L. Cao. AI meets database: AI4DB and DB4AI. In SIGMOD,
pages 2859–2866. ACM, 2021.

[24] P. Li, Y. Hua, J. Jia, and P. Zuo. FINEdex: A Fine-grained Learned Index Scheme for
Scalable and Concurrent Memory Systems. In VLDB, volume 15, pages 321–334,
2021.

[25] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. LISA: A Learned Index Structure for
Spatial Data. In SIGMOD, pages 2119–2133, 2020.

[26] Q. Liu and L. Zheng. Stable Learned Bloom Filters for Data Streams. In Proceedings
of the VLDB Endowment, volume 13, pages 2355–2367, 2020.

[27] B. Lu, J. Ding, E. Lo, U. F. Minhas, and T. Wang. APEX: A High-Performance
Learned Index on Persistent Memory. In VLDB, volume 15, pages 597–610, 2021.

[28] C. Ma, X. Yu, Y. Li, X. Meng, and A. Maoliniyazi. Film: A fully learned index for
larger-than-memory databases. VLDB, 16(3):561–573, 2022.

[29] M. Maltry and J. Dittrich. A critical analysis of recursive model indexes. In
Proceedings of the VLDB Endowment, volume 15, pages 1079–1091, 2022.

[30] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper, T. Neumann,
and T. Kraska. Benchmarking learned indexes. Proc. VLDB Endow., 14(1):1–13,
sep 2020.

[31] R. Marcus, E. Zhang, and T. Kraska. CDFShop: Exploring and Optimizing Learned
Index Structures. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 2789–2792, 2020.

[32] P. E. McKenney and J. D. Slingwine. Read-copy update: Using execution history to
solve concurrency problems. In Parallel and Distributed Computing and Systems,
volume 509518, 1998.

[33] M. Mitzenmacher. A model for learned bloom filters, and optimizing by sand-
wiching. In NIPS, volume 2018-Decem, pages 464–473, 2018.

[34] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning Multi-dimensional
Indexes. In SIGMOD, pages 985–1000, 2020.

[35] P. O. Neil, E. Cheng, D. Gawlick, and E. O. Neil. The log-structured merge-tree
(lsm-tree). Acta Informatica, 33(4):351–385, 1996.

[36] J. Qi, G. Liu, C. S. Jensen, and L. Kulik. Effectively learning spatial indices. In
VLDB, volume 13, pages 2341–2354, 2020.

[37] J. W. Rae, S. Bartunov, and T. P. Lillicrap. Meta-learning neural bloom filters. In
ICML 2019, volume 2019-June, pages 9188–9197, 2019.

[38] I. Sabek, K. Vaidya, D. Horn TUM, A. Kipf, M. Mitzenmacher, T. Kraska, D. Horn,
and T. Kraska Can. Learned Models Replace Hash Functions. 16(1):532–545,
2022.

[39] U. Sirin, A. Yasin, and A. Ailamaki. A methodology for oltp micro-architectural
analysis. In Proceedings of the 13th International Workshop on Data Management
on New Hardware, pages 1–10, 2017.

[40] B. Spector, A. Kipf, K. Vaidya, C. Wang, U. F. Minhas, and T. Kraska. Bounding
the Last Mile: Efficient Learned String Indexing. In AIDB@VLDB 2021, 2021.

[41] M. Stoian, A. Kipf, R. Marcus, and T. Kraska. Towards Practical Learned Indexing.
In AIDB@VLDB 2021, 2021.

[42] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang. Learned cardinality estimation: A
design space exploration and A comparative evaluation. Proc. VLDB Endow.,
15(1):85–97, 2021.

[43] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and H. Chen. Xindex: A
scalable learned index for multicore data storage. In PPoPP, pages 308–320, 2020.

[44] K. Vaidya, E. Knorr, M. Mitzenmacher, and T. Kraska. Partitioned learned bloom
filters. In International Conference on Learning Representations, 2021.

[45] J. Wang, C. Chai, J. Liu, and G. Li. FACE: A normalizing flow based cardinality
estimator. Proc. VLDB Endow., 15(1):72–84, 2021.

[46] Y. Wang, C. Tang, Z. Wang, and H. Chen. SIndex: A scalable learned index for
string keys. In APSys 2020, pages 17–24, 2020.

[47] Z. Wang, H. Chen, Y. Wang, C. Tang, and H. Wang. The Concurrent Learned
Indexes for Multicore Data Storage. ACM Transactions on Storage, 18(1), 2022.

[48] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang. Are updatable learned
indexes ready? Proc. VLDB Endow., 15(11):3004–3017, jul 2022.

[49] J. Wu, Y. Zhang, S. Chen, J. Wang, Y. Chen, and C. Xing. Updatable learned index
with precise positions. In VLDB, volume 14, page 1276, 2021.

[50] S. Wu, Y. Cui, J. Yu, X. Sun, T.-W. Kuo, and C. J. Xue. Nfl: Robust learned index
via distribution transformation. Proc. VLDB Endow., 15(10):2188–2200, jun 2022.

[51] S. Wu, Y. Li, H. Zhu, J. Zhao, and G. Chen. Dynamic index construction with
deep reinforcement learning. Data Sci. Eng., 7(2):87–101, 2022.

[52] X. Wu, F. Ni, and S. Jiang. Wormhole: A fast ordered index for in-memory data
management. In Proceedings of the 14th EuroSys Conference 2019, 2019.

[53] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. Designing succinct secondary
indexing mechanism by exploiting column correlations. SIGMOD, pages 1223–
1240, 2019.

[54] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas, P. Å. Larson,
D. Kossmann, and R. Acharya. Qd-tree: Learning Data Layouts for Big Data
Analytics. In SIGMOD, number 2, pages 193–208, 2020.

[55] A. Yasin. A top-downmethod for performance analysis and counters architecture.
In 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 35–44. IEEE, 2014.

[56] X. Yu, C. Chai, G. Li, and J. Liu. Cost-based or learning-based? A hybrid query
optimizer for query plan selection. Proc. VLDB Endow., 15(13):3924–3936, 2022.

[57] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-lstm for
join order selection. In ICDE, pages 1297–1308. IEEE, 2020.

[58] J. Zhang and Y. Gao. Carmi: A cache-aware learned index with a cost-based
construction algorithm. Proc. VLDB Endow., 15(11):2679–2691, jul 2022.

[59] Z. Zhang, Z. Chu, P. Jin, Y. Luo, X. Xie, S. Wan, Y. Luo, X. Wu, P. Zou, C. Zheng,
et al. Plin: a persistent learned index for non-volatile memory with high perfor-
mance and instant recovery. VLDB, 16(2):243–255, 2022.

[60] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A
survey. IEEE Trans. Knowl. Data Eng., 34(3):1096–1116, 2022.

	Abstract
	1 Introduction
	1.1 Our Motivation
	1.2 Our Contribution

	2 Learned indexes
	2.1 Learned Indexes
	2.2 Lookup Design
	2.3 Insert Design
	2.4 Delete Design
	2.5 Concurrency Design
	2.6 Bulk Loading Design

	3 A Testbed for Learned Indexes
	3.1 Testbed Architecture
	3.2 Workload Generator

	4 Experiments
	4.1 Experimental Setup
	4.2 Static Scenario Evaluation
	4.3 Dynamic Scenario Evaluation
	4.4 Hybrid Lookup/Range/Insert Evaluation
	4.5 Concurrency Scenario Evaluation
	4.6 Bulk Loading Evaluation
	4.7 String Index Evaluation
	4.8 Learned Index Selection Guidance

	5 Conclusion and Future Work
	References

