
Top-k String Similarity Search with Edit-Distance
Constraints

Dong Deng† Guoliang Li† Jianhua Feng† Wen-Syan Li‡
†Department of Computer Science, Tsinghua National Laboratory for Information Science and Technology,

Tsinghua University, Beijing 100084, China.

‡SAP Labs, Shanghai, China.
wen-syan.li@sap.com

Abstract— String similarity search is a fundamental operation
in many areas, such as data cleaning, information retrieval, and
bioinformatics. In this paper we study the problem of top-k string
similarity search with edit-distance constraints, which, given a
collection of strings and a query string, returns the top-k strings
with the smallest edit distances to the query string. Existing
methods usually try different edit-distance thresholds and select
an appropriate threshold to find top-k answers. However it is
rather expensive to select an appropriate threshold. To address
this problem, we propose a progressive framework by improving
the traditional dynamic-programming algorithm to compute
edit distance. We prune unnecessary entries in the dynamic-
programming matrix and only compute those pivotal entries. We
extend our techniques to support top-k similarity search. We
develop a range-based method by grouping the pivotal entries
to avoid duplicated computations. Experimental results show
that our method achieves high performance, and significantly
outperforms state-of-the-art approaches on real-world datasets.

I. INTRODUCTION

String similarity search takes as input a set of strings

and a query string, and outputs all the strings in the set

that are similar to the query string. It is an importan-

t operation and has many real applications such as data

cleaning, information retrieval, and bioinformatics. For exam-

ple, most search engines support query suggestions, which

can be implemented using the similarity search operation.

Consider a query log {“schwarzenegger,” “russell,”. . .}
and a query “shwarseneger.” String similarity search returns

“schwarzenegger” as a suggestion. It has attracted signifi-

cant attention from the database community recently [10].

Existing similarity search methods [10] require users to

specify a similarity function and a similarity threshold. They

find those strings with similarities to the query string within

the given threshold. However it is rather hard to give an

appropriate threshold, as a small threshold will involve many

dissimilar answers and a large threshold may lead to few

results. To address this problem, in this paper we study the

problem of top-k string similarity search, which, given a

collection of strings and a query string, returns the top-k most

similar strings to the query string.

There are many similarity functions to quantify the similari-

ty of two strings, such as Jaccard similarity, Cosine similarity,

and edit distance. In this paper, we focus on edit distance.

The edit distance of two strings is the minimum number

of single-character edit operations (i.e. insertion, deletion,

and substitution) needed to transform one string to another.

For example, the edit distance between “schwarzenegger”

and “shwarseneger” is 3. Edit distance can be used to

capture typographical errors for text documents and evaluate

similarities for homologous proteins or genes [18], and is

widely adopted in many real-world applications.
We can extend existing threshold-based similarity search

methods [10] to support our problem as follows. We increase

the edit-distance threshold by 1 each time (initialized as 0).

For each threshold, we use existing methods to find those

strings with edit distances to the query string no larger than the

threshold. If there are smaller than k similar strings, we check

the next threshold; otherwise we compute top-k similar strings

with this threshold. However this method is rather expensive

because it executes multiple similarity search operations for

different thresholds. To address this problem, we propose a

progressive framework to efficiently find top-k answers.
A well-known method to compute the edit distance between

two strings employs a dynamic-programming algorithm using

a matrix (see Section III-A). Notice that we do not need

to compute all entries of the matrix. Instead we propose a

progressive method which prunes unnecessary entries and only

computes some entries. We extend this technique to support

top-k similarity search (see Section III-B). To further improve

the performance, we propose pivotal entries and only need to

compute the pivotal entries in the matrix (see Section IV). We

develop a range-based method to group the pivotal entries to

avoid duplicated computations (see Section V). To summarize,

we make the following contributions.

• We devise a progressive framework to address the prob-

lem of top-k string similarity search.

• We propose pivotal entries to find top-k answers, which

can avoid many unnecessary computations by pruning

large numbers of useless entries.

• We develop a range-based method to group the pivotal

entries so as to avoid duplicated computations.

• Experimental results show that our method significantly

outperforms existing approaches.

Paper Structure. We formalize the top-k string similarity

search problem and review related works in Section II. A

progressive framework is proposed in Section III. We devise

a pivotal-entry based method in Section IV and a range-

based method in Section V. Experiment results are provided

in Section VI. We conclude the paper in Section VII.

dd11@mails.tsinghua.edu.cn; {liguoliang, fengjh}@tsinghua.edu.cn

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013925

II. PRELIMINARIES

A. Problem Formulation

Given a collection of strings and a query string, top-k string

similarity search finds top-k strings with the highest similar-

ities to the query string. In this paper we use edit distance

to quantify the similarity of two strings. The edit distance of

two strings is the minimum number of single-character edit

operations (i.e. insertion, deletion, and substitution) needed to

transform one string to another. Given two strings r and s,

we use ED(r, s) to denote their edit distance. For example, ED

(“seraji”, “sraijt”) = 3. Next we formulate the problem of

top-k string similarity search with edit-distance constraints.

Definition 1 (Top-k String Similarity Search): Given a

string set S and a query string q, top-k string similarity

search returns a string set R ⊆ S such that |R| = k and for

any string r ∈ R and s ∈ S −R, ED(r, q) ≤ ED(s, q).

Example 1: Consider the string set in Table I and a
query “srajit”. Top-3 string similarity search returns
{“surajit”, “seraji”, “sarit”}. The edit distances of the
three strings to the query are respectively 1, 2 and 2. The edit
distances of other strings to the query are not smaller than 2.

TABLE I

A STRING SET S AND A QUERY q = “srajit”

ID s1 s2 s3 s4 s5 s6
String sarit seraji suijt suit surajit thrifty

B. Related Works
Top-k String Similarity Search: Yang et a. [20] proposed

a gram-based method to support top-k similarity search. It

increased thresholds by 1 each time from 0 and tuned the gram

length dynamically. However it needed to build redundant

inverted indexes for different gram lengths and resulted in low

efficiency. Zhang et a. [21] indexed signatures (e.g., grams) of

strings using a B+-tree and utilized the B+-tree to compute

top-k answers. It iteratively traversed the B+-tree nodes,

computed a lower bound of edit distances between the query

and strings under the node, and used the lower bound to update

the threshold. However this method had to enumerate many

strings to adjust the threshold. Kahveci et a. [9] transformed

a set of contiguous substrings into a Minimum Bounding

Rectangle (MBR) and used the MBR to estimate the edit-

distance threshold of top-k answers. However the MBR-based

estimation usually estimated a large threshold and thus this

method resulted in low efficiency.

Different from existing methods, we first identify the strings

with smaller edit distances to the query string and use the edit

distances of these strings as bounds to facilitate computing

top-k answers. We propose a progressive method to efficiently

identify such strings and compute the tight bounds.

String Similarity Search with Thresholds: There are many

studies on approximate string search [3], [10], [6], [21], which,

given a set of strings, a query string, a similarity function,

and a threshold, finds all strings with similarities to the query

string within the threshold. Existing methods usually employed

a gram-based method. They first generated q-grams of each

string, and proved that two strings are similar only if their gram

sets share enough common grams. They used inverted indexes

to index the grams. Given a query string, they generated its

grams, retrieved the corresponding inverted lists, and merged

the inverted lists to find similar answers. We can extend these

methods to support the top-k similarity search problem as

follows. We increase the edit-distance threshold by 1 each time

(initialized as 0). For each threshold, we find similar strings

of the query using existing methods [10]. If the size of the

similar string set is not smaller than k, we terminate and return

k strings with the minimum edit distances. However these

methods have to enumerate different edit-distance thresholds

and involve many unnecessary computations. Navarro studied

the approximate string matching problem [14], which, given a

query string and a text string, finds all substrings of the text

that are similar to the query.

Similarity Joins: There are many studies on string similarity

joins [5], [1], [2], [4], [15], [18], [19], [16], [18], [11], [17].

Given two string sets, a similarity join finds all similar string

pairs. Xiao et al. [19] studied top-k similarity joins by using

a prefix filtering based technique. Their problem is different

from ours which finds top-k similar pairs from two sets. They

dynamically tuned the thresholds to find top-k pairs. Jestes et

al. [7] extended similarity joins to support probabilistic strings.

Fuzzy Prefix Search: Ji et al. [8] and Li et al. [13], [12]

utilized trie structures to support fuzzy prefix search. They

specified a threshold and computed results based on the

thresholds. Wang et al. [16] proposed a trie-based framework

to support similarity joins. Although they used a trie structure

to support approximate search, they focused on prefix search

and their methods cannot support top-k similarity search.

III. A PROGRESSIVE FRAMEWORK

We first propose a method to progressively compute edit

distance (Section III-A) and then develop a progressive frame-

work to support top-k search (Section III-B).

A. Progressively Computing Edit Distance

We first consider the problem of computing the edit distance

between two strings. The traditional method uses a dynamic

programming method. Given two strings r and s, it utilizes a

matrix D with |r| + 1 rows and |s| + 1 columns to compute

their edit distance. Let |s| denote s’s length, s[j] denote the

j-th character of s, and s[i, j] denote s’s substring from the

i-th character to the j-th character. D[i][j] is the edit distance

between the prefix r[1, i] and the prefix s[1, j]. Obviously

D[i][0] = i for each 0 ≤ i ≤ |r| and D[0][j] = j for

each 0 ≤ j ≤ |s|. Then it iteratively computes D[i][j] for

1 ≤ i ≤ |r| and 1 ≤ j ≤ |s| as follows:

D[i][j] = min(D[i−1][j]+1, D[i][j−1]+1, D[i−1][j−1]+δ),
(1)

where δ = 0 if r[i] = s[j]; otherwise δ = 1. D[|r|][|s|] is

exactly the edit distance between r and s. The time complexity

is O(|r| × |s|) and the space complexity is O(min(|r|, |s|)).
For example, Figure 1(a) shows the matrix D to compute the

edit distance of r =“seraji” and s =“srajit”.

926

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

(a) Traditional method

� � �
� � � �
� � � �
� � �
� � �
� � �
� � �

(b) Progressive method

Fig. 1. Computing edit distance of two strings

A progressive method: We propose a progressive method to

compute the edit distance, which only computes some entries

in the matrix, instead of all entries. We use 〈i, j〉 to denote

the entry of the i-th row and the j-th column of the matrix.

Let Ex denote the set of entries in the matrix whose values

are x. Given two strings r and s, if 〈|r|, |s|〉 ∈ Ex, we have

ED(r, s) = x. To compute the edit distance of r and s, we

iteratively compute Ex from x = 0. Initially we compute E0.

If 〈|r|, |s|〉 ∈ E0, the edit distance between r and s is 0 and we

terminate the computation; otherwise we compute E1 based on

E0. Iteratively we compute the value x such that 〈|r|, |s|〉 ∈ Ex

and return x as the edit distance.

Example 2: Figure 1(b) shows the matrix D to compute
the edit distance between “seraji” and “srajit”. We first
compute E0 = {〈0, 0〉, 〈1, 1〉}. As 〈|r|, |s|〉 �∈ E0, we compute
E1 = {〈0, 1〉, 〈1, 0〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉,
〈6, 5〉}. As 〈|r|, |s|〉 �∈ E1, we compute E2 = {〈0, 2〉, 〈1, 3〉,
〈2, 0〉, 〈2, 3〉, 〈3, 1〉, 〈3, 3〉, 〈4, 2〉, 〈4, 4〉, 〈5, 3〉, 〈5, 5〉, 〈6, 4〉,
〈6, 6〉}. As 〈|r| = 6, |s| = 6〉 ∈ E2, the edit distance
between “seraji” and “srajit” is 2 and we terminate the
computation. Notice that we can prune many useless entries.

Algorithm to compute Ex: We employ an iterative method to

compute Ex. Initially we compute E0, and then we compute

Ex+1 based on Ex. For ease of presentation, we first introduce

an operation called FINDMATCH, which, given two prefixes

of two strings, finds the entries with matching characters after

the two prefixes. Formally, given two strings r and s, and two

integers i and j, FINDMATCH(r, s, i, j) returns a set of entries

〈i + t, j + t〉 such that s[i + 1, i + t] = r[j + 1, j + t]. If the

two strings are clear in the context, FINDMATCH(r, s, i, j)
is abbreviated as FINDMATCH(i, j). For example, consider

two strings “seraji” and “srajit”. For 〈i = 2, j = 1〉,
as s[i + 1, i + 4] = r[j + 1, j + 4] = “raji”, 〈i + 4, j +
4〉 will be returned by the FINDMATCH operation. We have

FINDMATCH(2, 1) = {〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈6, 5〉}.

Initially we use the FINDMATCH operation to compute E0.

For each entry 〈i, j〉 ∈ E0, as D[i][j] = 0, we have i = j and

r[1, i] = s[1, j]. Obviously E0 = FINDMATCH(−1,−1). Next

we use an EXTENSION operation to compute Ex+1 based on

Ex. Let H=∪x
t=0Et. For each 〈i, j〉 ∈ Ex, EXTENSION applies

the following operations.

(1) Substitution: As we can substitute r[i + 1] for s[j + 1],
D[i+1][j+1] ≤ D[i][j]+1 = x+1. If 〈i+1, j+1〉 �∈ H (i.e.,

D[i+1][j+1] > x), then D[i+1][j+1] = x+1, thus we add

〈i+1, j+1〉 into Ex+1. As r[i+2] may match s[j+2], there

may exist entries 〈i+ t, j+ t〉 such that D[i+ t][j+ t] = x+1
for t ≥ 2. We use FINDMATCH(i+1, j+1) find such entries.

(2) Insertion: As we can insert r[i+1] after s[j], D[i+1][j] ≤
D[i][j] + 1 = x + 1. If 〈i + 1, j〉 �∈ H, then D[i + 1][j] =
x + 1, thus we add 〈i + 1, j〉 into Ex+1. Similarly, we use

FINDMATCH(i+1, j) to find entries whose values are x+1.

(3) Deletion: As we can delete s[j+1] from s, D[i][j+1] ≤
D[i][j] + 1 = x + 1. If 〈i, j + 1〉 �∈ H, then D[i][j + 1] =
x + 1, thus we add 〈i, j + 1〉 into Ex+1. Similarly, we use

FINDMATCH(i, j +1) to find entries whose values are x+1.

We can prove that our progressive method correctly com-

putes Ex as formalized in Lemma 1.

Lemma 1: The entry set Ex computed by our method

satisfies (1) completeness: if D[i][j] = x, 〈i, j〉 must be in

Ex; and (2) correctness: if 〈i, j〉 ∈ Ex, D[i][j] = x.

Example 3: Table II illustrates how to compute the edit
distance between “seraji” and “srajit”. Firstly, we com-
pute E0 = FINDMATCH(−1,−1) = {〈0, 0〉, 〈1, 1〉}. Then
we compute E1 based on E0. Consider 〈0, 0〉 ∈ E0. We
want to add 〈1, 1〉 (substitution), 〈1, 0〉 (insertion), and 〈0, 1〉
(deletion), into E1. As 〈1, 1〉 ∈ H = E0, we do not add it
into E1. For 〈1, 1〉, we want to add 〈2, 2〉 (substitution), 〈2, 1〉
(insertion), and 〈1, 2〉 (deletion), into E1. For 〈2, 1〉 ∈ E1, we
use FINDMATCH operation to add 〈2, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉,
〈6, 5〉 into E1. Similarly we compute E2. As 〈6, 6〉 ∈ E2, we
return 2 as the edit distance of the two strings.
Complexity: Given two strings r and s, suppose their edit

distance is τ . For any entry 〈i, j〉 ∈ Ex, we have |i − j| ≤
ED(r[1, i], s[1, j]) ≤ x. For each i, i − x ≤ j ≤ i + x, thus

|Ex| ≤ (2x+1)×min(|r|, |s|). The space complexity is O
(
τ×

min(|r|, |s|)
)
. In addition, each entry in Ex+1 is computed

from at most three entries (left entry, top entry, top-left entry)

in Ex. Thus the time complexity is O(
∑τ

x=0 |Ex|)∗. As there

are at most (2τ + 1) × min (|r|, |s|) entries in ∪τ
x=0Ex, the

time complexity is O
(
τ ×min (|r|, |s|)

)
.

B. Progressive Similarity Search

We extend the progressive method to support top-k similar-

ity search. Given a collection of strings, S , and a query string

q, for each string s ∈ S , we compute its entry set, denoted by

Ex(s). Let E′x denote the set of triples 〈s, i, j〉 where s ∈ S
and 〈i, j〉 in Ex(s). For each triple 〈s, i, j〉 ∈ E′x, if i = |s|
and j = |q|, the edit distance between s and q is x and we

add it into the result set R. If |R| ≥ k, we have found the

top-k answers and terminate the iteration.

Next we discuss how to compute E′x. For x = 0, we

enumerate each string s ∈ S and use the FINDMATCH

operation to generate the entry set for s. For each entry

〈i, j〉 ∈ E0(s), we add triple 〈s, i, j〉 into E′0. For x + 1, we

enumerate each triple 〈s, i, j〉 ∈ E′x and use the EXTENSION

operation to compute Ex+1(s) based on Ex(s). For each pair

〈i′, j′〉 in Ex+1(s), we add 〈s, i′, j′〉 into E′x+1.

∗We use a hash table to implement H, and thus the complexity to check whether an
entry is in H is O (1).

927

TABLE II

PROGRESSIVELY COMPUTING EDIT DISTANCE (“srajit”,“seraji”)

(a) E0 = FINDMATCH(−1,−1) = {〈0, 0〉, 〈1, 1〉}
(b) Computing E1 based on E0

E0 〈0,0〉 〈1,1〉

EXTENSION

Substitution Insertion Deletion Substitution Insertion Deletion
〈1, 1〉 〈1, 0〉 〈0, 1〉 〈2, 2〉 〈2, 1〉 〈1, 2〉

〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈6, 5〉
E1 〈1, 0〉, 〈0, 1〉, 〈2, 2〉, 〈2, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈6, 5〉, 〈1, 2〉

(c) Computing E2 based on E1

E1 〈1,0〉 〈0,1〉 〈2,2〉 〈2,1〉 〈3,2〉 〈4,3〉 〈5,4〉 〈6,5〉 〈1,2〉

EXTENSION

Substitution 〈2,1〉 〈1,2〉 〈3,3〉 〈3,2〉 〈4,3〉 〈5,4〉 〈6,5〉 〈2,3〉
Insertion 〈2,0〉 〈1,1〉 〈3,2〉 〈3,1〉 〈4,2〉 〈5,3〉 〈6,4〉 〈2,2〉
Deletion 〈1,1〉 〈0,2〉 〈2,3〉 〈2,2〉 〈3,3〉 〈4,4〉 〈5,5〉 〈6, 6〉 〈1,3〉

E2 〈2,0〉, 〈0,2〉, 〈2,3〉, 〈3,1〉, 〈4,2〉, 〈3,3〉, 〈5,3〉, 〈4,4〉, 〈6,4〉, 〈5,5〉, 〈6, 6〉, 〈1,3〉

However this method is expensive as it needs to enumerate

every strings in S . Notice that we can share computations

on common prefixes of different strings. Consider two strings

s1, s2 and s1[1, i] = s2[1, i]. For t ≤ i, if 〈s1, t, j〉 ∈ E′x, then

〈s2, t, j〉 ∈ E′x, and vice versa. To share the computations on

common prefixes, we propose a trie-based method.

We use a trie structure to index the strings in S . Each node

on the trie is associated with a character. The character of the

root is ε. The characters on a path from the root to a leaf node

correspond to a string†. Strings with the same prefixes share a

common trie node. For simplicity, node n is interchangeably

used with its corresponding prefix (the string composed of

characters from the root to node n). For example, Figure 2

shows a trie structure for strings in Table I. “suijt”, “suit”,

and “surajit” share a common prefix “su” (node n11).

Next we discuss how to use the trie structure to find top-k
answers efficiently. Let Tx denote the set of trie-based entries

〈n, j〉 with ED(n, q[1, j]) = x, where n is a trie node and j is

an integer. For 〈n, j〉 in Tx, if n is a leaf node and j = |q|,
we add n into R. If |R| ≥ k, we terminate the iteration. Next

we discuss how to compute Tx.

For x = 0, T0 is the set of entries 〈n, j〉, where n
matches q[1, j]. We compute T0 as follows. As the root r
matches the empty string ε, we add 〈r, 0〉 into T0. Then

we use the operation FINDMATCH(r, q, 0) to find the entries.

If the root has no child with character q[1], FINDMATCH

terminates; otherwise, there exists a child nc with character

q[1], FINDMATCH adds 〈nc, 1〉 into T0. Next for node nc,

FINDMATCH checks whether it has a child with label q[2]
and repeats the above steps. Iteratively we get T0.

Next we use the EXTENSION operation to compute Tx+1

based on Tx. Let H=∪x
t=0Tx. For 〈n, j〉 in Tx, EXTENSION

applies the following operations.

(1) Substitution: For each child nc of node n, we can

substitute the character of nc for q[j + 1]. If 〈nc, j + 1〉 �∈ H,

we add 〈nc, j + 1〉 into Tx+1. As nc may contain a child

with label q[j+2], next we call the FINDMATCH(nc, q, j+1)
operation to find those entries with matching characters.

(2) Insertion: For each child nc of node n, we can insert

character of nc after q[j]. If 〈nc, j〉 �∈ H, we add 〈nc, j〉 into

Tx+1. We also call the operation FINDMATCH(nc, q, j) .

(3) Deletion: We can delete q[j+1] from q. If 〈n, j+1〉 �∈ H,

we add 〈n, j+1〉 into Tx+1. We also need to call the operation

†To make each tire leaf node corresponds to a string and vice versa is to add a special
mark to the end of each string. For simplicity we do not show the mark in the figure.

�����

�

�����

����� �	�	� �
���

�����

�

�

�

�

��

�
���

�
�
�
��

����� ��

�

��

	�

		

	

	�

	�

	�

	�

���� ���	 ���
 �������� ����

	 �

�

�����

��

�	

�
 ��

��

	�

Fig. 2. A trie structure for the strings in Table I

FINDMATCH(n, q, j + 1).
We can prove that Tx computed by our method satisfies

completeness and correctness as formalized in Lemma 2.

Lemma 2: The set Tx computed by our method satisfies (1)

completeness: If ED(n, q[1, j]) = x, 〈n, j〉 is in Tx; and (2)

correctness: If 〈n, j〉 is in Tx, ED(n, q[1, j]) = x.

Example 4: Table III illustrates how to compute top-3 re-
sults of query “srajit”. First, we add 〈n0, 0〉 into T0. Then
we call FINDMATCH(n0, q, 0) and add 〈n1, 1〉 into T0 as n1

matches q[1]. Next we extend each entry in T0 to generate T1.
For 〈n0, 0〉, we want to add 〈n1, 1〉, 〈n21, 1〉 (substitution),
〈n1, 0〉, 〈n21, 0〉 (insertion), and 〈n0, 1〉 (deletion). As 〈n1, 1〉
is in T0, we do not add it into T1. For 〈n1, 1〉 in T0, we want
to add 〈n2, 2〉 〈n6, 2〉 〈n11, 2〉 (substitution), 〈n2, 1〉 〈n6, 1〉
〈n11, 1〉 (insertion), and 〈n1, 2〉 (deletion) into T1. For 〈n1, 2〉,
as its child n2 matches q[3], we use the FINDMATCH operation
to add 〈n2, 3〉 into T1. Similarly we compute T1 and T2.
As there are 3 answers in T2, we terminate and return n20

(“surajit”) with edit distance 1, and n5 (“sarit”) and n10

(“seraji”) with edit distance 2.

Complexity: Given a query string q, an integer k and a string

set S , suppose the maximum edit distance between the top-

k results and q is τ . For any entry 〈n, j〉 ∈ Tx, we have∣
∣|n| − j

∣
∣ ≤ ED(n, s[1, j]) ≤ x. Thus for each node n, we

have |n| − x ≤ j ≤ |n| + x. Let |T | denote the number of

trie nodes in the first |q| + τ levels. We have |Tx| ≤ (2x +
1)|T |. In practice, we can prune many trie nodes, and |Tx|
is much smaller than (2x+ 1)|T |. Thus the worst-case space

complexity is O
(
τ × |T |

)
. For any entry 〈n, j〉 ∈ ∪τ

x=0Tx,

we compute it from at most three entries, thus the worst-case

time complexity is O
(
| ∪τ

x=0 Tx| = τ × |T |
)
.

IV. PIVOTAL ENTRY BASED METHOD

In this section, we propose a method to reduce the size of

Ex in order to improve the performance of computing the edit

distance between two strings (Section IV-A) and then extend

this technique to support similarity search (Section IV-B).

A. Using Pivotal Entries to Compute Edit Distance

Based on the complexity analysis in Section III-A, if we

can reduce the size of Ex, we can improve the performance.

Here we discuss how to reduce the size of Ex. Consider an

entry 〈i, j〉 in Ex. The goal of keeping 〈i, j〉 in Ex is to add

〈i+1, j〉, 〈i, j+1〉, and 〈i+1, j+1〉 into Ex+1. If 〈i+1, j+1〉

928

TABLE III

AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE PROGRESSIVE SEARCH FRAMEWORK

(a) T0 = 〈n0, 0〉 ∪ FINDMATCH(0, 0) = {〈n0, 0〉, 〈n1, 1〉}
(b) Computing T1 based on T0

T0 〈n0, 0〉 〈n1, 1〉

EXTENSION

Substitution Insertion Deletion Substitution Insertion Deletion
〈n1, 1〉 〈n21, 1〉 〈n1, 0〉 〈n21, 0〉 〈n0, 1〉 〈n2, 2〉 〈n6, 2〉 〈n11, 2〉 〈n2, 1〉 〈n6, 1〉 〈n11, 1〉 〈n1, 2〉

〈n3, 2〉 〈n7, 2〉 〈n8, 3〉 〈n9, 4〉 〈n10, 5〉 〈n2, 3〉
〈n16, 2〉 〈n17, 3〉 〈n18, 4〉 〈n19, 5〉 〈n20, 6〉

T1
〈n21, 1〉 〈n1, 0〉 〈n21, 0〉 〈n0, 1〉 〈n2, 2〉 〈n6, 2〉 〈n11, 2〉 〈n2, 1〉 〈n6, 1〉 〈n11, 1〉 〈n3, 2〉 〈n7, 2〉 〈n8, 3〉

〈n9, 4〉 〈n10, 5〉 〈n16, 2〉 〈n17, 3〉 〈n18, 4〉 〈n19, 5〉 〈n20, 6〉 〈n1, 2〉 〈n2, 3〉
(c) Computing T2 based on T1

T1 〈n21, 1〉 〈n0, 1〉 〈n1, 0〉 〈n21, 0〉 〈n2, 2〉 〈n6, 2〉 〈n11, 2〉 〈n1, 2〉 〈n2, 1〉 〈n6, 1〉 〈n11, 1〉

EXTENSION

Substitution 〈n22, 2〉 〈n1, 2〉
〈n21, 2〉

〈n2, 1〉
〈n6, 1〉
〈n11, 1〉

〈n22, 1〉 〈n3, 3〉 〈n7, 3〉 〈n12, 3〉
〈n16, 3〉
〈n13, 4〉

〈n2, 3〉
〈n6, 3〉
〈n11, 3〉

〈n3, 2〉 〈n7, 2〉 〈n12, 2〉
〈n16, 2〉

Insertion 〈n22, 1〉
〈n23, 2〉

〈n1, 1〉
〈n21, 1〉

〈n2, 0〉
〈n6, 0〉
〈n11, 0〉

〈n22, 0〉 〈n3, 2〉 〈n7, 2〉 〈n12, 2〉
〈n16, 2〉

〈n2, 2〉
〈n6, 2〉
〈n11, 2〉

〈n3, 1〉 〈n7, 1〉 〈n12, 1〉
〈n16, 1〉

Deletion 〈n21, 2〉 〈n0, 2〉 〈n1, 1〉 〈n21, 1〉 〈n2, 3〉 〈n6, 3〉 〈n11, 3〉 〈n1, 3〉 〈n2, 2〉 〈n6, 2〉 〈n11, 2〉
T2

〈n22, 2〉 〈n21, 2〉 〈n22, 1〉 〈n23, 2〉 〈n0, 2〉 〈n2, 0〉 〈n6, 0〉 〈n11, 0〉 〈n22, 0〉 〈n3, 3〉
〈n7, 3〉 〈n6, 3〉 〈n12, 3〉 〈n16, 3〉 〈n11, 3〉 〈n12, 2〉 〈n13, 4〉 〈n1, 3〉 〈n3, 1〉 〈n7, 1〉 〈n12, 1〉 〈n16, 1〉

T1 〈n2, 3〉 〈n3, 2〉 〈n7, 2〉 〈n8, 3〉 〈n9, 4〉 〈n10, 5〉 〈n16, 2〉 〈n17, 3〉 〈n18, 4〉 〈n19, 5〉 〈n20, 6〉

EXTENSION

Substitution 〈n3, 4〉
〈n4, 5〉
〈n5, 6〉

〈n4, 3〉 〈n8, 3〉 〈n9, 4〉 〈n10, 5〉 〈n17, 3〉 〈n18, 4〉 〈n19, 5〉 〈n20, 6〉

Insertion 〈n3, 3〉 〈n4, 2〉 〈n8, 2〉 〈n9, 3〉 〈n10, 4〉 〈n17, 2〉 〈n18, 3〉 〈n19, 4〉 〈n20, 5〉
Deletion 〈n2, 4〉 〈n3, 3〉 〈n7, 3〉 〈n8, 4〉 〈n9, 5〉 〈n10, 6〉 〈n16, 3〉 〈n17, 4〉 〈n18, 5〉 〈n19, 6〉

T2
〈n3, 4〉 〈n2, 4〉 〈n5, 6〉 〈n4, 3〉 〈n4, 2〉 〈n8, 2〉 〈n8, 4〉 〈n9, 3〉

〈n18, 3〉 〈n19, 4〉 〈n20, 5〉 〈n9, 5〉 〈n10, 6〉 〈n10, 4〉 〈n16, 3〉 〈n17, 2〉 〈n17, 4〉 〈n18, 5〉 〈n19, 6〉

is also in Ex, we can remove 〈i, j〉 from Ex. The main reason

is as follows. First, 〈i + 1, j + 1〉 is already in Ex, thus it

cannot be added into Ex+1. Second we prove that 〈i+1, j〉 and

〈i, j+1〉 are not needed to add into Ex+1. Consider 〈i+1, j〉. If

D[i+1][j] < x+1, it will not be in Ex+1. If D[i+1][j] = x+1,

we have D[i + 2][j + 1] = x + 1 as stated in Lemma 3. As

D[i+1][j] = D[i+2][j +1], we keep D[i+2][j +1] and do

not keep 〈i+ 1, j〉 in Ex+1 (Here we only show the idea and

the details will be discussed later). Similarly, we do not need

to add 〈i+ 1, j〉 into Ex+1.

Lemma 3: Consider D[i][j] = D[i+1][j+1] = x. If D[i+
1][j] = x+1, we have D[i+2][j+1] = x+1. If D[i][j+1] =
x+ 1, we have D[i+ 1][j + 2] = x+ 1.

Iteratively, if 〈i + 1, j + 1〉, . . ., 〈i + Δ, j + Δ〉 are in Ex

and 〈i + Δ+ 1, j + Δ+ 1〉 are not in Ex, we only keep the

last one 〈i+Δ, j+Δ〉 in Ex. Next we formalize our idea. For

ease of presentation, we first extend D[i][j] in Equation 1 to

support i > |r| or j > |s| as follows.

If i > |r| or j > |s|,

D[i][j] = min(D[i][j−1]+1, D[i−1][j]+1, D[i−1][j−1]+1);

If i ≤ |r| and j ≤ |s|,

D[i][j] = min(D[i][j−1]+1, D[i−1][j]+1, D[i−1][j−1]+δ),

where δ = 0 if r[i] = s[j]; otherwise δ = 1. If D[i][j] =
D[i+Δ][j+Δ], we call 〈i, j〉 is dominated by 〈i+Δ, j+Δ〉.

Then we introduce a concept called pivotal entry.
Definition 2 (Pivotal Entry): An entry 〈i, j〉 in Ex is called

a pivotal entry, if D[i+ 1][j + 1] �= D[i][j].

Obviously 〈|r|, |s|〉 is a pivotal entry. Let Ep
x denote the set

of pivotal entries in Ex. If 〈|r|, |s|〉 ∈ Ep
x, ED(r, s) = x. To

compute the edit distance of r and s, we iteratively compute

Ep
x from x = 0. If 〈|r|, |s|〉 ∈ Ep

x, we return x as their edit

distance. For example, in Figure 3, 〈0, 0〉 is not a pivotal entry

as D[1][1] =D[0][0]. 〈1, 1〉 is a pivotal entry and Ep
0 = {〈1, 1〉}.

Although 〈2, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉 are in E1, they are not

pivotal entries, as they are dominated by 〈6, 5〉. We have Ep
1

= {〈1, 2〉, 〈2, 2〉, 〈6, 5〉 } and Ep
2 = {〈1, 3〉, 〈2, 3〉, 〈6, 6〉 }.

�
� � �
� � �
� �
�
�
� �

Fig. 3. Using pivotal entries (highlighted ones) to compute edit distance

Algorithm to Compute Ep
x: To compute Ep

0, we extend

the FINDMATCH operation and propose a new operation

FINDPIVOTAL, which finds the maximal value m such that

r[1,m]=s[1,m] by checking whether r[i]=s[i] for i ∈ [1,m].
Next we discuss how to compute Ep

x+1 based on Ep
x. We first

prove that there are at most 2x+1 pivotal entries in Ep
x. First,

for any entry 〈i, j〉, if |i − j| > x, we have D[i][j] > x (As

the edit distance between r[1, i] and s[1, j] is not smaller than

their length difference, i.e., D[i][j] ≥ |i − j|). Thus for any

entry 〈i, j〉 in Ex, we have −x ≤i−j≤ x. Second, let Ep
x[y]

denote the set of entries whose i-value minus j-value is y,

i.e., y = i−j. For any y∈[−x, x], there is at most one pivotal

entry in Ep
x[y]. We can prove it by contradiction. Suppose there

are two entries 〈i, j〉 and 〈i′, j′〉 in Ep
x[y]. Without loss of

generality, suppose i′ > i. As D[i][j] = D[i′][j′] = x, we

can prove that for 0 ≤
 ≤ i′ − i, D[i +
][j +
] = x,

as formalized in Lemma 4. Thus 〈i, j〉 is not a pivotal entry,

which contradicts with the assumption.

Lemma 4: Given any two entries 〈i, j〉 and 〈i′, j′〉 in Ep
x[y]

(i < i′), ∀
 ∈ [0, i′ − i], D[i+
][j +
] = x.

929

Based on Lemma 4, we prove that Ep
x[y] has at most one

pivotal entry and Ep
x has at most 2x + 1 pivotal entries, as

formalized in Lemma 5.

Lemma 5: Ep
x[y] (−x ≤ y ≤ x) has at most one pivotal

entry and Ep
x has at most 2x+ 1 pivotal entries.

Based on Lemma 5, we only keep 2x + 1 entries in Ep
x.

For each entry Ep
x[y], it may be computed from three entries,

and we only need to keep the entry with the maximal i-value.

Using this property, next we propose an extension operation

called PIVOTALEXTENSION to compute Ep
x+1 based on Ep

x.

For any entry 〈i, j〉 = Ep
x[|i−j|] ∈ Ep

x
‡, PIVOTALEXTENSION

applies the following operations.

(1) Substitution: We can substitute r[i+ 1] for s[j + 1], and

〈i+1, j+1〉 may be a pivotal entry. As D[i+2][j+2] may be

equal to D[i+ 1][j + 1], we use the FINDPIVOTAL operation

to find entry 〈i′, j′〉 =FINDPIVOTAL(i+1, j+1). If there is no

entry in Ep
x+1[i−j], we add 〈i′, j′〉 into Ep

x+1[i−j]; otherwise

suppose 〈i′′, j′′〉 has been added into Ep
x+1[i−j]. If i′>i′′, we

use 〈i′, j′〉 to update 〈i′′, j′′〉 and Ep
x+1[i−j]=〈i′, j′〉.

(2) Insertion: We can insert r[i+ 1] after s[j], and 〈i+ 1, j〉
may be a pivotal entry. As D[i + 2][j + 1] may be equal to

D[i + 1][j], we use the FINDPIVOTAL operation to find the

entry 〈i′, j′〉 =FINDPIVOTAL (i+1, j) . If there is no entry in

Ep
x+1[i+1− j], we add 〈i′, j′〉 into Ep

x+1[i+1− j]; otherwise

suppose 〈i′′, j′′〉 has been added into Ep
x+1[i+1−j]. If i′ > i′′,

we use 〈i′, j′〉 to update 〈i′′, j′′〉 and Ep
x+1[i+1−j] = 〈i′, j′〉.

(3) Deletion: We can delete s[j + 1] from s, and 〈i, j + 1〉
may be a pivotal entry. As D[i + 1][j + 2] may be equal to

D[i][j + 1], we use the FINDPIVOTAL operation to find the

entry 〈i′, j′〉 =FINDPIVOTAL (i, j +1). If there is no entry in

Ep
x+1[i−(j+1)], we add 〈i′, j′〉 into Ep

x+1[i−(j+1)]; otherwise

suppose 〈i′′, j′′〉 has been added into Ep
x+1[i−(j+1)]. If i′>i′′,

we use 〈i′, j′〉 to update 〈i′′, j′′〉 and Ep
x+1[i−(j+1)]=〈i′, j′〉.

Iteratively, we can compute Ep
x+1

§. Lemma 6 proves that

our method can correctly compute the pivotal set.

Lemma 6: Ep
x computed by our method satisfies (1) com-

pleteness: if 〈i, j〉 is a pivotal entry, 〈i, j〉 ∈ Ep
x; and (2)

correctness: if 〈i, j〉 ∈ Ep
x, 〈i, j〉 must be a pivotal entry.

Example 5: Table IV illustrates how to use pivotal entries to
compute the edit distance of “srajit” and “seraji”. First,
Ep
0 = FINDPIVOTAL(−1,−1) = {〈1, 1〉}. Then we compute

Ep
1 based on Ep

0. Consider 〈1, 1〉 ∈ Ep
0. We add Ep

1[0] = 〈2, 2〉
(substitution), Ep

1[1] = 〈2, 1〉 (insertion) and Ep
1[−1] = 〈1, 2〉

(deletion) into Ep
1. For 〈2, 1〉 ∈ Ep

1, we use FINDPIVOTAL

operation to find pivotal entries and set Ep
1[1] = 〈6, 5〉. For

〈2, 2〉 ∈ Ep
1, we set Ep

1[0] = 〈2, 2〉. For 〈1, 2〉 ∈ Ep
1, we

set Ep
1[−1] = 〈1, 2〉. Then we apply PIVOTALEXTENSION

operation on Ep
1. We add Ep

2[0] = 〈6, 6〉 into Ep
2 instead of

〈2, 2〉 and 〈3, 3〉 which are not pivotal entries. Finally, as

‡As Ep
x[y] has at most one pivotal entry, we refer to Ep

x[y] as the corresponding
pivotal entry.

§We can keep entries in Ep
x in order sorted by i-values and visit the entries in

descending order to avoid unnecessary operations.

TABLE IV

PIVOTAL ENTRIES TO COMPUTE EDIT DISTANCE(“srajit”,“seraji”)

(a) Ep
0 = {〈1, 1〉}

(b) Computing Ep
1 based on Ep

0

Ep
0 Ep

0 [0] = 〈1, 1〉

EXTENSION

Substitution Insertion Deletion
Ep
1 [0] = 〈2, 2〉 Ep

1 [1] = 〈2, 1〉 Ep
1 [−1] = 〈1, 2〉

Ep
1 [1] = 〈6, 5〉

Ep
1 〈1, 2〉 , 〈2, 2〉 , 〈6, 5〉

(c) Computing Ep
2 based on Ep

1 . Ep
2={〈1, 3〉, 〈2, 3〉, 〈6, 6〉, 〈7, 5〉, 〈7, 6〉}

Ep
1 Ep

1 [−1] = 〈1, 2〉

EXTENSION

Substitution Insertion Deletion
Ep
2 [−1]=〈2, 3〉 Ep

2 [0]=〈2, 2〉 Ep
2 [−2]=〈1, 3〉

Ep
2 [0]=〈6, 6〉

Ep
1 Ep

1 [0] = 〈2, 2〉

EXTENSION

Substitution Insertion Deletion
Ep
2 [0]=〈3, 3〉 Ep

2 [1]=〈3, 2〉 Ep
2 [−1]=〈2, 3〉

Ep
2 [0]=〈6, 6〉 Ep

2 [1]=〈7, 6〉 Ep
2 [−1]=〈2, 3〉

Ep
1 Ep

1 [1] = 〈6, 5〉
EXTENSION

Substitution Insertion Deletion
Ep
2 [1]=〈7, 6〉 Ep

2 [2]=〈7, 5〉 Ep
2 [0]=〈6, 6〉

〈6, 6〉 ∈ Ep
2, we return 2 as the edit distance.

Complexity: As |Ep
x| ≤ 2x + 1 and each row (colum-

n) has at most |r| (|s|) entries, the space complexity is

O
(
min(τ, |r|, |s|)

)
. The worst-case time complexity is still

O
(
τ×min(|r|, |s|)

)
. Since we can prune many useless entries,

this method can improve the performance.

B. Using Pivotal Triples to Support Similarity Search

The definition of pivotal entries depends on the two given

strings. Consider a trie node n, a query string q, and an integer

j. Suppose nc and n′c are two children of n. If ED(n′c, q[1, j+
1]) �= ED(n, q[1, j]), 〈n, j〉 is a pivotal entry for strings under

node n′c. If ED(nc, q[1, j + 1]) = ED(n, q[1, j]), 〈n, j〉 is not

a pivotal entry for strings under node nc. Thus pivotal entries

cannot apply to support multiple strings. To address this issue,

we introduce a new concept.

Definition 3 (Pivotal Triple): Given an entry 〈n, j〉, one of

n’s children nc, and a query q, triple 〈n, j, nc〉 is called a

pivotal triple, if ED(nc, q[1, j + 1]) �= ED(n, q[1, j]).

The pivotal triple 〈n, j, nc〉 means that for all strings under

node nc, 〈n, j〉 is a pivotal entry. Let Tp
x denote the pivotal

triple set of pivotal triples 〈n, j, nc〉 such that ED(n, q[1, j]) =
x. We use Tp

x[y] to denote the subset of pivotal triples in

Tp
x with y = |n| − j. For example, consider the trie in

Figure 2 and query “srajit”. Consider node n0 and its child

n1 (“s”) and child n21 (“t”). Let D[n][j] = ED(n, q[1, j]).
As D[n0][0] �= D[n21][1], 〈n0, 0, n21〉 is a pivotal triple. As

D[n0][0] = D[n1][1], 〈n0, 0, n1〉 is not a pivotal triple. Sim-

ilarly 〈n1, 1, n2〉, 〈n1, 1, n6〉, 〈n1, 1, n11〉 are pivotal triples.

Thus Tp
0={〈n0, 0, n21〉, 〈n1, 1, n2〉, 〈n1, 1, n6〉, 〈n1, 1, n11〉}.

We still iteratively compute Tp
x from x = 0. For each triple

〈n, j, nc〉 in Tp
x, if n is a leaf node and j = |q|, the string

corresponding to n is an answer and we add it into the result

set R. If there are k answers in R, we terminate the iteration.

Iteratively, we can compute the top-k answers efficiently. Next

we discuss how to compute Tp
x.

Algorithm to Compute Tp
x: For x = 0, from the root r,

for each of its children, nc, we find pivotal triples as follows.

930

���
���

���

��� ���

���

������
��� ���

�

��� ���

���� ����

(a) FINDTRIPLE/FINDQUADRUPLE

��� ���

���

��� ���

��� ������

���� ����

��� ���

���

��� ���

��� ������

���� ����

����	
���

�
��
����	
���

�
��

(b) UPDATETRIPLE/UPDATEQUADRUPLE

Fig. 4. Operations of the pivotal triple based method and the range-based method

Suppose nc is the child of n = r with label q[1] and let

n−nc denote the set of other children of n except nc. For each

node ns ∈ n − nc, as ED(n, q[0]) �= ED(ns, q[1]) (q[0] = ε),
〈n, 0, ns〉 is a pivotal triple and added into Tp

0 [0] (the entry

〈n, 0〉 is a pivotal entry for all strings under node ns). For

node nc, as ED(n, q[0]) = ED(nc, q[1]), entry 〈n, 0〉 is not a

pivotal entry for strings under node nc. Next for each child

of node nc, we repeat the above step to find pivotal triples

under node nc. Iteratively we can compute Tp
0. This is an

iterative method and next we introduce an operation called

FINDTRIPLE to directly compute the pivotal entries by calling

FINDTRIPLE(n = r, 0, nc, q) for every child nc of r.

FINDTRIPLE(n, j, nc, q) is extended from the FINDPIV-

OTAL operation (Figure 4(a)). Let n1 = nc and nm denote

the last matching node, that is the label of nm is q[j + m]
and none of its children has a label of q[j + m + 1]. FIND-

PIVOTAL adds the following possible pivotal triples (we will

use UPDATETRIPLE to remove the non-pivotal triples later).

Algorithm 1 shows the pseudo-code of FINDTRIPLE.

(1) For each node ni (1≤i≤m−1), its child ni+1 matches

q[j + i]. Thus ED(ni, q[1, j + i]) = ED(ni+1, q[1, j + i + 1])
and 〈ni, j+i, ni+1〉 is not a pivotal triple. For ns ∈ ni−ni+1,

ns does not match q[j+ i+1] and 〈ni, j+ i, ns〉 is a possible

pivotal triple. Thus FINDTRIPLE adds 〈ni, j + i, ns〉.
(2) For nm and each of its child ns, ns does not match q[j+
m+ 1] and 〈nm, j +m,ns〉 is a possible pivotal triple. Thus

FINDTRIPLE adds 〈nm, j +m,ns〉.
For example, consider the query “srajit” and the trie

structure in Figure 2. For the root, as its child n21 does

not match q[1], 〈n0, 0〉 is a pivotal entry for node n21. Thus

〈n0, 0, n21〉 is a pivotal triple. As the child n1 matches q[1],
〈n0, 0〉 is not a pivotal entry for node n1. Thus 〈n0, 0, n1〉
is not a pivotal triple. Next for n1, all of its children do not

match q[2], 〈n1, 1〉 is a pivotal entry for nodes n2, n6, n11.

Thus 〈n1, 1, n2〉, 〈n1, 1, n6〉, 〈n1, 1, n11〉 are pivotal triples.

Next we discuss how to compute Tp
x+1 based on Tp

x. We

propose a new extension operation TRIPLEEXTENSION. For

each pivotal triple 〈n, j, nc〉 in Tp
x[y = |n| − j], TRIPLEEX-

TENSION applies the following operations.

(1) Substitution: For the child nc of node n, we can substitute

the character of nc for q[j + 1]. Thus for each child nd of

nc, 〈nc, j + 1〉 may be a pivotal entry for strings under node

nc and we want to add triple 〈nc, j + 1, nd〉 into Tp
x+1[y =

|nc| − (j + 1)]. As 〈nc, j + 1, nd〉 may affect (or be affected

Algorithm 1: TOPKPIVOTALSEARCH(S, q, k)
Input: S: A string set; q: A query; k: No of answers;

Output:R: A set of top-k answers for S and q;

x = 0 ;1

for each child rc of root r do2

Tp
x = FINDTRIPLE(r, x, rc, q) ;3

if |R| ≥ k then return R ;4

while true do5

Tp
x+1 = TRIPLEEXTENSION (Tp

x, x) ;6

if |R| ≥ k then return R ;7

++ x ;8

Function FINDTRIPLE(n, j, nc, q)
Input: n:A node; q:A query; j:An integer; nc:n’s child

Output: Tp: A set of matching entries;

if nc.label�=q[j+1] then Tp ←〈n, j, nc〉;return Tp ;1

n1 = nc and nm is the last matching node ;2

for i∈[1,m−1] do Tp ←〈ni, j+i−1, ns∈ni−ni+1〉;3

if nm is a leaf and |q| = j +m then R ← nm ;4

for each child ns of nm do Tp ←〈nm, j +m,ns〉;5

return Tp ;6

Function TRIPLEEXTENSION(Tp
x, x)

Input: Tp
x: A set of entries; x: An integer;

Output: Tp
x+1: A set of entries;

foreach 〈n, j, nc〉 ∈ Tp
x do1

for each child node nd of nc do2

Tp
x+1=UPDATETRIPLE(〈nc, j + 1, nd〉) ;3

Tp
x+1=UPDATETRIPLE(〈nc, j, nd〉) ;4

Tp
x+1 = UPDATETRIPLE (〈n, j + 1, nc〉) ;5

return Tp
x+1;6

by) other triples in Tp
x+1[y]. We use function UPDATETRIPLE

(〈nc, j + 1, nd〉) to update pivotal triples as follows.

UPDATETRIPLE (Figure 4(b)): We use function FIND-

TRIPLE (nc, j + 1, nd, q) to find possible pivotal triples in

Tp
x+1[y], denoted by T̃p

x+1. For each triple 〈n′, j′, n′c〉 in T̃p
x+1,

let U denote the set of triples 〈n′′, j′′, n′′c 〉 in Tp
x+1[y] such that

|n′′c | − j′′ = y and n′′c is a descendant or an ancestor of n′c.

If U = φ, 〈n′, j′, n′c〉 does not affect (and is not affected by)

other triples, and we add 〈n′, j′, n′c〉 into Tp
x+1[y]; otherwise

for each triple 〈n′′, j′′, n′′c 〉, we check whether it affects (or is

affected by) 〈n′, j′, n′c〉 and update Tp
x+1 as follows.

931

TABLE V

AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE PIVOTAL-BASED SEARCH FRAMEWORK

(a) Tp
0 = {〈n0, 0, n21〉, 〈n1, 1, n2〉, 〈n1, 1, n6〉, 〈n1, 1, n11〉}

(b) Computing Tp
1 based on Tp

0

Tp
0 Tp

0 [0] 〈n0, 0, n21〉 〈n1, 1, n2〉 〈n1, 1, n6〉 〈n1, 1, n11〉

EXTENSION

Substitution Tp
1 [0]: 〈n21, 1, n22〉 〈n2, 2, n3〉 〈n6, 2, n7〉 〈n11, 2, n12〉 〈n11, 2, n16〉 〈n20, 6, φ〉

Insertion Tp
1 [1]: 〈n21, 0, n22〉 〈n2, 1, n3〉 〈n3, 2, n4〉 〈n6, 1, n7〉 〈n10, 5, φ〉 〈n11, 1, n12〉 〈n11, 1, n16〉

Deletion Tp
1 [−1]: 〈n0, 1, n21〉 〈n1, 2, n2〉 〈n2, 3, n3〉 〈n1, 2, n6〉 〈n1, 2, n11〉

Tp
1

〈n21, 1, n22〉 〈n2, 2, n3〉 〈n6, 2, n7〉 〈n11, 2, n12〉 〈n0, 1, n21〉 〈n1, 2, n6〉 〈n1, 2, n11〉
〈n21, 0, n22〉 〈n11, 1, n12〉 〈n11, 1, n16〉 〈n3, 2, n4〉 〈n2, 3, n3〉 〈n10, 5, φ〉 〈n20, 6, φ〉

(c) Computing Tp
2 based on Tp

1

Tp
1 Tp

1 [0] 〈n21, 1, n22〉 〈n2, 2, n3〉 〈n6, 2, n7〉 〈n11, 2, n12〉 〈n20, 6, φ〉

EXTENSION

Substitution Tp
2 [0]: 〈n22, 2, n23〉 〈n3, 3, n4〉 〈n7, 3, n8〉 〈n12, 3, n13〉 〈n12, 3, n15〉 〈φ, 7, φ〉

Insertion Tp
2 [1]: 〈n22, 1, n23〉 〈n23, 2, n24〉 〈n3, 2, n4〉 〈n7, 2, n8〉 〈n12, 2, n13〉 〈n12, 2, n15〉 〈φ, 6, φ〉

Deletion Tp
2 [−1]: 〈n21, 2, n22〉 〈n2, 3, n3〉 〈n6, 3, 7〉 〈n11, 3, n12〉 〈n20, 7, φ〉

Tp
2

〈n22, 2, n23〉 〈n3, 3, n4〉 〈n12, 3, n15〉 〈φ, 7, φ〉 〈n21, 2, n22〉
〈n11, 3, n12〉 〈n20, 7, φ〉 〈n12, 2, n13〉 〈n12, 2, n15〉 〈φ, 6, φ〉 〈n23, 2, n24〉 〈n13, 4, n14〉

Tp
1 Tp

1 [-1] 〈n0, 1, n21〉 〈n2, 3, n3〉 〈n1, 2, n6〉 〈n1, 2, n11〉

EXTENSION

Substitution Tp
2 [−1]: 〈n21, 2, n22〉 〈n3, 4, n4〉 〈n5, 6, φ〉 〈n6, 3, n7〉 〈n11, 3, n12〉 〈n11, 3, n16〉

Insertion Tp
2 [0]: 〈n21, 1, n22〉 〈n3, 3, n4〉 〈n6, 2, n7〉 〈n11, 2, n12〉 〈n11, 2, n16〉

Deletion Tp
2 [−2]: 〈n0, 2, n21〉 〈n2, 4, n3〉 〈n1, 3, n6〉 〈n1, 3, n11〉

Tp
2 〈n11, 3, n16〉 〈n0, 2, n21〉 〈n2, 4, n3〉 〈n1, 3, n6〉 〈n1, 3, n11〉 〈n5, 6, φ〉

Tp
1 Tp

1 [1] 〈n21, 0, n22〉 〈n3, 2, n4〉 〈n10, 5, φ〉 〈n11, 1, n12〉 〈n11, 1, n16〉

EXTENSION

Substitution Tp
2 [1]: 〈n22, 1, n23〉 〈n4, 3, n5〉 〈φ, 6, φ〉 〈n12, 2, n13〉 〈n12, 2, n15〉 〈n16, 2, n17〉

Insertion Tp
2 [2]: 〈n22, 0, n23〉 〈n4, 2, n5〉 〈φ, 5, φ〉 〈n12, 1, n13〉 〈n12, 1, n15〉 〈n16, 1, n17〉

Deletion Tp
2 [0]: 〈n21, 1, n22〉 〈n3, 3, n4〉 〈n10, 6, φ〉 〈n11, 2, n12〉 〈n11, 2, n16〉

Tp
2 〈n4, 3, n5〉 〈φ, 6, φ〉 〈n10, 6, φ〉 〈n22, 0, n23〉 〈n4, 2, n5〉 〈φ, 5, φ〉 〈n12, 1, n13〉 〈n12, 1, n15〉 〈n16, 1, n17〉

(i) If j′′ > j′, n′′c must be a descendant of n′c. For strings

under node n′′c , 〈n′′, j′′〉 is a pivotal entry, and we still keep

triple 〈n′′, j′′, n′′c 〉. Let n1, n2, . . . , nm denote the nodes on the

path from n1 = n′ to nm = n′′. We have ED(n1, q[1, j
′]) =

ED(n2, q[1, j
′ + 1]) = . . . = ED(nm, q[1, j′′]) = x + 1.

Thus 〈n′, j′, n′c〉 is not a pivotal triple and we need to add

the following triples into Tp
x+1[y]: 〈ni, j

′ + i + 1, ns〉 for

i ∈ [1,m−1] and ns ∈ ni−ni+1 (ni’s children except ni+1).

(ii) If j′′ ≤ j′, n′′c must be an ancestor of n′c. Let

n1, n2, . . . , nm denote the nodes on the path from n1 = n′′ to

nm = n′. We have ED(n1, q[1, j
′′]) = ED(n2, q[1, j

′′ + 1]) =
. . . = ED(nm, q[1, j′]) = x + 1. Thus 〈n′′, j′′, n′′c 〉 is not a

pivotal triple. As for strings under node n′c, 〈n′, j′〉 is a pivotal

entry, we replace triple 〈n′′, j′′, n′′c 〉 with 〈n′, j′, n′c〉. We also

add the following triples into Tp
x+1[y]: 〈ni, j

′′+ i+1, ns〉 for

i ∈ [1,m−1] and ns ∈ ni−ni+1 (ni’s children except ni+1).

(2) Insertion: For the child nc of node n, we can insert

character of nc after q[j]. Thus for each child nd of nc, 〈nc, j〉
may be a pivotal entry for strings under node nd. We call

function UPDATETRIPLE (〈nc, j, nd〉) to add triples.

(3) Deletion: We can delete q[j + 1] from q. Thus 〈n, j + 1〉
may be a pivotal entry for strings under node nc. We call

function UPDATETRIPLE (〈n, j + 1, nc〉) to add triples.

Iteratively we can compute the pivotal triple set and Al-

gorithm 1 shows the pseudo-code. The correctness of the

algorithm is formalized in Lemma 7.

Lemma 7: Tp
x computed by our method satisfies (1) com-

pleteness: If 〈n, j, nc〉 is a pivotal triple, it is in Tp
x; and (2)

correctness: If 〈n, j, nc〉 is in Tp
x, it is a pivotal triple.

Example 6: Consider the trie in Figure 2. Table V shows
the example to find top-3 answers of query “srajit”. For
〈n1, 1, n2〉 in Tp

0, we do substitution and add 〈n2, 2, n3〉. For
insertion, 〈n2, 1, n3〉 is not a pivotal entry as n3 matches q[2].
Thus we call FINDPIVOTAL operation and add 〈n3, 2, n4〉. For
deletion, we also extend 〈n1, 2, n2〉 to 〈n2, 3, n3〉. Similarly we
compute all pivotal triples in Table V.

Complexity: Let |B| denote the number of trie nodes at the

(|q|+τ)-th level. As we only keep Tp
x to compute Tp

x+1, the

space complexity is O(τ |B|). As the update operation (e.g.,

using a hash table) takes O(1) time, the worst-case time

complexity is O(τ×|T |). As the method prunes many useless

trie nodes, it improves the performance(Section VI-A).

V. A RANGE-BASED METHOD

As there may be multiple triples with the same entry

〈n, j〉, we want to group them to improve the performance.

Consider an entry 〈n, j〉 in Ep
x. Node n may have multiple

children such that 〈n, j, nc〉 is a pivotal triple. It is expensive

to keep all such triples. For example, 〈n1, 1〉 is a pivotal

entry for nodes n2, n6, n11, and we need to keep three triples

〈n1, 1, n2〉, 〈n1, 1, n6〉, 〈n1, 1, n11〉. In addition, it is expensive

to enumerate the nodes in n − nc (the set of children of n
except nc). To address this issue, we propose a range-based

method by grouping trie nodes.
We encode the trie structure as follows. For each leaf node,

we assign an ID in a pre-order, which is also the ID of its

corresponding string. For each internal node n, we maintain an

ID range [ln, un], where ln (un) is the minimum (maximum)

ID of strings under the node. In Figure 2, the ID range of

node n1 is [1, 5] which denotes all strings with a prefix of n1

(“s”) have IDs in [1, 5] and all IDs in [1, 5] have a prefix “s”.
The basic idea of the range-based method is as follows.

Consider node n and its child node nc with label q[j + 1].
The previous method needs to enumerate all nc’s siblings in

n−nc. Instead the range-based method is to use a range [l, u]
to denote the nodes in n− nc and use an integer d to denote

|n|. Suppose the range of node n(nc) is Rn = [ln, un](Rnc =
[lnc , unc]). As Rnc ⊆ Rn, we use Rn −Rnc = [ln, lnc − 1]∪
[unc

+ 1, un] to denote the nodes in n− nc. To this end, we

propose a concept, called pivotal quadruple.

Definition 4 (Pivotal Quadruple): A quadruple 〈[l, u], d, j〉
is a pivotal quadruple¶, if it satisfies (1) 〈l, u〉 is a sub-range of

¶The quadruple should be 〈l, u, d, j〉. For clarity, we use 〈[l, u], d, j〉.

932

TABLE VI

AN EXAMPLE FOR TOP-3 SIMILARITY SEARCH “srajit” ON S USING THE RANGE-BASED METHOD

(a) Tr
0 = FINDMATCH(0, 0) = {〈[6, 6], 0, 0〉, 〈[1, 5], 1, 1〉}

(b) Tr
1 = {〈[1, 5], 2, 2〉, 〈[6, 6], 1, 1〉, 〈[6, 6], 0, 1〉, 〈[1, 1], 2, 3〉, 〈[2, 5], 1, 2〉, 〈[1, 1], 3, 2〉, 〈[2, 2], 6, 5〉, 〈[3, 4], 2, 1〉, 〈[5, 5], 7, 6〉, 〈[6, 6], 1, 0〉}

Tr
0 〈[1, 5], 1, 1〉 〈[6, 6], 0, 0〉

EXTENSION

Substitution E1[0] Insertion E1[1] Deletion E1[−1] Substitution E1[0] Insertion E1[1] Deletion E1[−1]
〈[1, 5], 2, 2〉 〈[1, 5], 2, 1〉 〈[1, 1], 3, 2〉 〈[1, 5], 1, 2〉 〈[6, 6], 1, 1〉 〈[6, 6], 1, 0〉 〈[6, 6], 0, 1〉

〈[2, 2], 6, 5〉 〈[3, 4], 2, 1〉
〈[5, 5], 7, 6〉

〈[1, 1], 2, 3〉
〈[2, 5], 1, 2〉

Tr
1 〈[1, 5], 2, 2〉, 〈[6, 6], 1, 1〉, 〈[6, 6], 0, 1〉, 〈[1, 1], 2, 3〉, 〈[2, 5], 1, 2〉, 〈[1, 1], 3, 2〉, 〈[2, 2], 6, 5〉, 〈[3, 4], 2, 1〉, 〈[5, 5], 7, 6〉, 〈[6, 6], 1, 0〉

(c) Computing Tr
2 based on Tr

1

Tr
1 Tr

1[−1] 〈[1, 1], 2, 3〉 〈[2, 5], 1, 2〉 〈[6, 6], 0, 1〉 Tr
1[0] 〈[1, 5], 2, 2〉 〈[6, 6], 1, 1〉

EXTENSION

Substitution E2[−1] 〈[1, 1], 3, 4〉 〈[1, 1], 5, 6〉 〈[2, 5], 2, 3〉 〈[6, 6], 1, 2〉 E2[0] 〈[1, 5], 3, 3〉
〈[3, 4], 3, 3〉
〈[3, 3], 4, 4〉

〈[6, 6], 2, 2〉

Insertion E2[0] 〈[1, 1], 3, 3〉 〈[2, 5], 2, 2〉 〈[6, 6], 1, 1〉 E2[1] 〈[1, 5], 3, 2〉 〈[6, 6], 2, 1〉 〈[6, 6], 3, 2〉
Deletion E2[−2] 〈[1, 1], 2, 4〉 〈[2, 5], 1, 3〉 〈[6, 6], 0, 2〉 E2[−1] 〈[1, 5], 2, 3〉

〈[4, 4], 3, 3〉
〈[6, 6], 1, 2〉

Tr
2 〈[2, 5], 2, 3〉 〈[6, 6], 0, 2〉 〈[1, 1], 2, 4〉 〈[2, 5], 1, 3〉 〈[6, 6], 2, 2〉 〈[1, 1], 3, 3〉 〈[1, 1], 5, 6〉 〈[3, 3], 4, 4〉 〈[4, 4], 3, 3〉 〈[6, 6], 3, 2〉 〈[6, 6], 1, 2〉

Tr
1 Tr

1[1] 〈[1, 1], 3, 2〉 〈[2, 2], 6, 5〉 〈[3, 4], 2, 1〉 〈[5, 5], 7, 6〉 〈[6, 6], 1, 0〉

EXTENSION

Substitution E2[1] 〈[1, 1], 4, 3〉 〈[2, 2], 7, 6〉 〈[3, 4], 3, 2〉 〈[5, 5], 8, 7〉 〈[6, 6], 2, 1〉
Insertion E2[2] 〈[1, 1], 4, 2〉 〈[2, 2], 7, 5〉 〈[3, 4], 3, 1〉 〈[5, 5], 8, 6〉 〈[6, 6], 2, 0〉
Deletion E2[0] 〈[1, 1], 3, 3〉 〈[2, 2], 6, 6〉 〈[3, 4], 2, 2〉 〈[5, 5], 7, 7〉 〈[6, 6], 1, 1〉

Tr
2

〈[1, 1], 4, 3〉 〈[2, 2], 7, 6〉 〈[3, 4], 3, 2〉 〈[5, 5], 8, 7〉 〈[2, 2], 6, 6〉
〈[5, 5], 7, 7〉 〈[6, 6], 2, 0〉 〈[1, 1], 4, 2〉 〈[2, 2], 7, 5〉 〈[3, 4], 3, 1〉 〈[5, 5], 8, 6〉

a d-th level node’s range; (2) for any string s with ID in [l, u],
ED(s[1, d + 1], q[1, j + 1]) �= ED(s[1, d], q[1, j]); (3) strings

with ID l − 1 or u+ 1 do not satisfy conditions (1) or (2).

The quadruple 〈[l, u], d, j〉 means that for each string s in

range [l, u], 〈d, j〉 is a pivotal entry for s and q. Let Tr
x

denote the set of pivotal quadruples 〈[l, u], d, j〉 such that

ED(s[1, d], q[1, j]) = x where s is a string with ID in [l, u].
We use Tr

x[y] to denote the subset of Tr
x with y = d− j.

For example, consider the trie in Figure 2 and query

“srajit”. For any string s in [1,5], D[1][1] �=D[2][2],
〈[1, 5], 1, 1〉 is a pivotal quadruple. As D[0][0]=D[1][1],
〈[1, 5], 0, 0〉 is not a pivotal quadruple. Similarly 〈[6, 6], 0, 0〉 is

also a pivotal quadruple. Thus Tr
0={〈[1, 5], 1, 1〉, 〈[6, 6], 0, 0〉}.

We still iteratively compute Tr
x from x = 0. If we find k

results from Tr
x, our algorithm terminates.

Algorithm to Compute Tr
x: For x = 0, from the root r,

for each of its children, nc, we find pivotal quadruples as

follows. Suppose nc is the child of n = r with label q[1]. For

any string s with ID in [ln, un] − [lnc , unc], ED(s[0], q[0]) �=
ED(s[1], q[1]). Thus 〈[ln, lnc −1], 0, 0〉 and 〈[unc +1, un], 0, 0〉
are pivotal quadruples and added into Tr

0 [0]. Next for node nc,

we repeat the above step to find pivotal quadruples under node

nc. Iteratively we can compute Tr
0. This is an iterative method

and we introduce a function FINDQUADRUPLE(n, j, q) to di-

rectly compute the pivotal entries (using parameters (r, 0, q)).
FINDQUADRUPLE extends FINDTRIPLE by grouping nodes

(Figure 4(a)). Algorithm 2 shows the pseudo-code. It first finds

the matching nodes n1 = n, n2, · · · , nm, where nm is the last

matching node. For each node ni for 1 ≤ i ≤ m − 1, its

child ni+1 matches the query character q[j + i]. Instead of

enumerating each node in ni − ni+1, we group the siblings

of ni+1 into two groups based on ni+1: [lni , lni+1 − 1]
and [uni+1 + 1, uni]. FINDQUADRUPLE adds 〈[lni , lni+1 −
1], |ni|, j + i〉 and 〈[uni+1 + 1, uni], |ni|, j + i〉. Similarly for

nm, FINDQUADRUPLE adds 〈[lnm , unm], nm, j +m〉.
Next we discuss how to compute Tr

x+1 based on Tr
x. We

propose a new operation QUADRUPLEEXTENSION to support

quadruple extensions. For each pivotal quadruple 〈[l, u], d, j〉

in Tr
x[y = d− j], it applies the following extensions.

(1) Substitution: For any strings with ID in [l, u], we can

substitute the (d+1)-th character of these strings with q[j+1].
Thus 〈d+1, j+1〉 may be a pivotal entry for strings in [l, u],
〈[l, u], d+1, j+1〉 is a potential pivotal quadruple and we want

to add it into Tr
x+1. However, there may be some strings with

the (d+2)-th character matching q[j + 2]. For such strings,

〈d+1, j +1〉 is not a pivotal entry and 〈d+2, j +2〉 may be

a pivotal entry. To address this issue, we propose a function

UPDATEQUADRUPLE (〈[l, u], d+1, j+1〉) to find quadruples.

UPDATEQUADRUPLE (Figure 4(b)): Based on the above

observation, we want to find the nodes in the (d+2)-th level

with character q[j + 2] within the range [l, u]. As there may

be multiple such nodes, to accelerate this operation we build

an inverted index I, where each entry is an integer d and a

character c and the corresponding value is a set of d-th level

nodes with label c. Thus we first find all the nodes in the

(d+2)-th level with character q[j + 2] using the index I and

then use a binary search to find the nodes within [l, u]. For

each of these nodes, n, we use the aforementioned function

FINDQUADRUPLE (n, j + 2, q) to find all possible pivotal

quadruples, denoted by T̃r
x+1.

Notice that the quadruples in T̃r
x+1 may affect (or be

affected by) quadruples in Tr
x+1. Thus we need to update

quadruples as follows. For each quadruple 〈[l′, u′], d′, j′〉 in

T̃r
x+1, let U denote the set of quadruples 〈[l′′, u′′], d′′, j′′〉 in

Tr
x+1[y] such that d′′ − j′′ = y and [l′′, u′′] has an overlap

with [l′, u′]. If U = φ, we do not need to update and add

〈[l′, u′], d′, j′〉 into Tr
x+1[y]; otherwise for each quadruple

〈[l′′, u′′], d′′, j′′〉 in U, we update Tr
x+1 as follows.

(i) j′′ > j′ and d′′ > d′: For any string s in [l′′, u′′], as

ED(s[d′′], q[j′′]) �= ED(s[d′′ + 1], q[j′′ + 1]), 〈d′′, j′′〉 is still

a pivotal entry and we keep 〈[l′′, u′′], d′′, j′′〉. 〈d′, j′〉 is not a

pivotal entry as ED(s[d′′], q[j′′]) = ED(s[d′], q[j′]) = x+1 and

j′′ > j′. We add 〈[l′, l′′ − 1], d′, j′〉 and 〈[u′′ + 1, u′], d′, j′〉.
(ii) j′′≤j′ and d′′≤d′: For any string s in [l′, u′], 〈d′, j′〉 is

a pivotal entry as ED(s[d′], q[j′]) �= ED(s[d′ + 1], q[j′ + 1]).

933

Algorithm 2: TOPKRANGESEARCH(S, q, k)
Input: S: A string set; q: A query; k: No of answers;

Output:R: A set of top-k answers for S and q;

x = 0 ;1

Tr
x = FINDQUADRUPLE(r, 0, q) ;2

if |R| ≥ k then return R ;3

while true do4

Tr
x+1 = QUADRUPLEEXTENSION (Tr

x, x) ;5

if |R| ≥ k then return R ;6

++ x ;7

Function FINDQUADRUPLE(n, j, q)
Input: n: A node; j: An integer; q: A query;

Output: Tr: A set of matching ranges;

n1 = n and nm is the last matching node ;1

for ni ∈ {n1, n2, . . . , nm−1} do2

Tr ← 〈[lni , lni+1 − 1], |ni|, j + i− 1〉 ;3

Tr ← 〈[uni+1 + 1, uni], |ni|, j + i− 1〉 ;4

if nm is a leaf and |q| = j +m then R ← nm ;5

Tr ← 〈[lnm , unm], |nm|, j +m〉 ;6

return Tr ;7

Function QUADRUPLEEXTENSION(Tr
x, x)

Input: Tr
x: A set of entries; x: An integer;

Output: Tr
x+1: A set of entries;

foreach 〈[l, u], d, j〉 ∈ Tr
x do1

Tr
x+1=UPDATEQUADRUPLE (〈[l, u], d+1, j+1〉);2

Tr
x+1=UPDATEQUADRUPLE (〈[l, u], d+ 1, j〉) ;3

Tr
x+1=UPDATEQUADRUPLE (〈[l, u], d, j + 1〉) ;4

return Tr
x+1;5

〈d′′, j′′〉 is not as ED(s[d′], q[j′]) = ED(s[d′′], q[j′′]) = x + 1
and j′′ ≤ j′. We replace 〈[l′′, u′′], d′′, j′′〉 with 〈[l′, u′], d′, j′〉
and add 〈[l′′, l′ − 1], d′′, j′′〉, 〈[u′ + 1, u′′], d′′, j′′〉.
(2) Insertion: For any strings with ID in range [l, u], we

can insert the (d+1)-th character after q[j]. Thus 〈d + 1, j〉
may be a pivotal entry for strings in [l, u]. We call function

UPDATEQUADRUPLE (〈[l, u], d+ 1, j〉) to update quadruples.

(3) Deletion: For any strings with ID in range [l, u], we can

delete q[j +1] from q. Thus 〈d, j +1〉 may be a pivotal entry

for strings in [l, u]. We call function UPDATEQUADRUPLE

(〈[l, u], d, j + 1〉) to update quadruples.

Iteratively we can compute the pivotal quadruple set and

Algorithm 2 shows the pseudo-code. The correctness of the

algorithm is formalized in Lemma 8.

Lemma 8: Tr
x computed by our method satisfies (1) com-

pleteness: If 〈[l, u], d, j〉 is a pivotal quadruple, it is in Tr
x; (2)

correctness: If 〈[l, u], d, j〉 is in Tr
x, it is a pivotal quadruple.

Example 7: Consider the trie in Figure 2. Table VI shows
the example to find top-3 answers of query “srajit”. Con-
sider 〈[6, 6], 1, 1〉 in Tr

1. For substitution, we add 〈[6, 6], 2, 2〉.
For insertion, 〈[6, 6], 2, 1〉 is not a pivotal entry as the third
character of string s6=“thrifty” matches q[2]=‘r’. Thus we
apply the FINDQUADRUPLE operation and add 〈[6, 6], 3, 2〉.
For deletion, we add 〈[6, 6], 1, 2〉. Similarly we compute all

TABLE VII
DATASETS

Datasets Cardinality Avg Len Max Len Min Len
Word 146,033 16.01 35 1

Author 10.27 million 22.02 383 8
Email 6.4 million 26.58 57 7

pivotal quadruples as illustrated in Table VI.

Complexity: Let |B′| denote the number of trie nodes at

the (|q|+τ−1)-th level, which is not larger than the number

of trie nodes at the (|q|+τ)-th level |B|. As we only keep

Tr
x to compute Tr

x+1, the space complexity is O(τ × |B′|).
As the update operation (e.g., using a hash table) takes

O(1) time, the worst-case time complexity is O(τ × |T |).
As the method groups many pivotal triples, it improves the

performance(Section VI-A).

VI. EXPERIMENTAL STUDY

We conducted an extensive set of experimental studies on

three real datasets. The first one is the Author dataset which

is a set of author names and extracted from the publications

in PubMed ‖. The second one is the Word dataset, which is a

set of common English words. The third one is a set of Email

addresses. We randomly selected 100 queries from the datasets

and compared the average elapsed time. Table VII shows the

detailed information of the three datasets. Figure 5 shows the

string length distributions of the three datasets.

We compared our algorithms with state-of-the-art methods,

AQ [20], Bed-Tree [21], and Flamingo [10]. The code of

Bed-Tree was provided by the authors. The code of Flamingo
was download from their website ∗∗. We extended it to support

top-k search by increasing the thresholds (initialized as 0).

As it is a famous threshold-based string similarity search

algorithm, we selected it as a baseline for comparison. AQ
was implemented by ourselves in C++. All the algorithms were

implemented in C++ and compiled using GCC 4.2.4 with -O3

flag. All the experiments were run on a Ubuntu machine with

an Intel Xeon X5670 2.93GHz CPU and 32 GB memory.

A. Evaluation on Our Techniques
In this section, we compare our proposed techniques, the

progressive-based method, the pivotal entry based method, and

the range-based method. We first compared the number of

entries that were needed to compute of the three methods.

Figure 6 shows the results by varying k on the three datasets.

We can see that the pivotal entry based method involved

smaller numbers of entries than the progressive-based method

on the Email dataset and the Author dataset. This is because

the pivotal entry based method only computed pivotal entries

and pruned large numbers of useless entries. For example,

on the Email dataset, for k = 50, the progressive-based

method computed 0.8 billion entries, and the pivotal entry

based method computed 0.6 billion entries. On the Word
dataset, the pivotal entry based method was worse than the

progressive-based method. This is because if an entry is a

pivotal entry for all children, the pivotal entry based method
‖http://www.ncbi.nlm.nih.gov/pubmed/
∗∗http://flamingo.ics.uci.edu/

934

 0

 4000

 8000

 12000

 16000

 20000

 5 10 15 20 25 30 35
N

um
be

rs
 o

f s
tri

ng
s

String Lenghts

(a) The Word Dataset

 0

 200000

 400000

 600000

 800000

 1e+006

 50 100 150 200 250 300 350

N
um

be
rs

 o
f s

tri
ng

s

String Lenghts

(b) The Author Dataset

 0
 200000
 400000
 600000
 800000
 1e+006

 1.2e+006
 1.4e+006
 1.6e+006

 10 20 30 40 50 60

N
um

be
rs

 o
f s

tri
ng

s

String Lenghts

(c) The Email Dataset
Fig. 5. String length distribution

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

1 5 10 25 50 100

N
um

be
r o

f E
nt

rie
s

Top-k

Progressive
Pivotal
Range

(a) The Word Dataset

 0

 5e+008

 1e+009

 1.5e+009

 2e+009

 2.5e+009

 3e+009

1 5 10 25 50 100
N

um
be

r o
f E

nt
rie

s

Top-k

Progressive
Pivotal
Range

(b) The Author Dataset

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

1 5 10 25 50 100

N
um

be
r o

f E
nt

rie
s

Top-k

Progressive
Pivotal
Range

(c) The Email Dataset
Fig. 6. Evaluating Our Techniques - Number of Entries

 0

 1

 2

 3

 4

 5

 6

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)

Top-k

Progressive
Pivotal
Range

(a) The Word Dataset

 0

 200

 400

 600

 800

 1000

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)

Top-k

Progressive
Pivotal
Range

(b) The Author Dataset

 0

 100

 200

 300

 400

 500

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)
Top-k

Progressive
Pivotal
Range

(c) The Email Dataset

Fig. 7. Evaluating Our Techniques - Elapsed Time

needed to maintain all such triples which may be expensive.

However the range-based method grouped such triples and

significantly reduced the number of entries.

In addition, the range-based method computed much smaller

numbers of entries than the pivotal entry based method and

the progressive-based method on the three datasets. The main

reason is that the range-based method grouped large numbers

of pivotal entries and reduced the number of pivotal entries

significantly. For example, on the Email dataset, for k = 100,

the pivotal entry based method and the progressive-based

method involved more than 1 billion entries, and the range-

based method had only 0.1 billion entries. The experimental

results consist with our analysis in Section IV.

Next we compare the average elapsed time of different

methods by varying k. Figure 7 shows the results.

We can see that the range-based method achieved the best

performance and outperformed the other two methods. The

main reason is that, the range-based method pruned many

non-pivotal entries against the progressive-based method and

grouped the pivotal entries to avoid unnecessary computa-

tions. For example, on the Email dataset, for k = 50, the

progressive-based method took 300 milliseconds, the pivotal

entry based method improved the time to 150 milliseconds,

and the range-based method further reduced time to 50 mil-

liseconds. This shows that our range-based pruning technique

can prune large numbers of unnecessary entries and improve

the performance significantly.

B. Comparison with Existing Methods
In this section, we compare our range-based method with

state-of-the-art methods, AQ, Bed-Tree, and Flamingo by

varying different k on the three datasets. As they needed tune

some parameters (e.g., gram length), we reported their best

results. Figure 8 shows the experimental results.

We can see that for small k values (k < 50), AQ had the

worst performance as it is rather time consuming to adaptively

select a good gram length. For large k values, AQ was better

than Flamingo as the search time was larger than the time to

select a good gram length. For example, on the Word dataset,

for k = 25, AQ took 5 milliseconds and other methods took

less than 3 milliseconds. In addition, Bed-Tree was better

than AQ and Flamingo for large k values, as it dynamically

updated the threshold and used the threshold to do pruning.

However it had low pruning power for small k values. This is

because for small k values, it may scan many irrelevant strings

and cannot use a tighter bound to do pruning.

Our method achieved the highest performance and outper-

formed existing methods. This is because Bed-Tree only used

the string level pruning, while our method can utilize the

character-level pruning. That is for a string, Bed-Tree can

only take its edit distance to the query as a threshold. Our

method can progressively compute edit distance and can use

the edit distance of prefixes of a string and the query as

a threshold. Thus our method outperformed Bed-Tree. For

example, on the Email dataset, for each k value, our method

935

 0

 2

 4

 6

 8

 10

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)

Top-k

Flamingo
AQ

BedTree
Range

(a) The Word Dataset

 0
 200
 400
 600
 800

 1000
 1200
 1400

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)

Top-k

Flamingo
AQ

BedTree
Range

(b) The Author Dataset

 0

 100

 200

 300

 400

 500

1 5 10 25 50 100

E
la

ps
ed

 T
im

e
(m

s)

Top-k

Flamingo
AQ

BedTree
Range

(c) The Email Dataset
Fig. 8. Comparison with Existing Methods

 0

 0.5

 1

 1.5

 2

 3 6 9 12 15

E
la

ps
ed

 T
im

e
(m

s)

String Size (*10000)

k=100
k=50

k=25
k=10

k=5
k=1

(a) The Word Dataset

 0
 20
 40
 60
 80

 100
 120
 140

 1 2 3 4 5
E

la
ps

ed
 T

im
e

(m
s)

String Size (* 2 million)

k=100
k=50

k=25
k=10

k=5
k=1

(b) The Author Dataset

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

String Size (*million)

k=100
k=50

k=25
k=10

k=5
k=1

(c) The Email Dataset

Fig. 9. Scalability of Our Method

achieved the best performance. For k = 100, Flamingo
took more than 400 milliseconds, Bed-Tree improved the

time to 300 milliseconds, and our method only took less

than 80 milliseconds. The results show the superiority of our

progressive based framework and our pivotal-entry-based and

range-based pruning techniques.

C. Scalability
In this section, we evaluate the scalability of our range-

based method. We varied the number of strings and evaluated

our method for finding top-k answers. Figure 9 shows the

results on the three datasets. We can see that with the datasets

increased, our method scaled very well for different k values.

For example, on the Email dataset, for k=100, our method took

27 milliseconds for 1 million strings, and the time increased to

52 milliseconds for 3 million strings and 79 milliseconds for

6 million strings. Note that on the Author dataset the elapsed

time for 10 million strings was smaller than that for 8 million

strings. This is because a large string set may have more

possible answers and thus it may lead to early termination

for finding top-k answers.

VII. CONCLUSION

In this paper, we have studied the problem of top-k string

similarity search. We proposed a progressive framework to

support top-k similarity search. We proposed pivotal entries

to avoid unnecessary computations which can prune large

numbers of useless entries. We extended this technique to

support similarity search. We devised a range-based method

by grouping the pivotal entries which can further reduce the

number of entries. Experimental results show that our method

significantly outperforms existing methods.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD Conference,
pages 313–324, 2003.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[6] M. Hadjieleftheriou, N. Koudas, and D. Srivastava. Incremental main-
tenance of length normalized indexes for approximate string matching.
In SIGMOD Conference, pages 429–440, 2009.

[7] J. Jestes, F. Li, Z. Yan, and K. Yi. Probabilistic string similarity joins.
In SIGMOD Conference, pages 327–338, 2010.

[8] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword
search. In WWW, pages 433–439, 2009.

[9] T. Kahveci and A. K. Singh. Efficient index structures for string
databases. In VLDB, pages 351–360, 2001.

[10] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, pages 257–266, 2008.

[11] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[12] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead
search. VLDB J., 20(4):617–640, 2011.

[13] G. Li, J. Wang, C. Li, and J. Feng. Supporting efficient top-k queries
in type-ahead search. In SIGIR, pages 355–364, 2012.

[14] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[15] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD Conference, pages 743–754, 2004.

[16] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based string
similarity joins with edit-distance constraints. VLDB, 1219–1230, 2010.

[17] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for fuzzy
token matching based string similarity join. In ICDE, pages 458–469,
2011.

[18] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. VLDB, 933–944, 2008.

[19] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In
ICDE, pages 916–927, 2009.

[20] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for top-k
approximate string matching. In AAAI, 2010.

[21] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance. In SIGMOD Conference, pages 915–926, 2010.

ACKNOWLEDGMENT
This work was partly supported by the National Natural

Science Foundation of China under Grant No. 61003004 and
No. 61272090, National Grand Fundamental Research 973
Program of China under Grant No. 2011CB302206, and a
Tsinghua project under Grant No. 20111081073.

936

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
