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Abstract—Real-time urban traffic speed estimation provides
significant benefits in many real-world applications. However, ex-
isting traffic information acquisition systems only obtain coarse-
grained traffic information on a small number of roads but
cannot acquire fine-grained traffic information on every road.
To address this problem, in this paper we study the traffic speed
estimation problem, which, given a budget K, identifies K roads
(called seeds) where the real traffic speeds on these seeds can
be obtained using crowdsourcing, and infers the speeds of other
roads (called non-seed roads) based on the speeds of these seeds.
This problem includes two sub-problems: (1) Speed Inference
– How to accurately infer the speeds of the non-seed roads;
(2) Seed Selection – How to effectively select high-quality seeds.
It is rather challenging to estimate the traffic speed accurately,
because the traffic changes dynamically and the changes are hard
to be predicted as many possible factors can affect the traffic.
To address these challenges, we propose effective algorithms to
judiciously select high-quality seeds and devise inference models
to infer the speeds of the non-seed roads. On the one hand, we
observe that roads have correlations and correlated roads have
similar traffic trend: the speeds of correlated roads rise or fall
compared with their historical average speed simultaneously. We
utilize this property and propose a two-step model to estimate
the traffic speed. The first step adopts a graphical model to infer
the traffic trend and the second step devises a hierarchical linear
model to estimate the traffic speed based on the traffic trend. On
the other hand, we formulate the seed selection problem, prove
that it is NP-hard, and propose several greedy algorithms with
approximation guarantees. Experimental results on two large real
datasets show that our method outperforms baselines by 2 orders
of magnitude in efficiency and 40% in estimation accuracy.

I. INTRODUCTION
Real-time urban traffic speed estimation plays an important

role in many real-world applications, e.g., navigation sys-
tems and online map services. For example, on-the-fly route
planning with real-time traffic information can guide users
to avoid the traffic jams, which not only shortens the travel
time, but also saves energy and reduces the air pollution.
Existing traffic information acquisition systems rely on the
static traffic sensors (e.g., surveillance cameras and inductive
loops) or vehicle GPS records (e.g., taxi trajectories) to detect
the real-time traffic information [9]. However, the coverage of
existing traffic speed information is not sufficient due to the
expensive maintenance cost of traffic sensors [1]. For example,
there are more than two millions road segments in Beijing
(for simplicity, we use roads to replace road segments), but
there are only 22 thousand traffic sensors in Beijing. Thus the
traditional systems only get coarse-grained traffic information
on a small number of roads (e.g., expressways and main roads).
To increase the coverage of the real-time traffic information, it

calls for an effective method to obtain the fine-grained traffic
information on every road. Such a demanding requirement has
inspired both industry and academic communities to leverage
crowdsourcing to improve traffic management [2], [15], by
collecting traffic information through user-generated GPS data
from crowdsourced drivers. Google Traffic and MIT CarTel1
are real applications that have established the crowdsourcing
approach to benefit our daily life.

In this paper, we study the traffic speed estimation problem,
which, given a budget K, identifies K roads (called seeds)
where we assume that we can obtain the real traffic speeds
on these seeds via crowdsourcing acquisition methods and use
them to infer the speeds of other roads (called non-seed roads).
It further reduces to two sub-problems: (1) Speed Inference –
How to accurately infer the speeds of the non-seed roads based
on the speeds of seeds; (2) Seed Selection – How to select K
high-quality seeds in order to improve the quality of speed
inference. For example, we first select K seeds to collect the
traffic speeds, then we ask the drivers on those seeds to report
their speeds by paying them certain monetary awards.

It is rather challenging to estimate the traffic speeds accu-
rately. First, the traffic changes dynamically and the changes
are hard to be predicted, because many possible factors can
affect the traffic, e.g., incidents, road maintenance and weather.
To infer the speeds of non-seed roads, existing studies [24],
[14] assumed that adjacent roads have similar speeds, and they
utilized the speeds on the adjacent roads to infer the speeds of
the non-seed roads. However, we observe that this assumption
is too strict and usually not applicable to real traffic. For
example, the entrance road to the main road usually has lower
speed than the main road. The road to the downtown usually
has lower speed than the exit road from the downtown. Second,
many factors can influence traffic speeds, and it is hard to
effectively model the real traffic and select high-quality seeds.

To address these challenges, we propose effective algo-
rithms to judiciously select high-quality seeds and devise
inference models to infer the speeds of non-seed roads. In par-
ticular, we make the following contributions. (1) We observe
that roads have correlations and correlated roads usually have
similar traffic trends: the speeds of correlated roads rise or fall
compared with their historical average speed simultaneously.
We utilize this property to propose a traffic trend correlation
model. (2) We propose a two-step model to infer the traffic
speed. In step 1 we adopt a graphical model to infer the traffic
trend of a road v and in step 2 we devise a hierarchical linear
model to estimate the traffic speed of v based on its traffic

1https://en.wikipedia.org/wiki/Cartel



trend. (3) We formulate the seed selection problem, prove
that it is NP-hard, and propose several greedy algorithms with
approximation guarantees. (4) We have conducted experiments
on real datasets and the experimental results show that our
method significantly outperforms state-of-the-art approaches.

The rest of this paper is organized as follows. We formulate
the problem and review related work in Section II. Section III
presents our observation. We propose the speed inference
method in Section IV. Section V discusses the seed selection
strategy. Experimental results are reported in Section VI. We
conclude the paper in Section VII.

II. PRELIMINARY

A. Problem Formulation
Road Network. We model a road network as a graph G =
{V, E}, where V is a set of vertices (e.g., crossroads) and E is
a set of roads. We denote E = {x1, x2, · · · , x|E|}, where |E|
is the number of roads and xi is a specific road.
Traffic Speed. At time t, road xi has a traffic speed vit. We
normalize the speed to a number in [0, 1]2. For simplicity, we
simplify the symbol vit by omitting the superscript i and the
subscript t if there is no ambiguity, i.e., x denotes a specific
road and v is the traffic speed on road x at time t.
Problem Definition. Given a graph G = {V, E}, the traffic
estimation problem selects a K-size subset of roads S ⊂ E .
S is called the seed set and each road in S is called a seed.
The speed of each seed is known and we want to estimate the
speeds of roads in E−S (called non-seed roads). Given a non-
seed road x, suppose its real speed is v and its estimated speed
is v̂. We use the well-known mean absolute percentage error
(MAPE) to evaluate the quality of estimated speeds, which is
defined as below:

MAPE =
1

|E − S|
∑

x∈E−S

|v̂ − v|
v

.

Definition 1: Given a graph G = {V, E}, the traffic speed
estimation problem is to select a K-size subset of roads, S ⊂
E , such that the MAPE for all the rest roads x ∈ E − S (i.e.,∑
x∈E−S

|v̂−v|
v ) can be minimized when S is used to estimate

the speed of x ∈ E − S.

The traffic speed estimation problem includes two sub-
problems. (1) How to effectively estimate the speeds of the
non-seed roads given the speeds of the selected seeds. (2)
How to judiciously select k high-quality seeds. To address
these problems, we first introduce a traffic correlation model in
Section III and then discuss how to address these two problems
in Sections IV and V respectively.

B. Related Work

Traffic Estimation. Existing traffic estimation methods can
be broadly classified into two categories: (1) future traffic
estimation [16], [20], [21], [5], [7], [18], [11], [10], [13], [19];
(2) current traffic estimation [24], [14], [25].

For future traffic estimation, the problem has been widely
studied by transportation field and data mining field. A general
method was based on some time series model, e.g. Bayesian
network models [7], historic average (HA) models [18], the

2We divide the speed by a maximum speed (e.g., 100km/h).

hidden Markov model [20] or the ARMA (Auto-Regressive-
Moving-Average) model [19], [13], which considered both
the temporal information and the road features (e.g., the
road structures and the traffic signals) that affected the traffic
evolvement over time. They focused on predicting short or
long term future traffic and most of them were based on an
assumption that they were clearly aware of the current traffic.
Unfortunately, they had only limited traffic coverage over the
large-scale urban road networks in reality [17], making it non-
trivial to obtain the current traffic for each road.

For current traffic estimation, with limited amount of ob-
served data by using probing data and traffic sensors, existing
methods [24], [25], [23] utilized KNN methods to infer the
speeds of unknown roads simply based on their spatial neigh-
bors with known speeds. In recent studies, Zheng et. al. [24],
[17], [14] modeled the traffic on a road network with a road-
time matrix and proposed a matrix factorization based method
by incorporating other traffic related features which include
the location of roads and the distribution of nearby points of
interest. They assumed that adjacent roads had similar traffic
speeds and collaboratively factorized the road-time matrix (or
the driver-road-time cube), the road-feature matrix and the
time-grid matrix. The traffic speed was estimated by filling
in the missing values in the road-time matrix.

Our work differs from existing works in two aspects,
thereby enabling a more accurate estimation of the traffic
speed: (1) we drop out a common intuition adopted by existing
work, i.e., the correlated roads usually have similar speeds,
which is not statistically significant according to our obser-
vation (see Section III); instead we utilize a more reasonable
observation: the correlated roads usually have similar trends.
(2) We study how to judiciously select seeds to further improve
the accuracy, while none of existing works is aware of it.
Semi-Supervised Learning with Graph Regularization. In-
ferring the values of unknown edges given some known edges
in a graph was related to the semi-supervised learning on
graphs. Graph regularization with laplacian matrix [8], [3] was
the state-of-the-art technique. The general idea was that if two
edges were connected, their estimation would be similar. Based
on this assumption, these methods can be used to estimate
the speeds of unknown roads by exploiting the speeds of
the known neighboring roads. However, as we can see from
Section VI later, the speed correlation is not as useful as our
proposed traffic trend correlation in Section III.

III. TRAFFIC CORRELATIONS

We observe that the traffic speed of a road dynamically
changes around its average speed in the history and the
speeds of adjacent roads (sharing a common vertex) have
high correlations. We use a real taxi dataset of Beijing to
illustrate the historical traffic (see Section VI for details of
the dataset). Figure 1(a) illustrates the traffic speeds of two
randomly selected adjacent roads at 5pm in 25 workdays and
Figure 1(b) shows their speeds in 15 weekends, where the
straight lines are the average speeds of the two roads and the
two curves are the speeds of the two roads on 5pm in every
day. We can see that the speeds of the two roads dynamically
change around their average speeds. Furthermore, if the speed
of a road is larger than the average speed, the speed of its
adjacent road is also larger than the average speed, and vice
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Fig. 1. Traffic Correlations of 2 Adjacent Roads.

versa. Thus the speeds of the two roads are highly correlated
on both workdays and weekends.

We further exploit this observation. Let v̄ denote the aver-
age speed of road x at time t on every workday or weekend,
which can be computed based on the historical data. If two
roads are highly correlated, their speeds should have similar
trends, i.e., rising or falling almost simultaneously compared
with the average speed. Thus, the larger the percentage that
the speeds of xi and xj both rise or fall is, the higher the
correlation between xi and xj is. We then define the correlation
score between roads xi and xj as

COR(xi, xj) =
CNT(vi ≥ v̄i, vj ≥ v̄j) + CNT(vi < v̄i, vj < v̄j)

TOTALCNT
,

(1)
where CNT(vi ≥ v̄i, vj ≥ v̄j) (CNT(vi < v̄i, vj < v̄j))
denotes the number of times that the speeds of xi and xj

both rise (fall). TOTALCNT is the total number of times that
vi and vj are both observed in the historical data. Intuitively,
the closer the roads are, the larger their correlation is.

Next, we quantify the distance between two roads in the
following way: we transform the graph G = {V, E} to a reverse
graph G′ = {V ′, E ′}, where each vertex in V ′ corresponds to
a road in E and there is an edge between two vertexes in V ′, if
their corresponding roads share a common vertex in G. Then
we define the hop (distance) between two roads, which is the
length of the shortest path of their corresponding vertexes in
the reverse graph G′.

Definition 2 (h-hop Neighbor): A road is an h-hop neigh-
bor of x, if its distance to x is exactly h.

Next we use an experiment to show the correlation scores
between roads with different hops. We first randomly select
10, 000 roads and then pick their h-hop neighbors for 1 ≤
h ≤ 6. For each road and its h-hop neighbors, we compute
their correlation scores. Table I(a) shows the distributions of
correlation scores. For example, for 1-hop road pairs, 32.9%
pairs have correlation scores in [0.8, 1.0].

We have the following observations. First, the roads with
small distance have fairly strong correlation. For the roads and
their 1-hop neighbors, the percentage of pairs with correlation
scores larger than 0.7 is 67%; for the roads and their 2-hop
neighbors, the percentage of pairs with correlation scores larger
than 0.7 is 51.7%. Second, the correlation becomes weaker if
their distance is larger, i.e., the smaller the distance between
two roads is, the larger correlation their traffic trend is. For
example, for 2/3-hop neighbors, many pairs have correlation
scores over 0.7, while few pairs for 4/5/6-hop neighbors.

For comparison, we also investigate the distribution of the
relative speed differences between the 10, 000 roads and their
h-hop neighbors (for road x and its neighbor xj , the relative
speed difference is |v

j−v|
v ), as shown in Table I(b). Only 29.5%

(a) Correlation Scores on h-hop Roads.
[0, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 1.0]

1 hop 5.7% 8.6% 18.7% 36.1% 30.9%
2 hop 8.7% 11.6% 28.0% 32.0% 19.7%
3 hop 10.4% 15.5% 31.8% 28.7% 13.6%
4 hop 29.7% 25.2% 20.2% 19.3% 5.6%
5 hop 43.2% 34.1% 17.0% 4.1% 1.6%
6 hop 48.0% 33.5% 14.1% 3.6% 0.8%

(b) Relative Speed Differences on h-hop Roads.
[0, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5,+∞]

1 hop 29.5% 29.4% 15.1% 12.8% 13.2%
2 hop 21.3% 30.5% 18.8% 15.3% 14.1%
3 hop 17.4% 27.1% 20.7% 17.1% 17.7%
4 hop 16.1% 26.5% 23.8% 16.4% 17.2%
5 hop 15.6% 24.7% 24.0% 17.4% 18.3%
6 hop 15.4% 22.8% 24.2% 17.9% 19.7%

TABLE I. TRAFFIC CORRELATIONS

1-hop neighbors have relative difference within 20%, while
about 26% 1-hop neighbors have relative difference over 0.4.
According to the statistics, if we directly use these 1-hop
neighbors to estimate the traffic speed, the estimation differ-
ence can be over 30%. The speed difference also increases
with larger hops. For instance, the percentage within 0.2 for
the 2-hop neighbors decreases to 21.3%.

From the results, we have the following observations. First,
we cannot directly utilize the speeds of the h-hop neighbors
to effectively estimate the traffic speed. Second, close roads
usually have strong traffic correlations. Specifically, the roads
with small distances have fairly large correlation on traffic
trend and the correlation becomes weak if the distance is large.
These observations motivate us to use another option: we first
use the trend of the h-hop neighbors of a road v to infer the
traffic trend of v, based on which, we further estimate the
traffic speed of v. Next we introduce how to infer the traffic
trend and the speed of v based on those correlated neighbors.

IV. TRAFFIC SPEED INFERENCE

In this section, we study how to infer the traffic speeds of
non-seed roads based on the traffic speeds of seeds. Based on
the traffic correlation, we propose a two-step model. The first
step is a traffic trend inference model, which infers the traffic
trend: the speed rises or falls compared with the average speed
(Section IV-A). The second step is a traffic speed learning
model, which learns the speed based on the traffic trend
inference model (Section IV-B).

A. Traffic Trend Inference

We utilize a Markov random field [11] to infer the traffic
trend. For each road x, we construct a probability graphical
model based on the roads that may affect the trend of x.
Each node in the graphical model corresponds to a road and
represents the traffic trend of the road, which is a binary
random variable within domain {+1,−1}, where +1 denotes
that the traffic speed of x has a rising trend at time t and
−1 denotes that the speed of x has a falling trend at time t
compared with the average speed v̄. Formally, we use ∆v to
represent the traffic trend of x, which is defined as

∆v =

{
+1 if v − v̄ > 0

−1 if v − v̄ < 0
(2)

Before we discuss which roads may influence the traffic
trend of x, we first introduce several concepts.



Definition 3 (Correlated Roads): A road is called a corre-
lated road of x, if its correlation score to x is larger than a
threshold τ (e.g., τ = 0.7). We denote the set of correlated
roads of x by C(x).

Definition 4 (Correlated Seeds): A seed is called a corre-
lated seed of x if it is a correlated road of x.

Definition 5 (H-hop Correlated Roads/Seeds): A road
(seed) is called an h-hop correlated road (seed) of x, if it is
not only a correlated road (seed) of x, but an h-hop neighbor
of x. The set of h-hop correlated roads of x is denoted by
Ch(x).

To infer the trend of x based on its observed correlated
seeds, a naive approach is to utilize a voting strategy, i.e.
if most of the seeds in C(x) have rising trend, then ∆v is
estimated as +1 and vice versa. However, this solution is
not very accurate as it does not consider the connections
between roads. Consider x and its 1-hop neighbor xi and 2-hop
neighbor xj expanded from xi. Suppose xj is only connected
to x through xi and both xi and xj are correlated to x, then
using both xi and xj (e.g. counting twice for voting) to infer
x is biased as xj can only affect x through xi and their trend
correlations are redundantly used.

To address this problem, we build a two-layer Markov
network. First, only the 1-hop correlated roads of x can directly
affect the traffic trend of x and they separate x from other
roads. We call such roads as layer-1 impact nodes, denoted
as A1(x). Second, other roads that can indirectly affect the
traffic trend of x must be through the 1-hop correlated roads
of x and are the correlated roads of C1(x), i.e., ∪x′∈C1(x)C(x′).
However, if a road in the set is not a seed, then its traffic trend
is unknown, and using its estimated traffic trend may lead to
inaccurate estimations of the traffic trend of x. Therefore, only
roads in ∪x′∈C1(x)C(x′)∩ S can indirectly influence the trend
of x, namely the layer-2 impact nodes of x, denoted as A2(x).

In our graphical model, A1(x) = C1(x) and A2(x) =
∪x′∈C1(x)C(x′) ∩ S; the roads in A1(x) and A2(x) are used
to infer the traffic trend of x. We will further discuss why we
choose 2-layer model at the end of Section IV-A. Next we
formally introduce how to construct the graphical model.

Definition 6 (Graphical Model for Trend Inference):
For each road x, we construct a two-layer graphical model
U(Un,Ue), where nodes Un include (1) {x}, (2) layer-1
impact nodes A1(x), (3) layer-2 impact nodes A2(x). Each
node represents the trend of its corresponding road; And
edges Ue include (1) edges between x and its layer-1 impact
nodes, i.e., {(x, x1)|x1 ∈ A1(x)}, (2) edges among layer-1
impact nodes, i.e., {(x1, x′1)|x1 ∈ A1(x), x′1 ∈ A1(x), x1
is a correlated road of x′1}, (3) edges between layer-1 and
layer-2 nodes, i.e., {(x1, x2)|x1 ∈ A1(x), x2 ∈ A2(x)}, x2
is a correlated road of x1}.

Figure 2 illustrates an example of the graphical model of
x, where the solid nodes are seeds. For example, suppose x
has three 1-hop correlated roads x1(x1 is also a seed), x2, x3.
x1 has a correlated seed x4 and a correlated road x2. x2 has
two correlated seeds x5 and x6. x3 also has two correlated
seeds x5 and x6.

In our graphical model, if x and a road in layer-2 are
separated by a seed in layer-1, then according to the Local
Markov property of the Markov random field [11], they are

A2(x)A2(x)

A1(x)A1(x)∆v4 +

∆v5 -

∆v6 +

∆v1 -

∆v2 

∆v3 

∆v

Assignment Probability
∆v = +1,∆v2 = +1,∆v3 = +1 0.0421
∆v = +1,∆v2 = +1,∆v3 = −1 0.0105
∆v = +1,∆v2 = −1,∆v3 = +1 0.0421
∆v = +1,∆v2 = −1,∆v3 = −1 0.0105
∆v = −1,∆v2 = +1,∆v3 = +1 0.0105
∆v = −1,∆v2 = +1,∆v3 = −1 0.0421
∆v = −1,∆v2 = −1,∆v3 = +1 0.1684
∆v = −1,∆v2 = −1,∆v3 = −1 0.6737

Fig. 2. Example of Graphical Model.

conditionally independent. For example, ∆v4 and ∆v are
separated by seed ∆v1, thus ∆v and ∆v4 are independent
given ∆v1.

Given a graphical model U of road x, we model the Markov
random field as a product of all edge potentials [11]3 with

P(U) =
1

Z

∏
<xi,xj>∈Ue

ψxi,xj (∆vi,∆vj), (3)

where P(U) is the distribution of an assignment over nodes
in U (in an assignment, each node is assigned with a traffic
trend +1 or -1), Z is the partition function to normalize the
probability of all the assignments, and ψxi,xj (∆vi,∆vj) is the
edge clique potential function between roads xi and xj , which
reflects the relevance of traffic trends ∆vi and ∆vj . We utilize
the correlation score to define the potential function:

ψxi,xj (∆vi,∆vj) =

{
COR(xi, xj) (∆vi = ∆vj)

1− COR(xi, xj) (∆vi 6= ∆vj)
(4)

In the above function, if two nodes have the same traffic
trend, the potential function assigns a high relevance value
based on their correlation score (see Table I); otherwise, the
function assigns a low relevance value.

Next, given the constructed graphical model and the seeds,
we utilize the MAP (Maximum a Posterior [11]) inference
to infer the traffic trend of the non-seed roads. The MAP
inference aims to find an assignment that maximizes the
posterior probability of the traffic trend on non-seed roads
given those on the seeds, as formally defined below.

Definition 7 (Traffic Trend Inference): Given a road x, its
graphical model U , and a seed set S, let Un − S denote the
set of non-seed roads in U and Un ∩ S be the set of seeds

3A Markov random field is usually factorized over its clique potentials.
In our model, a clique potential is considered as the product of all its edge
potentials. Thus, our graphical model is simply expressed as the product of
all edge potentials.



Algorithm 1: TRAFFICTRENDINFERENCE()
Input: x: any non-seed road.

U : the graphical model for road x.
Output: ∆v: the inferred trend of x
pmax = 0;1
∆vmax = −1;2

foreach assigment {∆v, · · · ,∆vi, · · · } of Un − S do3
p = 0;4

foreach < xi, xj >∈ Ue do5

p = p+ log(ψxi,xj (∆vi,∆vj));6

if p > pmax then7
pmax = p;8
∆vmax = ∆v;9

return ∆vmax;10

in U . It aims to find a uniform distribution over all the nodes
by maximizing the probability of the traffic trend of roads in
Un − S , i.e.,

arg max(Un−S)P
(
(Un − S)|(Un ∩ S)

)
. (5)

Since x ∈ Un−S, we can infer ∆v for road x. Specifically,
if there is no seed in the graphical model U , i.e., Un ∩S = ∅,
we cannot estimate the traffic trend of x and thus we simply
return the average speed v̄ as the estimation speed.

Example 1: Consider the Markov random field in Figure 2.
Suppose all the correlation scores in the graph are 0.8. We
want to maximize the probability P(∆v,∆v2,∆v3|∆v1 =
−1,∆v4 = +1,∆v5 = −1,∆v6 = +1). We can get the best
assignment by enumerating ∆v =+1/-1, ∆v2 =+1/-1 and ∆v3

=+1/-1, and the maximum assignment is ∆v = −1,∆v2 = −1
and ∆v3 = −1. Therefore, the trend of v in this example is
inferred as -1 (i.e., a falling trend).

The problem of finding the maximum assignment in a
Markov network is NP-hard [11]. Fortunately, recall Def-
inition 6 that the non-seed roads in our graphical model
are only limited to the 1-hop neighbors of a road, and the
maximum number is usually within 10. As the computational
complexity of the inference model is O(2n), if n ≤ 10, we can
simply enumerate the possible assignments or use the variable
elimination [11], [4] to do inference.

Algorithm 1 presents how to infer the trend of a road
x by enumerating all possible assignments for roads in
U − S(lines 3-9). According to Bayesian equation, maxi-
mizing P

(
(Un − S)|(Un ∩ S)

)
is equivalent to maximizing

P
(
(Un − S), (Un ∩ S)

)
= P(U) in Equation 3. Therefore,

we compute the log likelihood of the function by using the
log-sum form instead of the product of probability to prevent
float underflow (lines 5 and 6). Finally, we return ∆v with the
maximum assignment (line 10).
Discussion on choice of number of layers. We utilize a two-
layer graphical model to identify the correlated roads of x
and use the MAP inference to infer its trend. An alternative
but more complex method is to construct a multiple layer
graph by utilizing k-hop roads as A1(x) = C1(x),A2(x) =
∪x′∈A1(x)C1(x′), · · · Ak(x) = ∪x′∈Ak−1(x)C1(x′), Ak+1(x) =
∪x′∈Ak(x)C(x′). However, it will involve many unobserved
roads and the number of neighbors grows exponentially with
the expansion of hops. Also for a road x, it can only be
assigned to a few seeds (see Section VI). Therefore, this
complex inference model will be ineffective when there are
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Fig. 3. Example of Speed Estimation.

more hidden nodes than observed nodes in the Markov net-
work, especially when the hidden nodes are centered at x.
Moreover, the inference efficiency will be low, as the inference
complexity is O(2n), which is controlled by the number of
hidden nodes. To this end, we only use C1(x) in the model.

B. Traffic Speed Estimation

We discuss how to use the traffic trend ∆v to estimate
the speed v. Let δ = |v− v̄| denote the difference between the
speed v and the historical average speed v̄. We aim to estimate
δ as accurately as possible. Suppose the estimated difference
is δ̂ and we compute the estimated speed v̂ by

v̂ =

{
v̄ + δ̂ (∆v > 0)

v̄ − δ̂ (∆v < 0)
(6)

To estimate δ̂ of a road x, we learn a hierarchical linear
model for δ offline based on the two-layer graphical model and
historical data by considering two cases: ∆v > 0 and ∆v < 0.
As the methodology is the same for the two cases, here we
only discuss the case of ∆v < 0 and similar techniques can
be used for ∆v > 0.

Estimation of δ̂. Note that the speed difference δ actually
depends on the differences of the correlated roads of x: if
the traffic speeds of x’s correlated roads decrease heavily, δi
will be large and vice versa. To capture such dependence,
we estimate δ̂ as a linear integration of the speed difference
of its correlated roads. Given the two-layer graphical model
U(Un,Ue), the correlated roads of x are in A1(x) ⊂ Un.
Therefore, we estimate δ̂ as

δ̂ =
∑

xj∈A1(x)

wj · δ̂j (7)

where xj is a correlated road of x, δ̂j is the speed difference
of xj , wj is the weight of δ̂j (we will introduce how to learn
the weights later) and δ̂ is the linear combination of δ̂j by
considering the respective weights. Note that we use δ̂j rather
than the real difference δj , as δj may not be fully observed.
If xj is a seed, then δj can be observed, otherwise if xj /∈ S,



Algorithm 2: OFFLINEWEIGHTLEARNING

Input: x: a non-seed road;
U : the graphical model for road x;
{δ1, · · · , δN}: the historical data for x;
{δl1, · · · , δlN}: the historical data for xl ∈ Un ∩ S .

Output: wj , wlj : learned weights to optimize J (w)
foreach xj ∈ A1(x) do1

wj = RANDOM(0, 1);2

foreach (xl, xj) ∈ Ue, xl ∈ Un ∩ S , xj ∈ A1(x) do3

wlj = RANDOM(0, 1);4

while TRUE do5
for i = 1 to N do6

δ̂i=SPEEDDIFFERENCEESTIMATION(w, δ
1:|Un∩S|
i );7

δ̂org = 1
N

N∑
i=1

δ̂i;
8

foreach wj do9

Compute ∂J (w)
∂wj by Equations 8, 13;10

wj = wj − α · ∂J (w)
∂wj ;11

foreach wlj do12

Compute ∂J (w)
∂wlj by Equation 8;13

wlj = wlj − α · ∂J (w)
∂wlj ;14

for i = 1 to N do15

δ̂i=SPEEDDIFFERENCEESTIMATION(w, δ
1:|Un∩S|
i );16

δ̂new = 1
N

N∑
i=1

δ̂i;
17

if |δ̂new − δ̂org| < τcon then break;18

Function SPEEDDIFFERENCEESTIMATION(w,δ1:|U
n∩S|)

Input: w: weights including all wj and wlj ;
δ1:|U

n∩S|: observed speed difference for xl ∈ Un ∩ S .
Output: δ̂: estimation of speed difference.
foreach xj ∈ A1(x) do1

if xj ∈ S then δ̂j = δj ;2

else δ̂j =
∑
wlj

wlj · δl;
3

δ̂ =
∑
wj

wj · δ̂j ;
4

return δ̂;5

we should further estimate it as the linear integration of its
correlated roads, which is formally computed as

δ̂j =


δj (xj ∈ S)∑

xl∈Un∩S & <xl,xj>∈Ue

wlj · δl (xj /∈ S) (8)

where xl is a correlated seed of xj and δl is its observed speed
difference, wlj is the weight from xl towards xj . Given the
graphical model of x, we first compute δ̂j with Equation 8,
then estimate δ̂ with Equation 7.

Example 2: Consider the example in Figure 3, to esti-
mate the speed difference for δ, we use three seeds in the
graphical model, i.e. {δ1 = −0.2 (i.e., the speed decrease
by 0.2), δ5 = −0.2, δ6 = 0.1}. Then it computes δ̂2 and
δ̂3 with the weights {w12, w52, w62, w53, w63}. Suppose all
the weights in the example are learned as 0.5, then δ̂2 and

Algorithm 3: ONLINETRAFFICSPEEDESTIMATION

Input: x: a non-seed road.
Output: v̂: traffic speed of x.
U=CONSTRUCTINFERENCEGRAPH(A1(x),A2(x));1
if Un ∩ S = ∅ then return v̂ = v̄;2
∆v=TRAFFICTRENDINFERENCE(U); //Equation 53

δ̂ =SPEEDDIFFERENCEESTIMATION(∆v);4

if ∆v > 0 then return v̂ = v̄ + δ̂;5

else return v̂ = v̄ − δ̂;6

δ̂3 are computed as −0.2×0.5−0.2×0.5+0.1×0.5=−0.15 and
−0.2×0.5 + 0.1×0.5 = −0.05 respectively. Finally, it aggre-
gates δ1, δ̂2, δ̂3 by weights w1, w2, w3 to calculate δ as −0.2.

Speed Learning Model. We learn the weights in the model
based on the regression of the historical data. We denote
the parameters in the model by {wj |xj ∈ A1(x)} and
{wlj |xj ∈ A1(x) ∩ S, xl ∈ Un ∩ S, (xl, xj) ∈ Ue}. To
simplify the description, we omit the domain of parameters
when enumerating them, i.e. computing

∑
wj wj denotes that

we sum up all the wj in its domain set.
Suppose we have N historical data records with falling

trends on road x at time t, denoted by {δ1, δ2, · · · , δN}, where
δi = v̄ − vi. Meanwhile, given the graphical model U of
x, for any observed seed xl ∈ Un ∩ S , we also have N
historical observations {δl1, δl2, · · · , δlN}. We learn wj and wlj
by minimizing the square loss of the historical data, which is

J (w) =
1

2N

N∑
i=1

(δ̂i − δi)2 +
λ

2
(
∑
wj

(wj)2 +
∑
wlj

(wlj)2), (9)

where w represents all the parameters of wj and wlj . (δ̂i −
δi)

2 is the square loss between δi and its estimation δ̂i.∑
wj (wj)2 +

∑
wlj (wlj)2 is the regularization item for wj

and wlj to prevent overfitting and λ is the parameter to
tune its importance. To optimize J (w), we use the classic
back propagation algorithm [4] (which is widely used to train
neural-networks) to learn wj and wlj . It iteratively updates δ̂i,
δ̂ji , wj and wlj based on equation 7, 8 and the derivation of
J (w) on wj and wlj , which are computed by

wj = wj − α · ∂J (w)

∂wj

wlj = wlj − α · ∂J (w)

∂wlj

(10)

where α is the learning rate for update (usually set by a very
small value, e.g., 0.05). The derivations for wi and wlj can be
computed separately. For a single record δi, we have

1

2

∂(δ̂i − δi)2
∂wj

= (δ̂i − δi) ·
∂δ̂i
∂wj

= (δ̂i − δi) ·
∂
∑
wk

wk δ̂ki

∂wj

= (δ̂i − δi) · δ̂ji

(11)

1

2

∂(δ̂i − δi)2
∂wlj

= (δ̂i − δi) ·
∂δ̂j
∂wlj

= (δ̂i − δi) ·
∂
∑
wk

wk δ̂ki

∂wlj

= (δ̂i − δi) · wj ·
∂
∑
xkj

wkjδki

∂wlj

= (δ̂i − δi) · wj · δli.

(12)



∂J (w)
∂wj and ∂J (w)

∂wlj are computed by

∂J (w)

∂wj
=

1

N

N∑
i=1

((δ̂i − δi)) · δ̂ji + λwj

∂J (w)

∂wlj
=

1

N

N∑
i=1

(δ̂i − δi) · wj · δli + λwlj

(13)

Algorithm 2 presents the training part of our speed esti-
mation model. Given a road x, its graphical model U and the
respective historical data, it first initializes all wj and wlj with
random weights (lines 1-3), and then iteratively updates δ̂i, wj
and wlj until convergence (lines 5-18). In each iteration, it first
computes the original δ̂i (lines 6 to 8) with the current weights
using function SPEEDDIFFERENCEESTIMATION, which esti-
mates δ̂ based on wj , wlj and the observed speed differences
of the seeds. Then it updates wj and wlj respectively (lines 9-
14). Next it computes a new δ̂i with the updated weights
(lines 15-17) and checks whether it is converged (line 18).

Lastly, we propose our online traffic speed estimation in
Algorithm 3. For each non-seed node x, we first construct
the graphical model (line 1). If Un ∩ S = ∅, there is no
seed in the graphical model and we simply estimate v̂ by
its average speed v̄ (line 2); otherwise, we infer the trend
∆v using Equation 5 (line 3) and estimate the speed distance
δ̂ using function SPEEDDIFFERENCEESTIMATIONEQUATION
based on Equations 7 and 8 (line 4). Finally we estimate the
speed v̂ based on v̄ and δ̂ with Equation 6 (lines 5-6).

V. SEEDS SELECTION

In this section, we study how to judiciously select high-
quality seeds. There are two desired features in seed selection:
(1) Large Coverage; and (2) High Support. On the one hand,
for each seed, the larger the number of its correlated roads is,
the larger the number of roads that can be inferred by the seed
is (called coverage of this seed). Thus we want to select the
seeds with large overall coverage. On the other hand, for each
non-seed road, the larger the number of its correlated seeds
is, the larger the number of seeds that can be used to infer its
speed is (called support of this road). Thus we want to select
the seeds that can provide high support for each non-seed road.

However, there is a budget constraint that we can only se-
lect K seeds. This constraint makes the two factors contradict
to each other. A large coverage will lead to a small support of
some roads (because it selects the seeds that are correlated to
as many roads as possible, and thus each road will have a small
number of correlated seeds). On the contrary, high supports of
some roads will result in a small coverage (because the selected
seeds are only correlated to a small number of roads, while the
rest have no correlated seeds). Threreby it calls for an effective
selection method that makes a good balance between coverage
and support. Next we will formally define these two factors
and propose several selection strategies.

Recall the graphical model in Section IV-A, given a road x,
we infer its trend ∆v based on A1(x) = C1(x) and A2(x) =
∪x′∈C1(x)C(x′)∩S. Thus roads in C1(x)

⋃∪x′∈C1(x)C(x′) can
be used to infer x. We then define the inference set and the
support set of x that can be used to infer the speed of x.

Definition 8 (Inference Set): The inference set of road x is

I(x) = C1(x)
⋃
∪x′∈C1(x)C(x′). (14)

Definition 9 (Support Set): The support set of a road x is
I(x) ∩ S. The support of x is the size of its support set, i.e.,
SUP(x) = |I(x) ∩ S|.

Definition 10 (Coverage Set): The coverage set of a road
x is the set of roads that have x in their inference sets, i.e.,
I−1(x) = {xi|x ∈ I(xi)}. The coverage set of the seed set S
is the set of roads that can be inferred from x ∈ S, i.e.,

I−1(S) =
⋃
x∈S
I−1(x). (15)

The coverage of S is the size of its coverage set, i.e.,
COV(S) = |I−1(S)|.

Obviously, the larger the support SUP(x) is, the more the
seeds that can be used to infer the speed of x are; the larger
COV(S) is, the more the roads that can be inferred from S
are. Our goal is to maximize both SUP(x) and COV(S).

First, we consider the problem of optimizing the over-
all support

∑
x SUP(x) for all roads, and propose the

SUPGREEDY algorithm to maximize SUP(x).

SUPGREEDY. It is a greedy algorithm which iteratively selects
K roads into S. In each iteration, it selects the road with
the largest inference set in E − S, i.e. xi which maximizes
|{x|xi ∈ I(x) & x ∈ E −S}|. The algorithm can optimize the
overall support since it maximizes the increase of

∑
x SUP(x)

for each iteration and
∑
x SUP(x) will reduce if we replace

the selected seeds with any other roads.

Next, we consider the problem of maximizing the coverage
COV(S). We find that the problem of maximizing COV(S) is
NP-hard as proved in Theorem 1.

Theorem 1: Given a budget K, the problem of selecting a
K-size seed set S to maximize COV(S) is NP-hard.

Proof: We first prove that the decision problem is NP-
complete: given a budget K and an integer m, whether there
exists a seed set S with |S| = K and |⋃x∈S I−1(x)| ≥
m. Next we prove this decision problem by a reduction
from an existing set-cover problem [6]. For an arbitrary set-
cover instance with elements {x1, x2, · · · , xm} and n sets
{S1, S2, · · · , Sn}, which asks whether there exist K subsets
that contain all the m elements, we can construct a road
network with |E| = m roads. If n = m, we set I−1(xi) = Si
(1 ≤ i ≤ m); If n < m, we set I−1(xi) = Si (1 ≤ i ≤ n),
I−1(xi) = ∅ (n+1 ≤ i ≤ m); if n > m, we set I−1(xi) = Si
(1 ≤ i ≤ m− 1) and I−1(xm) = ∪ni=mSi. Therefore, we can
transform an arbitrary set-cover instance into an instance of
our problem. Thus the decision problem is NP-complete. As
this is an optimization problem, it is NP-hard.

With a linear combination of SUP(x) and COV(x), we
formally define the seed selection problem as below.

Definition 11 (Seed Selection Problem): The seed selec-
tion problem is to maximize

COV(S) + α
∑

x∈I−1(S)

SUP(x). (16)



where α is a tuning parameter to balance the coverage and
support. The large α is, the more important the support is.

We can prove that the seed selection problem is also NP-
hard as formalized in Theorem 2.

Theorem 2: The seed selection problem is NP-hard.
Proof: Based on Theorem 1, we consider the special

instance of the problem where α = 0, which becomes the
problem of maximizing COV(S). Thus we can reduce the
problem of maximizing COV(S) to this problem.

Since the seed selection problem is NP-hard, we next
discuss four approximation algorithms.
RANDOM. It randomly selects a set S ⊂ E with |S| = K,
which neither maximizes SUP(x) nor maximizes COV(S).
MAXCOV. It is a greedy algorithm to maximize COV(S) =
|I−1(S)|, by selecting top-K roads with the largest |I−1(x)|.
But it neglects that the coverage between different roads have
overlaps and thus cannot achieve high overall coverage.
COVGREEDY. It is also a greedy algorithm to maximize
COV(S). It iteratively selects K roads into S, and in each
iteration, it selects the road to maximize the increase of the
coverage compared with the previous iteration. For example,
in the i-th iteration, it selects xi that maximizes

|
⋃

x∈(S∪xi)

I−1(x)| − |
⋃
x∈S
I−1(x)|. (17)

HYBRIDGREEDY. This is a greedy algorithm to maximize
COV(S)+α

∑
x∈I−1(S) SUP(x). It iteratively selects K roads

into S, and in the i-th iteration, it selects xi that maximizes(
|I−1(S ∪ xi)|+ α

∑
x∈I−1(S∪xi)

|I(x) ∩ (S ∪ xi)|
)
−(

|I−1(S)|+ α
∑

x∈I−1(S)

|I(x) ∩ S|
)
.

(18)

Theoretical Analyses on Greedy Algorithms. We can prove
that the coverage and support functions satisfy the submod-
ularity [22]: for any two seed sets S1 ⊂ S2, if we add an
arbitrary seed xi into S1 and S2, the increase of coverage and
support on S1 must be larger than those on S2, i.e.,

COV(S1 ∪ xi)− COV(S1) ≥ COV(S2 ∪ xi)− COV(S2),
SUP(S1 ∪ xi)− SUP(S1) ≥ SUP(S2 ∪ xi)− SUP(S2).

where SUP(S1 ∪ xi) =
∑
x∈I−1(S1∪xi) SUP(x).

Since the hybrid function (Equation 16) is a linear com-
bination of the coverage and support, it is also submod-
ular. Furthermore, the three functions are monotone. Thus,
COVGREEDY (SUPGREEDY) has an approximation ratio of
1−1/e to maximize COV (SUP), and HYBRIDGREEDY has an
approximation ratio 1−1/e to the seed selection problem [22].

The time complexity of the greedy algorithm is O(K∗|E|∗
|I−1(x)|), where |I−1(x)| is the average size of the coverage
set of x. The algorithm iteratively selects K seeds, and in each
selection it takes |E|∗|I−1(x)| times in selecting the best seeds
to maximize the greedy functions.

VI. EXPERIMENTS

We evaluated our proposed techniques. Our experimental
goal was to evaluate the effectiveness and efficiency of traffic
trend estimation model and traffic speed estimation model.

A. Experimental Setup

1) Dataset and Evaluation Metrics: We used real datasets
to evaluate our techniques.
Road Networks. We used two real road network datasets: (1)
The road network of Beijing, which had 2, 690, 296 roads and
1, 282, 156 vertices. (2) The road network of Nanjing, which
had 1, 425, 048 roads and 631, 200 vertices.
Historical GPS Records. We used two real taxi datasets of
Beijing and Nanjing4. The first contained 3.05 billions GPS
records of taxi trajectories from Oct. 1, 2012 to Dec. 31, 2012
with 12, 745 taxies in Beijing and the other had 0.65 billions
GPS records from Jan. 1, 2011 to Jan. 31, 2011 with 8, 257
taxies in Nanjing. Each GPS record included the taxi ID, the
taxi location (i.e., longitude and latitude) and the taxi speed.
Each taxi reported a record every two seconds. We projected
the GPS records onto the road network using map-matching
algorithms [12]. To measure the traffic in different time, we
partitioned each day into T = 288 time intervals, i.e., taking
every 5 minutes as a time interval t. Thus each GPS record
belonged to a specific time interval. The traffic speed of a road
was computed as the average speed of historical GPS records
on the road at time t.
Test Data. To evaluate our method, we randomly selected
520K (170K) speeds on non-seed roads in workdays and
230K (170K) speeds in weekends as the test data for Beijing
(Nanjing) dataset, and used the rest as training data.
Evaluation Metrics. We used MAPE in problem definition to
evaluate the speed estimation accuracy.

2) Baselines: We compared four baseline approaches.
(1) Linear Regression (LR). It utilized the traffic speeds of the
seeds as the training data to learn a linear model, considering
two types of features: (i) roads, including the length, location,
number of nearby points of interest; and (ii) the historical
data of the corresponding workday/weekend. LR minimized
the error between the estimation speed and the real speed:

1

|S|

|S|∑
i=1

(vi − θTxi)2 +
λ1
2
||θ||2,

where xi denoted the feature set of a seed, θ denoted the pa-
rameters for features, and λ1

2 ||θ||2 was the norm regularization
for parameters to avoid overfitting. We tuned λ1 and selected
the best value λ1 = 0.02.
(2) Linear Regression with Graph Regularization (LR+GR).
It modeled the speed estimation problem as a semi-supervised
leaning problem on graphs [3]. By assuming that adjacent
roads have similar speeds, it learned the following model:

1

|S|

|S|∑
i=1

(vi−θTxi)2+
λ0
2

1

|E|

|E|∑
i=1

|E|∑
j=1

(θTxi−θTxj)2+
λ1
2
||θ||2,

where xi and xj denoted the feature sets of two seeds and
θ denoted the parameter for features. The equation included
three parts. The first part was a linear regression function, the
second part was the graph regularization function which tried
to estimate the speeds of xi and xj as close as possible if they
were adjacent, and the third part was the norm regularization
for parameters to avoid overfitting. λ0 and λ1 were two

4http://www.datatang.com/data/45888



TABLE II. EVALUATION ON SEED SELECTION STRATEGIES.
(a) Coverage (%)

Seed Ratio 3% 6% 9% 12% 15%
RANDOM 10.2 20.1 28.3 35.6 39.5
MAXCOV 19.7 30.5 39.6 47.2 53.2

COVGREEDY 63.1 76.3 85.9 91.4 95.7
SUPGREEDY 31.1 41.5 48.5 54.9 60.8

HYBRIDGREEDY 55.1 68.6 79.9 89.7 92.6

(b) Average Support (
∑

x SUP(x)

COV(S)
)

Seed Ratio 3% 6% 9% 12% 15%
RANDOM 1.76 1.82 1.84 1.87 1.92
MAXCOV 2.40 2.41 2.24 2.08 2.03

COVGREEDY 1.84 2.22 2.36 2.51 2.63
SUPGREEDY 2.48 3.01 3.38 3.56 3.66

HYBRIDGREEDY 2.23 2.74 2.98 3.07 3.16

(c) Coverage and Support (COV(S) +
∑

x SUP(x))
Seed Ratio 3% 6% 9% 12% 15%
RANDOM 0.07 0.14 0.20 0.26 0.29
MAXCOV 0.17 0.26 0.32 0.37 0.41

COVGREEDY 0.45 0.62 0.73 0.81 0.88
SUPGREEDY 0.28 0.42 0.54 0.64 0.72

HYBRIDGREEDY 0.45 0.65 0.81 0.93 1

parameters to balance the three parts. We tuned the parameters
and set the best values as λ0 = 1, λ1 = 0.02.
(3) Collaborative Matrix Factorization Based Method [14]
(TSE). TSE assumed that close roads had similar traffic speeds
and utilized a matrix factorization based method.
(4) Average Speed in The History (AVG). This method directly
utilized the historical average traffic speed to estimate the
speed, i.e., v̂ was estimated as v̄.
B. Evaluation of Our Methods

We first evaluated our seed selection strategies, then tested
our traffic trend inference method, and lastly evaluated our
speed learning model. Here we only showed the results on
Beijing dataset due to space limitation.

We needed to select an appropriate threshold τ for the
correlation. If τ was small (e.g., less than 0.6), we got many
loosely correlated roads to infer the speed; if τ was large (e.g.,
0.8), we would get few highly correlated roads. We tuned the
threshold and used the best value τ = 0.7 after varying τ .

1) Evaluation of Seed Selection Strategies: We evaluated
our seed selection strategies and compared the five algorithms
proposed in Section V: RANDOM, MAXCOV, COVGREEDY,
SUPGREEDY, HYBRIDGREEDY. We compared their coverage,
support, and combined coverage and support, where coverage
is the percentage of the number of covered roads and seeds
(|COV(S)∪S|) over the total number of roads which have co-
occurrences with other roads in the historical data. Table II(a)
showed the percent of the coverage of selected seeds to the
total number of roads, i.e., COV(S)

|V| , Table II(b) showed the
average support for each road that had at least one correlated
seed, i.e,

∑
x SUP(x)

COV(S) , and Table II(c) showed the combination
of coverage and support, i.e., COV(S) +α

∑
x SUP(x), where

the values were normalized by dividing the maximum value
(the value in the bottom right cell). Here, α was set to 1
and we evaluated how α affected the estimation quality in
Section VI-B3.

We had the following observations. (1) HYBRIDGREEDY
achieved high performance on both coverage and support, and
had the largest combination score of coverage and support,
because its objective was to combine the two factors. In
contrast, RANDOM had the lowest coverage and support as

it randomly selected the seeds and did not optimize them
at all. (2) COVGREEDY had the largest coverage among the
five strategies as it was designed to maximize the number of
correlated roads. For example, with 9% seeds, COVGREEDY
can cover 85.9% roads. However, COVGREEDY had smaller
support than SUPGREEDY as it focused on maximizing the
coverage and did not consider the support. (3) SUPGREEDY
achieved the largest support as it iteratively selected the
seeds with the largest correlation for inference. (4) Both
SUPGREEDY and MAXCOV had limited coverage, as they did
not consider the overlap issue among the correlated roads of
their selected seeds. (5) With more seeds selected, all methods
achieved higher coverage and support except for the support of
MAXCOV, probably because many roads with small supports
are included when more seeds are selected.

2) Evaluation of Traffic Trend Inference Methods: We
evaluated the accuracy of our traffic trend inference method
(proposed in Section IV-A), equipped with each of the above
five seed selection strategies. The accuracy was the ratio of
correctly estimated trends to the total number of trends tested.

We first varied the seeds ratio from 3% to 15%, and
the inference accuracy for workdays and weekends are
shown in Figure 4(a) and 4(b). By linking them to Ta-
ble II(b), we find: (1) The support was an important fac-
tor to achieve high trend inference accuracies. Specifically,
SUPGREEDY and HYBRIDGREEDY outperformed other meth-
ods as they considered the support in the optimization func-
tion; SUPGREEDY was slightly better than HYBRIDGREEDY
because HYBRIDGREEDY also considered the coverage which
might decrease the accuracy (as some roads had small numbers
of correlated seeds). (2) With the increase of seeds ratio, only
the accuracy of MAXCOV did not increase as its support
decreased slightly.

We further studied the inference accuracy by varying the
time in a day from 9am to 9pm, as shown in Figures 4(c)
and 4(d) (the default seeds ratio was 15%). We find: (1)
Our inference method achieved high accuracy (70% − 85%).
(2) High support of roads derived more correlated seeds,
which in turn led to a high inference accuracy. Specifically,
SUPGREEDY and HYBRIDGREEDY had higher accuracy than
the rest as their support was larger. E.g., at 11am on workdays,
HYBRIDGREEDY had an accuracy of 83% while the accuracy
of RANDOM was 76%, because the roads of HYBRIDGREEDY
had about 3.16 correlated seeds in average while RANDOM
had only 1.92 correlated seeds (see Table II(b)). (3) At rush
hours (9am, 5pm, 7pm), the accuracy was low as the traffic
changed more dynamically then.

3) Evaluation of Traffic Speed Estimation Models: First,
we compared the quality of the speed estimation models
equipped with each of the five seed selection strategies in term
of MAPE. Figure 5(a) and Figure 5(b) showed the results by
varying the seeds ratio, where α = 1 for HYBRIDGREEDY.
We had three observations. (1) Recall Table II(b), a larger
coverage led to a smaller MAPE and thus a better estima-
tion. Thus COVGREEDY and HYBRIDGREEDY outperformed
RANDOM, MAXCOV and SUPGREEDY. For example, with
15% seeds, HYBRIDGREEDY had a MAPE of 14.1% on work-
days while the MAPE of RANDOM, MAXCOV SUPGREEDY,
COVGREEDY were 18.3%, 17.4%, 16.6% and 14.9% respec-
tively. Because COVGREEDY and HYBRIDGREEDY had larger
coverage than other strategies, which can cover more roads
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Fig. 4. Evaluating Traffic Trend Inference on Beijing (Default Seed Ratio = 15%).
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Fig. 5. Evaluating Traffic Speed Estimation on Beijing (Seed Selection Strategies, Default Ratio = 15%).
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Fig. 6. Evaluating Traffic Speed Estimation on Beijing (Inference vs Estimation, Default Ratio = 15%).

so as to improve the inference quality. (2) The quality of
COVGREEDY and HYBRIDGREEDY was determined by the
seeds ratio. If the seeds ratio was small, e.g. 3% or 6%,
coverage was more important and COVGREEDY performed
better than HYBRIDGREEDY, because (i) COVGREEDY cov-
ered more roads as it maximized the coverage of correlated
roads; (ii) although HYBRIDGREEDY had better accuracy for
traffic inference, it might lose the coverage and thus led to a
larger MAPE. However, when we selected more seeds, e.g.,
12% or 15%, HYBRIDGREEDY outperformed COVGREEDY
because they already covered many roads, and the support
became important and HYBRIDGREEDY had higher support
than COVGREEDY. (3) MAPE became smaller when the
seeds ratio increases, because more seeds were selected to do
inference and improved the coverage.

Figure 5(c) and Figure 5(d) showed the results by the
varying time at a day. By linking the MAPE to the accuracy
in Figure 4, we find: (1) The larger the accuracy was, the
smaller the MAPE was; because a larger accuracy can improve
the quality to estimate the speed (i.e., smaller MAPE). For
example, in Figure 5(c) and 5(d), when we varied the time of a
day from 9am to 9pm, MAPE and the accuracy (in Figure 4(c)
& 4(d)) had the opposite trend. Second, the coverage was
more important than the support for MAPE, that explains why
COVGREEDY and HYBRIDGREEDY still outperformed other
methods as they had a larger coverage.

Second, we evaluated the impact of the choice of α on
the coverage, traffic trend estimation accuracy and the MAPE
of speed estimation respectively. Since HYBRIDGREEDY had
the best MAPE, we chose it as the default seed selection
strategy, and Table III showed its MAPE w.r.t. a varying α.
In the combined function (Equation 16), the larger α was, the
more important the support was; the smaller α was, the more
important the coverage was. Thus for a small seeds ratio, the

TABLE III. VARYING α FOR HYBRIDGREEDY (MAPE).

Seed Ratio/α 0.01 0.1 1 10
3% 16.8% 16.9% 18.5% 18.9%
6% 15.8% 16.0% 16.3% 18.2%
9% 15.3% 15.2% 15.1% 17.6%
12% 15.1% 15.0% 14.4% 17.1%
15% 15.1% 14.9% 14.1% 16.4%

smaller α, the better, because the coverage played a significant
role; for a large seeds ratio, we needed to increase α to balance
the support and coverage. Our method achieved the best overall
performance at α = 1. Thus we set it as the default value.

Last, we evaluated our estimation methods. In particular,
we compared three methods: (1) our traffic speed estima-
tion method based on trend inference (Inf-Est), (2) a non-
estimation method (Non-Est), which utilized the average
speed to estimate the real speed (i.e., v̂ = v̄); (3) an estimation
method that only used our hierarchical linear model to learn
weights of δ = v − v̄ and estimated v̂ = v̄ + δ̂ (proposed in
Section IV-B), without using the traffic trend inference model,
denoted by Est. We used HYBRIDGREEDY to select seeds and
evaluated the performance of the three methods. As shown
in Figure 6, we find: (1) both Inf-Est and Est outperformed
Non-Est as they utilized the correlated roads to improve the
estimation quality. (2) Inf-Est was better than Est, as the
correlated roads only had similar traffic trends but had no sim-
ilar speeds. This also confirmed that our two-step framework
worked well for the speed estimation problem. Furthermore,
accurate trend inference can improve the MAPE, because it
helped find a correct direction to reduce the estimation error.
(3) With an increased seeds ratio, MAPE decreased as we
can utilize more seeds to achieve a more accurate inference.
(4) In term of the overall MAPE, Inf-Est achieved the best
performance, because it utilized both the trend inference model
and the speed estimation model to estimate the speed.
Summary. For traffic speed inference, both the traffic trend
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Fig. 7. Comparison with Baselines on Beijing (Default Seed Ratio = 15%).
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Fig. 8. Comparison with Baselines on Nanjing (Default Seed Ratio = 15%).

estimation model and the speed learning model were important
to estimate the speed, and our two-step model was very
effective. For seed selection, the support can improve the traffic
trend estimation accuracy while the coverage can improve the
speed estimation quality (MAPE). For a small seeds ratio,
COVGREEDY and HYBRIDGREEDY outperformed the other
methods; for a large seeds ratio, HYBRIDGREEDY achieved the
best performance. Thus, we recommended HYBRIDGREEDY
for seed selection by using an appropriate parameter α: for a
small seeds ratio, we set a small α, e.g., 0.01; for a large seeds
ratio, we set a large α, e.g., 1.

C. Comparison with Baselines
We compared our method (RUSH: Realtime Urban Traffic

Speed Estimation with Historical Data) with the four baselines.
We adopted HYBRIDGREEDY for seed selection. All the
methods used the same seeds and historical data.

1) Comparison on Quality – MAPE: Figure 7(a) and 7(b)
showed the results on Beijing Data by varying the seeds ratio.
We had two observations. (1) RUSH achieved the best perfor-
mance for any seeds ratio and outperformed baselines by 8%-
10%, because RUSH used the observation that correlated roads
had similar traffic trends but others assumed that correlated
roads had similar speeds which was not true in real traffic. (2)
With an increased seeds ratio, RUSH kept reducing the MAPE
while the the MAPE of the rest almost remained unchanged.
This was because AVG did not use the seeds; LR, LR+GR and
TSE utilized a strict assumption that the correlated roads had
similar speeds and their estimated speeds were rather similar
to the average speed.

Figure 7(c) and 7(d) showed the results by varying the
time at a day with a seeds ratio of 15%. As we can see,
RUSH outperformed the baselines at any time. The MAPE of
RUSH was about 10%-15% while those of the baselines were
20%-25%. For example, RUSH had average MAPE of 14.1%,
while the MAPE of AVG, LR, LR+GR and TSE were 22.7%,
21.9%, 21.1% and 20.2% resp. This was because our two-step
model can better model the real traffic and utilized the traffic
trend to improve the speed estimation quality. In contrast,
existing methods did not utilize the traffic trend. In particular,
AVG utilized the average speed and cannot utilize the seed
information; for LR and LR+GR, the historical information
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Fig. 9. Elapsed Time of Seed Selections.
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Fig. 11. Scalability on Beijing

was used as a main feature to learn the traffic speed but they
cannot capture the realtime traffic from the seeds; for TSE,
it learned the matrix based on the historical information to
infer the current traffic speeds of unknown roads but cannot
utilize the traffic trend. The performance of all five methods
were related to the average speed, e.g., when AVG reached the
largest MAPE at rush hour 7pm, LR, LR+GR and TSE reach
their largest MAPE as well. We had similar findings on the
Nanjing data, as shown in Figure 8.

2) Comparision on Efficiency & Scalability: First, we
tested the elapsed time of seed selection by varying the seeds



ratio. The results were shown in Figure 9. We find: (1)
COVGREEDY, SUPGREEDY and HYBRIDGREEDY cost more
time than RANDOM and MAXCOV, because they greedily
picked seeds to optimize coverage and support. (2) The elapsed
time increased linearly w.r.t. the seeds ratio as we needed to
pick more roads into the seed set. (3) The time costs of seed
selection on Beijing data was larger than Nanjing data, because
Beijing had a larger-scale road network and it took more time
for each greedy selection.

Next, we reported the average traffic estimation time (in-
cluding both trend inference and speed estimation for RUSH)
on the test data by varying the seeds ratio in Figure 10.
We observed that RUSH and AVG were rather efficient, e.g.,
within 1 second, so our method RUSH can meet the real-
time requirement for online traffic speed estimation. However
LR, LR+GR, and TSE took rather long time. For example
on Beijing data, LR took nearly 25 seconds, while LR+GR
and TSE took more than 300 seconds. This was because they
were online learning algorithms which utilized the observed
data as training data. AVG was efficient as it simply retrieved
the historical data. With an increased seeds ratio, LR needed
more time spent on training the model; in contrast, LR+GR
and TSE were modeled based on the road network and the
number of seeds had weak influence on the training time.

Lastly, we evaluated the scalability of our method. We
set the seeds ratio as 15% and varied the number of roads
from 20% to 100% by expanding the area of Beijing. In
Figure 11(a), we can see that the elapsed time of seed selection
increased w.r.t. the number of roads, as it took more time for
each greedy selection on larger road networks. In Figure 11(b),
the estimation time also increased with the expanding of road
networks, because for LR, LR+GR and TSE more training
data were involved to learn the model, and for RUSH it needed
to estimate more roads.

VII. CONCLUSION
In this paper, we studied the crowdsourcing-based urban

traffic speed estimation problem. Inspired by an observation
on real traffic data that, correlated roads usually had similar
traffic trends, we proposed a two-step model to estimate the
traffic speed: (1) we first utilized a graphical model to infer
the traffic trend and then (2) adopted a probabilistic model
to learn the traffic speed based on the traffic trend. We
formulated the seed selection problem, proved its NP-hardness
and proposed several greedy algorithms with approximation
guarantees. Experiment results showed that our method signif-
icantly outperformed baselines in both accuracy and efficiency.
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