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Abstract—Internet users are shifting from searching on tra-
ditional media to social network platforms (SNPs) to retrieve
up-to-date and valuable information. SNPs have two unique
characteristics: frequent content update and small world phe-
nomenon. However, existing works are not able to support these
two features simultaneously. To address this problem, we develop
a general framework to enable real time personalized top-k
query. Our framework is based on a general ranking function
that incorporates time freshness, social relevance and textual
similarity. To ensure efficient update and query processing, there
are two key challenges. The first is to design an index structure
that is update-friendly while supporting instant query processing.
The second is to efficiently compute the social relevance in a
complex graph. To address these challenges, we first design a
novel 3D cube inverted index to support efficient pruning on the
three dimensions simultaneously. Then we devise a cube based
threshold algorithm to retrieve the top-k results, and propose
several pruning techniques to optimize the social distance compu-
tation, whose cost dominates the query processing. Furthermore,
we optimize the 3D index via a hierarchical partition method
to enhance our pruning on the social dimension. Extensive
experimental results on two real world large datasets demonstrate
the efficiency and the robustness of our proposed solution.

I. INTRODUCTION
With the rise of online social networks, Internet users are

shifting from searching on traditional media to social network
platforms (SNPs) to retrieve up-to-date and valuable informa-
tion [1]. For example, one may search on Twitter to see the
latest news and comments on Malaysia Airlines flight MH17.
However, searching SNP data is rather challenging due to its
unique properties: not only containing user-generated contents
from time to time, but also having a complex graph structure.
In particular, there are two distinguishing characteristics:

• High Update Rate: Twitter has over 288M active users
with 400 million posts per day in 20131.

• Small World Phenomenon: People in the social network
are not very far away from each other. For Facebook, the
average degrees of separation between users are 4.742.
Moreover, unlike traditional road networks where each
vertex has a small degree, the vertex degree of a social
network follows the power law distribution [2].

Top-k keyword search is an important tool for users to
consume Web data. However, existing works on keyword
search over social networks [3], [4], [5], [6], [7] usually ignore
one or many of the above characteristics of SNPs and lead
to several drawbacks, e.g. returning user with meaningless
or outdated search results, low query performance, providing

1http://www.statisticbrain.com/twitter-statistics/
2http://www.facebook.com/DegreesApp/

global major trends but not personalized search results which
may easily result in biased views [8]. Thus, it calls for a
new and general framework to provide real time personalized
search over the social network data that leverages all unique
characteristics of SNPs.

As a preliminary effort to support the above two charac-
teristics, we focus on three most important dimensions on
SNPs: Time Freshness, Social Relevance and Text Similarity.
Time Freshness is essential as outdated information means
nothing to user in a highly dynamic SNP. Social Relevance
must be adopted in the search framework as well. Leveraging
the personal network to rank results will greatly improve
the search experience as people tend to trust those who are
“closer” and will also enable more user-interactions. E.g., a
basketball fan is more likely to respond to a post on “NBA
Finals” posted by a friend than unfamiliar strangers. Lastly,
Text Similarity is the fundamental dimension where keywords
are used to distinguish the results from available records.

There are many challenges to support the search over these
three dimensions. First, it is challenging to design an index
structure that is update-friendly while supporting powerful
pruning for instant query processing. Specifically, when a new
record is posted, it must be made available immediately in
the search index rather than being periodically loaded. The
second challenge lies in the query evaluation based on the
index. In particular, how to enable an efficient computation
along the social dimension, whose performance dominates its
counterparts on the other two dimensions. The social distance
is usually modeled as the shortest distance on the social graph
[9], [10], [6], [5], [7]. These solutions either compute the
distance on-the-fly [7] or pre-compute all-pairs distances [5].
The first is extremely inefficient for large networks, which
renders it unacceptable for real time response, while the
latter requires prohibitively large storage. A natural way is
to develop query processing techniques based on index with
reasonable size. However, existing distance indices are unable
to handle massive social network because they neglect at least
one of the unique characteristics of SNPs.

To address these challenges, we present a novel solution
to support real time personalized top-k query on SNPs. The
contributions of this paper are summarized as follows:

• We present a 3D cube inverted index to support efficient
pruning on the three dimensions (time, social, textual)
simultaneously. Such index is update-efficient, while flex-
ible in size w.r.t. different system preferences.

• We design a general ranking function that caters to
various user preferences on the three dimensions, and



devise a cube threshold algorithm (CubeTA) to retrieve
the top-k results in the 3D index by this ranking function.

• We propose several pruning techniques to accelerate the
social distance computation, and a single distance query
can be answered with an average of less than 1µs for a
graph with 10M vertices and over 230M edges.

• We optimize the 3D index via a hierarchical partition
method to enhance the pruning on the social dimension. A
deeper partition tree will lead to better query performance
and the flexibility of the index allows the space occupied
to be the same as the basic 3D index.

• We conduct extensive experimental studies on two real-
world large datasets: Twitter and Memetracker. Our pro-
posed solution outperforms the two baselines with aver-
age 4-8x speedups for most of the experiments.

Our framework has a general design of ranking function,
index and search algorithm. It enables opportunities to support
personalized-only (regardless results’ freshness) and real-time-
only (regardless of social locality) search. It is also a good
complement to the global search provided by existing SNPs.
Our vision is: search results are not the end of story, instead
they will be fed into data analytic modules, e.g. sentiment anal-
ysis, to support real-time social network analysis ultimately.

We present related work in Sec. II and problem definition
in Sec. III. We propose the 3D inverted index in Sec. IV and
the CubeTA in Sec. V. In Sec. VI we present several pruning
methods to speed up the distance query evaluation. We propose
a hierarchical partition scheme for our 3D inverted index to
optimize CubeTA in Sec. VII, and report experiment results
in Sec. VIII. Finally we conclude in Sec. IX.

II. RELATED WORK

Search on Social Media Platform. Facebook developed
Unicorn [11] to handle large-scale query processing. While
it supports socially related search, the feature is only available
for predefined entities rather than for arbitrary documents.
Moreover, Unicorn is built on list operators like LISTAND
and LISTOR to merge search results. This can be very costly
especially for real time search because the search space is
huge. Twitter’s real time query engine, Earlybird [3], has
also been reported to offer high throughput query evaluation
for fast rate of incoming tweets. Unfortunately, it fails to
consider social relationship. Therefore, our proposed method
can complement existing engines by efficiently handling real
time search with social relevance.
Search on Social Network. Several research works have been
proposed for real time search indices over SNPs. Chen et al.
introduced a partial index named TI to enable instant keyword
search for Twitter [4]. Yao et al. devised an index to search for
the microblog messages which are ranked by their provenance
in the network [12]. However, none of them offers customized
search for the query user. Although indices on social tagging
network offer the social relevance feature [5], [6], [7], they
rely on static inverted lists that sort documents by keyword
frequencies to perform efficient pruning. These indices cannot
handle high rate of documents ingestion because maintaining

sorted lists w.r.t keyword frequencies requires huge number of
random I/Os. Besides, [6] only considers the documents posted
from a user’s direct friends while we consider all documents
in SNPs. Thus, there is a need to design novel indices that
are update-efficient and support efficient search with social
relevance feature.
Distance Indices on Social Networks. Road network distance
query has been well studied in [13], [14]. However, they
cannot work on large social networks because the vertex
degree in road networks is generally constant but dynamic
in social networks due to the power law property. Existing
distance indices for social networks [15], [16], [17], [18]
cannot be applied to our scenario for several reasons. First, the
schemes in [15], [16], [17] assume un-weighted graphs and are
not able to handle weighted graphs. Second, the mechanisms
in [15], [16] are only efficient for social graphs with low tree-
width property. Unfortunately, as reported in [19], the low
tree width property does not hold in real world social graphs.
We also made this observation in our real datasets. Lastly,
personalized top-k query requires one-to-many distance query
whereas the methods in [17], [16] are applicable only for one-
to-one query and the solution in [18] only supports one-to-all
query. It is hard to extend these schemes to fit our case. It
therefore motivates us to design pruning methods to overcome
the distance query problem on large social networks.

III. PROBLEM DEFINITION

Data Model. Let G = (V,E) be an undirected social graph,
where V is the set of vertices representing users in the network
and E is the set of edges in G denoting social links. For each
vertex v, R

v

is a set of records attached to v (e.g., microblogs
published by the user). A record r 2 R

v

is formulated as
r = hr.v, r.W, r.ti where:

• r.v shows which vertex this record belongs to.
• r.W is a set of keywords contained in r.
• r.t denotes the time when the record is published by r.v.
Each edge is associated with a weight, which quantifies the

social distance between the two vertices. In this paper, we
adopt the Jaccard Distance which has been widely used [20],
[21], [2]; however, our method can be easily extended to other
functions. The weight between user v and its neighbor v0,
denoted as D(v, v0), is the Jaccard Distance between their
neighbor sets N(v) and N(v0) where N(x) = {n|(x, n) 2 E}.

D(v, v0) = 1� |N(v) \N(v0)|
|N(v) [N(v0)| s.t.(v, v

0
) 2 E (1)

Query Model. A top-k query q on the social graph G is
represented as a vector q = hq.v, q.W, q.t, q.ki where:

• q.v is the query user.
• q.W is the set of query keywords.
• q.t is the time when the query is submitted.
• q.k is the number of desired output records.

Ranking Model. Given a query q, our objective is to find
a set of q.k records with the highest relevance. To quantify
the relevance between each record and the query, we should
consider the following aspects.



U1 U2

U3

U10

U4

U5

U6 U7

U11

U8
U9

0.5

0.4

0.2

Partition 1 Partition 2 Partition 3

rid:user TS Keywords
r0:u10 0.1 (“icde”,0.8),(“nus”,0.1)
r1:u1 0.1 (“icde”,0.9)
r2:u7 0.1 (“icde”,0.1),(“nus”,0.5)
r3:u2 0.2 (“icde”,0.6),(“nus”,0.2)
r4:u3 0.3 (“icde”,0.7),(“nus”,0.2)
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r9:u5 0.8 (“icde”,0.2),(“nus”,0.2)
r10:u9 0.9 (“icde”,0.1),(“nus”,0.4)
r11:u11 1.0 (“icde”,0.7)

Fig. 1: A social network example including records posted. Records
are ordered by time from old to recent (used throughout this paper).

(1) Social Relevance: The social distance for two vertices v $
v0 is adopted as the shortest distance [9], [10], [6], [5].

SD(v, v0) = min

pathv=v0...vk=v

0

X

i=0..k�1

D(v
i

, v
i+1)/maxDist (2)

The social relevance is computed as SR=max(0, 1�SD) and
maxDist is the user-tolerable maximal distance.
(2) Textual Relevance: We adopt the well-known tf-idf based
approach [22]. Let tf

w,r

denote the frequency of keyword
w in r whereas idf

w

is the inverse frequency of w in the
entire document collection. We represent textual relevance as
a cosine similarity between q.W and r.W :

TS(q.W, r.W ) =

X

w2q.W

tf
w,r

· idf
w

(3)

Specifically, tf
w,r

= z
w,r

/(
P

w2r.W

z2
w,r

)

1
2 where z

w,r

is
the number of occurrences of w in r.W ; and idf

w

=

z
w

/(
P

w2q.W

z2
w

)

1
2 , z

w

= ln(1 + |R|/df
w

) where |R| is the
total number of records posted and df

w

gives the number of
records that contain w.
(3) Time Relevance: The time freshness score TF is the
normalized time difference between q.t and r.t. In particular,
let t

min

be the pre-defined oldest system time, then

TF(q.t, r.t) =
r.t� t

min

q.t� t
min

(4)

Overall Ranking Function. Now, with the social, textual
and time relevances normalized to [0,1], our overall ranking
function is a linear combination of these three components.

<(q, r)=↵TS(q.W, r.W )+�SR(q.v, r.v)+�TF(q.t, r.t) (5)

where ↵,�, � are user preference parameters for general
weighting functions, and ↵,�, � 2 [0, 1]. Tuning the param-
eters is a well-studied problem in information retrieval and
a widely-adopted solution is by user click-throughs [23]. In
this paper we focus on devising efficient algorithms for query
processing and leave the parameter tuning as a future work.

Example 1. Fig. 1 is an example social network where all
records posted are listed. For each record r, its user id (UID),
time score (TS), keywords and their frequencies are included.
Suppose ↵=�=�=1 and u1 expects to get the top-1 record that
contains “icde”. By Equation 5, r11 is the desired result as
<(q

u1 , r11) = 1.0+(1.0�0.4)+0.7 = 2.3 has the maximum
value among all records.
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Fig. 2: 3D inverted list for “icde”

IV. 3D INDEX

To support the high update rate for SNPs, we propose a
memory based 3D inverted list. Time is the primary dimension.
Textual and social dimensions are also included to support
efficient pruning. Before introducing the 3D list design, we
would like to present how to handle the social dimension first
as it is not straightforward to order the records according to
the social relevance without knowing who the query user is.
Graph Partition. Given a social graph G like Fig. 1, we
first divide the vertices into c partitions using k-way partition
[24] with minimum cut utility. For each P

i

, a pivot vertex
pn

i

is selected among the vertices in P
i

and the shortest
distance from pn

i

to each vertex in G is pre-computed.
In addition, for any two partitions P

i

, P
j

, we pre-compute
SD(P

i

, P
j

) = min

x2P

i

,y2P

j

SD(x, y). This index is used for
estimating the social distance between the query user q.v and
a partition. As the partitions along the social dimension do not
have an ordering which depends on the query, we rank P

i

by
SD(P

q.v

, P
i

) in query time where P
q.v

contains q.v. The space
complexity of the index for social distance is O(|V |+ c2).
3D Inverted List. Each keyword w is associated with a 3D
list of records which contain w. From Example 1, Fig. 2 shows
the 3D list for keyword “icde”. The primary axis of the 3D
list is time, from latest to oldest, which is divided into slices.
Each time slice contains a 2D grid consisting of the social
and textual dimensions. The social dimension corresponds to
the c partitions constructed on G. The textual dimension is
discretized to m intervals w.r.t. the keyword frequencies tf by
using equi-depth partition on historical data [25]. This results
in a cube structure of the 3D list where each cube may contain
0 or many records. Note that in Fig. 2, the time and textual
dimensions are sorted offline whereas the social partitions will
only be sorted against user u1 when u1 issues a query at
runtime in Example 1.

To support efficient retrieval of records from the 3D list (as
discussed later in Sec. V), we define the neighbours of a cube:

Definition 1. We assign each cube with a triplet: (x, y, z),
where x,y,z refer to time, social and textual dimensions.
The three neighbours of cube cb(x, y, z) are cb(x � 1, y, z),
cb(x, y � 1, z), cb(x, y, z � 1) respectively.

For example in Fig. 2, there are 18 cubes and the dimension



indices (x, y, z) are listed in the first row of a cube. The
cube cb(1, 1, 1) which contains r11 has neighbours: cb(0, 1, 1),
cb(1, 0, 1), cb(1, 1, 0) along the time, social and textual dimen-
sions respectively. To avoid storing empty cubes in the 3D list,
we deploy a B+-tree for each time slice as shown in Fig. 2.
In each B+-tree, the value of a leaf node represents a cube’s
linearized dimension index in the 2D grid. Suppose a cube has
a grid index entry (y, z) where y and z represent the entries
of the social and textual dimensions respectively, then a leaf
node with value ym+ z is added to the B+-tree. To facilitate
random access, each B+-tree keeps a reference to the leaf node
with index (y,max (z)) for each partition y.
Index Update. When a new record r arrives, it is inserted
into w’s 3D list 8w 2 r.W . r is always allocated to the latest
time slice and mapped to the corresponding cube. When the
number of records in the latest time slice exceeds a system
determined threshold, a new time slice will be created. Let us
take r6 for an example and assume the time slice threshold is
6. When r6 arrives, there are already 6 records in time slice
0 (see Fig. 2), so slice 1 is created, which r6 is inserted into.
In social dimension, since r6 belongs to user u4 (see Fig. 1),
r6 should go to partition 1. In textual dimension, “icde” has a
keyword frequency of 0.8 in r6, which falls in the frequency
interval [1, 0.7). Finally, r6 should be inserted into the cube
cb(1, 0, 2) that maps to leaf node 2 after linearization. The
B+-tree is updated accordingly.
Complexity. Since the record is inserted into B+tree and each
B+tree has at most c·m leaf nodes, the complexity of inserting
a new record is just O(|r.W | · log(c ·m)).
Forward Index. To enable efficient random access, a forward
list is built for each record r. Each list stores the keywords in
r and their keyword frequencies. The user who posts it and
the time posted are stored as well. The table in Fig. 1 is an
example of the forward lists for the social network.

V. CUBETA ALGORITHM

Given the 3D list design, we are now ready to present
our basic query evaluation scheme, CubeTA (Algorithm 1).
CubeTA extends the famous TA algorithm [26] by introducing
a two-level pruning upon the 3D list to further speed up the
query processing, i.e. at record level and at cube-level. We
maintain two data structures in CubeTA: (1) The cube queue
CQ which ranks the cubes by their estimated relevance scores
(computed by EstimateBestScore function in line 15); (2) the
min heap H which maintains the current top-k candidates. The
main workflow is as follows: In each iteration, we first access
the 3D list for each keyword and get the cube cb with the best
estimated scores among all unseen cubes in CQ (line 4). Next
we evaluate all the records stored in cb (lines 8-12), then we
keep expanding the search to the three neighbors of cb (lines
13-16), until the current top-k records are more relevant than
the next best unseen cube in CQ. Following Equation 5 in
computing the score of a record, Equation 6 illustrates how
EstimateBestScore estimates the score of a cube cb:

<(q, cb) = |q.W |(↵TS
cb

+

�SR
cb

+ �TF
cb

|q.W | ) (6)

Algorithm 1: CubeTA Algorithm
Input: Query q = hq.v, q.W, q.t, q.ki, CubeQueue CQ

which is initialized by inserting the first cube for
each of the q.W ’s inverted list.

Output: Top q.k records that match the query q.
1 MinHeap H  � /

*

q.k best records

*

/

2 " 0 /

*

q.kth record’s score

*

/

3 while !CQ.empty() do
4 Cube cb = CQ.pop()
5 if EstimateBestScore(q, cb) < " then
6 return H
7 else
8 foreach record r in cb do
9 if r has not been seen before then

10 if GetActualScore(q, r, ") > " then
11 H.pop() and Push r to H
12 " H.top()’s score w.r.t q
13 foreach of the three neighbour cubes nc of cb do
14 if nc has not been seen before then
15 if EstimateBestScore(q, cb) > " then
16 Push nc to CQ

The social score of cb is SR
cb

= 1 � SD(P
q.v

, P
cb

), where
P
q.v

is the partition containing the query user and P
cb

is
the partition containing the cube cb. The time freshness TF

cb

and text similarity TS
cb

are the maximum values of cb’s time
interval and frequency interval. It is easy to see that the total
estimated score SR

cb

is actually an upper bound of all the
unseen records in the cube, so if it is still smaller than the
current kth best record’s score ", we can simply terminate the
search and conclude the top-k results are found (lines 5-6).
This stopping condition is presented in Theorem 1.

Theorem 1. Let cb be the next cube popped from CQ. The
score estimated by Equation 6 is the upper bound of any
unseen record in the 3D lists of all query keywords q.W .

Proof : Let r be any record that exists in any of the 3D lists
and whose score has not been computed. Given a query q, let
� = �SR(q.v, r.v) + �TF(q.t, r.t) and �

w

= ↵ · tf
w,r

· idf
w

where w 2 q.W . The overall score <(q, r
x

) of r w.r.t. q is:

<(q, r
x

) = �+

X

w2q.W

�
w

=

X

w2q.W

(�
w

+

�

|q.W | )

=

X

w2q.W\r.W

(�
w

+

�

|q.W | ) +
�|q.W \ r

x

.W |
|q.W | (7)

But note that r
x

must exist in one of the 3D lists, say w⇤.
Then it follows Equation 7:

<(q, r
x

) 
X

w2q.W\r.W

(�
w

+

�

|q.W | ) + |q.W \ r
x

.W |(�
w

⇤
+

�

|q.W | )

 |q.W | · max

cb2q.W

(↵TS
cb

+

�SR
cb

+ �TF
cb

|q.W | ) ⌅

GetActualScore (Algorithm 2) computes the exact rele-
vance of a certain record. With the forward list mentioned



Algorithm 2: GetActualScore Algorithm
Input: Query q, record r and threshold "
Output: <(q, r) > " ? <(q, r) : �1

1 Compute TF and TS using the forward list of r
2 Compute the Social Relevance Lower Bound
minSR

r

= ("� ↵TS� �TF)/�
3 SR

r

= 1� ShortestDistance(q.v, r.v,minSR
r

)

4 return ↵TF + �TS + �SR

in Sec. IV, we can compute the exact text similarity and
time freshness. Since we have the kth best score " among
the evaluated records, a lower bound for social relevance (i.e.
the distance upper bound) can be computed for the current
record r before evaluating the distance query (in line 3). This
bound enables efficient pruning which we will later discuss on
how to compute the exact social relevance score in Section VI.
Example 2 shows a running example of how CubeTA works.

Iteration Processing Cube Candidates minSR maxSD Best Cube:Score Top 1

1 (1,2,2) (1,1,2): 2.8

2 (1,1,2) r7:0.7+(1-0.6)+0.8=1.9 0 1 (1,0,2): 2.6 r7

3 (1,0,2) r7:0.7+(1-0.6)+0.8=1.9
r6:0.6+(1-0.7)+0.8=1.7 0.5 0.5 (1,2,1): 2.6 r7

4 (1,2,1)
r8:0.7+(1-0.2)+0.7=2.2
r7:0.7+(1-0.6)+0.8=1.9
r6:0.6+(1-0.7)+0.8=1.7

0.4 0.6
(1,1,1): 2.5 r8

5 (1,1,1)

r11:1+(1-0.4)+0.7=2.3
r8:0.7+(1-0.2)+0.7=2.2
r7:0.7+(1-0.6)+0.8=1.9
r6:0.6+(1-0.7)+0.8=1.7

0.2 0.8

(0,2,2): 2.3 r11

Fig. 3: Example of CubeTA (The highlighted text indicates that the
records are being evaluated in their current iteration.)

Example 2. By Example 1, the social partitions are sorted
by their distances to u1 when u1 issues the query. Fig. 2
shows the reordered 3D list of keyword “icde”. Detailed steps
for CubeTA are illustrated in Fig. 3. In iteration 1, cube
cb(1, 2, 2) is first evaluated. Since no record is in cb(1, 2, 2),
three neighbors of cb(1, 2, 2) are inserted into the cube queue.
In iteration 2, cb(1, 1, 2) is popped from the cube queue
and before expanding its neighbor cubes into the queue, we
evaluate r7 and insert it into the candidate max heap. This
procedure terminates at iteration 5 because r11 is found to
have an equal score to the best cube score in the cube queue.

Efficient Cube Traversal
As discussed in Sec. IV, traversing the 3D list may encounter
many empty cubes. To speed up the traversal in CubeTA (line
13), we define the boosting neighbors for a cube cb(x, y, z):

Definition 2. Suppose there are c social partitions and m
frequency intervals, the boosting neighbors of cb(x, y, z) are:

• cb(x� 1, y, z) if y = c ^ z = m.
• cb(x, y � 1, z) if z = m.
• cb(x, y,max{z0|z0 < z ^ cb(x, y, z0) is non-empty})

Boosting neighbors essentially can identify all the non-
empty cubes, as illustrated below.

Theorem 2. All cubes are covered by traversing via boosting
neighbors only.
Proof : Let l = max(x). As the traversal always starts from
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Fig. 4: The averaged distance distribution of Twitter Dataset.

cb(l, c,m), we need to prove that any cb(x, y, z) is reachable
from cb(l, c,m). Along the textual dimension, cb(x, y, z) is
reachable from cb(x, y,m). cb(x, y,m) is reachable from
cb(x, c,m) along the social dimension. Lastly cb(x, c,m) is
reachable by cb(l, c,m) along the time dimension. ⌅

VI. SOCIAL-AWARE PRUNING

In CubeTA, to process a query issued by a user v, a large
number of distance queries need to be evaluated between v
and the users who post records containing the query keywords
in GetActualScore. In order to accelerate such one-to-many
distance query evaluation, we develop a series of optimizations
that operate in three categories: (1) Quick computation of the
social relevance scores for records that cannot be pruned; (2)
Immediate pruning for records that are not among the final
top-k records; (3) Fast construction of the pruning bound at
the initial rounds of the graph traversal to facilitate pruning as
early as possible.

A. Observation

First, we highlight an observation on the real SNP datasets
that motivates our pruning idea. Fig. 4 is the distance dis-
tribution which shows the percentage of vertices that have
the corresponding social distances to a randomly sampled
vertex in the social network. The distribution is constructed
by uniformly sampling 1000 vertices from the Twitter dataset
which is extensively studied in our experiments. We observe
that there exist layers of vertices with different distances from
a random vertex. Due to the small world property, the number
of layers is usually small. This finding has also been verified
in the news dataset that we have studied. Moreover, this is
consistent in real life context where close friends are rare and
the rest just scatter around, which means our defined social
distance measure may enable more pruning power on real
world SNPs. If we avoid computing the distances between the
source vertex and those vertices that are positioned at these
layers, the performance will be greatly improved.

B. Baseline Solution: Direct Pruning

For a given source vertex v, Dijkstra Algorithm (DA) [27] is
the most widely-adopted approach to find the distance between
v and every other vertex in the graph. The key idea of DA
is to maintain a set S and a priority queue PQ. S contains
all the vertices whose distances to v have been determined
while PQ orders the remaining vertices by their estimated
distances to v, i.e. SD⇤

(v, u), u 2 PQ. In each iteration, the



TABLE I: Notations used across Sec. VI
Notation Meaning

v, u v is the query user, u is any other user in
the social network

r

u

the record posted by user u
r

⇤ the kth best record among evaluated records

S

the set contains users with determined
social distances to v

PQ

the priority queue contains users with
undetermined social distances to v

SD(v, u) the actual distance between v and u

SD⇤
(v, u) the estimated SD(v, u) in PQ

min SR
r

u

the minimum SR(v, u) allowed for r
u

s.t. <(v, r

u

) � <(v, r

⇤
)

max SD
r

u

1�min SR
r

u

n argmin

x2PQ

SD(v, x)

mdist SD(v,n)
DA Dijkstra’s Algorithm

vertex n with the smallest SD⇤
(v, n) is popped from PQ.

At this moment, we are sure that SD(v, n) = SD⇤
(v, n) and

we denote SD(v, n) by mdist. Then n is inserted into S and
for each n0 2 PQ where (n, n0

) 2 E, SD⇤
(v, n0

) is updated
to min(SD⇤

(v, n0
),mdist + SD(n, n0

)). Therefore, in order
to answer such one-to-many distance query, we choose to use
DA as the backbone for our traversal while presenting a series
of pruning methods to access as few nodes as possible.

In particular, whenever a record r
u

posted by u contains
any query keyword(s), we may need to evaluate SD(v, u). If
u 2 S, no further computation is needed because SD(v, u) has
already been determined. Otherwise, by Algorithm 2 (line 2),
we can get a lower bound for u’s social relevance: minSR

r

u

,
i.e. the minimum possible SR(v, u) for r

u

to be no less
relevant than the current kth best record r⇤. Equivalently,
max SD

r

u

denotes the maximum allowed SD(v, u) in order
for r

u

to be a potential top-k candidate. Therefore, once we
find mdist � max SD

r

u

, it means r
u

is definitely not a top-k
candidate and we can simply terminate our search and return.
This forms our baseline method called Direct Pruning.

Example 3. In Example 2, CubeTA needs to evaluate r7, r6,
r8, r11 before confirming the top-1 result. For each record
evaluated, its minSR and max SD are listed in Fig. 3, and the
user who posted it is in Fig. 1. When direct pruning is enabled,
the search proceeds as below. We first evaluate r7 posted by
u7. Since no record has been computed, minSR

r7 = 1 and
original DA visits the vertices in the order of u1, u3, u2, u10,
u8, u11, u5, u6 and lastly reach u7 to get SR(u1, u7) = 1 �
SD(u1, u7) = 0.4. When we proceed to Iteration 3 to evaluate
r6 posted by u4, the current top-1 result is r7, so we have
mdist = SD(u1, u7) = 0.6 and max SD

r6 = 0.5. We find
mdist > max SD

r6, which means r6 needs to be pruned from
the top-1 candidate.

C. In-circle Pruning

Since DA traverses the graph in a closest-vertex-first fash-
ion, we must avoid traversing to any vertex that has a large
social distance from the query user v so that the layers
in Fig. 4 are never reached. Otherwise evaluating just one
distance query may require traversing the entire social graph
and the performance can be as bad as original DA, i.e.

O(|E|+|V |log|V |). We will discuss three issues, namely Far
True Candidates, Far False Candidates and Cold Start,
where direct pruning fails to avoid the distance computation
from v to far vertices.

1) Far True Candidates: These refer to records that are
socially far from the query user v but cannot be pruned at
the current stage of query processing. Thereby we have to
compute the exact social distances for these far candidates.
Since direct pruning only prunes the candidates rather than
computing the exact social distance, i.e. SD(v, u), we pro-
pose the first pruning method called early-determination to
quickly compute the social distance as outlined in category
(1)’s optimization. According to DA, the estimated distance
SD⇤

(v, u) is only updated to its actual distance SD(v, u)
when there exists a u0 that is popped from PQ in previous
iteration(s) and is also a neighbor of u. Therefore, given the
vertex n = argmin

x2PQ

SD(v, x) that is being popped from
PQ and the mdist = SD(v, n), we can get a lower bound of
SD(v, x)+SD(x, u), 8x 2 PQ. If this bound is no smaller than
the current SD⇤

(v, u), then we can simply stop and determine
that SD(v, u) = SD⇤

(v, u).

Theorem 3. Let SD⇤
(v, u) be the estimated SD(v, u) for a

vertex u popped from PQ. If mdist + min

u

0 SD(u, u0
) �

SD⇤
(v, u) where (u, u0

) 2 E, then SD(v, u) = SD⇤
(v, u).

Proof : If mdist +min

u

0 SD(u, u0
) � SD⇤

(v, u), then 8x 2
PQ, SD(v, x) + SD(x, u) � mdist + min

u

0 SD(u, u0
) �

SD⇤
(v, u). It means that the estimated distance cannot be

updated to a smaller value via any path that contains vertices
in PQ, so the social distance between v and u has been de-
termined, i.e. SD(v, u) = SD⇤

(v, u). ⌅
Example 4. Recall Example 3, the direct pruning needs to
traverse 9 vertices to get the social score for r6. With early-
determination applied, the traversal still starts from u1, and
when popping u8 from PQ, we update SD

⇤
(u1, u7) = 0.6

as u7 is a neighbour of u8. We can stop the traversal at
u11 and determine SD(u1, u7) = 0.6 because SD(u1, u11) +

min

u

0
SD(u7, u0

) = 0.6 � SD

⇤
(u1, u7) = 0.6. As a result,

early-determination terminates by traversing 6 vertices only.

To make the pruning more effective, it is critical to obtain
a precise estimation of SD(v, u) before traversing. Thus we
use SD⇤

(v, u) = min{SD(v, pn
u

)+SD(pn
u

, u), SD(u, pn
v

)+

SD(pn
v

, v)} as an upper bound of SD(v, u) and pn
u

, pn
v

are
pivot vertices from partitions P

v

, P
u

(v 2 P
v

, u 2 P
u

).
2) Far False Candidates: These refer to records that are

socially far away from v and should be pruned from the
current top-k result set. For a record r

u

, early-determination
only computes SD(v, u) without exploiting max SD

r

u

for
pruning r

u

. In Fig. 4, suppose we want to evaluate r
u

where
SD(v, u) = 0.8 and the nearest neighbor of u has a distance
of 0.1 from u, then the processing by early-determination is
slow because SD(v, u) cannot be determined until we pop
a vertex from PQ that has a distance of 0.7 from v. This
motivates us to propose the second pruning method, namely
early-pruning as outlined in category (2), to complement



the early-determination method. Like early-determination that
estimates a lower bound that SD⇤

(v, u) could be updated to
by vertices in PQ, early-pruning essentially prunes the record
r
u

by exploiting max SD
r

u

, as described in Theorem 4.

Theorem 4. If mdist + min

u

0 SD(u, u0
) � max SD

r

u

and
SD⇤

(v, u) � max SD

r

u

, then SD(v, u) � max SD

r

u

.

Proof : If mdist + min

u

0 SD(u, u0
) � max SD

r

u

, similar
to Theorem 3, SD⇤

(v, u) will not be updated to a distance
smaller than max SD

r

u

by any remaining vertices in PQ.
Thus it is possible for SD(v, u) < max SD

r

u

if SD⇤
(v, u) <

max SD
r

u

. So by ensuring SD⇤
(v, u) � max SD

r

u

, we can
determine SD(v, u) � max SD

r

u

. ⌅
Example 5. From Example 4, the traversal stops at u11 after
evaluating r7. The next record to compute is r6 posted by u4.
SD

⇤
(u1, u4) = 0.7 as u2 2 S and u2 is a neighbor of u4. We

also know max SD

r6 = 0.5 in Fig. 3. However, we cannot
early determine SD(u1, u4) at u11 because SD(u1, u11) +

min

u

0
SD(u4, u0

) = 0.6 < SD

⇤
(u1, u4) = 0.7. Instead we

can use early-pruning to eliminate r6 because SD(u1, u11) +

min

u

0
SD(u4, u0

) > max SD

r6 and SD

⇤
(u1, u4) > max SD

r6.

3) Cold Start: This refers to scenarios where max SD is not
small enough for efficient pruning at the early stage of query
processing. Suppose the first record to evaluate is posted by
the furthest vertex in the social graph w.r.t v, early-pruning
cannot help as the pruning bound is trivial. Although early-
determination can reduce the query time to some degree, it is
still highly possible to visit almost every vertex.

Thus, we propose the third pruning method called warm-
up queue, which aligns with the optimization of category (3).
The warm-up queue WQ is meant to evaluate the records that
are nearer to v first and to obtain a decent bound for further
pruning. WQ is constructed as follows: we push a number
of records to WQ before computing any social distance.
WQ ranks the records with an estimated distance, which is
computed by exploiting the pivot vertices as the transit vertices
between v and the authors of the records. When the size of
WQ exceeds �, all records in WQ will be popped out and their
exact scores are computed followed by the original CubeTA.

A key problem is to determine �. We wish that, among
� records in WQ, there are at least q.k records whose
social distances to v are smaller than the left most layer
in the vertex-distance distribution. Based on the observation
from Fig. 4, we model the vertex-distance distribution as a
mixture of gaussians, which is a weighted sum of M normal
distributions: p(x) =

P
M

i=1 wi

g(x|µ
i

,�
i

) where g(x|µ
i

,�
i

) is
the probability density of a normal distribution with mean µ

i

and variance �2
i

. In the context of social network, the number
of layers in the vertex-distance distribution is small due to the
small world property and it makes the training complexity
low. The model is established by the standard expectation
maximization method. Given the mixture model and a random
record r

u

, the probability p
opt

that SD(q, u) < µ
min

where
µ
min

is the mean of the left most normal component which
means µ

min

 µ
i

, 8i = 1..M .

p
opt

=

Z
µ

min

�1

MX

i=1

w
i

g(x|µ
i

,�
i

)dx (8)

Assuming the record authors are independent and identically
distributed random variables w.r.t their distance to v in the
social graph, the probability of having at least q.k records
whose social distances to v are smaller than µ

min

follows the
binomial distribution:

p(�) = 1�
q.kX

i=0

✓
�

i

◆
(1� p

opt

)

��ip
opt

i (9)

In this work we aim to ensure p(�) > 99.9% so that, in most
cases, the first q.k records in WQ have social distances that
are less than µ

min

.
Algorithm 3: Optimized Distance Query Computation

Input: Query user v, record r
u

, set S, priority queue
PQ, max SD

r

u

and mdist
Output: SD(v, u) < max SD

r

u

? SD(v, u)
r

u

: �1
1 if u 2 S then
2 return SD(v, u) < max SD

r

u

? SD(v, u)
r

u

: �1
3 u00  nearest 2-hop neighbour of u.
4 for (u, u0

) 2 E do
5 if SD

⇤
(v, u0

) + SD(u0, u) < SD

⇤
(v, u) then

6 SD⇤
(v, u) SD⇤

(v, u0
) + SD(u0, u)

7 Update SD⇤
(v, u) of u in PQ

8 while PQ is not empty do
9 if mdist+ SD(u, u00

) � SD

⇤
(v, u) then

10 return SD⇤
(v, u) < max SD

r

u

? SD(v, u) : �1
11 if mdist+ SD(u, u00

) � max SD

r

u

^ SD

⇤
(v, u) �

max SD

r

u

then
12 return �1
13 Vertex n PQ.pop()
14 mdist SD⇤

(v, n)
15 S  S [ n
16 for (n0, n) 2 E and n0 62 S do
17 if SD

⇤
(v, n) + SD(n, n0

) < SD

⇤
(v, n0

) then
18 SD⇤

(v, n0
) SD⇤

(v, n) + SD(n, n0
)

19 Update SD⇤
(v, n0

) of n0 in PQ
20 if (n0, u) 2 E then
21 if SD

⇤
(v, n0

) + SD(n0, u) < SD

⇤
(v, u) then

22 SD⇤
(v, u) SD⇤

(v, n0
) + SD(n0, u)

23 Update SD⇤
(v, u) of u in PQ

D. Out-of-circle Pruning
In Theorems 3 and 4, the nearest neighbor u0 of the target

vertex u and its distance to u play a critical role to quickly
determine SD(v, u), However, when u0 has a very short dis-
tance to u, none of the aforementioned pruning techniques is
effective. So by exploiting the 2-hop nearest neighbour of u in
the above pruning methods, in particular early-determination
and early-pruning, the pruning power could be enhanced as
compared to its in-circle counterparts. This is because the 2-
hop nearest neighbour has a longer distance from u, which
results in an earlier determination of SD(u, v). We refer to
this approach as out-of-circle pruning, and will demonstrate
its merit over the in-circle pruning in Example 6.



Example 6. By Examples 4 & 5, in-circle early-determination
needs to traverse 6 vertices to evaluate SD(u1, u7), while
with the out-of-circle early-determination we only need to
traverse 3 nodes. The nearest 2-hop neighbour of u7 is u3

and SD(u7, u3) = 0.5. Before any traversal, we use u8, which
we assume it to be the pivot vertex of partition 3, to estimate
SD

⇤
(u1, u7) = SD(u1, u8)+ SD(u8, u7) = 0.6. Then the out-

of-circle early-determination takes effect when we reach u2:
now SD(u1, u2)+SD(u7, u3) = 0.7 > SD

⇤
(u1, u7) = 0.6; so

by Theorem 3 we guarantee SD(u1, u7) = 0.6. Furthermore,
we can use out-of-circle early-pruning to eliminate r6. Since
u4 posted r6, we first identify the 2-hop nearest distance
of u4 to be SD(u4, u9) = 0.4. In addition we know that
SD

⇤
(u1, u4) = 0.7 since u2 was reached when evaluating

r7. Then by out-of-circle early-pruning we are sure r6 is not
the top-1 candidate at u2 because SD(u1, u2)+SD(u4, u9) >
max SD

r6 and SD

⇤
(u1, u4) > max SD

r6.

As a result, by enabling more powerful out-of-circle pruning
upon the DA traversal, we present a complete solution of
the social distance computation in Algorithm 3. In particular,
lines 9-12 extend the idea of Theorems 3 and 4 by replacing
the nearest neighbour distance by the nearest 2-hop distance;
lines 4-7 and 20-23 are meant to guarantee the correctness
of pruning: if n0 is a neighbor of u, SD⇤

(v, u) gets updated
via a path that contains n0. The rest part is in line with the
original DA: specifically, Lines 1-2 return the social distance
if SD(v, u) has been determined in S; Lines 13-19 follow the
graph traversal and distance estimate in DA.

Example 7. In Example 6, we visit u1, u3, u2 in order after
evaluating r7, r6 while r8 and r11 remain to be evaluated.
The total score of r8 is 2.2 and we continue to evaluate
r11 posted by u11. By adopting the same assumption from
Example 6, we use u8 to be the pivot vertex of partition 3. Then
we obtain SD

⇤
(u1, u11) = SD(u1, u8) + SD(u8, u11) = 0.8.

According to lines 4-7, we need to update SD

⇤
(u1, u11) =

SD

⇤
(u1, u10) + SD(u10, u11) = 0.4 when we traverse to u3

as u10 is a neighbour of both u11 and u3.
If we do not perform lines 4-7, this means SD

⇤
(u1, u11) =

0.8 instead of 0.4. Since r8 is the current top-1 candidate,
max SD

r11 = 0.5. As the traversal stops at u2 and nearest
2-hop neighbour of u11 is u3, the out-of-circle early-pruning
will eliminate r11 because SD(u1, u2)+SD(u3, u11) = 0.5 �
max SD

r11 and SD

⇤
(u1, u11) > max SD

r11. But r11 is the
ultimate top-1 result which should not be pruned. lines 20-
23 in Algorithm 3 have a similar reason to guarantee the
correctness of the out-of-circle pruning.

Out-of-circle pruning requires the pre-computation of the
nearest 2-hop distance from each vertex which is retrieved
by using DA. The worst time complexity is O(|V |+|E|) and
the process can easily be parallelized. The space complexity
is O(|V |) which brings almost no overhead for using out-of-
circle pruning compared to in-circle pruning. One may wonder
whether the pruning can be further extended by using 3-hop
nearest distance and beyond. The answer is that it brings more

G
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Fig. 5: Tree partition of the social
graph in Fig. 1.
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Fig. 6: Example of building time
slice 1 of the 3D list for “icde” on
the partition tree in Fig. 5.

complexity in both time and space. If we use 3-hop nearest
distance, one has to ensure SD⇤

(v, u) is updated via a path
that contains n0 if n0 is 2-hop away from u. However, to check
if n0 is a 2-hop neighbour of u, we must either store all 2-
hop neighbours for each vertex or validate 2-hop relationship
on the fly. Storing all 2-hop neighbours are not realistic for
large graphs whereas computing on the fly will trivially slow
down the query processing. Therefore, it can be concluded that
out-of-circle pruning achieves the maximum pruning along the
social dimension.

VII. 3D INDEX OPTIMIZATION

In the 3D index, the social dimension is statically parti-
tioned. Intuitively, the larger the number of partitions is, the
more accurate the estimate of the social score will be; and
this will translate to more effective pruning. However, a large
number of partitions on the social dimension will severely
tax the system resources and this is not scalable for large
social networks. Moreover the static partition strategy does not
capture the nature of online social activities. Given a period
of time, people who are socially related are likely to publish
similar information on the online network. A fine-grained
yet time-aware social partition is required for more efficient
pruning. Therefore we develop a dynamic division strategy on
social dimension using the hierarchical graph partition.

A. Hierarchical Graph Partition Index
We improve static social division scheme by a hierarchical

graph partition using a binary tree denoted as pTree. Fig. 5
serves an example of a partition tree of the social graph
mentioned in Fig. 1. The root of pTree contains all vertices
in G. Each child node in the tree represents a sub partition of
G. A sub partition is represented as G[h,idx] where h denotes
the level in pTree and idx is the position of G[h,idx] at level
h. For the 3D list, we still keep c partitions as described in
Sec. IV. The improvement is that the c partitions are formed
by nodes in pTree instead of uniform graph partitions.

The 3D list dynamically updates the social dimension when
new records are inserted. The update procedure maintains c
partitions within a time slice. When u

r

posted a new record
r, within each time slice where r is inserted into, we try
to find the sub partition G[h,idx] to store r. Traversing from
the root of pTree, if G[h0

,idx

0] has already contained some
records or G[h0

,idx

0] is a leaf node of pTree, we insert r
into G[h0

,idx

0]. Otherwise we traverse to the child partition
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Fig. 7: Reordered inverted list for keyword “icde” by using the
hierarchical partition w.r.t. user u1.

of G[h0
,idx

0] that contains u
r

. For any two nodes G[x,idx
x

] and
G[y,idx

y

] on pTree, we denote their Lowest Common Ancestor
by LCA(G[x,idx

x

], G[y,idx
y

]). After insertion, if we find c+1

non-empty sub partitions, we merge two sub partitions G
left

and G
right

to form G[h⇤
,idx

⇤] = LCA(G
left

, G
right

), and
G[h⇤

,idx

⇤] has the lowest height h⇤ among all possible merges.
If there is a tie in h⇤, the merge that involves the least number
of records will be executed.

Recall Example 2, Fig. 6 demonstrates how to divide the
social partition dynamically using a hierarchical partition for
the 3D list of the keyword “icde” in Fig. 2. Since we are
still building three partitions within a time slice, r6 � r10
are inserted into the leaves of the partition tree when they
arrive chronologically. When r11 arrives, we first identify that
it should be inserted into G[2,1]. However we can only keep
three partitions, so G[2,0] and G[2,1] are merged to form G[1,0]

shown in Fig. 6 when inserting r11. Note that in a time slice
we only store sub partitions that contain at least one record,
and the tree structure is just a virtual view.

The advantage of our hierarchical partition is that, we have
a fine-grained social partitions which improve the estimation
of the cube’s relevance score. This enables more opportunities
for powerful pruning along the social dimension. At the same
time, we still have c partitions and the resource requirement
does not increase. Again in Fig. 5, the score under each tree
node represents the social distance estimated from u1. The
static partition scheme estimates the distance from u1 to u7

as 0.2 where the hierarchical partition scheme gives 0.5 which
is closer to the true value (0.6).

B. CubeTA on Hierarchical Graph Partition Index

CubeTA has to be extended to incorporate the hierarchical
partition to improve the pruning efficiency. Since the partition
scheme is improved from a single layer to multi layers, we
need to change the method to estimate social distances. In the
pre-processing step, all leaf nodes of partition tree pTree are
computed for distance to each other. When a user u submits
a query, we first identify the leaf node G

u

that this user
matches. Then the distance SD(u,G[h,idx]) from u to any
partitions G[h,idx] is estimated using minSD(u,G[h0

,idx

0]) and
G[h,idx] is an ancestor of G[h0

,idx

0] in pTree. Suppose user u1

submits a query, then the social distances from u1 to other sub
partitions are estimated in Fig. 5. The distances from G

u1 to
all leaf nodes are first retrieved from the pre-computed index
and the value is shown below the nodes. Then distance from
u1 to G[1,0] and G[1,1] are estimated as 0.1 and 0.4 respectively

TABLE II: All parameter settings used in the experiments.
Parameters Pool of Values

Datasets Twitter News
# of users 1M 5M 10M 0.1M 0.5M 1M

max vertex degree 0.7M 0.7M 0.7M 16K 29K 30K
average vertex degree 81.6 82.5 46.1 9.2 6.8 7.0

# of records 10M,15M,20M 0.5M,1M,5M
keyword frequency low,medium,high

degree of query user low,medium,high
top-k 1,5,10,15,. . .,50

dimension (0.1,0.1,0.1)(0.1,0.3,0.5)(0.1,0.5,0.3)(0.3,0.1,0.5)
weight (↵,�, �) (0.3,0.5,0.1)(0.5,0.1,0.3)(0.5,0.3,0.1)

by taking the minimum value of their leaf nodes.
After reordering the social dimension w.r.t. user u1, we

can visualize the 3D list of “icde” as Fig. 7. For each social
partition, the estimated social distances are listed in the cell.
The partitions may vary across different time slice but the
number of partitions remains the same. CubeTA can be applied
directly to the hierarchical index.

We also see the feasibility of the 3D list and CubeTA which
two of them easily incorporate the hierarchical index into
efficient query processing.

VIII. EXPERIMENT RESULTS

We implemented the proposed solution on a CentOS server
(Intel i7-3820 3.6GHz CPU with 60GB RAM) and compared
with the baseline solutions on two large yet representative
real world datasets: Twitter and Memetracker from SNAP3.
The original Twitter dataset contains 17M users, 476M tweets.
Memetracker is an online news dataset which contains 9M me-
dia and 96M records. Twitter encapsulates a large underlying
social graph but short text information (average number of
distinct non-stopped keywords in a tweet is 7); Memetracker
has a smaller social graph but rich in text information (average
number of distinct non-stopped keywords in a news is 30).
The datasets with different features are used to test our
proposed solution. Since both raw social graphs have a lot
of isolated components, we sampled the users that formed a
connected component to demonstrate the effectiveness of our
solution. Accordingly we filtered the documents/tweets based
on the sampled users, resulting in the datasets used in our
experiments. Table II contains all the parameters used in our
experiments, and those highlighted in bold denote the default
settings unless specified otherwise. For scalability tests, we
make three samples of the social graph and three samples of
the text records for each dataset. For query keywords, we ran-
domly sampled keywords with length 1, 2, 3. We are aware of
four factors that may have impact on the overall performance:
keyword frequency, query user, top-k and weights for different
dimensions for the ranking function (Equation 5).

As no existing work supports searching along all three
dimensions, we would like to compare the proposed solution
with several baseline methods to demonstrate the effectiveness.

• Time Pruning (TP): The state of the art on real time
social keyword search [3], [12], [4] sorts the inverted list
by reverse chronological order, in order to return the latest

3http://snap.stanford.edu/
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Fig. 8: Performance for various settings

result. Thereby, we implement a TA approach that can
take advantage of such order to retrieve the top-k results.

• Frequency Pruning (FP): Without considering efficient
updates in the real time social network, traditional ap-
proach for personalized keyword search sorts the inverted
list by keyword frequencies [5], [6]. FP is the implemen-
tation of TA on this type of inverted list.

• 3D Index (3D): It is the complete solution that we
proposed in this paper, i.e. CubeTA (Algorithm 1) with
our optimized distance query computation (Algorithm 3).

All methods consist of two parts of computation for retrieving
the top-k results. We refer the time to evaluate all candidates’
social relevance scores as social and the rest is denoted as text.
Two notions are adopted throughout all figures in this section.
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A. Discussion on Social Partitions

Before presenting the results to compare all the methods,
we investigate the query performance with different social
partitions in the 3D list. Although more social partitions in
the 3D list bring better accuracy in distance estimates, such
improved accuracy has slowed down due to the small world
phenomenon and the high clustering property of the social
network. Moreover, the query processor needs to visit more
cubes due to the additional social partitions. Thus, as shown
in Fig. 9 there is an optimal setup for the number of social
partitions for both datasets. For twitter dataset, the optimal
number of social partitions is 32 while that for news dataset
is 64. Even though twitter dataset has a larger social graph than
news dataset, twitter has a higher average degree resulting in
a higher degree of clustering. This brings more difficulties in
distinguishing the vertices in terms of their social distances.

We also study the impact of hierarchical partition (proposed
in Sec. VII) on query processing. Three factors will impact on
the performance: (1) Number of documents within a time slice,
(2) Height of the partition tree pTree, (3) Number of partitions
to keep in the 3D list. Since the memory is usually constrained
by a maximum limit, we cannot keep too many partitions.
Therefore, we fix the number of partitions as the optimal
setting just mentioned. Fig. 10 shows the performance results
on twitter dataset when we vary the number of documents
within a time slice and also the height of the partition tree.
We find: (1) more fine-grained social partition leads to better
query performance but it will slow down the index update as
allocating records to the 3D list requires tree traversal; (2) an
optimal setup exists for number of documents to be allocated
in a time slice (10000 in this case).

The hierarchical partition achieves better performance than
the static partition, but it will involve many discussions on
parameter settings. Due to the space constraint, the static
partition is used in 3D to compare with the two baselines: TP
and FP. We have seen that the time slice size and the number
of social partitions have corresponding optimal setups and we
will adopt this setting throughout the experiment. Besides, we
use 10 intervals for the text dimension.
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Fig. 11: Effect of distance pruning

B. Efficiency Study

1) Evaluating Our Pruning Techniques: Fig. 11 shows the
experimental results for both datasets with default settings.
In general, 3D outperforms the other by a wide margin. In
addition, prunings based on the time dimension (TP, 3D)
have better performance than the pruning based on the textual
dimension (FP) because searching along the text dimension is
yet another multi-dimensional search for multiple keywords,
and the well-known curse of dimensionality problem reduces
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Fig. 12: Scalability: Effect of increasing social graph size

the pruning effect along the text dimension. In contrast, the
time dimension is just a scalar so it is more efficient to prune.

To see the effect of the distance optimizations proposed:
direct, in-circle and out-of-circle pruning, we apply them to
TP, FP and 3D. We find that, with better distance pruning
methods, the time for distance queries is greatly reduced for all
methods. Moreover, we have confirmed that 3D works better
with the optimized distance query computation and enables
more efficient pruning compared to the other two. When all
methods employ the optimized distance query computation
(equipped with all pruning techniques in Sec. VI), 3D achieves
4x speedups against TP and 8x speedups against FP.

In the rest of this section, we investigate the query process-
ing time (of CubeTA + complete optimized distance compu-
tation) by varying the keywords frequencies, the query user,
the choice of top-k and the dimension weights respectively.

2) Varying Keyword Frequency: Fig. 8a and 8e show the
query processing time over different ranges of keyword fre-
quency. Keywords with high and medium frequencies are the
top 100 and top 1000 popular keywords respectively, whereas
the low frequency keywords are the rest which appear at
least 1000 times. In both datasets, we have the following
observations: (1) Among all approaches, 3D dominates the
rest for all frequency ranges. (2) As query keywords become
more popular (i.e. with higher frequencies), the performance
speedup by 3D against other methods becomes larger. Intu-
itively, there are more candidate documents for more popular
query keywords. 3D effectively trims down candidates and
retrieves the results as early as possible.

3) Varying Query User: We further study the performance
w.r.t. users with degrees from high to low. The high, medium
and low degree users denote the upper, mid and lower third
in the social graph respectively. We randomly sample users
from each category to form queries. The results are reported
in Fig. 8b and 8f. We find: (1) 3D achieves a constant speedup
compared to the rest of the methods regardless of the query
user’s degree. (2) The social relevance computation for TP
and FP takes longer than 3D, even though TP and FP have
the same distance pruning technique as 3D. This is because
3D prunes more aggressively on social dimension using time
and text dimension whereas the other two methods only have
one dimension to prune. As illustrated later in Sec. VIII-C,
such advantage is magnified when the graph goes larger.

4) Varying Top-k: We vary the top-k value from 1 to 50. As
shown in Fig. 8c and 8g, the performance slowly drops with
more required results. Since we are doing high dimensional
search, result candidate scores tend to be close to each other.
Therefore it is more meaningful to identify results quickly
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Fig. 13: Scalability: Effect of increasing text information

for smaller top-k values, which also explains why we set
the default top-k as 5. 3D retrieves the results extremely fast
compared to other methods and scales against even larger top-
k value. For TP, the performance is very poor for news dataset
against larger top-k values as news dataset contains more text
information, so time pruning becomes less effective. Lastly for
FP, it almost exhausts all possible documents in the inverted
lists to get the top-k results which is almost a linear scan.

5) Varying Dimension Weights: Lastly, for each dimension
we consider, i.e. time, social and text, we assign different
weights to them to test the flexibility of our scheme. As shown
in Fig. 8d and 8h, 3D remains superior over the other methods.
Even when the weight of time dimension is small, i.e. 0.1,
3D is still better than TP where both methods use the time
dimension as the primary axis. 3D does not perform well when
the weight of the social dimension is the largest among all
dimension weights because the small world property makes it
hard to differentiate users effectively in term of social distance.

C. Scalability
In order to test the scalability of our proposed solution, we

decide to scale along the social graph size and the number of
user-posted documents respectively.

First, we test the scalability when the social graph grows
while the number of records remains the same. It naturally
follows the empirical scenario that users issue real time queries
for the most recent posts in a very big social network. In
Fig. 12, we find both TP and FP spend much longer time
in the social distance computation. In contrast, 3D limits the
time for distance query to minimal due to the simultaneous 3-
dimension pruning upon the 3D list. Therefore, 3D is capable
of handling increased volume of the social graph. We also
tested what happens if one of the three pruning techniques,
i.e. early-determination, early-pruning and warm-up queue,
is missing. The results are shown in Table III where we
observe that early-determination is the most powerful pruning.
Nevertheless, all prunings must work together to ensure an
efficient distance computation with the increasing graph size.

Second, we test each approach w.r.t. varying number of
records posted while fixing the social graph sizes to the default
values. As we can see from Fig. 13, 3D remains to be the best
against the rest and is able to maintain the performance to near
constant. Therefore, it verifies that our proposed method is also
scalable against high text volume.

D. Handling Fast Update
Lastly we study how our framework deals with fast and

continuously coming new data. The experiment is conducted
in this way: we measure the query time, online index update



TABLE III: Performance for evaluating social
distances with different pruning disabled. The
units are in milliseconds.

Twitter Graph 1M 5M 10M
No Warm-up Queue 266.1 257.4 1987

No Early-Determination 1341 2377 6018
No Early-Pruning 271.9 531.3 2407

all 31.75 124.8 69.34
News Graph 0.1M 0.5M 1M

No Warm-up Queue 2.56 38.3 38.7
No Early-Determination 17.5 67.6 129

No Early-Pruning 1.34 55.9 52.0
all 0.80 11.2 12.8
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rate and index size while new tweets are being ingested
continuously from 10M to 20M tweets, and the results are
presented in Fig. 14, 15, 16 respectively. Result for the news
dataset is similar to Twitter, while not presented due to space
limit. We find: (1) For query time, time based pruning methods
achieve fairly stable performance while text pruning is getting
worse when tweets are being ingested; 3D outperforms TP by
5-7x speedup and 3D is even more stable against index update.
(2) For online index update time, TP is the most efficient
method due to its simple index stricture. Nevertheless, 3D also
demonstrates its fast-update feature as it clearly outperforms
FP and the margin against TP is quite small. (3) For index
size, the space occupied by 3D is close to TP as we stored
the 3D list as time slices of trees (Sec. IV) to avoid empty
cubes. For FP, more space is required as a large tree structure
is used to maintain a sorted list w.r.t keyword frequencies.

In summary, equipped with its fast update and efficient
space management features, 3D has the advantage in handling
real time personalized query against the other methods.

IX. CONCLUSION

In this work, we presented a general framework to support
real time personalized keyword search on social networks
by leveraging the unique characteristics of the SNPs. We
first proposed a general ranking function that consists of
the three most important dimensions (time,social,textual) to
cater to various user preferences. Then, an update-efficient 3D
cube index is designed, upon which we devised an efficient
Threshold Algorithm called CubeTA. We further proposed
several pruning methods in social distance query computation.
Extensive experiments on real world social network data have
verified the efficiency and scalability of our framework. In
future, we would like to study how to design an effective
ranking function to provide high-quality personalized results.
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