
Effective Location Identification from Microblogs

Guoliang Li† Jun Hu† Kian-lee Tan‡ Zhifeng Bao‡ Jianhua Feng†
†Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

‡School of Computing, National University of Singapore, Singapore.
{liguoliang,fengjh}@tsinghua.edu.cn; hu-j12@mails.thu.edu.cn; {tankl,baozhife}@comp.nus.edu.sg

Abstract—The rapid development of social networks has
resulted in a proliferation of user-generated content (UGC).
The UGC data, when properly analyzed, can be beneficial to
many applications. For example, identifying a user’s locations
from microblogs is very important for effective location-based
advertisement and recommendation. In this paper, we study the
problem of identifying a user’s locations from microblogs. This
problem is rather challenging because the location information
in a microblog is incomplete and we cannot get an accurate
location from a local microblog. To address this challenge, we
propose a global location identification method, called GLITTER.
GLITTER combines multiple microblogs of a user and utilizes
them to identify the user’s locations. GLITTER not only improves
the quality of identifying a user’s location but also supplements
the location of a microblog so as to obtain an accurate location
of a microblog. To facilitate location identification, GLITTER
organizes points of interest (POIs) into a tree structure where
leaf nodes are POIs and non-leaf nodes are segments of POIs,
e.g., countries, states, cities, districts, and streets. Using the tree
structure, GLITTER first extracts candidate locations from each
microblog of a user which correspond to some tree nodes. Then
GLITTER aggregates these candidate locations and identifies top-
k locations of the user. Using the identified top-k user locations,
GLITTER refines the candidate locations and computes top-k
locations of each microblog. To achieve high recall, we enable
fuzzy matching between locations and microblogs. We propose an
incremental algorithm to support dynamic updates of microblogs.
Experimental results on real-world datasets show that our method
achieves high quality and good performance, and scales very well.

I. INTRODUCTION
With the rapid development of social networks, the amount

of user generated content (UGC) is increasing at an alarming
rate. For example, Twitter has 140 million active users and
generates 400 million tweets per day. Foursquare has over
25 million users and 3 billion check-ins. Many applications
can benefit from the UGC data. Specifically, extracting loca-
tions from microblogs can result in more effective location-
based advertisement and recommendation. For example, by
identifying the location with respect to a user’s microblog
(e.g., “Olympia Theater, Broadway, Manhattan”), adver-
tisers can send relevant advertisements to the user as soon as
the user posts the microblog. More importantly, based on all
microblogs posted by the user, if we can get the interested
location of the user (e.g., “Manhattan”), we can provide
localized (news, products, restaurants) recommendation.

In this paper, we study the problem of identifying locations
from microblogs, including microblog location and user loca-
tion. Microblog location is fine-grained and may be the current
location of the user, e.g., shopping mall, restaurant, and scenic
spot. User location, on the other hand, is coarse-grained and
is usually a small region that is frequently mentioned by the
user in multiple microblogs, e.g., home location and office

location. However it is a challenging problem to identify such
locations. First, few people (16%) register accurate locations
in their profile; moreover, many users either leave out their
location information or provide locations that are not useful
(e.g., “my home”) [17]. Second, location information of a
microblog is incomplete and it is rather hard to obtain an
accurate location from a local microblog. For example, from
a microblog “Olympia Theater is so nice,” we are unable
to identify the accurate location of the microblog as there
are many “Olympia Theaters” across the world. However
if we know the user also posts a microblog “Manhattan is
my favorite place,” we can infer that the “Olympia Theater”
mentioned in the earlier microblog is very likely (with high
probability) to be in “Manhattan, New York.”

To overcome these challenges, we propose GLITTER, a
global location identification method, to infer accurate lo-
cations from microblogs. GLITTER combines multiple mi-
croblogs of a user and utilizes them to effectively identify
locations from microblogs. GLITTER not only identifies a
user’s interested locations but also supplements the location
of a microblog in order to obtain its location accurately.

To describe location information, GLITTER organizes
points of interest (POIs) into a tree structure where the leaf
nodes are POIs and non-leaf nodes are segments of POIs, e.g.,
countries, states, cities, districts, and streets. Using the tree
structure, GLITTER first extracts candidate locations from each
microblog of a user which correspond to some tree nodes. Then
GLITTER aggregates these candidate locations and identifies
top-k locations of the user. Using the identified top-k locations,
GLITTER refines the candidate locations and computes top-
k locations of every microblog of the user. To achieve high
recall, we enable fuzzy matching between microblogs and
locations (e.g., “Mahatan” in a microblog can match location
“Manhattan”). We also propose an incremental algorithm
to efficiently support dynamic updates of microblogs. To
summarize, we make the following contributions.
• We propose a global location identification method for

inferring top-k locations of a user from her microblogs and
top-k locations for each of her microblogs.

• We devise a three step framework to address this prob-
lem. The extraction step extracts candidate locations from
microblogs. The aggregation step aggregates candidate lo-
cations and generates top-k locations of the user. The
refinement step refines candidate locations and computes
top-k locations of each microblog.

• We enable fuzzy matching between locations and mi-
croblogs to achieve high recall. We develop an incremental
algorithm to support dynamic updates of microblogs.

• We have implemented our method and experimental results
on real-world datasets show that our method achieves high
quality and good performance, and scales very well.

Paper Structure: We first formulate the problem in Section II
and then review related works in Section III. Our GLITTER
framework is presented in Section IV. We introduce the
extraction model, aggregation model, and refinement model
in Sections V, VI, and VII respectively. Section VIII gives an
incremental algorithm to support updates. Experimental results
are reported in Section IX. We conclude in Section X.

II. PROBLEM FORMULATION

Consider a microblog system, e.g., Twitter, where a user
posts a set of microblogs M = {m1,m2, . . . ,m|M |}. Each
microblog mi consists of a set of tokens. Given a set of POIs
P = {p1, p2, . . . , p|P |} 1, where each POI includes a name
and a location, we focus on utilizing POI names and locations
to identify the top-k locations of each microblog and the
top-k locations of the user. For example, Table I shows 12
microblogs and 12 POIs. The top-1 location of m3=“I was
able to get a tour at Film School, Sunset blvd” should be
“Sunset Blvd, Hollywood, Los Angeles, California”
based on POI p3 with name of “Film School”. The
top-2 locations of the user should be “Hollywood,
Los Angeles, California” (“Hollywood” for short)
and “San Diego, California” (“San Diego” for short).

Challenges. To identify the locations of a microblog, a
naive method identifies the most similar POIs that have the
largest similarity to the microblog using extraction based
techniques [5], [14], [10]. For example we can use the Jaccard
coefficient to quantify the similarity between a POI and a
microblog, which is the ratio of their overlap size to their union
size. However this method has some limitations. First, a single
microblog may be incomplete to extract the accurate location.
For example, we cannot identify the location accurately from
the microblog “I am at Film School”, because there are many
“Film Schools” and we cannot determine the exact location
based on the limited text. Second, we cannot identify the
location of a user since the user location may not be a POI
and should be a residential zone or a commercial district. For
example, the locations of a user should be “Hollywood” or
“San Diego”. To address the first challenge, we propose a
global location identification method for extracting locations
from microblogs, called GLITTER. GLITTER utilizes multiple
microblogs of a user to identify top-k locations for the user
and top-k locations for each microblog (see Section IV).
To address the second challenge, we construct a tree-based
location structure to organize the POIs as follows.

Tree-based Location Structure. We first obtain a location
hierarchy from existing knowledge bases, e.g., Yago [12]2,
which includes location concepts: country, state, city, district,
and street. Then based on the location hierarchy, we segment
the location of each POI into: country, state, city, district, and
street. We call each segment a location entity. We can construct
a tree-based location structure using these entities. Each tree
node is labelled with an entity. The first level (root) is the
whole space with empty label. The second level consists of
country entities. The third level includes state entities. The
fourth level consists of city entities. The fifth level includes
district entities. The sixth level consists of street entities. The
seventh level (leaf) includes all POI names.

1We can get POIs in the world from many sources, e.g., factual.com.
2Available at http://www.mpi-inf.mpg.de/yago-naga/yago/

Notice that each node corresponds to a location consisting
of location entities of nodes on the path from the root to the
node. Each path from the root to a leaf node corresponds to a
POI (Point Location) and each path from the root to a non-leaf
node corresponds to a region (Range Location). To facilitate
location identification, we assign each node with a Dewey code
in a top-down manner. The Dewey code of the root is 1. The
Dewey code of a node is computed by appending its sequence
number among its siblings to its parent’s Dewey code. Based
on the Dewey code, we can easily get the ancestor-descendant
relationship between two nodes: considering two nodes ni and
nj , if ni’s Dewey code is a substring of nj’s Dewey code, then
ni is an ancestor of nj , and vice versa.

Figure 1 shows the tree-based location structure constructed
from the POIs in Table I (Here we only show the subtree
under the California entity). Consider POI p3 with location
“Sunset Blvd, Hollywood, Los Angeles, California”.
We segment it into four location entities “California”,
“Los Angeles”, “Hollywood”, and “Sunset Blvd”. Their
corresponding nodes are respectively 1, 1.1, 1.1.1, and 1.1.1.2.
Node 1.1 is an ancestor of node 1.1.1.2. Node 1.1.1 denotes
the address of “Hollywood, Los Angeles, California”.
Problem Formulation. Given a set of POIs P , let T denote the
tree-based location structure constructed by POIs in P . Given
a user with a set of microblogs M , for each microblog in M ,
we identify k best tree nodes from T as its top-k locations.
For the user, we identify k best tree nodes from T as her top-k
locations. Notice that the microblog locations would be leaf
nodes and user locations would be non-leaf nodes.

For example, consider the microblogs in Table I and the
location-based tree structure in Figure 1. The top-1 location
of microblog m3 should be “Film School, Sunset Blvd,
Hollywood, Los Angeles, California”. The top-2 locations
of the user should be “Hollywood” and “San Diego”.

III. RELATED WORK

Location Identification. The work most related to ours is to
estimate a user’s city-level location from microblogs. Cheng
et al. [9] proposed a probabilistic framework for estimating
a Twitter user’s city-level location. However their methods
cannot identify locations at different levels (e.g., states, cities,
districts). Chandraet al. [7] improved this probabilistic model
by utilizing the re-tweet information. Amitay et al. [2] ex-
tracted geo scope from web pages using heuristics rules. Back-
strom et al. [3] proposed a framework for modeling the spatial
variation in search queries. They used search-engine query
logs and geolocation techniques to assign accurate locations to
the IP addresses issuing the queries. Unlike our method, these
approaches focus on identifying users’ city-level locations and
cannot extract the accurate location of a microblog. Moreover,
they cannot support fuzzy matching between locations and
microblogs.

Entity Extraction. There are many studies on dictionary-based
entity extraction [6], [14], [21], [10], [18], [23], [8], [1], [5],
where, given a dictionary of entities and a document, extracts
all substrings from the document that match some entities
in the dictionary. Chandel et al. [6] proposed a batch based
method to support efficient extraction by utilizing indexed
entities. Chakrabarti et al. [5] enabled fuzzy matching between
the entity and the substring, which uses similarity functions
to quantify the similarity between an entity and a substring,

TABLE I. EXAMPLE MICROBLOGS AND POIS.
(a) Microblogs (b) POIs

ID Microblogs
m1 Nice. @Candilejas Night Club.
m2 Muffin bar is so nice. @Highland Gardens Hotel.
m3 I was able to get a tour at Film School, Sunset blvd.
m4 I feel much better @Health Clinic, Hollywood.
m5 My favorite coffee in Los Angeles. @Groundwork Coffee
m6 Finding jobs from Worksource Center in Dolo St.
m7 Just passed by the Life Point Counseling Center.
m8 Bought shoes from Sports Shop Center.
m9 Perfect Gift Store - Victoria’s Gift Shop in San Diego.
m10 Sports Shop Center is good for shopping.
m11 Get Lost. @Counseling Center.
m12 FilmSchool @Sunsat blvd is so nice.

ID POI Name Location
p1 Candilejas Night Club Franklin ave, Hollywood, Los Angeles, California
p2 Highland Gardens Hotel Subset blvd, Hollywood, Los Angeles, California
p3 Film School Subset blvd, Hollywood, Los Angeles, California
p4 Health Clinic Vine st, Hollywood, Los Angeles, California
p5 Groundwork Coffee Vine st, Hollywood, Los Angeles, California
p6 Worksource Center Dolo st, Carmel, San Diego, California
p7 Counseling Center Yarrow dr, Carlsbad, San Diego, California
p8 Sports Shop Center Prosp st, National City, San Diego, California
p9 Victoria’s Gift Shop Subset blvd, National City, San Diego, California
p10 Sports Shop Center Yarrow dr, East LA, Los Angeles, California
p11 Counseling Center Prosp st, East LA, Los Angeles, California
p12 Film School Prosp st, East LA, Los Angeles, California

California

Los Angeles

Hollywood East LA

Franklin

ave

Sunset

blvd

Vine

st

Sunset

blvd

Prosp

st

Yarrow

dr

p1

San Diego

Carmel Carlsbad National City

Dolo

st

Yarrow

dr

p2 p3 p4 p5 p10 p11 p12 p6 p7 p8 p9

Prosp

st

{m1} {m2} {m4} {m5} {m8,

m10}
{m6} {m7,

m11}

{m8,

m10}
{m9}

{m3}

{m4}

{m3}

{m5}

{m3} {m7,

m11}

{m6}

{m9}

1

1.1 1.2

1.1.1 1.1.2 1.2.1 1.2.2 1.2.3

1.1.1.1
1.1.1.2 1.1.1.3 1.1.2.1 1.1.2.2 1.2.1.1 1.2.2.1 1.2.3.1 1.2.3.2

1.1.1.1.1 1.1.1.2.2 1.2.3.2.1
1.2.3.1.1

1.2.2.1.11.2.1.1.1

1.1.2.2.2
1.1.2.2.1

1.1.2.1.1
1.1.1.3.2

1.1.1.3.11.1.1.2.1

{m3}
m12 (Fuzzy matching)

m12 m12

m12

Inverted Index:

Film School: 1.1.1.2.2, 1.1.2.2.2

Sunset blvd: 1.1.1.2, 1.2.3.2

Yarrow dr: 1.1.2.1, 1.2.2.1

Prosp st: 1.1.2.2, 1.2.3.1

…………

Segment Index:

Film S: Film School

chool: Film School

Sunse: Sunset blvd

t blvd: Sunset blvd

Yarro: Yarrow dr

w dr: Yarrow dr

Pros: Prosp st

p st: Prosp st

…………

Fig. 1. Tree-based Location Structure and Indexes.

e.g., Jaccard coefficient, Cosine, and Edit distance. Wang et
al. [23] proposed neighbor enumeration based method to sup-
port the edit-distance function. Li et al. [14] proposed a unified
method to support various similarity functions. Deng et al. [10]
proposed a segment based method to improve the extraction
performance. These methods are effective for microblogs with
complete locations (e.g., a microblog with the whole location
of a POI). However they are rather ineffective for microblogs
with incomplete locations because these microblogs contain
only partial keywords of locations and cannot match to any
locations. To address these limitations, we propose a global
extraction based method.
Other Related Works. There are some machine learning
based techniques for mining location-based information. Mei et
al. [19] proposed a topic model to mine spatiotemporal themes
from web logs. Rattenbury et al. [20] proposed a generalizable
approach for extracting tag semantics (e.g., event and place)
based on the distribution of Flickr tags. Backstrom et al. [4]
studied the relationship between friendship and spatial distance
and predicted a user’s location based on their friends. Li et
al. [17] improved this model by using a unified discriminative
influence model. Hao et al. [11] introduced Gibbs sampling
into the location based topic modelling. Yin et al. [25] studied
the problem of discovering and comparing geographical topics
from GPS-associated documents. Hong et al. [13] proposed a
geographical topical model by utilizing both statistical topic
models and sparse coding techniques.

IV. THE GLITTER FRAMEWORK

In this section, we introduce our global location identifica-
tion framework, GLITTER, which includes three steps.

• Extraction Step: This step extracts candidate locations of
each microblog which are substrings of the microblog that
exactly (or approximately) match location entities on some
tree nodes. We will formally define the concept of candidate
locations in Section V. There are two main challenges in
extracting the candidate locations. The first one is how
to evaluate the proximity between a microblog and a tree
node. The second one is how to efficiently extract the tree
nodes that are highly relevant to the microblog. We propose
a similarity based model and devise efficient extraction
algorithms in Section V.
• Aggregation Step: This step aggregates candidate locations

of every microblog and generates top-k user locations based
on these candidates. One big challenge is how to define the
proximity between a tree node and the user. We propose an
effective aggregation model and devise efficient algorithms
to address this challenge in Section VI.
• Refinement Step: This step refines candidate locations of

each microblog using the identified top-k user locations and
generates top-k locations of each microblog. We present a
refinement model to identify the top-k locations for each
microblog in Section VII.

The pseudo-code of our algorithm is illustrated in Figure 2.
GLITTER extracts candidate locations for each microblog by
calling function GLITTER-EXTRACTION (line 4), which will
be discussed in Section V. Then it aggregates these candidate
locations to compute top-k locations of the user by calling
function GLITTER-AGGREGATION (line 6), which will be
presented in Section VI. Finally based on top-k user locations,
it refines the candidate locations for each microblog by calling

Algorithm 1: GLITTER (M , k, T)
Input: M = {m1,m2, · · · ,m|M |}: Microblogs of a

user; k: An integer; T : Location structure
Output: Ru: The top-k locations of the user;

Rmi
: The top-k locations of microblog mi

begin1
L = φ ;2
foreach microblog mi do3

N(mi) = GLITTER-EXTRACTION (mi, T) ;4
L ← N(mi) ;5

Ru = GLITTER-AGGREGATION (L, k, T) ;6
foreach microblog mi do7
Rmi = GLITTER-REFINE (Ru, k, mi, T) ;8

end9

Fig. 2. GLITTER Algorithm.

function GLITTER-REFINE (line 8), which will be discussed
in Section VII. Notice that we can iteratively call func-
tions GLITTER-AGGREGATION and GLITTER-REFINE multi-
ple times until the top-k locations for the user are stable.

For example, consider the microblogs in Table I and tree-
based location structure in Figure 1. In the extraction step,
for each microblog, e.g., m3, we extract location entities:
“Film School” and “Sunset blvd”. Based on the two en-
tities, we get four tree nodes: 1.1.1.2, 1.1.1.2.2, 1.1.2.2.2,
1.2.3.2. We highlight the extracted tree nodes of every mi-
croblog in the figure. In the aggregation step, we aggregate all
of these tree nodes and compute top-2 locations of the user:
nodes 1.1.1 and 1.2. In the refinement step, using the top-2
user locations, we refine the location of each microblog. As
many of the user’s microblogs are relevant to node 1.1.1, the
top-1 location of m3 should be location 1.1.1.2.2.

V. LOCATION EXTRACTION

This section studies how to extract the candidate locations
of each microblog. We first propose an exact extraction method
in Section V-A and then extend it to support fuzzy matching
between microblogs and location entities in Section V-B.

A. Exact Extraction

We discuss how to extract substrings from a microblog that
exactly match some location entities. Before we introduce the
details, we first introduce two concepts.

Definition 1 (Exact-matching Entities): Given a microblog
and a tree-based location structure, a location entity that
exactly matches a substring of the microblog is called an exact-
matching entity.

Definition 2 (Exact-matching Tree Nodes): The tree nodes
whose labels are exact-matching entities are called exact-
matching tree nodes.

Since the entities of exact-matching tree nodes appear in
the microblog, these tree nodes should be relevant to the
microblog and thus we take them as candidate locations.
For instance, consider microblog m3=“I was able to get
a tour at Film School, Sunset blvd”. “Film School” and
“Sunset blvd” are two exact-matching entities and 1.1.1.2.2,
1.1.2.2.2, 1.1.1.2, 1.2.3.2 are exact-matching tree nodes.

Algorithm 2: GLITTER-EXTRACTION (mi, T)
Input: mi: A microblog; T : Location structure
Output: N(mi): The candidate locations;
begin1

Extracting exact/fuzzy matching entities;2
Identifying exact/fuzzy matching nodes;3
Computing similarities of candidate locations;4
Add candidate locations and similarities to N(mi);5

end6

Fig. 3. GLITTER-EXTRACTION Algorithm(Extracting Candidate Locations).

Next we discuss how to efficiently identify exact-matching
tree nodes and assign a weight to each node for measuring the
proximity between the node and the microblog.
Location Extraction. To facilitate the exact extraction, we
build an inverted index on top of the location entities. The
entries of the inverted index are the location entities on the
tree-based location structure. For each entity e, we maintain
an inverted list of tree nodes whose corresponding entities are
e. To identify location candidates, we enumerate the substrings
of the microblog, and for each substring we check whether it
appears on the inverted index. If yes, we get the tree nodes
from the inverted list of this substring and these tree nodes are
exactly candidate locations. (Notice that we can utilize batch
based extraction techniques [6] to improve the performance.)
For example, in Figure 1, we show the inverted lists of some
entities, e.g., “Film School”, “Sunset blvd”. Based on the
inverted lists of these entities, we can efficiently obtain the
exact-matching tree nodes (i.e., candidate locations).

Location Ranking. Since an exact-matching tree node corre-
sponds to a candidate location, the more number of entities
on the path from the root to the tree node that appear in
the microblog, this candidate location is more relevant to the
microblog. In particular, if all entities on the path appear in
the microblog, this candidate location must be very relevant to
the microblog. For example, considering microblog m3, nodes
1.1.1.2, 1.1.1.2.2, 1.1.2.2.2, 1.2.3.2 are exact-matching nodes.
Node 1.1.1.2.2 is a better location than other nodes since it
contains two entities while others contain only one entity.

Based on this observation, we devise a similarity function
to quantify the similarity between a candidate location and
a microblog. Given a microblog m, let E(m) denote the set
of exact-matching entities. Given a candidate location n, let
E(n) denote the set of entities of nodes on the path from the
root to node n. We can utilize any set similarity functions
on top of E(m) and E(n) to evaluate the similarity between
microblog m and tree node n. In this paper we adopt the
Jaccard coefficient as an example, which is defined as

Je(m,n) =
|E(m) ∩ E(n)|
|E(m) ∪ E(n)|

, (1)

where |E(m) ∩E(n)|(|E(m) ∪E(n)|) is the overlap (union)
size of E(m) and E(n). Notice that our method can be easily
extended to support other similarity functions, e.g., Cosine
similarity and weighted Jaccard similarity.

Based on the similarity function, we can devise an extrac-
tion algorithm. Figure 3 shows the pseudo-code. It first extracts
exact-matching entities. Then utilizing the inverted index, it
identifies the corresponding exact-matching tree nodes. Next it
computes the similarity between each node and the microblog.

Finally, it adds the tree nodes and the corresponding similari-
ties into the candidate set.

For example, consider microblog m3. We extract two
exact-matching entities “Film School” and “Sunset blvd”.
E(m3) = {Film School, Sunset blvd}. From their
inverted lists, we retrieve the exact-matching tree nodes.
Consider exact-matching tree nodes {1.1.1.2.2, 1.1.2.2.2}
in the inverted list of “Film School”. E(1.1.1.2.2) =
{FilmSchool, Sunset Blvd, Hollywood, Los Angeles,
California}. Je(m3, 1.1.1.2.2) = 2

5 . E(1.1.2.2.2)
= {Film School, Prosp st, East LA, Los Angeles,
California}. Je(m3, 1.1.2.2.2) = 1

6 . Thus node 1.1.1.2.2 is
more relevant to microblog m3 than node 1.1.2.2.2. Similarly,
for exact-matching tree nodes {1.1.1.2, 1.2.3.2} in the inverted
list of “Sunset blvd”, we have Je(m3, 1.1.1.2) = 1

5 and
Je(m3, 1.2.3.2) = 1

5 .

B. Fuzzy Extraction
Exact extraction cannot tolerate any inconsistencies be-

tween location entities and microblogs. For example, mi-
croblogs usually contain errors due to typing errors. To
alleviate this problem, we enable fuzzy matching between
microblogs and location entities.
Fuzzy Matching: To enable fuzzy matching, we utilize sim-
ilarity functions to define the similarity between two entities.
We take the well-known Levenshtein distance (also known as
edit distance) as an example, and our method can be easily
extended to support other functions, e.g., Jaccard coefficient.
The edit distance between two entities is the minimum number
of edit operations (including substitution, insertion, deletion)
to transform one entity to another. We use the normalized edit
similarity to make the similarity between 0 and 1. Given two
entities e1 and e2, let ED(e1, e2) denote their edit distance
and EDS(e1, e2) = 1 − ED(e1,e2)

max(|e1|,|e2|) denote their normalized
edit similarity. Two entities are similar if their normalized edit
similarity is not smaller than a given threshold. For example,
the edit distance between “sunsat blvd” and “sunset blvd”
is 1 and their edit similarity is 10

11 . Based on the similarity
function, we introduce two concepts.

Definition 3 (Fuzzy-matching Entities): Given a
microblog, a tree-based location structure, a similarity
function and a threshold, a location entity that approximately
matches a substring of the microblog (i.e., the similarity
between the location entity and the substring is not smaller
than the given threshold) is called a fuzzy-matching entity.

Definition 4 (Fuzzy-matching Tree Nodes): The tree nodes
whose labels are fuzzy-matching entities are called fuzzy-
matching tree nodes.

For each microblog, in fuzzy extraction based method,
we extract its fuzzy-matching tree nodes and take them as
candidate locations. For example, consider microblog m12.
If we consider exact matching, we cannot extract any can-
didate location from the microblog. However, if we use
fuzzy-matching based method, “FilmSchool” approximately
matches location entity “Film School” and “Sunsat blvd”
approximately matches location entity “Sunset blvd”. Thus
in fuzzy-matching based method, we can identify two fuzzy-
matching entities from the microblog. From their inverted
lists, we can obtain four fuzzy-matching tree nodes: 1.1.1.2,
1.1.1.2.2, 1.1.2.2.2, 1.2.3.2.

Location Extraction. To support efficient fuzzy extraction,
we adopt a segment-based method [16], [15]3. For simplicity,
suppose two entities are similar if their edit distance is not
larger than threshold τ . To find fuzzy-matching entities, we
partition each entity into τ + 1 segments. Based on the
pigeonhole principle, we can prove that if a substring of a
microblog is similar to an entity, the substring must contain
a segment of the entity. Thus we can transform the fuzzy
matching problem into the exact matching problem. To this
end, we build a segment-based inverted index. The entries are
segments. Each segment has an inverted list of entities that
contain the segment. Then given a microblog, we enumerate
its substrings and check whether they appear in the inverted
index. If a substring appears in the inverted index, it matches a
segment. Next we check whether each entity in the inverted list
of the segment is similar to the substring. If yes, the entity is a
fuzz-matching entity. Finally, from the inverted lists of fuzzy-
matching entities, we identify fuzzy-matching tree nodes.

For example, Figure 1 shows the segment-based index.
Suppose the edit distance threshold is 1. We partition each
location entity into 2 segments. For entity “Film School”, we
partition it into “Film S” and “chool”. Consider the substring
“FilmSchool” of microblog m12. We can find a substring
“chool” which matches a segment. Thus we can identify
fuzzy-matching entity “Film School” for “FilmSchool”.
From the inverted list of “Film School”, we can get the
fuzzy-matching tree nodes: 1.1.1.2.2, 1.1.2.2.2. For microblog
m12, we have two fuzzy-matching entities “Film School” and
“Sunset blvd” and obtain four fuzzy-matching tree nodes:
1.1.1.2, 1.1.1.2.2, 1.1.2.2.2, 1.2.3.2.
Location Ranking. We extend Equation 1 to support fuzzy
matching. Given a substring in the microblog, it may be similar
to multiple entities, and we consider the most similar one. Sim-
ilarly, given an entity, it may have multiple similar substings,
and we also keep the most similar one. Let E′(mi) denote the
set of pairs 〈s, e〉 where s is a substring and e is an entity, and
there does not exist (1) 〈s, e′〉 such that EDS(s, e′) > EDS(s, e)
and (2) 〈s′, e〉 such that EDS(s′, e) > EDS(s, e). Then we use
the following function to quantify the similarity between a
microblog m and a location n,

Jf (m,n) =

∑
〈s,e〉∈E′(m)./eE(n) EDS(s, e)

|πe(E′(m)) ∪ E(n)|
, (2)

where E′(m) ./e E(n) denotes the join result of E′(m) and
E(n) on entities, and πe(E′(m)) is the selection on entities.

For example, consider m12 = {FilmSchool@
Sunsat blvd is so nice}. We extract two fuzzy-matching
entities “Film School” and “Sunset blvd” which
are respectively similar to substrings “FilmSchool”
and “Sunsat blvd”. E′(m12) = {〈FilmSchool,
Film School〉, 〈Sunsat blvd, Sunset blvd〉}. E(1.1.1.2.2)
= {Film School, Sunset Blvd, Hollywood, Los Angeles,
California}. Thus Jf (m12, 1.1.1.2.2)=

11
12+

10
11

5 .

VI. LOCATION AGGREGATION

Given a user, based on the candidate locations of each of
her microblogs, we study how to integrate these candidate
locations and identify top-k locations of the user. We first

3We can also use other indexes, e.g., trie [22].

discuss how to identify top-k locations from the same level
in Section VI-A. Then we extend it to identify top-k locations
from different levels in Section VI-B.

A. Identifying Top-k Locations from The Same Level

Consider a set of microblogs M = {m1,m2, . . . ,m|M |}
posted by a user. Each microblog mi is associated with a
set of candidate locations (exact-matching or fuzzy-matching
tree nodes), denoted by N(mi), which is identified in the
extraction step. Each candidate location in N(mi) has a
similarity with mi. We want to use these candidate locations
and the corresponding similarities to evaluate the relevance
between any tree node n and the user location. Obviously node
n is relevant to the user if the tree node “covers” as many
microblogs of the user as possible (in other words, it contains
candidate locations of many microblogs). Next we formally
define the concept of “coverage” of node n as follows.

Definition 5 (Coverage): The coverage of node n is the
sum of similarities of its covered microblogs, defined as

C(n) =
∑

1≤i≤|M |

C(n,mi), (3)

where C(n,mi) is the coverage of node n on microblog mi,
which is the largest similarity of nodes under n, i.e.,

C(n,mi) = max
d∈N(mi)∩D(n)

J (d,mi), (4)

where D(n) denotes the set of n’s descendants, N(mi) is the
candidate location set of mi, and J is the function Je (or Jf)
for exact extraction (or fuzzy extraction).

For example, consider microblog m3. Suppose we use
exact matching extraction. m3 has four candidate locations:
1.1.1.2, 1.1.1.2.2, 1.1.2.2.2, 1.2.3.2. Their similarities to the
microblog m3 are respectively 1

5 , 2
5 , 1

6 , 1
5 . Consider node

1.1.1 (“Hollywood”). Node 1.1.1 covers two candidate loca-
tions 1.1.1.2 and 1.1.1.2.2. As node 1.1.1.2.2 has the largest
similarity, C(1.1.1,m3) = 2

5 . Similarly C(1.1.1,m1) = 1
5 ,

C(1.1.1,m2) = 1
5 , C(1.1.1,m4) = 2

5 , C(1.1.1,m5) = 2
5 . It

will not cover other microblogs. Thus C(1.1.1) = 8
5 . Similarly

C(1.1.2) = 5
5 and C(1.2) = 9

5 .
Obviously, the larger the coverage of a node is, the node

is more relevant to the user location. For example, nodes
1.1.1 and 1.2 are better than node 1.1.2. If we want to select
top-k locations from the same level (for example, in some
applications we want to identify top-k cities of the user), we
can identify k tree nodes with the largest coverage as the top-
k locations of the user. However notice that some microblogs
covered by a node are also covered other nodes. For example,
many microblogs covered by node 1.1.2 are also covered by
node 1.1.1. To address this issue, we want to select k nodes that
cover as many “distinct” microblogs as possible to maximize
the overall coverage. Next we formulate the problem.

Definition 6: The problem of identifying top-k locations
from the same level is to find the k-node set Nbest which has
the largest overall coverage. That is

Nbest = argmax
Nk

∑
1≤i≤|M |

max
n∈Nk

C(n,mi), (5)

where Nk is any set of k nodes selected from the given level.

We can prove the problem of identifying top-k tree nodes
from the same level is NP-hard as formalized in Lemma 1, by
a reduction from the weighted set cover problem.

Lemma 1: The top-k user location identification problem
from the same level is NP-hard.

Since the problem of identifying top-k locations from the
same level is NP-hard, we propose a greedy algorithm. We
iteratively select the tree nodes as follows. First, we select
node n with the maximum coverage. Next we select the next
node with the maximum coverage in the remainder microblogs
(which are not covered by the first node). Iteratively, we
can select top-k tree nodes. In the algorithm, a challenge is
to efficiently compute coverage C(n). Next we propose an
efficient algorithm to address this issue.

Algorithms for computing coverage C(n). For each mi-
croblog mi, we extract a set of entities. For each entity, we
get a sorted list of tree nodes (sorted by Dewey codes). We
merge these lists using a merge-join algorithm and generate a
sorted list of candidate locations, i.e., N(mi).

Given any tree node n, its descendants (nodes in D(n))
must be in a range [n, n′) where n′ = n + 1 is derived by
increasing the last number of n’s Dewey code by 1. Since
the candidate locations in N(mi) are also sorted by Dewey
codes, we can compute a range [x, y] such that N(mi)[x, y] =
N(mi) ∩ D(n). Notice that we can efficiently compute the
range using a binary search algorithm. We first use n’s Dewey
code to do a binary search on N(mi) and get the first candidate
location that is not smaller than n. Suppose we get N(mi)[x].
Next we use the Dewey code of n′ to do a binary search on
N(mi) and get the last candidate node that is smaller than n′.
Suppose we get N(mi)[y]. By enumerating candidate locations
in N(mi)[x, y], we can get the maximum similarity between
node n and microblog mi, i.e., C(n,mi). By enumerating each
microblog, we can compute C(n) =

∑
C(n,mi). When the

numbers of candidate locations in N(mi)[x, y] is large, this
algorithm is expensive. As such, we propose a range maximum
query (RMQ) algorithm to compute C(n,mi) efficiently.

For each u ∈ [1, |N(mi)|], let h = dlog (|N(mi)| − u)e.
We maintain h values, F [u, 1], . . . ,F [u, h], where F [u, v] is
the maximal similarity among the locations in N(mi)[u, u+2v]
to mi for 1 ≤ v ≤ h. To get the maximal similarity of location
candidates in N(mi)[x, y], we can split [x, y] into two ranges
[x, x + 2d] and [y − 2d, y], where d = blog2 (y − x)c. Since
the maximum similarity in these two ranges, i.e., F [x, d] and
F [y − 2d, y] are materialized, we can efficiently compute

C(n,mi) = max (F [x, d],F [y − 2d, d]).

The space complexity of F [u, v] is O(|N(mi)| log |N(mi)|).
The time complexity to compute F [u, v] using a dynamic-
programming algorithm is O(|N(mi)| log |N(mi)|). Notice
that we materialize the structure once and use it to compute
the coverage for many tree nodes. For each node n, the
time complexity to locate a range is O(log |N(mi)|) and
time complexity to compute C(n,mi) is O(1). Thus the time
complexity to compute C(n) is O(

∑
1≤i≤|M | log |N(mi)|).

For example, consider microblog m3. Suppose we use
the exact matching based method. It has four candidate lo-
cations. We get its sorted list N(m3) = {1.1.1.2, 1.1.1.2.2,
1.1.2.2.2, 1.2.3.2}. Sm3

= [15 ,
2
5 ,

1
6 ,

1
5]. Consider node 1.1.1.

Its descendants must be in [1.1.1, 1.1.2). To compute N(m3)∩

D(1.1.1), we use node 1.1.1 to do a binary search in N(m3)
and get x = 1. Then we use node 1.1.2 to do a binary search
and get y = 2. Thus N(m3)[1, 2] = N(m3) ∩ D(1.1.1).
To facilitate computing the maximum similarity in a range,
we maintain F [1, 1] = 2

5 , F [1, 2] = 2
5 , F [2, 1] = 2

5 , and
F [3, 1] = 1

5 . To compute N(m3)[1, 2], we can directly get it
from the maintained list F [1, 1] in O(1) time.

B. Identifying Top-k Locations from Different Levels

The coverage based method in Section VI-A is effective to
select top-k locations from the same level. However it cannot
support identifying nodes from different levels. This is because
the root always has the largest coverage based on Equation 3
since it covers all tree nodes. In other words, even if a tree
node can cover many microblogs, it may not be a good location
if its region is rather large. In addition, we need to identify
top-k locations from different levels in many applications, e.g.,
city and district. To address this issue, besides considering the
coverage of a node, we also take into account the divergence
of microblogs since different microblogs may refer to different
locations. To this end, we utilize the information entropy to
quantify the divergence of a node, which is defined as below.

Definition 7 (Entropy): Given a node n with a set of
children CHILD(n) = {c1, c2, . . . , c|n|}, the entropy of node
n is defined as

H(n) = −
i=|n|∑
i=1

Pci · lnPci (6)

where Pci denotes the probability to select child ci as a top-k
location and |n| denotes the number of children of node n.

There are two challenges in using information entropy
to identify locations. The first one is how to compute the
probability Pci . The second challenge is how to efficiently
select top-k locations based on the entropy of a node. Next
we discuss how to address these two challenges.

Computing the probability Pci of each child ci of node n.
Intuitively, among these child nodes, the larger coverage of a
child, the higher probability the child node will be selected as
a candidate location. Thus the probability of selecting a node
as a location is in proportion to the coverage of the node.
In other words, the probability distribution curve should be
consistent with the coverage distribution curve. Thus we can
use the coverage to estimate the probability as follows.

Definition 8 (Probability): Given a node n, the probability
of selecting its child ci as a location is

Pci =
C(ci)∑

cj∈CHILD(n) C(cj)
. (7)

For example, consider node 1.1. It has two children 1.1.1
and 1.1.2. C(1.1.1) = 8

5 and C(1.1.2) = 5
5 . Thus P1.1.1 = 8

13
and P1.1.2 = 5

13 . H(1.1) = − 8
13 log 8

13 −
5
13 log 5

13 = 0.799.

Using entropy to select top-k locations. As we know, the
larger the information entropy is, the more chaotic the system
will be. Thus when the information entropy of node n is too
large, the child nodes of node n have similar probabilities (or
coverage). That is the microblogs are distributed uniformly
across all the children. In this case, we cannot distinguish these

children and select n as a top-k location. On the contrary, if
the entropy is very small, some children have much larger
probabilities (or coverage) than others. That is the microblogs
are frequently distributed in some children. In this case, we
select some children as top-k locations.

Next we formalize how to decide selecting node n or n’s
children as top-k locations. When each child node has the
same probability, the information entropy of node n reaches
the maximum value, denoted by Hmax, which is calculated as:

Hmax = −
i=|n|∑
i=1

1

|n|
· ln 1

|n|
= |n| · 1

|n|
· ln|n| = ln|n|. (8)

Given an entropy bound B = ε · Hmax, if the entropy of
node n is larger than the bound B, we select node n as a
top-k location. On the contrary if H(n) ≤ B, we select top-k
locations from n’s children by checking its children’s entropy.

Next we formulate the problem of using the entropy and
coverage to identify top-k locations from different levels.

Definition 9: The problem of identifying top-k locations
from different levels is to find the k-node set Nbest to max-
imize the coverage subject to the entropy constraint. That is

Nbest = argmax
Nk

∑
1≤i≤|M |

max
n∈Nk

C(n,mi), (9)

subject to for each node n ∈ Nk, H(n) > B.

The problem of identifying top-k locations from different
levels is also NP-hard as formalized in Lemma 2.

Lemma 2: The top-k user location identification problem
from different levels is NP-hard.

Algorithms for computing top-k locations: Since the prob-
lem is NP-hard, we propose a greedy algorithm. A straight-
forward method enumerates every node, removes the nodes
that invalidate the entropy condition, and identifies the k nodes
with the largest coverage in the remainder nodes. However this
method needs to enumerate every node and thus is expensive.
To improve the performance, we propose a best-first algorithm.
We first check the root, compute its coverage and entropy, and
add it into a priority queue. Next we always pop the node with
the maximum coverage from the queue. If the entropy of the
node is larger than the bound B, we select it as a top-k location
and add it into the result set Ru. If there are k locations in Ru,
we terminate the algorithm. On the contrary, if the entropy of
the node is not larger than the bound B, we access its children,
compute their coverage and insert them into the priority queue.
Iteratively, we can identify the top-k locations. Figure 4 shows
the pseudo-code of our algorithm.

For example, consider the microblogs in Table I and the
location-based tree structure in Figure 1. We first add the root
into the priority queue Q. Then we pop it from Q. Since its
entropy is not larger than the bound B = 0.8, we access its
children 1.1 and 1.2. As node 1.2 has the largest coverage, we
pop node 1.2. We compute its entropy which is larger than the
bound B. Since it is a top-k location, we add it into the result
set. Next we pop node 1.1. As its entropy is not larger than the
bound B, we add its two child nodes 1.1.1 and 1.1.2 into Q.
Node 1.1.1 has the largest coverage, we pop node 1.1.1. Since

Algorithm 3: GLITTER-Aggregation (L, k, T)
Input: L = {N(mi)}: Candidate nodes of each

microblog; k: An integer; T : Location structure
Output: Ru: The top-k user locations;
begin1

Initialize priority queue Q=φ and result set Ru=φ;2
Q.Enqueue(〈root, C(root)〉) ;3
while Ru.Size() < k & Q is not empty do4

n← Q.Dequeue() ;5
if H(n) > B then Insert n into Ru;6
else7

foreach child node c ∈ CHILD(n) do8
Q.Enqueue(〈c, C(c)〉) ;9

end10

Fig. 4. GLITTER-Aggregation Algorithm(Identifying top-k User Locations).

its entropy is larger than the bound B, it is a top-k location.
If we want to find top-2 locations, nodes 1.2 and 1.1.1 are the
results, and we terminate the algorithm.

VII. LOCATION REFINEMENT

In this section, we study how to refine the candidate
locations and identify top-k locations of each microblog. We
first propose a refinement model to refine the locations of a
microblog of a user based on other microblogs the user has
posted in Section VII-A and then devise an efficient algorithm
to identify top-k locations of a microblog in Section VII-B.

A. Refinement Model

Basic Idea. Let Ru denote the top-k locations of a user,
which is identified in the aggregation step. Obviously locations
in Ru are relevant to multiple microblogs. However these
locations are derived from aggregating location information
from multiple microblogs and may not appear in any single mi-
croblog. We can add them into the corresponding microblogs
to facilitate identifying top-k locations of microblogs more
accurately.

We use an example to show our basic idea. Consider
the microblogs in Table I. The top-2 user locations are
“Hollywood” (1.1.1) and “San Diego” (1.2). Consider mi-
croblog m8 = “Bought shoes from Sports Shop Center”.
The candidate locations of m8 are nodes 1.1.2.1.1 and
1.2.3.1.1. These two nodes have the same similarity with m8.
However most of the other microblogs of the user are covered
by “San Diego” (1.2). Thus we can deduce that the user
may omit “San Diego” in microblog m8. To better rank the
candidate locations, we want to add “San Diego” into m8

and recompute the similarity between m8 and node 1.2.3.1.1.
Using this method, node 1.2.3.1.1 will have larger similarity
with m8 than node 1.1.2.1.1, and should be the best location
of m8. Next we formally introduce our refinement model.

Refinement Model. For each microblog mi posted by the user,
we enumerate each candidate location in N(mi). For each
candidate location, we check whether there exists a location
inRu which is an ancestor of the candidate location. If yes, we
add the entity of the location into E(mi) for exact matching;
or we add the pair 〈e, e〉 into E′(mi) for fuzzy matching
where e is the entity of the location. Then we recompute

the similarity for the candidate location and the microblog
as follows. (1) For exact matching, we utilize Equation 1
with the updated E(mi) to compute the similarity between
mi and each candidate location. (2) For fuzzy matching, we
utilize Equation 2 with the updated E′(mi) to compute the
similarity between mi and each candidate location. Based on
the refined similarity of every candidate node, we select the k
best candidate nodes with the largest similarity as the top-k
locations of the microblog.

For example, consider microblog m8. Its candidate nodes
are 1.1.2.1.1 and 1.2.3.1.1. E(m8) = “Sports Shop Center”.
The top-2 user locations are “Hollywood” (1.1.1) and
“San Diego” (1.2). For node 1.2.3.1.1, node 1.2 is its ancestor,
and thus we add its corresponding entity into E(m8). Thus the
updated set Eu(m8)= {Sports Shop Center, San Diego}.
Then we compute the similarity between m8 and node
1.2.3.1.1 based on Equation 1. We have Je(m8, 1.2.3.1.1) =
2
5 . For node 1.1.2.1.1, both of the top-2 user locations are not
its ancestor. Thus Je(m8, 1.1.2.1.1) is still 1

5 . If we want to
identify top-1 location of m8, node 1.2.3.1.1 is the best answer.

To identify the top-k locations of a microblog, a naive
method enumerates each candidate location and each user
location. However when the number of candidate locations is
large, this method is inefficient. In the following, we propose
an efficient refinement algorithm.

B. Efficient Refinement Algorithm
Given a microblog mi, we can prune many candidate

locations that have small similarities to mi. Based on this
idea, we devise a pruning rule (Lemma 3): For each candidate
location n, its refined similarity S′ will be larger or equal to
the original similarity S. If there is no user location which is
an ancestor of n, S′ = S. If there exists a user location which
is an ancestor of n, S′−S ≤ 1

|E(mi)∪E(n)| for exact matching
and S′ − S ≤ 1

|π(E′(mi))∪E(n)| for fuzzy matching.

Lemma 3: Given a microblog mi and a candidate location
n, suppose the original similarity is S and the refined similarity
is S′. We have

(1) S′ − S ≤ 1
|E(mi)∪E(n)| for exact matching;

(2) S′ − S ≤ 1
|π(E′(mi))∪E(n)| for fuzzy matching.

Based on this idea, we devise an efficient refinement
algorithm. Figure 5 shows the pseudo-code. Given a microblog
mi, we first sort its candidate locations by their similarity
to mi in descending order and then access the candidate
locations in order. We take the similarity of the k-th node as
a lower bound τ . For each candidate location n, if its original
similarity is smaller than τ − 1

|E(mi)∪E(n)| for exact matching
or τ − 1

|π(E′(mi))∪E(n)| for fuzzy matching, we can terminate;
otherwise we check whether there exists a user location which
is an ancestor of this candidate location. If yes, we recompute
the similarity and update the lower bound. Iteratively, we can
compute the top-k locations.

VIII. SUPPORTING UPDATES

A. Microblog Updates

Since microblogs will be frequently updated, we propose
an incremental algorithm to efficiently support updates of

Algorithm 4: GLITTER-REFINE (Ru, k, mi, T)
Input: Ru: The top-k user locations; k: An integer;

mi : A microblog; T : Location structure
Output: Rmi : The top-k locations of mi;
begin1

Sort candidate locations of mi;2
Sτ = similarity of the k-th location ;3
foreach candidate location n in order do4

S = Similarity between mi and n;5

if S ≤ τ − 1
|E(mi)∪E(n)| then return;6

// Fuzzy: S ≤ τ − 1
|π(E′(mi))∪E(n)|

if A location in Ru is an ancestor of n and the7
entity is not in E(mi) then

S+ = 1
|E(mi)∪E(n)| ;8

// Fuzzy: S+ = 1
|π(E′(mi))∪E(n)|

if S ≥ Sτ then9
Rmi

← n and update Sτ , Rmi
;10

end11

Fig. 5. GLITTER-REFINE Algorithm of Refining Locations of Microblogs.

microblogs. Consider a user with a set of microblogs M .
Suppose the user posts another set of microblogs ∆M . We
want to identify the top-k locations of the user on M + ∆M

and the top-k locations for each microblog in ∆M . (Although
we can identify time-dependent locations, we leave it as a
future work.) A naive method is to apply our algorithms on
M + ∆M . However this method cannot utilize the identified
results on M . As such, we propose an incremental algorithm.

When identifying locations on M of the user, we maintain
a location subtree for the user. The root of the substree is
the same as the tree-based location structure. The root has k
children which are the top-k countries computed from M . For
each such country, it has k children which are the top-k states
computed from M . Similarly, we add the top-k city nodes
and top-k district nodes into the subtree. For each node n, we
keep its coverage C(n) and entropy H(n). As the subtree has
at most 5 levels, it is very small (at most 4000 nodes).

Then, for each microblog in ∆M , we first extract location
entities from the subtree. If we find entities from the subtree,
we will utilize them to find candidate locations; otherwise
we use the tree-based location structure to identify location
entities using our proposed method. To support extraction on
the substree, we need to add the following index structures.
For exact matching, we maintain a hash table for each of top-
k countries of the user. Then we extract the locations from
the top-k countries for each microblog. Based on the locality
principle, microblogs of a user will be located together in
some regions. Thus we can utilize this method to improve the
performance. For fuzzy matching, we use a similar way and
maintain segment-based indexes. Notice that fuzzy extraction
is expensive on large datasets. Thus this locality based method
can significantly improve the performance.

Based on the extracted candidate locations, we update
coverage C(n) and entropy H(n) of each node. Then we
recompute top-k locations using the aggregation algorithm.
Based on top-k user locations, we use the refinement algorithm
to compute the top-k locations of each microblog in ∆M .

B. Tree-based Location Structure Updates

When the location hierarchy and POIs are updated, we need
to update the tree-based location structure, and the inverted
index for exact matching (and segment-based inverted index
for fuzzy matching). If a POI is newly inserted, we first
insert the POI into the tree-based location structure in an up-
down manner from the root. If the update introduces new tree
nodes, we need to assign new Dewey codes to the inserted
nodes. Notice that there are many update-aware Dewey coding
techniques [24] and we do not need to rebuild the Dewey
codes. If there are new entities, we need to insert them into the
inverted index (and segment-based index for fuzzy matching).
Similarly, if the update needs to remove some tree nodes, we
can use similar techniques to implement the updates. For the
updates of location hierarchy and POIs, we can use a first-
delete-then-insert strategy.

IX. EXPERIMENTS

In this section, we report results of an experimental study
to evaluate our proposed method. The goal of our study is
to evaluate (1) the quality of top-k user locations and top-k
microblog locations identified based on our algorithms; and
(2) the running time to identify locations.

Datasets: We used two real-world datasets: Twitter and
Foursquare. For Twitter, we used 3.5 thousand users and
2.25 million microblogs. Each user had about 600 microblogs.
For Foursquare, we used 21,000 users and 1 million check-
ins (For simplicity, check-ins are also called microblogs). Each
user had 48 microblogs. Table II shows the details.

TABLE II. DATASETS.
Users # Microblogs # Microblogs/User

Twitter 3547 2,254,338 635
Foursquare 21,344 1,028,672 48

Experimental Setting: All the algorithms were implemented
in Java. All the experiments were conducted in a machine
with 2.5GHz Inter 8-core CPU, 16GB RAM, running Ubuntu
operating system 10.04.

A. Evaluating Quality

In this section, we evaluate the location quality. We first
consider exact matching on the Twitter dataset and will show
the results for fuzzy matching and on the Foursquare dataset
in Section IX-C. We use the well-known metrics: precision,
recall and F-measure to evaluate the quality, which will be
defined in the following sections.

1) Evaluating Quality of Microblog Locations: We first
evaluate the quality of top-k locations of a microblog.

Evaluation Metrics: To evaluate the microblog quality, we
selected microblogs with latitude and longitude which can be
used to identify the real locations. For each microblog, if the
distance between the real location and one of the top-k loca-
tions computed by our algorithm was smaller than a threshold
(100 meters), our method was regarded as correctly finding
the real location. In this way we can compute precision and
recall. The recall is the ratio of the number of microblogs with
correctly identified locations to the total number of microblogs.
The precision is the ratio of the number of microblogs with
correctly identified locations to the number of microblogs with

identified locations. F-measure is the weighted harmonic mean
of precision and recall.

We implemented two algorithms: (1) Extraction [6], tradi-
tional extraction based method which extracted the candidate
locations and selected the k best locations with the largest
similarities as top-k locations. (2) Extraction+Refinement,
which used the refinement model to refine the candidate
locations and identified top-k locations. Since the results for
different k values are similar, we only report the results for
k = 3 due to space constraints. Figure 6 shows the results.

We can see that Extraction+Refinement significantly out-
performed Extraction, especially on recall. This is because
many microblogs included “incomplete” locations and existing
extraction based methods cannot identify their real locations
based on “local” microblogs. Extraction+Refinement aggre-
gated multiple microblogs and can refine the local microblogs
based on global results. For example, the recall of Extraction
was smaller than 0.6 and that of Extraction+Refinement
nearly reached 0.9. This is contributed by our global iden-
tification model and the refinement model which considered
multiple microblogs.

2) Evaluating Quality of User Locations: We then evaluate
the quality of top-k locations of a user.

Evaluation Metrics: Evaluating a user’s location is subjective
and only the user can give her interested locations. As there
is no standard benchmark and it is non-trivial to identify
user’s real locations, we utilized user study. We randomly
selected 1000 users (strangers to us) across the world whose
microblogs are related to more than 5 different cities. We
asked them to give their top-k interested locations and take the
returned results as the ground truth. However only about 100
of them returned results. Based on these returned locations, we
compute the precision and recall. The precision is the ratio of
the overlap size of the real locations and the identified locations
by the algorithms to the number of identified locations by the
algorithms. The recall is the ratio of the overlap size of the
real locations and the identified locations by the algorithms to
the number of real locations by user study. (The number of
identified locations and the number of real locations may be
different as an algorithm may return fewer than k locations.)

We implemented three algorithms: (1) SameLevel-City,
which identifies user locations in the city level (e.g.,
Los Angeles); (2) SameLevel-District, which identifies user
locations in the district level (e.g., Manhattan). (3) DiffLevel,
which identifies top-k locations in different levels. Figure 7
shows the results. We can see that DiffLevel outperformed
SameLevel-City and SameLevel-District significantly, espe-
cially on recall. The recall of DiffLevel reached 0.9 while
that of SameLevel-City was 0.3. This is because the top-k
locations of a user may be from different levels. In some cases
a user location may be a city (e.g., Los Angeles) and in other
cases a user location should be a district (e.g., Manhattan).

We also conduct an experiment to validate a user’s top-1
location for the users providing with city-level locations. Our
method still achieves more than 85% precision and recall. Due
to space constraints, we do not show the details.

B. Evaluating Efficiency
In this section, we evaluate the efficiency. Our method

includes three steps: Extraction, Aggregation, Refinement.

We evaluated the average running time for each user in three
steps. We tested both exact matching and fuzzy matching. In
the paper, for fuzzy matching, we used the normalized edit
similarity to quantify the similarity between locations and
microblogs and the threshold was 0.9. Figure 8 shows the
average running time for microblogs of each user.

 0

 20

 40

 60

 80

 200 400 600 800 1000

E
la

p
s
e
d
 T

im
e
(m

s
)

of Microblogs

Refinement
Aggregation

Extraction

(a) Exact Match.

 0

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000

E
la

p
s
e
d
 T

im
e
(m

s
)

of Microblogs

Refinement
Aggregation

Extraction

(b) Fuzzy Match.
Fig. 8. Evaluating performance on Twitter dataset (k = 3).

We can see that our method is very efficient. For exact
matching, the total running time was about 80 milliseconds
for 1000 microblogs of a user. For fuzzy matching, the time
was about 120 milliseconds. Another observation is that the
extraction time was the dominant time (about 80-90% of the
total time). In other words, the aggregation and refinement
steps took little time, because our aggregation and refinement
algorithms were very efficient.

C. Comparing with Existing Methods
In this section, we compare our algorithms with state-of-

the-art methods, content-based method (Content [9]) and the
unified discriminative influence model (UDI [17]), in terms of
both quality and performance. The former uses a probabilistic
model to identify city-level locations based on content of
microblogs and the latter utilizes the relationships between
users to identify locations. Notice that these methods only
focused on identifying user locations and cannot identify
locations of a microblog.

1) Comparing Quality: In this section, we compare the
quality and Figures 9 and 10 respectively show the results on
the Twitter and Foursquare datasets. We can see that fuzzy
matching indeed improved the quality since it tolerated incon-
sistencies between microblogs and location entities. Thus it
can improve the recall. Another observation is that our method
significantly outperformed state-of-the-art methods. The main
reason is that (1) they identified the city-level locations and
cannot identify districts or business regions; and (2) they
cannot combine location entities from different microblogs to
identify user locations. For example, on the Twitter dataset,
the F-measure of Content and UDI were respectively 0.55
and 0.75 while our exact-matching method improved it to 0.9
and our fuzzy-matching method further improved it to 0.95.
In addition, UDI achieved higher recall than Content since
UDI utilized relationships between users to identify locations.
In addition, state-of-the-art methods achieved better quality on
Foursquare than Twitter, because Foursquare contained
higher quality location entities. Our method achieved high
quality on both of the two datasets as we aggregated multiple
microblogs to identify locations.

2) Comparing Performance: In this section, we compared
the performance of our methods with state-of-the-art methods.
Figure 11 shows the average running time for each user.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200 400 600 800 1000

P
re

c
is

io
n

Microblogs

Extraction
ExtractionRefinement

(a) Precision.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

R
e
c
a
ll

Microblogs

Extraction
ExtractionRefinement

(b) Recall.

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

F
-M

e
a
s
u
re

Microblogs

Extraction
ExtractionRefinement

(c) F-measure.
Fig. 6. Evaluating quality of top-k locations of microblogs on Twitter dataset (exact match, k = 3).

 0.85

 0.9

 0.95

 1

 200 400 600 800 1000

P
re

c
is

io
n

Microblogs

SameLevel-City
SameLevel-District

DiffLevel

(a) Precision.

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

R
e
c
a
ll

Microblogs

SameLevel-City
SameLevel-District

DiffLevel

(b) Recall.

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

F
-M

e
a
s
u
re

Microblogs

SameLevel-City
SameLevel-District

DiffLevel

(c) F-measure.
Fig. 7. Evaluating quality of top-k locations of users on Twitter dataset (exact match, k = 3).

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

P
re

c
is

io
n

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(a) Precision.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

R
e
c
a
ll

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(b) Recall.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000

F
-M

e
a
s
u
re

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(c) F-measure.
Fig. 9. Comparing quality of top-k locations of users on Twitter dataset (k = 3).

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

P
re

c
is

io
n

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(a) Precision.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

R
e
c
a
ll

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(b) Recall.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
-M

e
a
s
u
re

Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(c) F-measure.
Fig. 10. Comparing quality of top-k locations of users on Foursquare dataset (k = 3).

 10

 100

 1000

 10000

 100000

 200 400 600 800 1000

E
la

p
s
e
d
 T

im
e
(s

)

of Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(a) Twitter.

 1

 10

 100

 1000

 20 40 60 80 100

E
la

p
s
e
d
 T

im
e
(s

)

of Microblogs

Content
UDI

Glitter-Exact
Glitter-Fuzzy

(b) Foursquare.
Fig. 11. Comparing performance of top-k locations of users (k = 3).

Our method significantly outperformed existing methods,
even by 2 orders of magnitude. For example, on the Twitter
dataset, for 1000 microblogs, existing method took more than
10,000 milliseconds, while our two methods only took about
100 milliseconds. The main reason is that they used machine-
learning based techniques which are rather expensive while we

devised efficient entity extraction, aggregation and refinement
algorithms which are very efficient. In addition, UDI was
slower than Content as UDI used much more information
(e.g., relationships between different users) than Content.
Notice that all of these algorithms achieved higher performance
on the Foursquare dataset, because in the Foursquare
dataset, each user contained smaller numbers of microblogs.

D. Scalability

In this section, we evaluate the scalability of our method
on the Twitter dataset. We varied the number of users and
evaluated the total running time of identifying the locations
for these users. We also tested different k values. Figure 12
shows the results. We can see that our method scaled very
well with the increase of the number of users. Our method
achieved similar results on different k values. For example, on

 0

 20

 40

 60

 500 1000 1500 2000 2500 3000

E
la

p
s
e
d
 T

im
e
(s

)

of Users

k=10
k=3
k=1

(a) Exact Match.

 0

 20

 40

 60

 80

 500 1000 1500 2000 2500 3000

E
la

p
s
e
d
 T

im
e
(s

)

of Users

k=10
k=3
k=1

(b) Fuzzy Match.
Fig. 12. Scalability on Twitter dataset.

 0

 10

 20

 30

 0.2 0.4 0.6 0.8 1

E
la

p
s
e
d
 T

im
e
(m

s
)

Ratio

Static
Incre

(a) Exact Match.

 0

 10

 20

 30

 40

 0.2 0.4 0.6 0.8 1

E
la

p
s
e
d
 T

im
e
(m

s
)

Ratio

Static
Incre

(b) Fuzzy Match.
Fig. 13. Updates on Twitter dataset (k = 3).

fuzzy matching, for 500 users, our method took 12 seconds
and the time increased to 70 seconds for 3000 users.

E. Updates
In this section, we evaluate the effects of updates of

microblogs. We implemented two algorithms: (1) Static, which
computed the results from scratch; (2) Incre, which computed
the results incrementally. Given a user, we first used her 50%
microblogs as the original dataset, and then we added another
10% more microblogs into the dataset and evaluated the
running time. We repeated these steps in five times. Figure 13
shows the results. We can see that Incre was superior over
Static. There are two reasons. First, Incre did not need to
identify locations from scratch. Second, Incre can utilize the
results of the original datasets to prune unnecessary locations
which can help improve the extraction performance.

We conducted experiments to evaluate updates of location
structure. For insertions of 1000 new POIs, it took about 30
milliseconds. Due to space constraints, we omit the results.

X. CONCLUSION

We have studied the problem of identifying top-k locations
of a microblog and top-k locations of a user. We proposed a
three step method. The extraction step extracts location entities
from the microblogs. The aggregation step aggregates the
candidate locations and generates top-k locations of the user.
The refinement step refines the candidate locations using the
top-k user locations and computes the top-k locations of each
microblog. We developed incremental algorithm to efficiently
support dynamic updates of microblogs. Experiments on real-
world datasets showed that our method achieves high quality
and good performance, and scales very well.
Acknowledgement. This work was partly supported by
the National Natural Science Foundation of China under
Grant No. 61272090 and 61373024, National Grand Fun-
damental Research 973 Program of China under Grant
No. 2011CB302206, Beijing Higher Education Young Elite
Teacher Project under grant No. YETP0105, a project of
Tsinghua University under Grant No. 20111081073, Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology,
and the “NExT Research Center” funded by MDA, Singapore,
under Grant No. WBS:R-252-300-001-490.

REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti. Scalable ad-hoc
entity extraction from text collections. PVLDB, 1(1):945–957, 2008.

[2] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where: geotagging
web content. In SIGIR, pages 273–280, 2004.

[3] L. Backstrom, J. M. Kleinberg, R. Kumar, and J. Novak. Spatial
variation in search engine queries. In WWW, pages 357–366, 2008.

[4] L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving
geographical prediction with social and spatial proximity. In WWW,
pages 61–70, 2010.

[5] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An efficient filter
for approximate membership checking. In SIGMOD Conference, pages
805–818, 2008.

[6] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch top-k search
for dictionary-based entity recognition. In ICDE, pages 28–39, 2006.

[7] S. Chandra, L. Khan, and F. B. Muhaya. Estimating twitter user
location using social interactions-a content based approach. In Social-
Com/PASSAT, pages 838–843, 2011.

[8] S. Chaudhuri, V. Ganti, and D. Xin. Mining document collections to
facilitate accurate approximate entity matching. PVLDB, 2(1):395–406,
2009.

[9] Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-
based approach to geo-locating twitter users. In CIKM, pages 759–768,
2010.

[10] D. Deng, G. Li, and J. Feng. An efficient trie-based method for
approximate entity extraction with edit-distance constraints. In ICDE,
pages 141–152, 2012.

[11] Q. Hao, R. Cai, C. Wang, R. Xiao, J.-M. Yang, Y. Pang, and L. Zhang.
Equip tourists with knowledge mined from travelogues. In WWW, pages
401–410, 2010.

[12] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2:
A spatially and temporally enhanced knowledge base from wikipedia.
Artif. Intell., 194:28–61, 2013.

[13] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsioulik-
lis. Discovering geographical topics in the twitter stream. In WWW,
pages 769–778, 2012.

[14] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering algorithms for ap-
proximate dictionary-based entity extraction. In SIGMOD Conference,
pages 529–540, 2011.

[15] G. Li, D. Deng, and J. Feng. A partition-based method for string
similarity joins with edit-distance constraints. In ACM TODS, 2013.

[16] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[17] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang. Towards social
user profiling: unified and discriminative influence model for inferring
home locations. In KDD, pages 1023–1031, 2012.

[18] J. Lu, J. Han, and X. Meng. Efficient algorithms for approximate
member extraction using signature-based inverted lists. In CIKM, pages
315–324, 2009.

[19] Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to
spatiotemporal theme pattern mining on weblogs. In WWW, pages 533–
542, 2006.

[20] T. Rattenbury, N. Good, and M. Naaman. Towards automatic extraction
of event and place semantics from flickr tags. In SIGIR, pages 103–110,
2007.

[21] C. Sun and J. F. Naughton. The token distribution filter for approximate
string membership. In WebDB, 2011.

[22] J. Wang, G. Li, and J. Feng. Trie-Join: Efficient Trie-based String
Similarity Joins with Edit-Distance Constraints constraints. In PVLDB,
3(1):1219-1230, 2010.

[23] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient approximate entity
extraction with edit distance constraints. In SIGMOD Conference, pages
759–770, 2009.

[24] L. Xu, T. W. Lin, H Wu, and Z. Bao. DDE: from dewey to a fully
dynamic XML labeling scheme In SIGMOD Conference, pages 719-
730, 2009.

[25] Z. Yin, L. Cao, J. Han, C. Zhai, and T. S. Huang. Geographical topic
discovery and comparison. In WWW, pages 247–256, 2011.

	Introduction
	Problem Formulation
	Related Work
	The Glitter Framework
	Location Extraction
	Exact Extraction
	Fuzzy Extraction

	Location Aggregation
	Identifying Top-k Locations from The Same Level
	Identifying Top-k Locations from Different Levels

	Location Refinement
	Refinement Model
	Efficient Refinement Algorithm

	Supporting Updates
	Microblog Updates
	Tree-based Location Structure Updates

	Experiments
	Evaluating Quality
	Evaluating Quality of Microblog Locations
	Evaluating Quality of User Locations

	Evaluating Efficiency
	Comparing with Existing Methods
	Comparing Quality
	Comparing Performance

	Scalability
	Updates

	Conclusion
	References

