
94

Grep: A Graph Learning Based Database Partitioning System

XUANHE ZHOU, Tsinghua University, China
GUOLIANG LI, Tsinghua University, China (corresponding author)
JIANHUA FENG, Tsinghua University, China
LUYANG LIU, Huawei, China
WEI GUO, Huawei, China

Database partitioning is a fundamental but challenging task in distributed databases, which selects specific
columns as a partitioning key for each table and uses the partitioning key to allocate the table data into
different compute nodes in order to maximize the performance. However, this problem is NP-hard and existing
distributed databases require users to manually specify the partitioning keys, which may cause potential
performance degradation. Although reinforcement learning based methods have been proposed, they have
several limitations. First, they do not capture the complex data distributions and query access patterns, and
thus involve high computation cost across different compute nodes to answer a query. Second, they involve
an expensive step to repetitively partition the data into different compute nodes in order to train a learned
key-selection model, which is a waste of time and resources. To address these limitations, we propose a
practical learned database partitioning system Grep. We first adopt a graph model to encode data and query
features, where vertices are columns, edges are query relations, and the weights of columns are computed
based on the localized graph structures (e.g., data diversity, joined columns). We then utilize graph neural
networks to embed the partitioning factors into embedding vectors in order to capture the data and query
correlations. Next we propose a key-selection model to select appropriate partitioning keys based on the graph
model. Finally, we propose an evaluation model to estimate the partitioning performance without actually
partitioning the database. We have implemented Grep in a commercial distributed database, and experiments
show the effectiveness of our system (e.g., 68% higher throughput for 30K queries in a real banking scenario).

R1.O5 The code is available at https://github.com/TsinghuaDatabaseGroup/AI4DBCode/DatabasePartition.

CCS Concepts: • Information systems→ Database management system engines.

Additional Key Words and Phrases: database partitioning, graph neural networks

ACM Reference Format:
Xuanhe Zhou, Guoliang Li, Jianhua Feng, Luyang Liu, and Wei Guo. 2023. Grep: A Graph Learning Based
Database Partitioning System. Proc. ACM Manag. Data 1, 1, Article 94 (May 2023), 24 pages. https://doi.org/10.
1145/3588948
1 INTRODUCTION
Nowadays, with the increase of data volume, many database customers are migrating their data
from centralized databases to distributed databases (e.g., Snowflake [4], Azure Data Warehouse [2],
Amazon Redshift [1]) to efficiently process massive data. For example, in a real banking scenario,
there are over 20K tables and the biggest table has more than 50 billion tuples. We partition these
tables into a distributed database with 60 nodes. The average running time of processing 30K

Authors’ addresses: Xuanhe Zhou, Tsinghua University, China, zhouxuan19@mails.tsinghua.edu.cn; Guoliang Li, Tsinghua
University, China (corresponding author), liguoliang@tsinghua.edu.cn; Jianhua Feng, Tsinghua University, China, fengjh@
tsinghua.edu.cn; Luyang Liu, Huawei, China, liuluyang2@huawei.com; Wei Guo, Huawei, China, guowei@huawei.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/5-ART94 $15.00
https://doi.org/10.1145/3588948

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

https://doi.org/10.1145/3588948
https://doi.org/10.1145/3588948
https://doi.org/10.1145/3588948

SELECT * FROM customer c
JOIN orders o ON c.c_custkey = o.o_custkey

JOIN lineitem l ON o.o_orderkey = l.l_orderkey AND o_orderdate = l.l_shipdate

WHERE l.l_quantity>10;

Distributed Database

Table

197

69

161

o_orderkey

c_custkey

l_suppkey

orders

customer

lineitem

PartitionKey

Redistribute/Broadcast ✗

2
1

(a) Critical Problems In Database Partitioning

(b) Query Frequencies

(c) Performance Comparison

17.2%
14.1%

32.5%

Master
metadata Node 0

orders

lineitem

customer

Node 1

orders

lineitem

customer

2

1

Potential Data Skew ✗

Fig. 1. Example Database Partitioning on TPC-H Schema.

queries is optimized to 0.7 second from 40 seconds. However, existing distributed databases rely on
users to specify partitioning keys in order to allocate the data to multiple compute nodes, which
is tedious and may not meet the performance objectives (e.g., fully utilizing CPU resources and
gaining high throughput) [10, 20].
It calls for an automatic database partitioning method, which, given a collection of tables, first

selects a single column (or multiple columns) as a partitioning key for each table, and then applies
a given function (e.g., a modified version of consistent hash) on the values of this partitioning key,
and distributes the tuples in each table by the partitioning values into different nodes.
However, the database partitioning problem is NP-hard (see Section 2.1). It requires to design

effective algorithms to select appropriate partitioning keys. Existing methods [5, 10] rely on single
primary keys for partitioning tables (e.g., o_orderkey for orders), which could be less effective in
some scenarios (e.g., over 36% TPC-H queries and almost all the JOB queries join on non-foreign-key
relations). As shown in Figure 1, primary-key partitioning can cause expensive tuple redistribution
during the composite join between lineitem and orders. In contrast, selecting the composite join
columns as partitioning keys can significantly improve the performance (e.g., 14.1%-32.5% latency
reduction with different data sizes). Meanwhile, improper partitioning keys can result in imbalanced
data distribution (lineitem table), which may cause data and query overloading on a few nodes,
negatively affecting the throughput. Therefore, it is vital to design appropriate partitioning strategies
based on both the data distribution (e.g., tuple values) and query access patterns (e.g., the costs of

joining different columns) so as to optimize the performance.
Traditional heuristic methods [15, 44, 47, 59] do not consider the data distributions of different

columns and correlations between data and query distributions, and cannot get good partitioning
results. Deep reinforcement learning (DRL) based methods [21, 22] have two limitations. First,
they neglect important data features (e.g., distinct values in columns) or query features (e.g., range
queries, multiple joins). Second, in order to train a learned model, they require to evaluate the
performance of many strategies by really partitioning the data. However, it is costly to really
partition the databases and then evaluate the performance, e.g., taking 10 hours to distribute 1PB
data to a two-node cluster if there is no obvious hardware bottleneck. Although [22] adopts a cost
model to evaluate the performance, this cost model takes single queries as input and cannot encode
the data and query distribution under selected partition keys and causes unreliable estimation. For
example, the same partitioning keys may cause various performance with different node numbers.
Challenges. There are three challenges to design an effective database partitioning method. First,
how to efficiently capture the partitioning factors (C1). There are various partitioning factors (e.g.,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

columns, tuple values, query features) and they exhibit intricate correlations, while existing meth-
ods [15, 21, 22, 59] tend to only encode basic features (e.g., query template frequencies) and cause
the loss of crucial information. Second, how to effectively select partitioning keys to optimize the

performance (C2). We need to generate near-optimal partitioning keys on numerous data columns,
which is an NP-hard problem. Third, how to evaluate the partitioning performance (C3). It is essential
to evaluate the quality of chosen partitioning keys on sample data before actually partitioning the
tables, which offers feedback for the partitioning-key selection model and substantially reduces
partitioning overhead (e.g., preventing excessive resource consumption).
Our Proposed Methods. To address these challenges, we propose a database partitioning system
Grep using graph neural networks. First, Grep builds a graph model to encode data and query
features, where vertices are columns and edges are join relations. Grep prioritizes promising
columns in the graph model with an attention mechanism (for C1). Second, as partitioning features
scatter across the graph model, Grep utilizes a graph neural network to embed the global graph
structures for each vertex in the graph, which approximate the partitioning benefits of different
column combinations. We utilize a classifier to select partitioning keys (single or multiple columns)
based on the beneficial column combinations (for C2). Third, to estimate the performance without
actually partitioning the database, we propose an evaluation model using graph representation
learning, which, given selected keys, generates a sample graph based on these keys and sampled
tuples, and trains a graph-level GNN model to map the performance on samples to the performance
on the whole dataset. Our evaluation model provides relatively accurate evaluation while taking
much less time than actual partitioning (for C3).
Contributions: We make the following contributions.
(1) We propose a database partitioning system using graph neural networks (GNNs). To our best
knowledge, this is the first work that uses GNNs to recommend partitioning keys (see Section 2).
(2) We propose a graph-based model to capture data and query features. And we utilize the attention
mechanism to enhance partitioning by prioritizing these “important” columns (see Section 3).
(3) We propose a key-selection model that encodes the partitioning benefits for columns together
with their joined columns, and accordingly select appropriate partitioning keys (see Section 4).
(4) We propose a deep evaluation model to estimate the partitioning performance without actual
partitioning (see Section 5).
(5) We have implemented Grep into a commercial database. Experimental results on real customers
(e.g., workloads in banking scenario) show that Grep can find high-performance partitioning keys
and outperforms the state-of-the-art approaches (see Section 6).
2 PRELIMINARIES
2.1 Problem Formulation

Database Partitioning. When centralized database customers find the performance cannot meet
their requirements due to a large volume of data, they will partition the database and migrate
their data to a distributed database. Since most distributed databases mainly support horizontal
partitioning, we only consider horizontal partitioning in line with existing studies [7, 11, 21]. R3.O3

Definition 1 (Database Partitioning). Given tables {T1,T2, ...,Tm} and a partitioning function

F , for each table Ti R3.O2with columns {c(i)1 , c
(i)
2 , ..., c

(i)
n }, database partitioning selects some columns as

the partitioning key of Ti and allocates the tuples in Ti into different nodes using F , such that the

performance of a given set of SQL queries (e.g., total latency, average throughput) is optimal.

Example 1. Considering an example of database partitioning on two compute nodes P0 and P1. We

use l_orderkey as the partitioning key of lineitem, and

R2.Minor
one tuple is allocated into P0 and three tuples

are allocated into P1. Instead, if we partition lineitem with l_suppkey, two tuples are allocated into P0

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

and two tuples are allocated into P1 and the data is well-balanced. The partitioning key of supplier is
s_suppkey, and there are two remote joins between nodes P0 and P1. Instead, when we partition the

two tables by the joined columns, there is no remote join and we gain over 80% latency reduction.

In real-world scenarios, databases may have numerous columns (e.g., millions of columns in
a commercial database) and the problem gets hard for two reasons. First, the solution space is
large, and traditional heuristic methods may not find a good partitioning strategy. Second, some
partitioning keys may contain multiple columns. For example, suppose an Order table has 2 years of
data. Given a query requesting orders for a week, if we only use the column year as the partitioning
key, this query will access all the data; but if we use both the year and week as the composite
partitioning key, the query will only access a week of data.
Column Graph.We use a column graph to characterize the partitioning factors, where vertices
are columns and there is an edge between two columns if they are joined by some queries.
Complexity Analysis. With the column graph, we can prove that the database partitioning
problem is NP-hard. For simplicity, we consider a simplified case: (1) the partitioning key contains

a single column (no composite partitioning key with multiple columns); (2) the cost of remote joins

across different nodes is much more expensive than that of local joins within the same node.We assign
each edge with a weight, which is the remote join cost on the two columns for a given set of SQL
queries, in the case that the corresponding two tables are partitioned based on the two columns.
For any two unconnected vertices on the column graph, we add a virtual edge with a weight of 0,
because there is no query joining the two columns. Then the database partitioning problem aims to
find a maximum-weight k-clique from the graph (taking the columns in the clique as partitioning
keys) in order to minimize the remote join cost, which has been proven to be NP-hard [8]. Thus
the database partitioning problem is also NP-hard.

Theorem 1. The database partitioning problem is NP-hard.

Remark. (1) The single-column partitioning problem is a special case of the multi-column partition-
ing problem, and thus the latter is also NP-hard.R2.O1 (2) We use hashing partitioning functions, which
are most widely adopted in real scenarios [1–3]. (3) SQL queries are usually available in scenarios
like migrating data from one database to another, which is especially common for distributed
database clusters in both cloud and traditional business environments.

2.2 System Overview
To address the database partitioning problem by judiciously selecting partitioning keys, we propose
a graph-embedding based partitioning system (Grep). Figure 2 demonstrates the architecture of
Grep, which includes three main modules, i.e., Column2Graph, Partitioning Model, Evaluation Model.

2.2.1 PartitioningWorkflow. (1) Given a database, Grep first trains an Evaluation Model, which
predicts the performance of a partitioning strategy. (2) Grep builds the Column2Graph Model based
on data and query features. With the graph model, Grep trains a Partitioning Model, which is used
to select partitioning keys. (3) Grep uses the Evaluation Model to evaluate the selected keys and
gives feedback to the Column2Graph Model (updating the vertex weights) and Partitioning Model

(updating the GNN weights). (4) Grep repeats steps 2-3 until convergence and reports the selected
partitioning keys.

2.2.2 Column2Graph. Column2Graph collects and characterizes behaviors of queries on the
columns in the form of a graph model.
EdgeWeight. For any edge E(ci , c j), the edge weightW (ci , c j) denotes the cost of executing the join
predicate ci = c j . There are two main factors that affect join cost: (i) Query frequency: the number

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Queries

Tables

Column2Graph

Column
*UDSK

Vertex
Attention

Partitioning Model

Graph
Embedding

Partition-Key
Selection

Evaluation Model

Partition
Graph

Partition
Estimation

Column Graph

H’(P0)
<latexit sha1_base64="bmTij8SBnR5SC/77P+/h30UTxMw=">AAAC13icjVHLTsJAFD3UF+ILcemmEYy4IS2a6JLohiUm8jBASFsGbCht004NhBB3xq0/4Fb/yPgH+hfeGUuiEqPTtD1z7j1n5t5r+o4dck17TSgLi0vLK8nV1Nr6xuZWejtTC70osFjV8hwvaJhGyBzbZVVuc4c1/IAZQ9NhdXNwLuL1GxaEtude8rHP2kOj79o92zI4UZ10psXZiJu9Sfkgn6t0tNzhtJPOagVNLnUe6DHIIl4VL/2CFrrwYCHCEAwuOGEHBkJ6mtChwSeujQlxASFbxhmmSJE2oixGGQaxA/r2adeMWZf2wjOUaotOcegNSKlinzQe5QWExWmqjEfSWbC/eU+kp7jbmP5m7DUkluOa2L90s8z/6kQtHD2cyhpsqsmXjKjOil0i2RVxc/VLVZwcfOIE7lI8IGxJ5azPqtSEsnbRW0PG32SmYMXeinMjvItb0oD1n+OcB7ViQT8qFC+Os6WzeNRJ7GIPeZrnCUooo4IqeY/wiCc8K1fKrXKn3H+mKolYs4NvS3n4AFgglaw=</latexit>

H’(P1)
<latexit sha1_base64="PEwVqTUszOSut1LhaW8ve/hUYW4=">AAAC13icjVHLTsJAFD3UF+ILcemmEYy4IS2a6JLohiUm8jBASFsGbCht004NhBB3xq0/4Fb/yPgH+hfeGUuiEqPTtD1z7j1n5t5r+o4dck17TSgLi0vLK8nV1Nr6xuZWejtTC70osFjV8hwvaJhGyBzbZVVuc4c1/IAZQ9NhdXNwLuL1GxaEtude8rHP2kOj79o92zI4UZ10psXZiJu9Sfkgn6t09NzhtJPOagVNLnUe6DHIIl4VL/2CFrrwYCHCEAwuOGEHBkJ6mtChwSeujQlxASFbxhmmSJE2oixGGQaxA/r2adeMWZf2wjOUaotOcegNSKlinzQe5QWExWmqjEfSWbC/eU+kp7jbmP5m7DUkluOa2L90s8z/6kQtHD2cyhpsqsmXjKjOil0i2RVxc/VLVZwcfOIE7lI8IGxJ5azPqtSEsnbRW0PG32SmYMXeinMjvItb0oD1n+OcB7ViQT8qFC+Os6WzeNRJ7GIPeZrnCUooo4IqeY/wiCc8K1fKrXKn3H+mKolYs4NvS3n4AFqDla0=</latexit>

H’(P2)
<latexit sha1_base64="OTNo82+Nir2ZdQqGo8MK0VaNef0=">AAAC13icjVHLTsJAFD3UF+ILcemmEYy4IS2a6JLohiUm8jBASFsGbCht004NhBB3xq0/4Fb/yPgH+hfeGUuiEqPTtD1z7j1n5t5r+o4dck17TSgLi0vLK8nV1Nr6xuZWejtTC70osFjV8hwvaJhGyBzbZVVuc4c1/IAZQ9NhdXNwLuL1GxaEtude8rHP2kOj79o92zI4UZ10psXZiJu9Sfkgn6t0irnDaSed1QqaXOo80GOQRbwqXvoFLXThwUKEIRhccMIODIT0NKFDg09cGxPiAkK2jDNMkSJtRFmMMgxiB/Tt064Zsy7thWco1Rad4tAbkFLFPmk8ygsIi9NUGY+ks2B/855IT3G3Mf3N2GtILMc1sX/pZpn/1YlaOHo4lTXYVJMvGVGdFbtEsivi5uqXqjg5+MQJ3KV4QNiSylmfVakJZe2it4aMv8lMwYq9FedGeBe3pAHrP8c5D2rFgn5UKF4cZ0tn8aiT2MUe8jTPE5RQRgVV8h7hEU94Vq6UW+VOuf9MVRKxZgfflvLwAVzmla4=</latexit>

Partition 0

Partition 1

Partition 2

Max Pooling
<latexit sha1_base64="zYGWlzjYbBrIWc3CrNW6ItjdbmQ=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBKvgqqRV0GXBjRuhgn1gKyVJp21okgnJRCyl4E7c+gNu9YvEP9C/8M6YglpEJyQ5c+49Z+bea4eeGwvTfM1oc/MLi0vZ5dzK6tr6hr65VY95Ejms5nCPR03bipnnBqwmXOGxZhgxy7c91rCHJzLeuGZR7PLgQoxCduVb/cDtuY4liOro+Tbzw8H4zLppG1XOyaY/6egFs2iqZcyCUgoKSFeV6y9oowsOBwl8MAQQhD1YiOlpoQQTIXFXGBMXEXJVnGGCHGkTymKUYRE7pG+fdq2UDWgvPWOldugUj96IlAb2SMMpLyIsTzNUPFHOkv3Ne6w85d1G9LdTL59YgQGxf+mmmf/VyVoEejhWNbhUU6gYWZ2TuiSqK/LmxpeqBDmExEncpXhE2FHKaZ8NpYlV7bK3loq/qUzJyr2T5iZ4l7ekAZd+jnMW1MvF0kGxfH5YqOymo85iGzvYp3keoYJTVFEj7xEe8YRn7VK71e60+89ULZNq8vi2tIcPgmmXSA==</latexit>

()
Estimated

Partition Performance

wp
<latexit sha1_base64="UM7/mldEEbhNEXh4aXZf9zFYXTk=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoRlxVMLVQS0nSaR2ax5BMLKV04w+41S8T/0D/wjtjCmoRnZDkzLn3nJl7rycCnkrLei0YC4tLyyvF1dLa+sbmVnl7p5nGWeIzx4+DOGl5bsoCHjFHchmwlkiYG3oBu/GG5yp+c8+SlMfRtRwL1gndQcT73HclUc6oOxHTbrliVS29zHlg56CCfDXi8gtu0UMMHxlCMESQhAO4SOlpw4YFQVwHE+ISQlzHGaYokTajLEYZLrFD+g5o187ZiPbKM9Vqn04J6E1IaeKANDHlJYTVaaaOZ9pZsb95T7SnutuY/l7uFRIrcUfsX7pZ5n91qhaJPk51DZxqEppR1fm5S6a7om5ufqlKkoMgTuEexRPCvlbO+mxqTaprV711dfxNZypW7f08N8O7uiUN2P45znnQrFXto2rt6rhSP8tHXcQe9nFI8zxBHRdowCFvjkc84dm4NIQxMsafqUYh1+zi2zIePgA+YJFv</latexit>

…

1 k

Distributed
Database

A3

A1

A2

N3
N2

N1

L1

L2

L3

S2

S1

{L, N, S, A}
<latexit sha1_base64="VueNnuRuQu9gYOuiEgZb/hTrF9s=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwUUpaBV1W3bgQqdQ+oK2SpNMamheTiVBKQdz6A271p8Q/0L/wzpiCWkQnJDlz7j1n5t5rha4TCcN4TWkzs3PzC+nFzNLyyupadn2jHgUxt1nNDtyANy0zYq7js5pwhMuaIWemZ7msYQ1OZLxxy3jkBP6lGIas45l93+k5timIumqPzvL6eV6v5vWj9vg6mzMKhlr6NCgmIIdkVYLsC9roIoCNGB4YfAjCLkxE9LRQhIGQuA5GxHFCjoozjJEhbUxZjDJMYgf07dOulbA+7aVnpNQ2neLSy0mpY4c0AeVxwvI0XcVj5SzZ37xHylPebUh/K/HyiBW4IfYv3STzvzpZi0APh6oGh2oKFSOrsxOXWHVF3lz/UpUgh5A4ibsU54RtpZz0WVeaSNUue2uq+JvKlKzc20lujHd5Sxpw8ec4p0G9VCjuFUoX+7nycTLqNLawjV2a5wHKOEUFNfLmeMQTnrWqNtTutPvPVC2VaDbxbWkPH0CZk00=</latexit>

f(q1) Card(q1)
=150800

SELECT *
FROM S,L
WHERE S2=L2 …

q1

+150800

(query joins edge weights)

Vertex Weight (local structures vital vertices)

Joint
Factors

A3

A1

A2

N3
N2

N1

L1

L2

L3

S2

S1

vertex()

Attention
Computation ()

k-Node Sample Graph Subgraph Embedding Performance EvaluationKeys

Embedding Domain

Taylor
Decomposition

Graph Embedding Relevance Extraction Key Selection
S1 S2A1

N1 N2

A3

A2

N3

G
ra

p
h

 D
o
m

ai
n

ŏ

L(L1, L2)
<latexit sha1_base64="//yoLJdxoXCaA8Me3p5cf7yFS/Y=">AAACznicjVHLSsNAFD3GV62vqks3wSJUkJJUQZdFNy66qGAfUEtJ0mkdmiZhMimUUtz6A271s8Q/0L/wzpiCWkQnJDlz7jl35t7rRj6PpWW9LhiLS8srq5m17PrG5tZ2bme3HoeJ8FjNC/1QNF0nZj4PWE1y6bNmJJgzdH3WcAeXKt4YMRHzMLiR44i1h04/4D3uOZKoVqVQ6djHZqVTOurk8lbR0sucB3YK8khXNcy94BZdhPCQYAiGAJKwDwcxPS3YsBAR18aEOEGI6zjDFFnyJqRipHCIHdC3T7tWyga0Vzlj7fboFJ9eQU4Th+QJSScIq9NMHU90ZsX+lnuic6q7jenvprmGxErcEfuXb6b8r0/VItHDua6BU02RZlR1Xpol0V1RNze/VCUpQ0Scwl2KC8Keds76bGpPrGtXvXV0/E0rFav2XqpN8K5uSQO2f45zHtRLRfukWLo+zZcv0lFnsI8DFGieZyjjClXUdMcf8YRno2qMjKlx/yk1FlLPHr4t4+EDGBySDw==</latexit>

A(A2)
<latexit sha1_base64="Mg/ljDJp0mF3jrmD583Ga6/rKj0=">AAACyXicjVHLTsJAFD3UF+ILdemmkZjghrRookvQjYkbTOSRICHtMGClL9upEYkrf8Ct/pjxD/QvvDOWRCVGp2l75tx7zsy91w5dJxaG8ZrRZmbn5heyi7ml5ZXVtfz6RiMOkojxOgvcIGrZVsxdx+d14QiXt8KIW57t8qY9PJbx5g2PYifwz8Uo5B3PGvhO32GWIKpRLVa75d1uvmCUDLX0aWCmoIB01YL8Cy7QQwCGBB44fAjCLizE9LRhwkBIXAdj4iJCjopz3CNH2oSyOGVYxA7pO6BdO2V92kvPWKkZneLSG5FSxw5pAsqLCMvTdBVPlLNkf/MeK095txH97dTLI1bgkti/dJPM/+pkLQJ9HKoaHKopVIysjqUuieqKvLn+pSpBDiFxEvcoHhFmSjnps640sapd9tZS8TeVKVm5Z2lugnd5Sxqw+XOc06BRLpl7pfLZfqFylI46iy1so0jzPEAFJ6ihTt5XeMQTnrVT7Vq71e4+U7VMqtnEt6U9fABdg5Cf</latexit>

L2

L3 L1

ŏ

L(L1, L2)
<latexit sha1_base64="//yoLJdxoXCaA8Me3p5cf7yFS/Y=">AAACznicjVHLSsNAFD3GV62vqks3wSJUkJJUQZdFNy66qGAfUEtJ0mkdmiZhMimUUtz6A271s8Q/0L/wzpiCWkQnJDlz7jl35t7rRj6PpWW9LhiLS8srq5m17PrG5tZ2bme3HoeJ8FjNC/1QNF0nZj4PWE1y6bNmJJgzdH3WcAeXKt4YMRHzMLiR44i1h04/4D3uOZKoVqVQ6djHZqVTOurk8lbR0sucB3YK8khXNcy94BZdhPCQYAiGAJKwDwcxPS3YsBAR18aEOEGI6zjDFFnyJqRipHCIHdC3T7tWyga0Vzlj7fboFJ9eQU4Th+QJSScIq9NMHU90ZsX+lnuic6q7jenvprmGxErcEfuXb6b8r0/VItHDua6BU02RZlR1Xpol0V1RNze/VCUpQ0Scwl2KC8Keds76bGpPrGtXvXV0/E0rFav2XqpN8K5uSQO2f45zHtRLRfukWLo+zZcv0lFnsI8DFGieZyjjClXUdMcf8YRno2qMjKlx/yk1FlLPHr4t4+EDGBySDw==</latexit>

A(A2)
<latexit sha1_base64="Mg/ljDJp0mF3jrmD583Ga6/rKj0=">AAACyXicjVHLTsJAFD3UF+ILdemmkZjghrRookvQjYkbTOSRICHtMGClL9upEYkrf8Ct/pjxD/QvvDOWRCVGp2l75tx7zsy91w5dJxaG8ZrRZmbn5heyi7ml5ZXVtfz6RiMOkojxOgvcIGrZVsxdx+d14QiXt8KIW57t8qY9PJbx5g2PYifwz8Uo5B3PGvhO32GWIKpRLVa75d1uvmCUDLX0aWCmoIB01YL8Cy7QQwCGBB44fAjCLizE9LRhwkBIXAdj4iJCjopz3CNH2oSyOGVYxA7pO6BdO2V92kvPWKkZneLSG5FSxw5pAsqLCMvTdBVPlLNkf/MeK095txH97dTLI1bgkti/dJPM/+pkLQJ9HKoaHKopVIysjqUuieqKvLn+pSpBDiFxEvcoHhFmSjnps640sapd9tZS8TeVKVm5Z2lugnd5Sxqw+XOc06BRLpl7pfLZfqFylI46iy1so0jzPEAFJ6ihTt5XeMQTnrVT7Vq71e4+U7VMqtnEt6U9fABdg5Cf</latexit>

Column2Graph Partitioning Model

Evaluation Model

V (L3)
<latexit sha1_base64="G1JuhAd2nriBCbhLApAr9s5k+L0=">AAACyXicjVHLTsJAFD3UF+ILdemmkZjghhQw0SXRjYkuMJFCgoS0w4CVvmynRiSu/AG3+mPGP9C/8M5YEpUYnabtmXPvOTP3Xjt0nVgYxmtGm5mdm1/ILuaWlldW1/LrG2YcJBHjDRa4QdSyrZi7js8bwhEub4URtzzb5U17eCTjzRsexU7gn4tRyDueNfCdvsMsQZRpFk+71d1uvmCUDLX0aVBOQQHpqgf5F1yghwAMCTxw+BCEXViI6WmjDAMhcR2MiYsIOSrOcY8caRPK4pRhETuk74B27ZT1aS89Y6VmdIpLb0RKHTukCSgvIixP01U8Uc6S/c17rDzl3Ub0t1Mvj1iBS2L/0k0y/6uTtQj0caBqcKimUDGyOpa6JKor8ub6l6oEOYTESdyjeESYKeWkz7rSxKp22VtLxd9UpmTlnqW5Cd7lLWnA5Z/jnAZmpVSulipne4XaYTrqLLawjSLNcx81HKOOBnlf4RFPeNZOtGvtVrv7TNUyqWYT35b28AGsbpDA</latexit>

w · V (L3)
<latexit sha1_base64="5qdJHIsFemc1DkO6F6mARAtmVns=">AAAC0XicjVHLSsNAFD2Nr1pfVZduBotQNyWxPndFNy5cVLStYKsk01GDaRImE6UUQdz6A271p8Q/0L/wzpiCLkQnJLlz7jln5t7rxYGfKNt+y1kjo2PjE/nJwtT0zOxccX6hmUSp5KLBoyCSJ56biMAPRUP5KhAnsRRuzwtEy7ve0/nWjZCJH4XHqh+LTs+9DP0Ln7uKoLNb1ubdSLFm+eC8unpeLNmVDdvZ2bSZXbHNMsG2U3WYkyElZKseFV/RRhcROFL0IBBCURzARULPKRzYiAnrYECYpMg3eYE7FEibEksQwyX0mr6XtDvN0JD22jMxak6nBPRKUjKskCYinqRYn8ZMPjXOGv3Ne2A89d369Pcyrx6hCleE/qUbMv+r07UoXGDb1OBTTbFBdHU8c0lNV/TN2beqFDnEhOm4S3lJMTfKYZ+Z0SSmdt1b1+TfDVOjes8zbooPfUsa8HCK7PeguVZxqpW1w/VSbTcbdR5LWEaZ5rmFGvZRR4O8JZ7wjBfryOpb99bDF9XKZZpF/FjW4yfFRJPv</latexit>

w<latexit sha1_base64="IUlkzcMuU7VZMG0kz7smIasighE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LIoiMsW7AO0SJJO69C8yEyUUvQH3Oq3iX+gf+GdcQpqEZ2Q5My595yZe6+fhlxIx3ktWHPzC4tLxeXSyura+kZ5c6stkjwLWCtIwiTr+p5gIY9ZS3IZsm6aMS/yQ9bxR6cq3rllmeBJfCHHKetF3jDmAx54kqjm3XW54lQdvexZ4BpQgVmNpPyCK/SRIECOCAwxJOEQHgQ9l3DhICWuhwlxGSGu4wz3KJE2pyxGGR6xI/oOaXdp2Jj2ylNodUCnhPRmpLSxR5qE8jLC6jRbx3PtrNjfvCfaU91tTH/feEXEStwQ+5dumvlfnapFYoBjXQOnmlLNqOoC45Lrrqib21+qkuSQEqdwn+IZ4UArp322tUbo2lVvPR1/05mKVfvA5OZ4V7ekAbs/xzkL2rWqe1CtNQ8r9RMz6iJ2sIt9mucR6jhHAy3t/YgnPFtnVmgJK/9MtQpGs41vy3r4AGoKj4A=</latexit>

V (cj)
<latexit sha1_base64="zn1cBYj5AzuRg3ErzLP7mIVn2QY=">AAACyXicjVHLTsJAFD3UF75Rl24aiQluSIsmuiS6MXGDiRQSJKQdBiz0ZTs1InHlD7jVHzP+gf6Fd8aSqMToNG3PnHvPmbn3OpHnJsIwXnPazOzc/EJ+cWl5ZXVtvbCxaSVhGjNeZ6EXxk3HTrjnBrwuXOHxZhRz23c83nCGJzLeuOFx4obBhRhFvO3b/cDtucwWRFlWiXUGe51C0SgbaunTwMxAEdmqhYUXXKKLEAwpfHAEEIQ92EjoacGEgYi4NsbExYRcFee4xxJpU8rilGETO6Rvn3atjA1oLz0TpWZ0ikdvTEodu6QJKS8mLE/TVTxVzpL9zXusPOXdRvR3Mi+fWIErYv/STTL/q5O1CPRwpGpwqaZIMbI6lrmkqivy5vqXqgQ5RMRJ3KV4TJgp5aTPutIkqnbZW1vF31SmZOWeZbkp3uUtacDmz3FOA6tSNvfLlfODYvU4G3Ue29hBieZ5iCpOUUOdvAd4xBOetTPtWrvV7j5TtVym2cK3pT18AGY5kQ4=</latexit>

Local
Factors

W (cj , ci)
<latexit sha1_base64="EnJXwQAZjyapdNYm8BQjTAeZORY=">AAACznicjVHLSsNAFD2Nr1pfVZdugkWoICWtgi6LblxWsA+opSTTaR2bF8mkUEpx6w+41c8S/0D/wjtjCmoRnZDkzLnn3Jl7rxO6IpaW9ZoxFhaXlleyq7m19Y3Nrfz2TiMOkojxOgvcIGo5dsxd4fO6FNLlrTDitue4vOkML1S8OeJRLAL/Wo5D3vHsgS/6gtmSqHazyLp3RybrisNuvmCVLL3MeVBOQQHpqgX5F9yghwAMCTxw+JCEXdiI6WmjDAshcR1MiIsICR3nmCJH3oRUnBQ2sUP6DmjXTlmf9ipnrN2MTnHpjchp4oA8Aekiwuo0U8cTnVmxv+We6JzqbmP6O2kuj1iJW2L/8s2U//WpWiT6ONM1CKop1IyqjqVZEt0VdXPzS1WSMoTEKdyjeESYaeesz6b2xLp21Vtbx9+0UrFqz1Jtgnd1Sxpw+ec450GjUioflypXJ4XqeTrqLPawjyLN8xRVXKKGuu74I57wbNSMkTE17j+lRib17OLbMh4+AKyDkrg=</latexit>

cj
<latexit sha1_base64="A+isJphPsQGqzS+SdUjFmQmDLOk=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLopsuK9gFaSjKd1rFpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wlj88VfHWLU9SEYUXchzzzsgbhKIvmCeJOmfdm26x5JQdvexZ4BpQgln1qPiCK/QQgSHDCBwhJOEAHlJ6LuHCQUxcBxPiEkJCxznuUSBtRlmcMjxih/Qd0O7SsCHtlWeq1YxOCehNSGljjzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiT6OdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hHsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmpWye1CunB2Wqidm1HnsYBf7NM8jVFFDHQ3yHuART3i2alZoZdbdZ6qVM5ptfFvWwwdkr5BJ</latexit>

Fig. 2. The Grep Overview.

of queries that contain the join predicate ci = c j ; (ii) Cardinality: the number of tuples in the result
set. To estimate query cardinalities, we sample tuples from the tables, execute predicates on the
sampled tuples, and use the results on the samples to estimate the cardinality (see Figure 2). Hence,
we compute edge weight as the multiplication of query frequency and estimated cardinality, which
represents the overall cost of ci = c j . For example, in Figure 2, the weight of joining l_orderkey,
c_nationkey equals 1× 150800 = 150800, with one query involving this join and producing 150800
result tuples. Note the join costs are also affected by other query operations, e.g., filters on the join
tables, which we need to characterize in the vertex features (see Section 3.1).
Vertex Weight. The column graph may contain numerous vertices, and if we enumerate every
column combination to select partitioning keys, it will cause heavy computation overhead. Instead,
we utilize the localized graph structures (e.g., read/write frequency, join costs) of each vertex to
compute the vertex weights, identify important vertices with the vertex weights, and prioritize
important vertices as partitioning keys. Thus, the Partitioning Model takes fewer iterations to select
high-quality keys. For example, in Figure 2, column A3 is rarely accessed and is not joined, and we
assign A3 a small weight value, representing a low possibility of being selected.

2.2.3 Partitioning Model. There are two challenges in selecting columns as partitioning keys.
First, considering a graph with millions of columns in a commercial database, traditional linear
regressionmethods cannot efficiently process the graph structures and cause significant information
loss. Second, the problem of partitioning-key selection is NP-hard (Section 2.1), and existing learned
methods (e.g., RL) require significant system resources to adapt to complex scenarios (e.g., using 10
machines for 7 days to run). To address these problems, Partitioning Model utilizes a graph neural
network to embed column features and join patterns into vectors, and selects partitioning keys
based on these vectors.
Graph Embedding. We first encode the global graph structures for each vertex ci into an embed-
ding vector H (ci). We compute H (ci) iteratively. Suppose the embedding vector of ci at the t-th
iteration is Ht (ci) and the edge weight matrix isW whereW (c j , ci) is the edge weight of (c j , ci).
We utilize the graph neural network (GNN) to compute the embedding vector of ci at the (t + 1)-th
iteration based on (i) the embedding vector Ht (ci), (ii) the embedding vectors of ci ’s neighbors
{c j |∀(c j , ci) ∈ E}, and (iii) the edge weightsW . GNN iteratively updates the network weight ω to
learn the embedded vertex vectors with maximal partitioning benefits.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Partitioning-Key Selection. Intuitively, we can directly append a classifier to select keys based
on the embedding vectors. However, we observe the embedding vectors are of high dimension
(e.g., 256 × vertex_number) and we only need a small part of information (e.g., importance to
each embedding vector) to find promising partitioning keys. Thus, we first estimate the overall
partitioning benefits of each column with Taylor decomposition [38], which reversely computes
the proportion of the columns in the embedding vectors (see Section 4.3)R3.O6 ; then we append a binary
classifier that inputs the column relevance and outputs selected columns, where 1 represents the
column is selected and 0 otherwise.

Example 2. In Figure 2, {N1, L3, S1, L1,A1, S2, L2,N2} forms a connected subgraph of N1 and part

of them are embedded into a vector H (N1). With Taylor decomposition, we find that A1 has high

contribution toH (N1), because E(A1,N1) is large and can avoid many remote joins; and the contribution

of L2 is low, because L2 joins with N1 via A1 and E(L2, A1) is relatively small.

Remark. Our method can support replicate tables (DBAs generate replicate small tables with fewer
than 500K tuples): if there is no selected partitioning key for a table, this table will be replicated.

2.2.4 Evaluation Model. To well train the above learned models in an end-to-end style, we need
to know the performance of selected partitioning keys. However, partitioning the database is costly
and simple metrics (e.g., deviation of partition size, the scale of largest partition) cannot get accurate
estimation. Hence, we propose an Evaluation Model to estimate the partitioning performance.
k-Node Sample Graph. We first sample tuples from tables and allocate the tuples into k compute
nodes based on the selected keys. Then we add edges based on the join predicates and generate a
k-node sample graph (see Section 5.1), which captures the behaviors of queries on the k nodes. We
empirically decide a suitable sample rate to tradeoff the evaluation quality and efficiency [11].
Performance Evaluation.Next we estimate the performance based on thek-node sample graph. (i)
For each node Pv , we encode the performance-related features (e.g., local joins, local filters/writes)
into an embedding vector H (Pv), which represents the costs of local queries in Pv . (ii) Next we use
the k embedding vectors {H (P1),H (P2), ...,H (Pk)} of the k nodes to generate a k-vertex graph GP ,
where vertices are the nodes and there is an edge between two vertices Pi and Pj inGP if there exists
an edge (vi ∈ Pi ,vj ∈ Pj) ∈ G . We pool the k embedding vectors of nodes into an embedding vector
of the graph GP , denoted as H (P) [61]. For example, in Figure 1, there are 2 remote joins across
2 nodes, which separately cause the redistribution of the lineitem and order tables and have the
highest execution costs. We extract the maximal values in each dimension of H (P) (the features of
nodes and joins) to capture remote-join costs.R3.O7 (iii) Then we use a fully-connected (FC) network to
map the embedding vector H (P) into desired performance metrics with non-linear transformations.
Model Training. We supervisedly train the Evaluation Model with a small number of partitioning
scenarios and generalize the Evaluation Model to other scenarios. First, we obtain training data D in
two ways: (i) Collect from real query logs, which record either daily transactions or costly queries;
(ii) Since partitioning keys are rarely changed in real scenarios, we simulate typical partitioning
strategies on sample datasets. Second, with every training sample in the form of ⟨Qd ,Dd , Cd , Pd ⟩,
whereQd denotes queries,Dd denotes dataset, Cd is the selected columns, and Pd is the performance
metrics like execution time, we generate a k-node sample graph based on ⟨Qd ,Dd , Cd ⟩, utilize
the Evaluation Model to estimate the performance, and update network weights with the loss of
estimated/actual performance.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

3 COLUMN GRAPH MODEL
We present how to build the graph model to capture the data and query features. We first formally
define the model in Section 3.1. We then explain how to compute the edge weights in Section 3.2
and the vertex weights in Section 3.3.
3.1 Column Graph
Existing methods are table-based and cannot capture column correlations, which is vital to database
partitioning. Hence, we model the columns and their correlations as a graph, where the vertices
are columns and there is an edge between two columns if they are joined in some queries or have
foreign key relationships. Note that we mainly support SPJ queries here, and users can extend the
column graph so as to support more complex queries (e.g., nested subqueries, UDFs).
Definition 2 (Column Graph). Given a set of tables {T1,T2, ...,T |T |} and queries

{Q1,Q2, ...,Q |Q |}, we model the table columns and their correlations into a graph model. The vertices

are columns used in the queries and there is an edge between two columns if they are joined in the

queries or have foreign key relationships.

Vertex Feature Vector. Each vertex contains themain data and query features of the corresponding
column. We encode the features of the vertex as a vector, which contains 7 dimensions:
(1) table id: the table of this column;
(2) table size: the size of the table of this column;
(3) tuple selectivity: the rate of distinct values in the column, i.e., #−dist inctV alues

#−tuples ;
(4) tuple length: the maximum tuple length in this table;
(5) #filters: the number of filter operations w.r.t. the column;
(6) #aggregates: the number of aggregates w.r.t. the column;
(7) #writes: the number of write operations w.r.t the column;

R1.O3
R3.O9

Note table id is only used to distinguish the tables (e.g., whether different columns are from the
same table), and it does not need to be learned and transferred. Thus, for simplicity we denote
V (c j) as the 6 features of a column c j except table id.
Vertex Weight Computation. We utilize an attention mechanism to compute vertex weights for
two reasons: (1) The column graph is of large scale and causes low efficiency by equally processing
these vertices; (2) The vertex does not include the edge relations, which are vital to partitioning
benefits. For example, p_name and p_partkey are from the same table, but p_name has one joined
column, while p_parkey has seven directly joined columns and can potentially avoid more remote
joins by partitioning the joined columns. To this end, we propose a deep attention model to compute
the importance a(c j) of a vertex c j (Section 3.3). Given a vertex c j , we multiply the importance a(c j)
with the vector V (c j) and gain a weighted vertex vector, i.e., Ṽ (c j) = a(c j) V (c j).
Edge Feature Vector. The edge features of an edge E(u,v) should capture the join cost. To this
end, we encode the edge features as an edge vector E(u,v) = (V (u), V (v),W (u,v)), where V (u) and
V (v) are vertex vectors andW (u,v) is the edge weight of (u,v). For example, in Figure 2, the edge
vector E(C2, L2) is denoted as (V (C2), V (L2), 150800), where V (C2), V (L2) denote the vertex feature
vectors and 150800 equals the estimated cost of C2 = L2.

3.2 Predicate-based Edge Weight
We consider two main features to compute the edge weights:
(1) Frequencies of join predicates. The frequency of a join predicate between two columns is
the number of join predicates containing the columns, which is important to database partitioning,
because if two columns are frequently joined, we can reduce more remote joins by using the two
columns as partitioning keys.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Lineitem (L) Supplier (S) Nation (N)

SELECT WHERE

s_nationkey
< 2000

Root
Query Tree

MAX
(l_suppkey)

…

q1 q2 q3

p_name

p_partkey

n_nationkey
s_nationkey

l_partkey

l_suppkey

l_orderkey

n_regionkey

n_name

s_suppkey

Table
Id

Tuple
Selectivity

Tuple
Length

#-
Scans

#-
Aggregates

 0.13 [0001 60175 0.00167 365 (10 +1) (3 +1) 0]

150800

p_type
20

550

Vertex
Weight

G
ra

p
h

of
l_

su
p

p
k
ey Local

Factors

Joint
Factors

Sigmoid
Layer

Exp

Edge Weight

Vertex Features

f(q2) Card(q2)
=150800

q1 , q3

Vertex Weight

b(l_suppkey)=0.13

Attention Model

Column Graph

Vertex Feature Vector (l_suppkey)

S2

L2
L1

A1

N1
L3 S1

N3

A2N2
A3

5

#-
Writes

l_suppkey=
s_suppkey

Part (A)

×
Table
SizeX

!i,jµi!j(cj)
<latexit sha1_base64="WIUeC2AnZuUPpmxjYSQLJMZCmnU=">AAAC8nicjVHLSuRAFD1GHd8zrS7dFDaCwtikewRdCm5cOmCrYKSplGVbmqRCpaJI41e4cydu/QG3+hGDf6B/4a0ygg8GrZDk1Ln3nKp7b5wnqrBh+NAX9A8M/hgaHhkdG5/4+as2ObVV6NII2RY60WYn5oVMVCbbVtlE7uRG8jRO5HZ8vObi2yfSFEpnm/Ysl3sp72bqQAluierUFqOiTFmkU9nlnZ76fXTOorQkxCKjuoeWG6NPGbHzonO00KnVw0boF/sMmhWoo1obuvYPEfahIVAihUQGSzgBR0HPLpoIkRO3hx5xhpDycYlzjJK2pCxJGZzYY/p2abdbsRntnWfh1YJOSeg1pGSYI42mPEPYncZ8vPTOjv2fd897urud0T+uvFJiLQ6J/Ur3mvldnavF4gArvgZFNeWecdWJyqX0XXE3Z2+qsuSQE+fwPsUNYeGVr31mXlP42l1vuY8/+kzHur2ocks8uVvSgJsfx/kZbLUazT+N1t+l+mqjGvUwZjCLeZrnMlaxjg20yfsCt7jDfWCDy+AquH5JDfoqzTTereDmGUF3oXQ=</latexit>

Fig. 3. Column Graph Construction. Note we showcase a common transactional query with (i) a two-table
join; (ii) an atomic predicate; (iii) a simple aggregate operation.

(2) Cardinalities of join predicates. Cardinality estimates the result set size and can reflect
query cost [51]. Note it is troublesome to apply existing estimation methods [48], because they
rely on query plans, which cannot be obtained before partitioning. Hence, we sample tuples from
the tables, and estimate cardinalities by executing predicates on the sampled tuples. For example,
for the three predicates in Figure 2, we sample 1% tuples from tables lineitem and customer
and execute predicates on the sampled tuples in the order of q1 > q2 > q3, where the result set
size of q2 equals 1508. So we approximate the join cost of q2 as 1508/1% = 150800. Note we use
stratified sampling [18] to reflect data distribution with limited tuples and we can estimate any
query predicates with multi-joins.
Edge Weight Computation. For any edge (u,v), we compute the edge weight by summing up
the estimated costs of all the joins between u and v , i.e., W(u,v) =

∑
q f (q)Card(u,v,q), where q is

any join predicate between u and v , f (q) is the occurrence times, andCard(u,v,q) is the estimated
cardinality.
3.3 Attention-based Vertex Weight
There may be numerous columns in the database and we want to prioritize vertices that are im-

portant to database partitioning, which can greatly reduce the partitioning overhead. There are
two challenges in computing the column importance. First, we may have different performance
objectives (e.g., higher throughput, lower latency) based on the user and application requirements,
but traditional importance ranking methods [16, 17, 34] like PageRank cannot dynamically compute
the importance based on the targets. Second, the Long Short Term Memory networks (LSTMs) in
NLP mainly consider semantic relations among words in a sentence, which commonly contains
15–20 words, while our graph model may have hundreds of thousands of columns and numerous
column orderings and the relations are much more complex.

To address these challenges, we propose a graph-based attention network to evaluate the column
importance, with several salient features. First, the attention model can get the importance of each
vertex and enables Grep to prioritize important vertices. Second, the attention model can better
reflect performance requirements by learning different encodings of the graph features.
Attention Network. Our attention network is composed of a dense layer, which maps the column

graph G into attention values {a(c j)}. The procedure can be written as V (G) =
∑
c j ∈G a(c j)V (c j),

whereV (c j) is the vertex feature vector and a(c j) is the assigned attention to find the optimal parti-
tioning strategy. Next we explain how to compute attentions {a(c j)} to infer column importance.
Attention Computation. An important column usually satisfies at least one of the two conditions:
(i) Values in the column are evenly distributed and will not lead to data skew; (ii) The column is
frequently queried or joined with other columns. So for each column c j , we compute its attention
value based on two kinds of graph features: (i) Vertex features describe the column characters,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

A3

A1

A2

N3

N2N1

L1

L2

L3

S2

S1

0.3

0.1

Graph Characterization

Edge Matrix (ET
<latexit sha1_base64="0j0grPVFHNXwvm+um5+z5MNSVEQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEogseIeUGyhtnJbDJkdnaZ6RVCyCd48aCIV7/Im3/jJNmDJhY0FFXddHcFiRQGXffbWVldW9/YzG3lt3d29/YLB4cNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwZuo3n7g2IlY1HCXcj2hfiVAwilZ6uH2sdQtFt+TOQJaJl5EiZKh2C1+dXszSiCtkkhrT9twE/THVKJjkk3wnNTyhbEj7vG2pohE3/nh26oScWqVHwljbUkhm6u+JMY2MGUWB7YwoDsyiNxX/89ophlf+WKgkRa7YfFGYSoIxmf5NekJzhnJkCWVa2FsJG1BNGdp08jYEb/HlZdIol7zzUvn+oli5zuLIwTGcwBl4cAkVuIMq1IFBH57hFd4c6bw4787HvHXFyWaO4A+czx/yxI2T</latexit>ET
<latexit sha1_base64="0j0grPVFHNXwvm+um5+z5MNSVEQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEogseIeUGyhtnJbDJkdnaZ6RVCyCd48aCIV7/Im3/jJNmDJhY0FFXddHcFiRQGXffbWVldW9/YzG3lt3d29/YLB4cNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwZuo3n7g2IlY1HCXcj2hfiVAwilZ6uH2sdQtFt+TOQJaJl5EiZKh2C1+dXszSiCtkkhrT9twE/THVKJjkk3wnNTyhbEj7vG2pohE3/nh26oScWqVHwljbUkhm6u+JMY2MGUWB7YwoDsyiNxX/89ophlf+WKgkRa7YfFGYSoIxmf5NekJzhnJkCWVa2FsJG1BNGdp08jYEb/HlZdIol7zzUvn+oli5zuLIwTGcwBl4cAkVuIMq1IFBH57hFd4c6bw4787HvHXFyWaO4A+czx/yxI2T</latexit>) Vertex Matrix (V<latexit sha1_base64="ZHTJuVrsXJ8Nz2mGcO2drL0vXec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrtfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fs/+M3g==</latexit>

V
<latexit sha1_base64="ZHTJuVrsXJ8Nz2mGcO2drL0vXec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrtfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fs/+M3g==</latexit>)

Table Size #-QueryValueRatio

 1, 0.4·60175, 0.4·1.0, …, 0.4·3

 1, 0.3·60175, 0.3·1.0, …, 0.3·2

 4, 0.1· 2000 , 0.1·1.0, …, 0.1·0

…

A1

L2

L1

0.4

L1 L2 S2 N1 A1… … …

 0, 0, … 1, 1, … 0

 0, 0, … 1, 0, … 1

 0, 1, … 0, 1, … 0

…

…

…

……… ………

neighbor
matrix Xn

X2

Spectral Filter

edge
matrix

D(ci)
<latexit sha1_base64="isClBmwkhUo9I4Dh0PVGP4TH1E8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ixqAePFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etbRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8c3Mbz9RpZkUD2YSUz/CQ8FCRrCxUuu2TPrsvF8suRV3DrRKvIyUIEOjX/zqDSRJIioM4VjrrufGxk+xMoxwOi30Ek1jTMZ4SLuWChxR7afza6fozCoDFEplSxg0V39PpDjSehIFtjPCZqSXvZn4n9dNTHjlp0zEiaGCLBaFCUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oIINwVt+eZW0qhWvVqneX5Tq11kceTiBUyiDB5dQhztoQBMIPMIzvMKbI50X5935WLTmnGzmGP7A+fwBlaCOeg==</latexit>

vertex
matrix

E0
<latexit sha1_base64="F9uVCYC2hD40YfBrasKMOP67uwc=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPoKexGQY9BETxGMQ9IQpid9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+4uPxZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESq5VONgkusG24EtmKFNPQFNv3RzdRvPqHSPJKPZhxjN6QDyQPOqLHSw+1pr1hyy+4MZJl4GSlBhlqv+NXpRywJURomqNZtz41NN6XKcCZwUugkGmPKRnSAbUslDVF309mlE3JilT4JImVLGjJTf0+kNNR6HPq2M6RmqBe9qfif105McNVNuYwTg5LNFwWJICYi07dJnytkRowtoUxxeythQ6ooMzacgg3BW3x5mTQqZe+8XLm/KFWvszjycATHcAYeXEIV7qAGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wf6gIz+</latexit>

E<latexit sha1_base64="oW7OyFl8fZOuY5qYrNXg+guGckE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNCtl76JcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZo7jM0=</latexit>

V (ci)
<latexit sha1_base64="SWQK6UXgGp3a7nOV3lW1S3Jo1Po=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnokevGIiSwksCHd0oVKt920XROy4T948aAxXv0/3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PfC1TRWiLSC5VJ8SaciZoyzDDaSdRFMchp+1wfDvz209UaSbFg5kkNIjxULCIEWys5PtV0mfn/XLFrblzoFXi5aQCOZr98ldvIEkaU2EIx1p3PTcxQYaVYYTTaamXappgMsZD2rVU4JjqIJtfO0VnVhmgSCpbwqC5+nsiw7HWkzi0nTE2I73szcT/vG5qousgYyJJDRVksShKOTISzV5HA6YoMXxiCSaK2VsRGWGFibEBlWwI3vLLq8Sv17yLWv3+stK4yeMowgmcQhU8uIIG3EETWkDgEZ7hFd4c6bw4787HorXg5DPH8AfO5w+xQo6M</latexit>

*
!

<latexit sha1_base64="tlCosEe7acB15WG/y1yAvFPNxVY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkX+PHw==</latexit>

Graph Embedding
ReLU

X1

!0
<latexit sha1_base64="G3vLV7o93+IZLwwVBxwZUzbuG44=">AAAB7nicbVDLSgNBEJyNrxhfUY9eBoPoKexGQY9BLx4jmAckS5id9CZD5rHMzAphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fhu5refQBum5KOdJBAKMpQsZpRYJ7V7SsCQnPfLFb/qz4FXSZCTCsrR6Je/egNFUwHSUk6M6QZ+YsOMaMsoh2mplxpICB2TIXQdlUSACbP5uVN85pQBjpV2JS2eq78nMiKMmYjIdQpiR2bZm4n/ed3UxjdhxmSSWpB0sShOObYKz37HA6aBWj5xhFDN3K2Yjogm1LqESi6EYPnlVdKqVYPLau3hqlK/zeMoohN0ii5QgK5RHd2jBmoiisboGb2iNy/xXrx372PRWvDymWP0B97nD/Puj1A=</latexit>

nn weights hidden bias

Partitioning Key Selection

… …

Partial
Derivative

…
Sigmoid

R’n

1

1

0

R’1

R’2

Rn

R1

R2

Yn

Y1

Y2

L1

L2

A3

Talyor Decomposition Binary Classifier

l_partkey

l_supptkey

p_partkey

Fig. 4. Graph-based Key Selection Model.

including data features (e.g., table size, distinct values) and query features (e.g., selects, aggregates).
Since the vertex features (see Definition 2) are from different feature spaces and have different
value ranges, we use an activation function to normalize these features, i.e.,ψ (c j) = Siдmoid(V (c j)),
where Siдmoid on any feature x equals 1

1+e−x ; (ii) Edge features describe the overhead of remotely
joining a column with other columns, which can be reduced by selecting them as partitioning keys.
We compute edge features by aggregating the joined edges of each vertex. Based on the message-
passing techniques [52], for any vertex c j , we compute the edge feature vector as µi→j (c j) =
W (ci , c j)ψ (ci)ψ (c j),

R2.Minor
where ci is any adjacent vertex of c j andW (ci , c j) is the edge weight.

For any vertex c j , we compute attention a(c j) by enumerating vertex/edge features and utilize
the attention network to encode these features into a scalar value based on the partition targets,

a(c j) ∝ exp (ω̂ j jψc j + ω j jµ j→j (c j) +
∑
ci

ωi jµi→j (c j)) (1)

where ωi j is the network weight, and ω̂j j is the unit vector ofw j j . The first two terms are the vertex
features and the last item denotes the edge features. We use ωi j of the attention network to learn
the importance of ci to the partition targets (e.g., increased throughput).
Model Training. In each iteration, the attention model computes the vertex weights in the column

graph, the Partitioning Model selects partitioning keys based on the graph, and we update the
network weightswi j based on the performance feedback via gradient descent. The model converges
until the performance satisfies the partition requirements or arrives the maximum iteration number.

4 PARTITIONING KEY SELECTION
Next we study how to select partitioning keys using the graph model. We first introduce the archi-
tecture of our Partitioning Model in Section 4.1. Then we explain the graph embedding algorithm in
Section 4.2 and the key selection algorithm in Section 4.3. We present model training in Section 4.4.

4.1 Key Selection Model
The Partitioning Model takes as input the graph model in the form of vertex matrix and edge matrix
and outputs selected columns. The idea is to first embed each column into an embedding vector,
then compute the benefit of each column based on all the embedding vectors, and finally select
partitioning keys based on the benefits. The framework of our Partitioning Model includes two
components.
Graph Embedding aims to encode each column ci and their joined columns into an embedding
vector H (ci) that maximizes the partitioning benefits. The intuitions are (i) we rely on data and
query features to select partitioning keys and (ii) column features and their join patterns are hard
to capture with traditional heuristic methods like random walk [56], which may cause information
loss. Hence, for each column ci , we denote the graph structures as G(ci) = (V (ci),D(ci), E), where
V (ci) is the column feature vector (Section 3.1), D(ci) is the neighborhood matrix with each row
representing the feature vector of a joined column of ciR2.Minor , and E is the edge matrix. And we need to
embed these three factors into an embedding vector H (ci). To this end, our Graph Neural Network

includes a graph embedding layer and an activation function ReLU : based on the performance
objectives, the graph embedding layer encodes the join patterns via graph convolution; and the
ReLU layer converts the embedded columns into a fixed-length vector.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Partitioning-Key Selection aims to select partitioning keys based on the embedding vectors.
Although Graph Neural Network has extracted graph features into the embedded vertex vectors, it
is still hard to directly select columns from the embedding vectors, which are high dimensional
and require further training to capture correlations. Instead, we first utilize Taylor decomposition
to reversely extract the relevance of each column to the embeddings in the Graph Neural Network;
and then select keys based on the relevance distribution, which denotes the partitioning benefits
to all the embeddings. Note we have conducted ablation experiments to verify the effectiveness
of Taylor decomposition, which converges much faster and achieves higher performance within
limited resource usage (see the experimental report1). To this end, this module includes two parts:
(i) Taylor decomposition: It extracts benefits of each column from the embedding vectors, which
is similar to backward propagation for training neural networks, but we compute the benefits as
the partial derivative of the embeddings on the corresponding column. (ii) Binary classification: It
inputs the partitioning benefits of all the columns and outputs the selection keys with multinomial
logistic regression, where 1 denotes a column is selected and 0 otherwise.

4.2 Graph Embedding Algorithm
For every column ci , we obtain local graph structures, i.e., {(c j , ci)|∀(c j , ci) ∈ E}, and utilize the
graph neural network (GNN) to embed the graph structures and the vertex vector of ci into an
embedding vector H (ci) by multiplying the input vertex features (joined columns) with the GNN
weights ω. To generate embedding vectors that maximize the partitioning benefits, we iteratively
update the GNN weights ω based on the performance objectives. For iteration t + 1, the embedding
procedure can be denoted as

Ht+1(ci) = σ (Ht (ci),Ht (c j |∀(c j , ci) ∈ E),W ,ω), (2)

where Ht (ci) is the embedding vector of column ci in iteration t ,W is the edge weight matrix, ω is
the GNN weight, and σ is the activation function. Next we further explain how to compute the
embedding vectors in three steps.
Step 1 - Represent Graph Structure.We first represent the structural information of each column
ci as G(ci) = (V (ci),D(ci), E), where (i) we extract column and query features and encode them
into a vertex vector V (ci) (Section 3.1); (ii) we use the edge matrix E to denote the graph structure
(Section 3.2); (iii) the neighborhood matrix of ci , D(ci), is computed by E(ci)

T · V based on the
joined columns of ci .

R2.Minor Step 2 - Embed Neighbor Information. Next we embed features within G(ci) with graph con-
volutions. (i) We add self-connection relationships into the edge matrix E, because the column
features of itself are most important to partition benefits (e.g., tuple selectivity). We normalize
values in the edge matrix E into [0, 1) and then sum the identity matrix In with the edge matrix, i.e.,
E ′ = E + I , where I (i, j) = 1 if i = j and I (i, j) = 0 if i , j . (ii) And then we embed join features into
the vertex vector. We take E ′ as a spectral filter on V (ci), i.e., E ′ ∗V (ci) ≈ D(ci)

− 1
2 E ′D(ci)

− 1
2V (ci).

(iii) Next we propagate the embedded vertices across the graph neural network, which assigns the
network weights ω to the vertices and outputs an embedding vector H (ci). We iteratively update
the network weights to maximize the partitioning benefits. To enhance the embedding efficiency,
we approximate ω · H (vi) with a truncated expansion by Chebyshev polynomials Tz (H) [25, 65],
i.e., ωH ≈

∑
z=0 θ

′zTz (H), where H is the embedded vertex vector, θ ′z is the z-th weight value, and
the Chebyshev polynomials Tz (H) is recursively defined as Tz (x) = 2Tz−1(x) −Tz−2(x) (T0(x) = 1,
T1(x) = x).

1https://github.com/TsinghuaDatabaseGroup/AI4DBCode/DatabasePartition

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Step 3 - Embed into Fixed-Length Vector. Finally we apply an activation function to convert the
embedded features into a fixed-length vector. It has two benefits: (i) Activation function conducts
non-linear transformation and can derive partitioning features from the embedded graph features,
most of which are unrelated to performance objectives; (ii) It is easier to generalize a well-trained
model to different graphs with fixed-length vectors. To this end, we use ReLU, an activation function
in the form of max(L1(hi), 0), where hi is an embedded feature and

R2.Minor
L1 denotes the L1 norm, to

introduce non-linearity transformations from spectral domain to embedding domain. For example,
suppose higher throughput is expected, ideally queries are distributed based on the accessed/joined
columns and there are no remote joins across different nodes.R3.O10 Hence, ReLU decreases weight
penalties on the vertices with high degrees, which are more likely to be queried and may reduce
more remote joins.
4.3 Key Selection Algorithm
Next we select partitioning keys from the embedding vectors, which encode local graph structures
that maximize partitioning benefits for every vertex. We compute the relevance of each column
to the embedding vectors (overall partitioning benefits), and select partitioning keys from the
relevance distribution.
Taylor Decomposition. The first problem is how to compute the proportion of any column in
all the embedding vectors? For an embedding vector H (ci), we only know that the vector comes
from ci together with some joined columns and represents potential benefits using ci , but which
columns are encoded and how much they contribute to the embedding vector are unclear, because
the learning of network weights acts like “black box” [27] and it is hard to obtain the relations
between embeddings.
To address this issue, we utilize Taylor decomposition [6, 38] to compute the relevance of each

column ci to all the embedding vectors in the graph neural network reversely and aggregate them
as the overall partitioning benefit R(ci). Taking the embedding vectors asX = {x1, x2, ..., xn}, where
n is the column number, and the total relevance of the embedding vectors as R = {R1,R2, ...,Rn},
we reversely compute the relevance of every neural unit in the GNN based on the layer-wise
propagation rule. (i) In the last layer L, we denote the relevance of each neural unit as 1, i.e.,
{RLi = Ri = 1|∀i ∈ [1,n]}, which denotes that the relevance has not been distributed. (ii) For any
other layer l , we denote the relevance passing from layer (l+1) to layer l asR(l+1)

i =
∑

j ∈layer l R
(l+1,l)
i→j ,

where R(l+1,l)
i→j represents the relevance passing from neural unit (l + 1, i) in layer l + 1 to neural

unit (l, j) in layer l . Hence, we can take R(l+1)
i as a continuous and derivable function and compute

the partial-derivative of R(l+1)
i in neural unit (l, j) as the relevance, i.e.,

Rlj (x) =
∑

i ∈layer l+1

∂R(l+1)
i

∂x j
|x j · (x j − x̂ j) (3)

where x̂ denotes the “background” features that do not affect partitioning. (xi − x̂i) represents the
changes in the embedding before/after the neural unit (l, j). Here we take x̂ as 0-value vectors which
have equal size to the vertex vectors x . This equation defines the propagation rule of relevance
from layer (l + 1) to layer l .

By following this layer-wise propagation rule from the output to the input layer, we redistribute
the relevance of all the embedding vectors onto input columns, which we take as the overall
partitioning benefits, i.e., {R(c1),R(c2), ...,R(cn)}. High benefit reflects the column is promising to
reduce more global scans and remote joins.
Partitioning Key Selection. After obtaining partitioning benefits of each column, i.e., {R(ci)},
we use multinomial logistic regression, a binary classification method, to predict the probability of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

using a column c j as the key, i.e., Pr (R(ck)) = eβk R(ck)

1+
∑
i e

βk R(ck) , where {βj } are learnable weights that
simulate the joint probability distribution when using different columns. It inputs {R(c1),R(c2), ...,
R(cn)} and outputs 0 (Pr < 0.5)/1 (Pr > 0.5) for each column, where 1 represents c j is selected and
0 otherwise.R3.O10 For example, in Figure 4, S2 is selected as S2 is encoded into the embedding vectors of
both S2 and the two adjacent columns L1,2 with high relevance.

4.4 Model Training

Training Data. The training data is a set of quadruples ⟨Qd ,Dd ,Cd , Pd ⟩, where Qd is a set of
queries, Dd is a set of tables, Cd is the set of columns, and Pd is the performance metrics. When
the real performance is not available before partition, we use the Evaluation Model to estimate the
performance (see Section 5).
Training Procedure. We iteratively train the GNN model (Taylor decomposition is a classic
technique and does not need training) with different combinations of queries and data. In each
iteration, we first sample 60% generated predicates as the queries and generate tables whose data
size is selected within 10-100GB. And then we build the column graph, select columns from the
column graph, and gain the estimated performance from the Evaluation Model in real time. Next we
compute the performance changes, i.e., ∆v = C1

Tt−T0
Tt
+C2

L0−Lt
L0

, where Tt and Lt denote the query
throughput and latency with selected columns as partitioning keys, andT0 and L0 denote the query
throughput and latency on non-partitioned tables, and C1 and C2 are the coefficients that are set
based on user requirements. Then we update the network weights {ωi j } via gradient descent, i.e.,

R2.O5 ∆ωi j = µ/(∆v + ε), where µ controls the update rate and ε is a small number like 1 × 10−6. This
equation explores better partitioning keys towards the optimal direction.
We terminate the training when the performance converges or we have arrived the maximum

iteration number. Then we test the performance on the test set. If the performance improvement
is not good enough, we continue to train the model on this training set; otherwise, the model is
converged on this workload and we enter next iteration or complete training. Note that we adopt
batch gradient descent to enhance training efficiency, which selects partitioning keys for several
workloads together, and computes the gradient and updates the GNN network weights in batch.

5 PERFORMANCE EVALUATION MODEL
We first introduce the Evaluation Model in Section 5.1. Then we explain the procedure of model
training in Section 5.2.

5.1 Evaluation Model
There are two challenges in performance estimation. First, it is expensive to actually partition the
database every time when selecting new partitioning keys. Second, existing performance evaluation
models cannot effectively estimate the performance [19, 22, 48], because (i) they rely on query
plans from optimizers, which are not available before partition; and (ii) they are not aware of
data/query distributions across nodes, which are critical on a partitioned database. To address these
challenges, we first generate a k-node sample graph, where the vertices are sampled tuples and the
edges are join correlations between tuples, and k denotes the node number. Then we utilize graph
learning to estimate the partitioning performance using the k-node sample graph.
k-Node Sample Graph. To model a partitioning strategy, we first sample tuples from tables using
stratified sampling, which can reflect the data distribution with limited tuples. And then we allocate
the sampled tuples into k nodes based on the selected keys and hash partitioning function. For
example, for the sampled tables supplier and lineitem in Figure ??, if we partition on their primary
columns (a partitioning strategy), 5 tuples are allocated in node P0 and 3 tuples in node P1. Next,
we compute the edge weights (join frequencies) and vertex weights as discussed in Section 3.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Given a subgraph, the vertex features are the weighted frequencies of local operations (i.e., filters,
aggregates, writes), and the edges are the join frequencies across tuples in the same node. R3.O7Thus,
we generate a k-Node Sample Graph that represents the query and data distribution on k nodes.
Note that the execution cost of local joins in a node and that across nodes can be different and we
explain how to use graph embedding to learn the different costs with trainable network weights.
Performance Evaluation. There are two challenges in evaluating the performance based on the
k-node sample graph. First, edges between different nodes are more expensive than edges within the
same node, and we separately learn the actual weights of edges in the same node and edges across
different nodes. Second, we cannot directly map the k-node sample graphs into query performance,
which are of non-linear relations and can be affected by factors like configurations. Hence, we first
embed the k-node sample graph into an embedding vector; and then use deep learning to map the
performance on the sampled tuples into that on the whole datasets.
Step 1 - Representation of Single Node.We separately aggregate the features within the sub-
graph of each node (e.g., local joins/selects/writes) and embed them into k embedding vectorsH (Pi)
by multiplying the edge weight matrix, vertex matrix of each node with the globally-shared graph
network weights, which represent the data scales (e.g, the number of vertices) and computation
costs of local operations (e.g., the edges of vertices in the same subgraph).
Step 2 - Representation of Multiple Nodes. Next we generate a k-vertex graph, which is in the
form of a compound vertex matrix Ṽ = [H (P1),H (P2), ...,H (Pk)] and an edge matrix Ẽ. (i) We first
conduct convolution on Ṽ and Ẽ to embrace remote join relations into partitioning vectors, denoted
as H (P) = Ẽ ∗ Ṽ · ω̃, where ω̃ is the network weight. (ii) We conductmax poolinд on H (P) to pool
up the partitioning vectors into a graph vector, i.e., taking the maximum values in each feature
of H (P), to represent the overall query costs within the k-node sample graph. The reason of using
max poolinд is the query latency on nodes depends on the slowest multiple joins and correlated
local select operations.
Step 3 - Query Performance Mapping. The graph vector encodes features within the k-node
sample graph, which contains similar data and query distribution as that on the whole datasets.
Hence, we further use a fully-connected (FC) layer, with ReLU as the activation function, to
map the graph vector on sampled tuples into the partitioning performance on the whole dataset.
The FC layer aggregates the features of the graph vector with non-linear transformations and
approximates performance metrics by learning the network weights based on deviation from the
actual performance.
Remark. Evaluation Model supports the case k is changed, because our model reflects partitioning
differences in the graph, i.e., data/query allocation across nodes, and can adapt to structural changes
by pooling the k node vectors and finetuning the graph embedding weights (e.g., joins cause
changes in the edge weight matrix).
5.2 Training for Evaluation Model
We first train the Evaluation Model with some partitioning strategies extracted from the real-world
system logs and simulated on sample datasets (offline training); and then we utilize the Evaluation
Model to estimate the performance of Partitioning Model on the selected partitioning keys. After
partitioning the database, we use the real performance to fine-tune Evaluation Model (online
training).
Offline Training. We first train the Evaluation Model with some partitioning strategies and
generalize it to other strategies. First, we obtain training data D in two ways. R1.O6

R2.O2
R3.O8

(i) We generate 1000
training samples, where each sample includes queries, partitioning strategies, and the performance
of running the SQL queries on the partitioning strategies (Section 6.1). These samples are collected

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Table 1. The Performance-Critical Hyper-Parameters.

Component Parameter Value

Partitioning
Model

GNN Layers 2-3
#-vertices 1.12 × |max columns |
node_dim 7

Evaluation
Model

GNN Layers 1
#-vertices |sampled tuples |
node_dim 3

Common
Parameters

Sample Ratio 0.01%
Dropout 0.5

from various settings with different queries, datasets, partitions, etc. It takes 2.3 hours to generate
the samples. These samples are shared by different partitioning tasks and the generation time is
not counted into the partitioning latency. (ii)We extract 800 workloads from the logs of 200 real
clusters with 8000 nodes (the largest cluster has 512 nodes). Since the clusters rarely change the
partitioning strategies, for eachworkload, we iteratively utilize the PartitioningModel and Evaluation
Model (trained on the 1000 synthesized samples) to select new keys (partitioning strategies) and
evaluate the performance scores. We select 500 high-quality partitioning strategies (with higher
performance) for each dataset to generate training samples. Second, given a training sample
⟨Qd ,Dd ,Cd , Pd ⟩, where Qd denotes queries, Dd denotes dataset, Cd is the selected columns, and
Pd is the performance metrics like latency, we generate k-node sample graph based on ⟨Qd ,Dd ,Cd ⟩,
utilize the Evaluation Model to estimate the performance, and update network weights with the
loss of estimated performance and actual performance. The model converges when the loss values
change little.
Loss Function. As there may be many noises in the performance metrics, which are brought
by non-partitioning factors like different join orders and exclusive locks, we utilize a robust loss
function Least Mean Log Squares (LMLS) [26] to reduce the side effects of these noises in real
performance yi by gradually decreasing the impact of large errors and computing an average of all
training samples, i.e., LossLMLS =

1
n
∑n

i=1 log(1 +
1
2 |yi − f (xi)|), where n is the size of the training

set and f (xi) is the evaluated performance.
Online Training. Next we fine-tune the Evaluation Model for evaluating different partitioning
strategies. For a new partitioning request, the Evaluation Model inputs the keys selected by the
Partitioning Model and re-computes a new k-node sample graph (counted in latency)

R2.O5
. Then Eval-

uation Model estimates the latency Lt and throughput Tt based on the k-node sample graphs. If
the computed feedback (Section 4.4) is high enough, we partition tables with the selected keys,
execute queries, and obtain the real performance on these nodes to optimize the network weights
in Evaluation Model.

6 EXPERIMENTS
Our database partitioning system Grep has been deployed into a commercial distributed database
GaussDB [23]. We evaluate Grep from three aspects. (i) We compare the performance of the
Partitioning Model with an enumeration method (EM) that enumerates candidate partitioning keys,
and two state-of-the-art methods [22, 59]. (ii)We evaluate the accuracy and efficiency of Evaluation
Model. (iii)We evaluate the adaptability of Grep on different workloads.
6.1 Experiment Setting
We implement Grep using Pytorch and utilize libraries such as psycopg2, scikit-learn, and numpy
to interact with databases and pre-process data. We train the neural networks (GNNs) on a Titan
RTX 2080Ti GPU with 11GB frame buffer. We conduct our experiments on: (1) An open-sourced

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

distributed database Postgres-XL with three compute nodes on two servers (16GB RAM, 256GB
disk, 4Ghz CPU); (2) A commercial distributed database with six compute nodes on three servers
(256GB RAM, 2TB disk, 3Ghz CPU).
Datasets.We use three datasets. (1) TPC-H is an OLAP benchmark with 50G data. It contains 61
columns and 3,224 synthetic queries with 1-5 joins; (2) JOB is an OLAP benchmark [30] with 13.1G
data. It uses a real-world dataset IMDB, which contains 134 columns and 20,187 synthesis queries
with 1-8 joins; (3) XuetangX is a real-world OLTP workload 2 for online education with 132.5G data.
We take 14 tables with 204 columns and 22,000 real queries with 7-45 columns; (4) ICBC R1.O5is a real
banking database with 23 tables and 30K queries. The ICBC tables contain 29-2.5M rows and 5-66
columns. To train the networks, we split the generated training data into training/validation/test
sets by 8:1:1 (10-fold cross-validation).
Hyper-Parameter Tuning. The hyper-parameters in Grep and recommended values are summa-
rized in Table 1. First, we utilize the tuning tools like AutoGL 3 to search for the suitable GNN
hyper-parameters. Second, we empirically tune other hyper-parameters (e.g., sample ratios in the
evaluation model) to report the best performance. For DRL, we also tune the hyper-parameters (e.g.,
5 · 10−4 for the learning rate) as discussed in [22]. R1.O1

Training Data Generation. Besides the samples collected from real-world clusters (Section 5.1),
we synthesize more training data based on the data and join features to pre-train the Evaluation
Model. Taking TPC-H as an example, each synthetic query is generated by (i) picking 1-8 joined
tables from the 50 join predicates; (ii) picking 1-61 columns from the 74 selection predicates
and supplementing tables in the picked columns; (iii) concatenating all selected predicates with
“AND”/“OR” and generating a query statement. To train the Evaluation Model, we run queries under
typical partitioning strategies (e.g., PK-FK) to generate the training samples (Section 5.2). It takes
2.3 hours to generate 1000 training samples, where the features are queries and partitions, and the
label is performance score. R1.O6

R2.O2
R3.O8

A well-trained Evaluation Model together with historical samples can
be reused for Partitioning Model, which estimates based on the pooling of all the node vectors and
can support training samples with various numbers of graph nodes.
Partitioning Metrics. (1) Query Performance includes the total latency and average throughput. In
some cases, throughput is very important, e.g., OLTP workloads; in some other cases, query latency
is more important, e.g., OLAP workloads. We use query performance as a general optimization
objective; (2) Partitioning Latency: we use partitioning latency to estimate the overhead caused by
database partitioning; (3) Training Time: training time includes data preparation (e.g., predicates
parsing), and model training. Partitioning Model finishes training if the performance estimated by
Evaluation Model on the test set meets the requirements (e.g., 20% latency reduction) or arriving
the maximum iteration number.
Evaluation Metrics.We evaluate the Evaluation Model using evaluation latency, error rate and
training time. Since the actual performance may be affected by factors that are not considered
in database partitioning (e.g., exclusive clocks, network fluctuations), we use the mean error rate
(MER) to estimate the error rate, formalized as 1

N
∑N

i=1
|Yi−f (Xi) |

Yi
, where N denotes the number

of samples in the test set, Yi and f (Xi) are the actual/evaluated performance values of sample Xi
respectively. Note that we use LMLS to train Evaluation Model (Section 5.2) and useMER to validate
its accuracy.
Baseline Methods.We implement state-of-the-art studies to compare the performance of Parti-
tioning Model and Evaluation Model. For Partitioning Model, we compare with three baselines:

2https://www.xuetangx.com/global
3https://github.com/THUMNLab/AutoGL

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

1. Enumeration-based method (Brute-force): We implement a basic enumeration-based
method by enumerating every possible column combination as partitioning keys and utilizing the
Evaluation Model to estimate the performance of these keys (on the sampled tuples) and pick the op-
timal solution.R1.O6

R2.O4
Brute-force can find the high-quality partitioning strategy but is time-consuming.

For example, even if Evaluation Model takes less than 0.5s for a partitioning strategy, Brute-force
requires hours to days to partition a dataset with 100+ columns.
2. Heuristic Search method (Heuristic): Heuristic search method [59] builds a table-level

graph where vertices are tables and edges are foreign key constraints between tables. To optimize
queries that can be executed locally per node, it searches for maximum spanning tree on the
table-level graph, and partitions tables based on the foreign keys in the tree. However, it cannot
consider column features and take the edge weight as the size of smaller table. It allows one column
as a partitioning key for each table, but cannot select multiple columns as the partitioning key.

3. Deep-reinforcement-learning-based method (DRL): The DRL-based method [22] encodes
the features of tables, samples queries into a binary vector st and iteratively selects an action to
replicate/partition a table with the maximum estimated reward to st . It adopts a greedy strategy,
which searches for a table chain with high reward. Besides, it also requires single-column partition-
ing. Note in the Postgres-XL cluster we train a RL agent for each benchmark, because DRL requires
a cluster of agents to adapt to different workloads and tables.

For partitioning performance evaluation, we compare the performance (e.g, evaluation latency,
error rate, training time) of Evaluation Model with two baselines:

1. DL-based cost model (NNCost): We implement a neural-network (NN) based cost model [22].
NNCost is a three-layer dense network, which inputs a query and the selected columns and outputs
the estimated latency. It works for single queries and cannot capture query/data distributions.
2. TLSTM-based cost model (TLSTMCost): We implement a TLSTM-based cost model [48],

which estimates the query cost on query plans. For each query operator, it uses a Long Short-term
Memory (LSTM) unit to estimate the execution cost, where the inputs are the operator features
(e.g., predicates, tables) and the intermediate results of its child operators, and the output is the
predicted cost. These units are organized in the tree structure to get the total query cost. However,
TLSTMCost requires to partition the database, which is time-consuming; and it takes long time to
execute the TLSTM model.

6.2 Performance Comparison
First we compare our Partitioning Model with (i) three state-of-the-art methods, i.e., enumeration-
based method (Brute-force), heuristic method (Heuristic) [59], DRL-based method (DRL) [22];
(ii) Grep without attention (Grep(-A)) and Grep without Taylor Decomposition (Grep(-T)).R1.O2 On
Postgres-XL, we compare the query performance, partitioning latency, and training time with
these methods on the test workloads of TPC-H (Table 2), JOB (Table 3), and XuetangX (Table 4)
respectively. On the commercial database, we showcase the superior latency reduction of the origin
22 TPC-H queries and queries in two real banking scenarios.
Query Performance on Postgres-XL. Grep outperforms Heuristic and DRL in all the cases and
achieves similar performance as Brute-force. For example, Grep gains over 68.23% throughput
improvement and 36.81% total latency reduction than DRL. The reasons are three-fold. (i) Grep
encodes column features and query relations (e.g., read frequencies, multi-join costs) between
columns as input. These features are important to partitioning-key selection but Heuristic only
takes the table-level graph as input and DRL only encodes the query template frequencies as query
features. For example, p_branch is frequently accessed by the TPC-H queries but has low distinct
value ratio (around 0.001). So Grep considers the two factors and picks p_partkey and p_branch
as the partitioning key, while others cannot. (ii) Grep uses the graph neural network to learn the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Brute-force

DRL
Grep

98.8

Heuristic

JOBTPC-H XuetangX

61%
736

1383

51%
6141

33%

Th
ro

ug
hp

ut
 (t

xn
/m

in
)

629
31.7 58.4

4936

4076

(a) Average Throughput

265

219

138

JOBTPC-H XuetangX

99%

11.7

8.9 0.42 0.48

La
te

nc
y

(s
)

5.9
0.43

114%

19%

Brute-force

DRL
Grep

Heuristic

(b) Total Latency

TPC-H JOB XuetangX

200

201

202

Pa
rt

it
io

ni
ng

 L
at

en
cy

 (
h)

0.31 0.26 0.33

0.79 0.83
0.56

0.24 0.23 0.24

13.32 10.64

39.26

Brute-force
Heuristic

DRL
Grep

(c) Partitioning Latency

Fig. 5. Performance Comparison with Baselines.

Table 2. Latency Reduction (%) on
the Test Set of TPC-H.

Methods 90th 95th 99th min mean
Brute-force 58.23 54.31 50.02 42.13 67.11
Heuristic 27.79 21.46 13.27 6.38 32.82

DRL 35.12 33.17 28.63 23.41 44.61
Grep 57.12 54.01 48.13 41.79 65.12

Grep(-A) 49.39 48.59 47.02 37.23 54.27
Grep(-T) 51.24 49.38 47.31 38.19 56.34

Table 3. Latency Reduction (%) on
the Test Set of JOB.

Methods 90th 95th 99th min mean
Brute-force 60.31 58.04 55.10 53.32 71.32
Heuristic 23.32 18.72 18.03 15.31 34.10

DRL 37.71 33.42 30.12 28.13 50.06
Grep 59.93 56.73 54.23 52.17 66.91

Grep(-A) 53.23 49.12 41.17 38.26 57.31
Grep(-T) 54.32 49.82 42.28 40.24 61.93

Table 4. Throughput Increase (%)
on the Test Set of XuetangX.

Methods 90th 95th 99th min mean
Brute-force 473.3 466.8 441.6 425.2 527.3
Heuristic 288.6 246.6 159.2 123.2 391.5

DRL 316.5 250.1 216.4 198.0 437.3
Grep 460.5 442.5 416.5 403.6 511.3

Grep(-A) 391.2 377.1 352.2 324.4 462.2
Grep(-T) 423.2 402.8 391.2 355.8 485.8

maximal partitioning benefits of columns in the column graph, which involve factors like complex
join patterns, data and query features. GNN can embed these three features together with graph
convolutional operations and learned neural weights, while Heuristic selects FK-PK constraints
as partitioning keys based on the table sizes and DRL denotes column features as 1(selected)/0(not
selected), which cause sub-optimal partitioning strategies in complex cases. (iii) Brute-force
enumerates all the partitioning strategies and achieves the best performance, but it is resource-
consuming (e.g., taking up machines for tens of hours) and unaffordable in practice. Grep achieves
similar performance as Brute-force, because with n columns, Grep generates n embedding vectors
to approximate the origin complex column graph.

R1.O2
R2.O6
R3.O5

Besides, Grep also outperforms Grep(-A) and
Grep(-T). First, from the experimental results, we find Grep selects fewer columns on tables like
lineitem, partsupp (1.9 columns for each table on average) and gains much better performance. For
example, for the lineitem table, Grep selects 2 columns as the key, while Grep(-A) and Grep(-T)
both select 4 columns but cause negative effects, because Grep(-A) assigns the same initial weights
for the input columns and Grep(-T) takes much longer time to learn the relations between the
performance and complex embedding features (e.g., 512 neurons for the hidden layer), which both
fail to remove useless columns from the final results. Thus, it is vital to prioritize important columns
with attention and filter embedding features (into 1-d relevance) with Taylor Decomposition,
especially for new columns without prior knowledge. Second, Grep(-A) achieves a bit worse
performance than Grep(-T), because identifying important columns could be more beneficial than

using complex algorithms.

Query Performance on A Commercial Database.We separately test on standard (TPC-H) and
real workload (ICBC). On TPC-H, as shown in Figure 6, Grep reduces the execution time of 17
queries than DBA, ranging from 3.7% (Q7) to 73.5% (Q11). Because DBA either uses primary keys or
replicates the tables, while Grep selects more costly join columns and can gain higher performance.
For example, Grep selects s_nationkey for supplier that occurs in nested queries and is joined with
more columns. Besides, Grep partitions nation rather than replicating, because there are many joins
on r_regionkey and it is more efficient to partition reдion into smaller parts on the join column
and join these parts with other tables on different nodes. Second, Grep obtains similar performance
as DBA on five queries, because queries like Q1 only access primary columns and both DBA and
Grep can gain relatively good performance. On a real scenario ICBC, R1.O5there are 30K queries and
Grep achieves 68% higher throughput. Specifically, we show some representative queries in Table 5.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ex
ec
ut
io
n
Ti
m
e
(s
)

DBA Grep

Fig. 6. Performance of TPC-HQueries (on Commercial Database). Grep gains 14.2% reduction in total.

Table 5. Latency Reduction of 5 Example ICBCQueries.

Query Tokens Execution Time (DBA) Execution Time (Grep)
Q ′
1 95 0.144s 0.130s (9.7% ↓)

Q ′
2 508 0.178s 0.131s (26.4% ↓)

Q ′
3 514 5.577s 0.642s (88.5% ↓)

Q ′
4 433 0.155s 0.124s (20.0% ↓)

Q ′
5 738 0.211s 0.131s (37.9% ↓)

These ICBC queries are very complex, which involve at least 6 tables, 25 columns, 5 joins, and
4 subqueries, and they cannot be well optimized by the DBA. Instead, Grep can judiciously select
partitioning keys and achieve 9.7%-88.5% latency reduction for these queries (Table 5). The reasons
are two-fold. First, the complex queries involve multiple joins on relatively small tables. Similar
to TPC-H, DBA replicates these tables, while Grep partitions on join columns, and concurrently
joins the smaller parts of these tables on different nodes so as to enhance query execution. Second,
rather than greedily selecting columns with high join costs, Grep selects column combinations
with high global benefits, which are computed based on the overall column graph structures (e.g.,
single joins in the edges and point queries in the vertices).
Partitioning Overhead. Grep outperforms Brute-force and DRL in all cases and achieves similar
partitioning latency as Heuristic. For Heuristic, it has the least partitioning latency for two
reasons. (i) It searches on the table-level graph, whose vertices (tables) are fewer than column graph.
(ii) It directly outputs the results and does not optimize the solution based on the performance
feedback. On the contrary, Grep improves partitioning efficiency from three aspects: (i) Grep utilizes
an attention mechanism to reduce the number of iterations in order to achieve fast convergence; (ii)
Grep concurrently embeds all the columns using the graph neural networks rather than one vertex
at a time, where all the vertices share the same neural weights and can avoid local optimum; (iii)
Grep selects partitioning keys based on the relevance of columns to the n embedded vertex vectors,
which is further simplified and mainly reserves partition-related features. DRL takes relatively long
time to generate them-column sequence, wherem is the number of tables. Brute-force takes the
longest time by enumerating all partitioning strategies even if utilizing the Evaluation Model.
Training Time.We train Grep and DRL on the training set of TPC-H from scratch, and Grep takes
much less training time than DRL (0.64 hours for Grep and 13.2 hours for DRL). The reasons are
two-fold. First, the training of Grep is much more efficient. In each iteration, Grep partitions each
table and gains the overall performance, while DRL only partitions for a table and cannot gain the
reward until it finishes all the nodes. Second, as discussed in Section 6.3, GrepCost in Grep can
estimate more accurate partitioning performance than NNCost in DRL, and thus Grep can optimize
the GNN policy (neural weights) more efficiently and select a better partitioning strategy than DRL.
Summary. Grep outperforms state-of-the-arts methods in terms of both query performance and
partitioning overhead. Brute-force takes longest partitioning latency (over 45.1x slower than
Grep) and is not practical in real scenarios; and Heuristic gains the shortest latency but has the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

0

5

10

15

20

25

30

35
Ev

al
ua

ti
on

 L
at

en
cy

 (
m

in
)

1.2

21.3

3.2

NNCost TLSTMCost GrepCost

(a) Evaluation Latency

0

4

8

12

16

20

24

Er
ro

r
Ra

te
 (

%
)

7.327.19

13.37

NNCost TLSTMCost GrepCost

(b) Error Rate

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 T
im

e
(h

)

5.32
8.46

25.37

NNCost TLSTMCost GrepCost

(c) Training Time

Fig. 7. Performance Evaluation of TPC-H workloads on Postgres-XL.
worst performance (over 2.1x worse in throughput and 48.7% worse in latency than Grep). Grep
gains similar performance as Brute-force and similar partitioning latency as Heuristic and
outperforms DRL in all the three aspects.
6.3 Evaluation on Performance Evaluation
Next we evaluate our Evaluation Model, which estimates performance for different partitioning
strategies. We compare evaluation latency, accuracy and training time (GrepCost) with NNCost

and TLSTMCost. We train each method with the training set of TPC-H on Postgres-XL and the
validation results are shown in Figure 7.
Evaluation Latency. It is vital to quickly get relatively accurate partition-performance feedback,
which is used to evaluate the partitioning strategies or train the model. As shown in Figure 7(a),
GrepCost achieves the lowest evaluation latency, 62.5% lower than NNCost and 99.0% lower than
TLSTMCost. The reasons are two-fold. First, GrepCost concurrently estimates performance within
nodes and that across nodes in graph level, which takes seconds, while the other two methods work
for single queries and take longer time to enumerate the costs of all the queries. Second, GrepCost
utilizes sampled tuples to estimate performance and does not partition all the datasets, while
TLSTMCost relies on query plans and needs to actually partition the database, which takes over 20
mins to load the 50GB TPC-H data. Besides, although NNCost achieves relatively low latency, its
error rate is much worse than GrepCost and cannot provide reliable feedback for Partitioning Model.
Evaluation Accuracy. First, GrepCost achieves much lower error rate than NNCost, because
NNCost only inputs a single query and the selected columns, which cannot capture query and data
allocation information and cause information loss. Instead, our model simulates nodes on sampled
tuples with the k-node sample graph and learns the overall performance by embedding the whole
graph. Second, the error rate of GrepCost is a bit higher than TLSTMCost, because TLSTMCost works
on physical operators and captures detailed execution features. However, there are two problems
in TLSTMCost for database partition. (i) TLSTMCost requires actual database partitioning to obtain
query plans, which are costly and impractical; (ii) TLSTMCost estimates based on query features
and cannot capture differences in data allocation caused by different partitioning strategies.
Training Time. GrepCost takes the least training time. The reasons are two-fold. First, Grep
extracts key data features (e.g., tuples within different nodes) and query features (e.g., queries
within each node and across nodes) as an input graph and can learn from graph changes under
different partitioning strategies; while other methods are unaware of partition changes and take
much more iterations to learn the hidden partitioning factors. Second, GrepCost computes loss
function (LMLS) based on the overall performance of all queries, which helps reduce noises caused
by single queries, and TLSTMCost takes longer time to converge for single queries.
Summary. GrepCost outperforms state-of-the-art performance evaluation methods in latency by
62.5%–99.0% and training time by 37.1%–79.0%, and achieves similar error rate as the first-partition-
then-evaluation method TLSTMCost.
6.4 Evaluation on Hyper-Parameters
Next we evaluate the impact of two hyper-parameters to the performance of Grep on TPC-H, where
layer numbers affect the feature embedding capability of the GNN model and sample rates

R1.O2
affect

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

1 2 3 4 5
40.0%

50.0%

60.0%

70.0%

La
te

nc
y

Re
du

ct
io

n mean

99th

(a) Layer Number
0.001% 0.01% 0.1% 1% 10%

0.0%

20.0%

40.0%

60.0%

80.0%

La
te

nc
y

Re
du

ct
io

n

0

5

10

15

Pa
rt

it
io

ni
ng

La
te

nc
y

(h
)

(b) Sample Rate
Fig. 8. The Effectiveness of Hyper-Parameters.

the accuracy of the Evaluation Model. We report the average latency reduction of our method on
running TPC-H queries (Figure 8).
Layer Numbers. From Figure 8 (a), we have two observations. First, as adding more hidden layers
when the layer number is smaller than 3, the performance increases, because the column features
can be captured with one GNN layer but other important features like multi-joins need to be
captured with 2-3 GNN layers. Second, when the layer number is larger than 3, the new embedding
features make minor contributions but incur higher overhead. Thus, Grep adopts 2 layers to balance
performance and training overhead.
Sample Rates. As shown in Figure 8 (b), Grep achieves better performance with larger sample
rates. This is because we can sample many more tuples to improve the accuracy of Evaluation Model,
which better approximate the real data distribution and could capture complicated partitioning
problems (e.g., data skew cannot be identified with too few tuples). And Partitioning Model can
efficiently select high-quality keys based on the accurate evaluations. However, even slightly
increasing the sample ratio may incur millions of additional tuples, which slows down Evaluation

Model and causes great partitioning overhead. Thus, generally we set the sample ratio as 0.01%,
especially for large datasets (e.g., over 50GB).

6.5 Adaptability on Varying Datasets
In real-world scenarios, both queries and tables can change. Hence, we verify the performance
when dataset changes. We conduct two experiments. (1) We use the Partitioning Model trained on
XuetangX (RW) for evaluating TPC-H (RO). (2) We use the Partitioning Model trained on TPC-H
(RO) for evaluating JOB (RO). We plot the estimated performance after 20 minutes and Figure 9
shows the results.R3.O1 We initialize the learned methods with all tested datasets (e.g., 150-d action
vector for DRL, 150 × 150 edge matrix for Grep).
XuetangX to TPC-H.We have two observations. First, Grep outperforms the other three methods
in both latency and throughput, because (i) Grep characterizes data changes into the features of
columns (e.g., table size, tuple selectivity) and query changes into the correlations between columns,
based on which Grep could adapt the learned knowledge to other datasetsR1.O6

R2.O3
(e.g., unique columns

involved in costly joins are more possible to select as the partitioning keys; multiple columns from
the same table on the sample path with high cost are more possible to select as the composite
keys). We can finetune the learned knowledge and use them to recommend new partitioning keys.
While other methods only characterize simple column features (e.g., 0/1 in DRL) and fail to learn
new performance corelation; (ii)Most of Grep features like tuple selectivity (Section 3.1) can be
easily transferred because columns may have similar data distribution and the knowledge learned
on existing columns could be generalized to similar columns. Note the table id is only used to
distinguish tables, and the different values of table id do not need to be transferred; (iii) Since
the embedding relations (e.g., join costs) may change on TPC-H, the evaluation model helps to
finetune the network weights of the selection model by estimating the benefits of selected keys;
(iv) The Evaluation Model adaptively gives accurate feedback based on the tuple/query changes in
k-node sample graph. Instead, DRL assumes data will not change and cannot find good solution in
the new action space within limited time; Heuristic can capture table changes with the table-level

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

0

40

80

120

160

Th
ro

ug
hp

ut
 (

tx
n/

m
in

)

90.01

32.3132.3
47.1

Brute-force
Heuristic

DRL
Grep

(a) XuetangX to TPC-H

0
40
80

120
160
200
240
280
320
360
400
440

La
te

nc
y

(s
)

125.34

281.2268.32246.71

Brute-force
Heuristic

DRL
Grep

(b) XuetangX to TPC-H

0

400

800

1200

1600

2000

2400

2800

Th
ro

ug
hp

ut
 (

tx
n/

m
in

)

1612.5

680.13620.37545.36

Brute-force
Heuristic

DRL
Grep

(c) TPC-H to JOB

0
3
6
9

12
15
18
21
24
27

La
te

nc
y

(s
)

5.3

10.34
11.83

14.52

Brute-force
Heuristic

DRL
Grep

(d) TPC-H to JOB
Fig. 9. Dataset Adaptability on Postgres-XL.

graph and find new PK-FK chain, but it neglects query changes and finds sub-optimal solution.
Second, Grep achieves better query latency than that originally trained on TPC-H, because queries
in XuetangX involve many columns and Grep recommends composite keys for XuetangX. When
migrated to TPC-H, Grep still selects multiple columns and can reduce the total latency by accurately
locating TPC-H queries to desired nodes.
TPC-H to JOB.We reuse the well-trained key selection model on TPC-H for JOB and get similar
results. The main reason is that we pre-train the key selection models to determine beneficial
columns from various graph structures (TPC-H workloads). The pre-trained models can potentially
be useful for JOB workloads. Note that, for JOB, it mainly needs to learn the column features, which
cannot be directly compared by values. Instead, other methods cannot utilize historical partitions
and find sub-optimal solutions.
Summary. Grep can adapt to different datasets using the trained model on a dataset, because Grep
only use the database basic information, e.g., join cost, but does not rely on the query information.

7 RELATEDWORK

Database Partitioning. Most of existing methods horizontally partition data in table level, which
can be divided into three categories: (1) Partitioning-function-based methods [7, 11, 35, 41, 50]
clustered data tuples into blocks based on query predicates and searched for a suitable range
partitioning function that minimized the costs of all the blocks. Besides, there were methods
that aimed to dynamically repartition data based on the join frequencies [35] or transaction
relationships [11]. However, they focused on Hadoop and Spark systems and we need a partitioning
method applicable on any database systems. (2) Foreign-key-based heuristic methods [15, 42, 44, 45,
47, 59]. Eadon et al. [15] proposed to select reference relations in table-level graph and improve data
locality by copying the referenced tuples to the compute nodes of the referencing tuples. However,
this method brought in data redundancy. So Zamanian et al. [59] extended this method to minimize
data replicates by enumerating the costs of all partitioning strategies with maximal data-locality.
Besides, Panos et al. [42] proposed to apply either heuristic or exact algorithms by time limit,
but also selected partitioning keys in table level and can be further optimized. (3) Reinforcement-
learning-based methods [21, 22]. Recently various learning-based methods have been proposed to
optimize database components [9, 12, 24, 28, 31, 31–33, 43, 49, 53–55, 57, 58, 60, 62–65]. For database
partitioning, Hilprecht et al. [22] encoded the tables, query frequencies, foreign keys into a state
vector and used the DRL model to select a key or a replication table at each iteration. However, it
could not adapt to new workloads and the cost model works for single queries and cannot estimate
the partitioning quality. Experimental results showed our method outperforms them in terms of
efficiency, quality and adaptivity (Section 6). RL-based method for vertical partitioning [13] explores
how to split table columns into different partitions so as to optimize the performance on specific
workload. It meets similar problems as that for horizontal partitioning.
Attention on Graph Model. Attention mechanism identifies task-related inputs and can enhance
downstream processing tasks, especially when the graph is large. There are some graph-based
attention methods [29, 37] for tasks like graph classification [14] and visual dialog [46]. To our best
knowledge, this is the first work that uses an attention model to enhance database partitioning.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

Graph Embedding. Graph embedding provides a natural way to learn the representation of a
graph model, which can be largely divided into spectral-based approaches [25, 36, 65] and spatial-
based approaches [39, 40]. In database partitioning, we combine the advantages of spectral and
spatial graph embedding – we learn a partitioning-related representation with the local subgraph,
edge matrix and trainable weights, which efficiently embeds local and global graph features. To
our best knowledge, this is the first work that uses graph embedding for database partitioning.

8 CONCLUSION AND FUTUREWORK
In this paper we proposed a graph learning based database partitioning system.We proposed a graph
model to represent data and queries, where vertices are columns and edges are column correlations.
We computed the embeddings of the graph and used the embeddings to select partitioning keys.
To improve the training efficiency, we proposed a learned evaluation model that estimated the
performance of a partitioning strategy without needing to actually partition the data. Experimental
results showed that our method outperformed state-of-the-art studies.
There are some open problems. First, Grep focuses on partitioning a centralized database to a

distributed database, which is conducted offline and not sensitive to partitioning overhead. For
online database repartitioning, we should design an adaptive partitioning function (policy) that
considers the re-partitioning cost. Second, we can consider more parititioning functions, e.g., range,
and more partitioning methods, e.g., vertical partitioning.R1.O4

ACKNOWLEDGEMENTS
This paper was supported by NSF of China (61925205, 62232009, 62102215), Huawei, TAL education,
and Beijing National Research Center for Information Science and Technology (BNRist).

REFERENCES
[1] [n. d.]. aws.amazon.com/cn/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-

distribution-styles-and-distribution-keys.
[2] [n. d.]. docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-distribute.
[3] [n. d.]. https://www.ibm.com/docs/en/db2-warehouse?topic=database-choosing-hash-distribution-key.
[4] [n. d.]. https://www.snowflake.com/wp-content/uploads/2014/10/A-Detailed-View-Inside-Snowflake.pdf.
[5] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe, Vivek R. Narasayya, and Manoj Syamala.

2004. Database Tuning Advisor for Microsoft SQL Server 2005. In VLDB. 1110–1121. https://doi.org/10.1016/B978-
012088469-8.50097-8

[6] Stephen Bazen and Xavier Joutard. 2013. The Taylor decomposition: A unified generalization of the Oaxaca method to
nonlinear models. tech. rep. (2013).

[7] Martin Boissier and Kurzynski Daniel. 2018. Workload-Driven Horizontal Partitioning and Pruning for Large HTAP
Systems. In ICDE. https://doi.org/10.1109/ICDEW.2018.00026

[8] Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. 1999. The maximum clique problem. In
Handbook of combinatorial optimization. Springer, 1–74.

[9] Baoqing Cai, Yu Liu, Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua Li, Bin Cheng, Jie Yang, and Jiashu Xing.
2022. HUNTER: An Online Cloud Database Hybrid Tuning System for Personalized Requirements. In SIGMOD. ACM,
646–659. https://doi.org/10.1145/3514221.3517882

[10] Surajit Chaudhuri and Vivek R. Narasayya. 2007. Self-Tuning Database Systems: A Decade of Progress. In VLDB. ACM,
3–14. http://www.vldb.org/conf/2007/papers/special/p3-chaudhuri.pdf

[11] Carlo Curino, Yang Zhang, Evan P. C. Jones, and et al. 2010. Schism: a Workload-Driven Approach to Database
Replication and Partitioning. VLDB (2010). https://doi.org/10.14778/1920841.1920853

[12] Jialin Ding, Ryan C. Marcus, Andreas Kipf, Vikram Nathan, Aniruddha Nrusimha, Kapil Vaidya, Alexander van Renen,
and Tim Kraska. 2022. SageDB: An Instance-Optimized Data Analytics System. Proc. VLDB Endow. 15, 13 (2022),
4062–4078. https://www.vldb.org/pvldb/vol15/p4062-ding.pdf

[13] Gabriel Campero Durand, Rufat Piriyev, Marcus Pinnecke, David Broneske, Balasubramanian Gurumurthy, and Gunter
Saake. 2019. Automated Vertical Partitioning with Deep Reinforcement Learning. In ADBIS (Communications

in Computer and Information Science, Vol. 1064). Springer, 126–134. https://doi.org/10.1007/978-3-030-30278-8_16

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1016/B978-012088469-8.50097-8
https://doi.org/10.1109/ICDEW.2018.00026
https://doi.org/10.1145/3514221.3517882
http://www.vldb.org/conf/2007/papers/special/p3-chaudhuri.pdf
https://doi.org/10.14778/1920841.1920853
https://www.vldb.org/pvldb/vol15/p4062-ding.pdf
https://doi.org/10.1007/978-3-030-30278-8_16

[14] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, and et al. 2015. Convolutional Networks on Graphs
for Learning Molecular Fingerprints. In NIPS. http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-
for-learning-molecular-fingerprints

[15] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, and et al. 2008. Supporting table partitioning by reference in
oracle. In SIGMOD. https://doi.org/10.1145/1376616.1376727

[16] Massimo Franceschet. 2011. PageRank: standing on the shoulders of giants. Commun. ACM (2011). https://doi.org/10.
1145/1953122.1953146

[17] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan O. Pedersen. 2004. Combating Web Spam with TrustRank. In VLDB.
https://doi.org/10.1016/B978-012088469-8.50052-8

[18] Hazar Harmouch and Felix Naumann. 2017. Cardinality Estimation: An Experimental Survey. PVLDB 11, 4 (2017),
499–512. https://doi.org/10.1145/3186728.3164145

[19] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-Tuning, GPU-Accelerated Kernel Density Models for
Multidimensional Selectivity Estimation. In SIGMOD, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.).
ACM, 1477–1492. https://doi.org/10.1145/2723372.2749438

[20] Herodotos Herodotou, Nedyalko Borisov, and Shivnath Babu. 2011. Query optimization techniques for partitioned
tables. In SIGMOD. https://doi.org/10.1145/1989323.1989330

[21] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2019. Towards learning a partitioning advisor with deep
reinforcement learning. In aiDM@SIGMOD. https://doi.org/10.1145/3329859.3329876

[22] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Partitioning Advisor for Cloud Databases. In
SIGMOD. https://doi.org/10.1145/3318464.3389704

[23] Ltd. Huawei Technologies Co. 2022. Basic Knowledge of Database. In Database Principles and Technologies–Based on

Huawei GaussDB. Springer, 41–86.
[24] Stratos Idreos and Tim Kraska. 2019. From Auto-tuning One Size Fits All to Self-designed and Learned Data-intensive

Systems. In SIGMOD, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.).
ACM, 2054–2059. https://doi.org/10.1145/3299869.3314034

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.
https://openreview.net/forum?id=SJU4ayYgl

[26] Miroslaw Kordos and Andrzej Rusiecki. 2016. Reducing noise impact on MLP training - Techniques and algorithms to
provide noise-robustness in MLP network training. Soft Comput. (2016). https://doi.org/10.1007/s00500-015-1690-9

[27] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an AutoTuner for Memory-based
Analytics. In SIGMOD. ACM, 1667–1683. https://doi.org/10.1145/3318464.3380591

[28] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. A Survey on Advancing the DBMS Query Optimizer: Cardinality
Estimation, Cost Model, and Plan Enumeration. Data Sci. Eng. 6, 1 (2021), 86–101. https://doi.org/10.1007/s41019-020-
00149-7

[29] John Boaz Lee, Ryan A. Rossi, and Sungchul Kim et al. 2019. Attention Models in Graphs: A Survey. TKDD (2019).
https://doi.org/10.1145/3363574

[30] Viktor Leis, Andrey Gubichev, Atanas Mirchev, and Peter A. Boncz et al. 2015. How Good Are Query Optimizers,
Really? VLDB (2015). https://doi.org/10.14778/2850583.2850594

[31] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI Meets Database: AI4DB and DB4AI. In SIGMOD. ACM, 2859–2866.
https://doi.org/10.1145/3448016.3457542

[32] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware Database Tuning System with Deep
Reinforcement Learning. PVLDB (2019). https://doi.org/10.14778/3352063.3352129

[33] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li, Tianqing Wang, and Shifu Li. 2021.
openGauss: An Autonomous Database System. Proc. VLDB Endow. 14, 12 (2021), 3028–3041.

[34] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf. Retr. (2009).
[35] Yi Lu, Anil Shanbhag, Alekh Jindal, and Samuel Madden. 2017. AdaptDB: Adaptive Partitioning for Distributed Joins.

VLDB (2017). https://doi.org/10.14778/3055540.3055551
[36] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. 2019. Spectral-based Graph Convolutional

Network for Directed Graphs. CoRR abs/1907.08990 (2019). arXiv:1907.08990 http://arxiv.org/abs/1907.08990
[37] Volodymyr Mnih, Nicolas Heess, Alex Graves, and et al. 2014. Recurrent Models of Visual Attention. In NIPS.

http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention
[38] Grégoire Montavon, Sebastian Lapuschkin, and Alexander Binder et al. 2017. Explaining nonlinear classification

decisions with deep Taylor decomposition. Pattern Recognit. (2017). https://doi.org/10.1016/j.patcog.2016.11.008
[39] Federico Monti, Davide Boscaini, Jonathan Masci, and et al. 2017. Geometric Deep Learning on Graphs and Manifolds

Using Mixture Model CNNs. In CVPR. https://doi.org/10.1109/CVPR.2017.576
[40] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. ICML (JMLR Workshop and Conference Proceedings).

JMLR.org. http://proceedings.mlr.press/v48/niepert16.html

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints
https://doi.org/10.1145/1376616.1376727
https://doi.org/10.1145/1953122.1953146
https://doi.org/10.1145/1953122.1953146
https://doi.org/10.1016/B978-012088469-8.50052-8
https://doi.org/10.1145/3186728.3164145
https://doi.org/10.1145/2723372.2749438
https://doi.org/10.1145/1989323.1989330
https://doi.org/10.1145/3329859.3329876
https://doi.org/10.1145/3318464.3389704
https://doi.org/10.1145/3299869.3314034
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/s00500-015-1690-9
https://doi.org/10.1145/3318464.3380591
https://doi.org/10.1007/s41019-020-00149-7
https://doi.org/10.1007/s41019-020-00149-7
https://doi.org/10.1145/3363574
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3448016.3457542
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3055540.3055551
https://arxiv.org/abs/1907.08990
http://arxiv.org/abs/1907.08990
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1109/CVPR.2017.576
http://proceedings.mlr.press/v48/niepert16.html

[41] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanassoulis, and Anastasia Ailamaki. 2020.
Adaptive partitioning and indexing for in situ query processing. VLDB J. 29, 1 (2020), 569–591. https://doi.org/10.
1007/s00778-019-00580-x

[42] Panos Parchas, Yonatan Naamad, Peter Van Bouwel, Christos Faloutsos, and Michalis Petropoulos. 2020. Fast and
Effective Distribution-Key Recommendation for Amazon Redshift. VLDB (2020), 2411–2423. http://www.vldb.org/
pvldb/vol13/p2411-parchas.pdf

[43] Andy Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim, Dana Van Aken, and William Zhang. 2021.
Make Your Database System Dream of Electric Sheep: Towards Self-Driving Operation. Proc. VLDB Endow. 14, 12
(2021), 3211–3221. https://doi.org/10.14778/3476311.3476411

[44] Tilmann Rabl and Hans-Arno Jacobsen. 2017. Query Centric Partitioning and Allocation for Partially Replicated
Database Systems. In SIGMOD, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM,
315–330. https://doi.org/10.1145/3035918.3064052

[45] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman. 2002. Automating physical database design in a parallel
database. In SIGMOD. ACM, 558–569. https://doi.org/10.1145/564691.564757

[46] Idan Schwartz, Seunghak Yu, and Tamir Hazan et al. 2019. Factor Graph Attention. In CVPR. https://doi.org/10.1109/
CVPR.2019.00214

[47] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga, and Michael Stonebraker. 2016. Clay:
Fine-Grained Adaptive Partitioning for General Database Schemas. Proc. VLDB Endow. 10, 4 (2016), 445–456.

[48] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. VLDB (2019). https://doi.org/10.14778/
3368289.3368296

[49] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation: A Design Space
Exploration and A Comparative Evaluation. Proc. VLDB Endow. 15, 1 (2021), 85–97. https://doi.org/10.14778/3485450.
3485459

[50] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and et al. 2014. Fine-grained partitioning for aggressive data skipping.
In SIGMOD. https://doi.org/10.1145/2588555.2610515

[51] Immanuel Trummer. 2019. Exact Cardinality Query Optimization with Bounded Execution Cost. In SIGMOD, Peter A.
Boncz, Stefan Manegold, Anastasia Ailamaki, and et al (Eds.). https://doi.org/10.1145/3299869.3300087

[52] Petar Velickovic, Guillem Cucurull, and Arantxa Casanova et al. 2018. Graph Attention Networks. In ICLR. https:
//openreview.net/forum?id=rJXMpikCZ

[53] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normalizing Flow based Cardinality Estimator.
Proc. VLDB Endow. 15, 1 (2021), 72–84. https://doi.org/10.14778/3485450.3485458

[54] Junxiong Wang, Immanuel Trummer, and et al. 2021. Demonstrating UDO: A Unified Approach for Optimizing
Transaction Code, Physical Design, and System Parameters via Reinforcement Learning. In SIGMOD. 2794–2797.

[55] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic Index Construction with Deep Reinforcement
Learning. Data Sci. Eng. 7, 2 (2022), 87–101. https://doi.org/10.1007/s41019-022-00186-4

[56] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A Comprehensive
Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[57] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or Learning-based? AHybrid Query Optimizer
for Query Plan Selection. Proc. VLDB Endow. 15, 13 (2022), 3924–3936. https://www.vldb.org/pvldb/vol15/p3924-li.pdf

[58] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement Learning with Tree-LSTM for Join Order
Selection. In ICDE. IEEE, 1297–1308. https://doi.org/10.1109/ICDE48307.2020.00116

[59] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. 2015. Locality-aware Partitioning in Parallel Database Systems.
In SIGMOD. https://doi.org/10.1145/2723372.2723718

[60] Lixi Zhang, Chengliang Chai, Xuanhe Zhou, and Guoliang Li. 2022. LearnedSQLGen: Constraint-aware SQL Generation
using Reinforcement Learning. In SIGMOD. ACM, 945–958. https://doi.org/10.1145/3514221.3526155

[61] Muhan Zhang, Zhicheng Cui, and Marion Neumann et al. 2018. An End-to-End Deep Learning Architecture for Graph
Classification. In AAAI. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146

[62] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2022. Database Meets Artificial Intelligence: A Survey. IEEE
Trans. Knowl. Data Eng. 34, 3 (2022), 1096–1116. https://doi.org/10.1109/TKDE.2020.2994641

[63] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned Query Rewrite System using Monte
Carlo Tree Search. Proc. VLDB Endow. 15, 1 (2021), 46–58. https://doi.org/10.14778/3485450.3485456

[64] Xuanhe Zhou, Luyang Liu, Wenbo Li, Lianyuan Jin, Shifu Li, Tianqing Wang, and Jianhua Feng. 2022. AutoIndex: An
Incremental Index Management System for Dynamic Workloads. In ICDE. IEEE, 2196–2208.

[65] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance Prediction for Concurrent Queries
using Graph Embedding. VLDB (2020). http://www.vldb.org/pvldb/vol13/p1416-zhou.pdf

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 94. Publication date: May 2023.

https://doi.org/10.1007/s00778-019-00580-x
https://doi.org/10.1007/s00778-019-00580-x
http://www.vldb.org/pvldb/vol13/p2411-parchas.pdf
http://www.vldb.org/pvldb/vol13/p2411-parchas.pdf
https://doi.org/10.14778/3476311.3476411
https://doi.org/10.1145/3035918.3064052
https://doi.org/10.1145/564691.564757
https://doi.org/10.1109/CVPR.2019.00214
https://doi.org/10.1109/CVPR.2019.00214
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.14778/3485450.3485459
https://doi.org/10.14778/3485450.3485459
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.1145/3299869.3300087
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.14778/3485450.3485458
https://doi.org/10.1007/s41019-022-00186-4
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://www.vldb.org/pvldb/vol15/p3924-li.pdf
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.1145/3514221.3526155
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://doi.org/10.1109/TKDE.2020.2994641
https://doi.org/10.14778/3485450.3485456
http://www.vldb.org/pvldb/vol13/p1416-zhou.pdf

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 System Overview

	3 Column Graph Model
	3.1 Column Graph
	3.2 Predicate-based Edge Weight
	3.3 Attention-based Vertex Weight

	4 Partitioning Key Selection
	4.1 Key Selection Model
	4.2 Graph Embedding Algorithm
	4.3 Key Selection Algorithm
	4.4 Model Training

	5 Performance Evaluation Model
	5.1 Evaluation Model
	5.2 Training for Evaluation Model

	6 EXPERIMENTS
	6.1 Experiment Setting
	6.2 Performance Comparison
	6.3 Evaluation on Performance Evaluation
	6.4 Evaluation on Hyper-Parameters
	6.5 Adaptability on Varying Datasets

	7 RELATED WORK
	8 conclusion and future work
	References

