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Abstract— A common approach to performing keyword search
over relational databases is to find the minimum Steiner trees in
database graphs. These methods, however, are rather expensive
as the minimum Steiner tree problem is known to be NP-hard.
Further, these methods cannot benefit from DBMS capabilities.
We propose a new concept called Compact Steiner Tree (CSTree),
which can be used to approximate the Steiner tree problem
for answering top-k keyword queries efficiently. We propose a
structure-aware index, together with an effective ranking mecha-
nism for fast, progressive and accurate retrieval of top-k highest
ranked CSTrees. The proposed techniques can be implemented
using a standard RDBMS to benefit from its indexing and
query processing capability. The experimental results show that
our method achieves high search efficiency and result quality
comparing to existing state-of-the-art approaches.

I. INTRODUCTION

The database research community has recently recognized
the benefits of keyword search, starting to introduce keyword
search capabilities into relational databases [1]. The existing
approaches of keyword search over relational databases can
be broadly classified into two categories: those based on the
candidate network [2] and others based on the Steiner tree [1].
The candidate network based methods identify answers com-
posed of relevant tuples by generating and extending a candi-
date network following the primary-foreign-key relationship.
The Steiner tree based methods first model the tuples in a
relational database as a graph, where nodes are tuples and
edges are the primary-foreign-key relationships. Steiner trees
which contain all or some of input keywords are then identified
to answer keyword queries. These methods all search for the
optimal solutions on-the-fly by traversing the database graph
to discover structural relationship. As the minimum Steiner
tree problem is known to be NP-hard [1], a Steiner tree based
approach can be inefficient, demanding new research to find
polynomial time solutions that can effectively approximate the
minimum Steiner tree problem.

We make the following two observations here. First, the
existing DBMS technologies have not been designed with
supporting keyword search in mind; and the keyword search
methods recently proposed by the database community are
also largely independent of the underlying DBMS. While the
advantage for keyword-based search to be supported by the
underlying DBMS is quite clear, this integration task remains
to be an open challenge. It is further complicated by other
constraints such as user friendliness (using keyword search,
not SQL queries) and no modification of any source code of an
existing DBMS. Second, most of the existing methods to sup-
port keyword search over relational data start with generating

all possible results composed of relevant tuples such that these
results can be sorted according to their individual ranks. This
approach is ineffective for top-k keyword queries, and can be
infeasible for some applications where the number of possible
answers are prohibitively large. A progressive approach that
returns highly ranked results first is much more attractive. In
addition to eliminating the need of enumerating all possible
results, such an approach can reduce the query response time,
and provide the possibility of early termination of the search
when the user finds sufficient number of answers.

To address the above-mentioned problems, we propose in
this paper a polynomial time approximate solution for the
minimum Steiner tree problem with a theoretical bound. A
novel concept called Compact Steiner Tree (CSTree) is used
to answer keyword queries more efficiently. We devise an
effective structure-aware index and materialize the index in
the form of relational tables. Our proposed techniques can
be seamlessly integrated into an existing DBMS such that
the capabilities of the DBMS can be explored to effectively
and progressively identify the top-k relevant CSTrees using
SQL statements. This has been achieved without the need
of changing any DBMS source code. To the best of our
knowledge, this is the first attempt to integrate structure-aware
indices into DBMS and use the capabilities of the DBMS to
support effective and progressive keyword-based search.

II. MINIMUM PATH WEIGHT STEINER TREE

A. Database Graph

A relational database can be modeled as a database graph
G = (V , E) such that there is a one-to-one mapping between a
tuple in the database and a node in V . G can be considered as
a directed graph with two types of edges [1]: a forward edge
(u, v) ∈ E iff there is a foreign key from u to v, and a back
edge (v, u) iff (u, v) is a forward edge in E . An edge (u, v)
indicates a close relationship between tuples u and v (i.e.,
they can be directly joined together), and the introduction of
two edge types allows differentiating the importance of u to v
and vise versa. When such differentiation is not necessary for
some applications, G becomes an undirected graph (i.e., the
forward edge and its corresponding back edge are combined
into one non-directional edge). To support keyword search
over relational data, G is typically modeled as a weighted
graph, with a node weight ω(v) to represent the “prestige”
level of each node v ∈ V and an edge weight ω(u, v) for each
edge in E to represent the strength of the proximity relationship
between the two tuples.
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Fig. 1. A Running Example of Keyword Search over A Publication Database

For example, Figure 1 gives a partial database graph for a
publication database, containing 9 publications on the topic
of keyword search in relational databases. For presentation
simplicity, we take the undirected graph as a running example
in this paper and edge weights are not shown here. Our method
applies to directed graphs with any edge weight function.

B. The Steiner Tree-based Approach

Definition 1: MINIMUM STEINER TREE: Given a graph
G = (V , E) and V ′ ⊆ V , T is a Steiner tree of V ′ in G if
T is a connected subtree in G covering all nodes in V ′. Let
�ξ(T ) =

∑
(u,v)∈T ω(u, v). T is a minimum Steiner tree if

�ξ(T ) is the minimum among all Steiner trees of V ′ in G.

This definition applies to both directed and undirected
graphs (so trees are directed and undirected respectively). The
minimum Steiner tree problem should not be confused with
the minimum spanning tree problem: a Steiner tree of V ′ in
G = (V , E) may contain nodes in V-V ′. Next we introduce
an extension of the minimum Steiner tree problem, allowing
a node in V ′ be any representative of a group of nodes in G.

Definition 2: MINIMUM GROUP STEINER TREE: Given a
graph G = (V , E) and groups V1,V2, · · · Vn ⊆ V , T is a
minimum group Steiner tree of these given groups in G if T
is a minimum Stiener tree that contains at least one node from
each group Vi, 1 ≤ i ≤ n.

The problem of finding the best answer of a keyword query
in a database can be translated into the problem of finding
the minimum group Steiner tree in the database graph [1]. Let
G = (V , E) be a database graph derived from an underlying
database. Let K be a query containing keywords k1,k2,· · · ,kn

against the database. Denote Vki ∈ V for all nodes whose
corresponding tuples contain keyword ki, 1 ≤ i ≤ n (note that
such groups can be easily obtained by using an inverted index).
The best answer to K is then represented by the minimum
Steiner tree T of G, such that V(T )∩Vki �=φ for 1≤i≤n.

The above approach returns only one solution which is
represented by the minimum group Steiner tree. In the context
of keyword search, however, a user is typically not satisfied
with just one answer deemed by the system as the best; rather,
they are interested in more answers ranked by their relevance
to the query, i.e., k Steiner trees with smallest �ξ(T ) values.

C. Minimum Path Weight Steiner Tree

Finding minimum (group) Steiner tree is an important
problem in many applications. These problems have been
investigated extensively over the last three decades. These
problems are known to be NP-hard [3]. A number of approxi-
mation algorithms with polynomial time complexity have been
proposed [3]. The existing polynomial algorithms, however,
are designed to find minimum Steiner trees. They are not
efficient to identify top-k answers for keyword search problem.
We propose minimum path weight Steiner tree to approximate
minimum Steiner tree. Let u�v be the shortest path from
node u to node v, and ω(u�v) be its path weight, which is
the sum of the weight of each edge along the path. The root
of a Steiner tree T is denoted as root(T ).

Definition 3: MINIMUM PATH WEIGHT STEINER TREE:
Given a graph G = (V , E) and V ′ ⊆ V . T is a Steiner tree
of V ′ in G. Let �ρ(T ) =

∑
u∈V′ ω(root(T ) � u). T is a

minimum path weight Steiner tree if �ρ(T ) is the minimum
among all Steiner trees of V ′ in G.

It is easy to extend the above definition to define the concept
of minimum path weight group Steiner tree (MPWGST), in a
way similar to how the minimum group Steiner tree is defined.

D. Polynomial Algorithms

Now we consider how the MPWST problem can be solved
using a polynomial time complexity algorithm. Given a graph
G=(V , E) and a Steiner node set V ′⊆V , a minimum path
weight Steiner tree can be found in the following three
steps: (1) the shortest paths from each node s ∈ V ′ to
all other nodes in G are computed using, for example, the
Dijkstra algorithm in O(|V ′|*|V|2) time. (2) for each node
v∈V , a Steiner tree rooted at v and contains the shortest
paths from v to all the nodes in V ′ is constructed. (3) the
minimum path weight Steiner tree can be found among the
trees constructed in the previous step, O(|V ′|*|V|). Hence, the
total complexity of the algorithm is O(|V ′|*|V|2), which can
be further improved, by using a more efficient shortest path
algorithm, to O(|V ′|*(|V|log(|V|)+ |E|)). In a similar way, the
MPWGST problem can also be solved in polynomial time.

E. Performance Ratio Analysis

We use a standard measurement of performance ratio [3]
to quantify MPWST and MPWGST. For an approximation
algorithm A, the performance ratio RA is defined as the
maximum ratio between the solutions returned by A and the
optimum solution(OPT ) for all instances. For a minimization
problem like minimum Steiner tree problem, the performance
ratio is defined in [3] as below:

RA = supremum{ A(I)
OPT (I)

|all instances I} (1)

Theorem 1: Given an undirected graph G=(V , E) and a
node set V ′⊆V (|V ′| ≥ 2), the performance ratio of MPWST
is � |V′|

2 	. Given a set {V1,V2,· · · ,Vn} of sets of nodes in G,
the performance ratio of MPWGST is �n

2 	.
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We can always find a solution to the minimum (group)
Steiner tree problem that is larger than the optimum solution
by at most � |V′|

2 	(�n
2 	). In a keyword-based search problem,

the number of input keywords (i.e., n) is usually not large,
generally no larger than 5. Thus, the performance ratio of
MPWST (MPWGST) is usually at most 2. Furthermore,
the average query length (the average number of input key-
words) is 1.7 terms for popular queries and 2.2 terms over
all queries [4]. Thus the performance ratio of our proposed
methods is exactly 1 for most of keyword queries. We give
more tighter performance ratios for database graphs.

Theorem 2: Given an undirected graph G=(V , E) where
edge weights are assigned as 1, the performance ratio of MP-
WST is min{� |V′|

2 	, γ+1
2 }, where γ is the maximal path weight

in the Steiner tree. Given a set {V1,V2,· · · ,Vn} of sets of nodes,
the performance ratio of MPWGST is min{�n

2 	, γ+1
2 }.

Theorem 3: Given a directed graph G = (V , E) and a node
set V ′ ⊆ V (|V ′| ≥ 2), the performance ratio of MPWST is
|V ′| − 1. Given a set {V1,V2,· · · ,Vn} of sets of nodes in G,
the performance ratio of MPWGST is n− 1.

Theorem 4: Given a directed graph G = (V , E), the perfor-
mance ratio of MPWST is min{|V ′| − 1, 2*γ−1}, where γ
is the maximal path weight in the Steiner tree. Given a set
{V1,V2,· · · ,Vn} of sets of nodes in G, the performance ratio
of MPWGST is min{n− 1, 2*γ−1}.

III. COMPACT STEINER TREE

In this section, we introduce a novel concept called Compact
Steiner Tree to improve the search efficiency of top-k queries.

A. Compact Steiner Tree

Clearly, not all nodes in a database graph are of equal
importance to a term. For any term t, a node v in the graph
can contain the term if t appears in the tuple of v; or imply
the term if v does not contain t but there exists a path in the
graph from v to any node that contains t; or irrelevant if it
does not contain nor imply t. A node is relevant to t if it either
contains or implies t. Intuitively, the relevance of a node u to
a term t can be partially measured by the path weight of the
shortest path from u to any node that contains t. Using the
notion of the shortest path, we define Vironoi partition.

Definition 4: VORONOI PARTITION: Let G = (V , E) be a
database graph and t be a term. Let {v1, v2, · · · , vn} ⊆ V be
the nodes containing t, and U = {u1, u2, · · · , um} ⊆ V be
the nodes implying t. A Voronoi partition of U for term t is
defined as U1, U2 · · ·Un ⊆ U such that ∪n

i=1Ui = U and for
any node u ∈ Ui, ω(u� vi) ≤ ω(u� vj), 1 ≤ j ≤ n.

When u ∈ Ui, u is said to be dominated by vi with respect
to t. We denote this fact as vp(u, t)=vi. We call vp(u, t) the
Voronoi-node of u with respect to t; and the shortest path
u � vp(u, t) the Voronoi-path. Note that such a Voronoi
partition for a term can be effectively pre-computed [5] and
materialized. Based on the notion of Voronoi partitions, we
introduce the concept of Compact Steiner Tree as follows.

Definition 5: COMPACT STEINER TREE (CSTREE): Given
a graph G = (V , E) and groups V1,V2, · · · Vn ⊆ V , T is a
compact Steiner tree of these given groups in G if T is a group
Steiner tree of these groups, and the root of T is dominated
by at least one node in T from each group Vi, 1 ≤ i ≤ n.

A CSTree is said to be compact because all the Steiner
nodes in such a tree must have the shortest path to the root.
If each Vi means all the nodes containing a unique term, then
from the above definition the root of a CSTree must be highly
relevant to all n terms. Note that a CSTree is a special type
of group Steiner tree. The intuition of finding top-k minimum
path weight CSTrees, instead of finding top-k minimum path
weight group Steiner trees, is that the CSTrees are highly
compact and can offer much more information than top-k
minimum path weight group Steiner trees.

B. CSTrees vs. MPWGSTs

Theorem 5: Let ST be a minimum MPWGST and CST be
a minimum CSTree in the same database graph for the same
set of search terms. We have ST≡CST.

There is no difference between MPWGSTs and CSTrees
for top-k keyword queries when k = 1. When k > 1,
there is a significant difference. First, let us explain why it
can be prohibitively expensive to compute top-k MPWGSTs
using the algorithm described in Section II-D. Given groups
V1,V2, · · · ,Vn, there exist |V|*

∏n
i=1 |Vi| possible Steiner

trees. It is inefficient to identify the top-k minimum MP-
WGSTs from this rather large number of possible Steiner
trees. On the other side, for each CSTree, its root must be
dominated by its Steiner nodes and there are no more than |V|
CSTrees. We can then construct the top-k CSTrees by adapt-
ing the algorithm of generating the minimum MPWGST. One
important property of CSTrees is that the top-k MPWGSTs
can easily be constructed from the top-k CSTrees.

C. Finding CSTrees

As not all nodes that contain or imply a term are equally
important to the term, we propose a more effective scoring
function to assign node weights.

ω(v|k) = α ∗ ω(v) + (1 − α) ∗ R(v, k) (2)

where

R(v, k) =
{
ln(1 + tf(v, k)) ∗ ln(idf(k)) v contains k
P(v � vp(v, k)) ∗ R(vp(v, k), k) v implies k

(3)

P(v � vp(v, k)) =

⎧⎪⎨
⎪⎩

∏
(x,y)∈(v�vp(v,k))

1
Din(y) directed graph

∏
(x,y)∈(v�vp(v,k))

1
D(y) undirected graph

(4)

ω(v|k) is the node weight of v w.r.t. term k by integrating node
prestige ω(v) and tf·idf based relevance R(v, k), which evalu-
ates the relevance between v and k. α is a tuning parameter to

11851185

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 26, 2009 at 11:29 from IEEE Xplore.  Restrictions apply. 



TABLE I

STRUCTURE-AWARE TABLE

Term Node EdgeWeight NodeWeight Voronoi-path

Graph p4 0 ω(p4)+ln2*ln10 p4

Top-k p4 1 ω(p4)+ 1
5 *ln2*ln10 p4-p7

· · · · · · · · · · · · · · ·

differentiate the importance of node prestige and tf·idf based
score, and is usually set to 0.8. vp(v, k) is the node which
dominates v with respect to k. Note that vp(v, k) must contain
k, thus R(vp(v, k), k) can be computed based on tf and idf.
v�vp(v, k) denotes the directed (undirected) path from v to
vp(v, k). P(v�vp(v, k)) denotes the probability of randomly
walking from v to vp(v, k). tf(v, k) denotes the term frequency
of k in v. idf(k) denotes the inverse document frequency of
k in the database. By integrating the node weight and edge
weight, we propose a more effective ranking function:

ψ(CSTree,K) = Node-Score + β ∗ Edge-Score

=
∑

ki∈K
ω(r|ki) + β ∗

∑
ki∈K

ω(r � vp(r, ki))

=
∑

ki∈K
(ω(r|ki) + β ∗ ω(r� vp(r, ki)))

(5)

where r=root(CSTree) and β is a tuning parameter.
To maintain ω(r�vp(r, ki)) and ω(r|ki), we construct a

structure-aware table, which maintains scores and Voronoi-
paths as shown in Table I. To effectively answer a keyword
query, we issue an SQL statement:

SELECT top-k Node,SUM(NodeWeight+β*EdgeWeight) AS Cost
FROM Structure-Aware-Table
WHERE Term in (k1, k2, · · · , kn)
GROUP BY Node
HAVING COUNT(Term)=n
ORDER BY Cost DESC

IV. EXPERIMENTAL STUDY

We compare with existing state-of-the-art algorithms includ-
ing BLINKS [6] and EASE [7]. The datasets used include a
publication database DBLP (http://dblp.uni-trier.de/xml/) and
a movie database IMDB (http://www.imdb.com/). All the algo-
rithms are coded in JAVA. All the experiments were conducted
on a computer with an Intel(R) Core(TM) 2@2.33GHz CPU,
2GB RAM running Windows XP.

A. Search Efficiency

We evaluate efficiency of various algorithms. Figure 2 illus-
trates the experimental results. We observe that our algorithms
achieve much better search performance than the existing
methods EASE and BLINKS. CSTree clearly yields high
search efficiency as it does not need to identify answers
by discovering the relationships between tuples in different
relational tables on the fly, relying instead on SQL capabilities
of the DBMS to identify the answer.
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B. Evaluating Result Quality by Human Judgement

To further evaluate result quality of different methods, we
evaluate the query results by human judgement. We select ten
keyword queries on the two datasets. Answer relevance of
the selected queries is judged from discussions of researchers
in our database group. As users are usually interested in the
top-k answers, we employ top-k precision, i.e., the ratio of
the number of answers deemed to be relevant in the first k
results to k, to compare those algorithms. We vary different
values of k and evaluate the average top-k precision of the
selected queries. The results of the average top-k precision
are illustrated in Figure 3. CSTree consistently achieves high
precision in all the queries, which is approximately 5-15%
higher than EASE and 10-30% higher than BLINKS.

ACKNOWLEDGEMENT

This work is partly supported by the National Natural
Science Foundation of China under Grant No. 60573094,
the National High Technology Development 863 Program of
China under Grant No. 2007AA01Z152, the National Grand
Fundamental Research 973 Program of China under Grant
No. 2006CB303103, Basic Research Foundation of Tsinghua
National Laboratory for Information Science and Technology
(TNList), and 2008 HP Labs Innovation Research Program.

REFERENCES

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using banks,” in ICDE,
2002, pp. 431–440.

[2] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style
keyword search over relational databases,” in VLDB, 2003, pp. 850–861.

[3] G. Robins and A. Zelikovsky, “Improved steiner tree approximation in
graphs,” in SODA, 2000.

[4] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder,
“Analysis of a very large web search engine query,” in SIGIR, 2004.

[5] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental data
structure,” in ACM Computing Surveys, 23:345-405, 1991.

[6] H. He, H. Wang, J. Yang, and P. Yu, “Blinks: Ranked keyword searches
on graphs,” in SIGMOD, 2007.

[7] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: Efficient and
adaptive keyword search on unstructured, semi-structured and structured
data,” in SIGMOD, 2008.

11861186

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 26, 2009 at 11:29 from IEEE Xplore.  Restrictions apply. 


