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Abstract—Crowdsourced entity collection leverages human’s
ability to collect entities that are missing in a database, which
has many real-world applications, such as knowledge base
enrichment and enterprise data collection. There are several
challenges. First, it is hard to evaluate the workers’ quality
because a worker’s quality depends on not only the correctness
of her provided entities but also the distinctness of these entities
compared with the collected ones by other workers. Second,
crowd workers are likely to provide popular entities and different
workers will provide many duplicated entities, leading to a waste
of money and low coverage.

To address these challenges, we propose an incentive-based
crowdsourced entity collection framework CrowdEC that encour-
ages workers to provide more distinct items using an incentive
strategy. CrowdEC has fundamental differences from existing
crowdsourcing collection methods. One the one hand, CrowdEC
proposes a worker model and evaluates a worker’s quality
based on cross validation and entity checking. CrowdEC devises
a worker utility model that considers both worker’s quality and
entities’ distinctness provided by workers. CrowdEC proposes a
worker elimination method to block workers with a low utility,
which solves the first challenge. On the other hand, CrowdEC
proposes an incentive pricing technique that encourages each
qualified (i.e., non-eliminated) worker to provide distinct entities
rather than duplicates. CrowdEC provides two types of tasks and
judiciously assigns workers with appropriate tasks to address the
second challenge. We have conducted both real and simulated
experiments, and the results show that CrowdEC outperforms
existing state-of-the-art works on both cost and quality.

I. INTRODUCTION

Entity collection is an important operation in many appli-
cations, such as knowledge base enrichment and enterprise
data collection. For example, a knowledge base aims to collect
all the entities in a category, e.g., collecting all active NBA
players. Google map wants to collect all points of interest.
It is easy to get the popular entities, e.g., Lebron James, but
it is rather hard to get the unpopular entities which do not
frequently appeared due to the long tail phenomenon. Thus
crowdsourced entity collection [25] is proposed that harnesses
the crowd (aka workers) to collect entities. For example, we
can ask crowd workers to answer a question like “Please give
us an active NBA player”. There are several major challenges
in crowdsourced entity collection.
(1) Quality control for crowdsourced entity collection.
It is important to select high-quality workers, however it is
hard to evaluate the workers’ quality on crowdsourced entity
collection. The reasons are two-fold. First, it is hard to detect
whether an entity provided by a worker is correct, leading to
low quality. Traditional methods use golden test (e.g., tasks
with ground truth) to evaluate a worker’s quality. However,
entity collection is an open-world task and we cannot provide

golden test (even if we can provide some known entities, the
workers may not return them as answers.). Second, a worker’s
quality depends on not only the correctness of her provided
entities but also the distinctness of these entities compared
with the collected ones by other workers.
(2) Cost control for crowdsourced entity collection. Workers
usually provide popular entities and thus different workers will
provide many duplicated entities, leading to a waste of money
and low coverage. For example, many workers will return
Lebron James but few workers return Patrick McCaw.
(3) Termination for crowdsourced entity collection. It is
important to decide when to stop the crowdsourcing task. If
the task terminates too early, the coverage of the collected
entities is low. If it terminates too late, it will incur high cost.

Trushkowsky et al. [25] addressed the third challenge by
evaluating the completeness but did not address the first
two challenges. In this work we propose an incentive-based
crowdsourced entity collection framework CrowdEC that se-
lects high-quality workers and encourages them to provide
more distinct items using an incentive strategy. CrowdEC has
fundamental differences from existing studies. On the one
hand, CrowdEC proposes a worker model and evaluates a
worker’s quality based on cross validation and entity checking.
Cross validation evaluates an entity’s correctness by checking
whether it is also provided by other workers while entity
validation asks others workers to check whether an entity is
correct. CrowdEC devises a worker utility model that considers
both worker’s quality and distinctness of entities provided by
workers. CrowdEC proposes a worker elimination method to
block workers with a low utility, which solves the quality
control problem. On the other hand, CrowdEC proposes an
incentive pricing technique that encourages each qualified
worker to provide distinct entities rather than duplicates. Since
the crowdsourcing platforms do not support dynamic pricing,
CrowdEC uses bonus to encourage a worker. CrowdEC provides
two types of tasks for workers: normal task without bonus and
task with bonus. For the former task, CrowdEC only provides
a base reward. For the latter, if the worker provides a distinct
entity that is not provided by other workers, CrowdEC gives
a bonus to the worker. CrowdEC judiciously assigns workers
with appropriate tasks, which solves the cost control problem.

To summarize, we make the following contributions.
(1) We propose an incentive-based crowdsourced entity col-
lection framework CrowdEC that first eliminates unqualified
workers and encourages qualified workers to provide more
distinct items using an incentive strategy (see Section III).
(2) We propose a quality control method for crowdsourced



entity collection that evaluates workers’ quality based on cross
validation and entity checking (see Section IV). We devise
a worker utility model that considers both worker’s quality
and distinctness of entities provided by workers. We design a
worker elimination method to block low-utility workers.
(3) CrowdEC proposes an incentive pricing technique, provides
two types of tasks for workers, and judiciously assigns workers
with appropriate tasks (see Section V).
(4) We have conducted both real and simulated experiments,
and the results show that CrowdEC outperforms existing state-
of-the-art works on both cost and quality (see Section VI).

II. PRELIMINARIES

We formulate the problem in Section II-A, and discuss the
completion estimation technique in Section II-B.
A. Problem Formulation

Our work studies the entity collection problem that collects
all the distinct entities in a particular data domain, e.g.,
collecting all the active NBA players, where the ground-truth
of entities in the domain is unknown before collection. For
simplicity, we use Ω to represent the ground-truth entity set.

In this paper, we focus on utilizing crowdsourcing, i.e.,
the workers on crowdsourcing platforms, such as Amazon
Mechanical Turk (AMT), for entity collection, so as to lever-
age the advantages of human’s collection. Without loss of
generality, each crowdsourcing task t asks workers to submit
one or more entities satisfying user’s requirement, e.g., “Please
give us one more active NBA player”1. We use a set T to
denote the tasks answered by the workers, and a multiset R
to denote the entities collected through the tasks in T . Note
that R may contain the same entities answered in multiple
times, since different workers may contribute the same entities.
We further use O to denote the distinct entities in R. On
the other hand, crowdsourcing is not free and each task t
incurs monetary cost. Based on these notations, we define
crowdsourced entity collection as follows.

Definition 1 (Crowdsourced Entity Collection): Given a
data domain, it solicits crowd workers to collect a multiset R
of entities that satisfies the following objectives.
1) Correct: we want to collect more correct entities included
in Ω, i.e., maximizing the precision |O X Ω|{|O|.
2) Complete: we aim to collect as many entities in Ω as
possible, i.e., maximizing the recall |O X Ω|{|Ω|.
3) Less-Duplicated: we do not want R having many
duplicates, i.e., maximizing the distinctness |O|{|R|, because
it not only incurs higher collection cost, but also requires the
users to spend more efforts to remove the duplicates.

Consider our example of collecting active NBA players.
Suppose that there are two workers who answer our tasks
for entity collection: one worker submits tJames, Paulu while
the other worker submits tCarter, Jamesu. Then, the entity
multiset R “{James, Paul,Carter, James} and the distinct
entity set will be O “ tJames, Paul, Carteru.

There are several challenges in crowdsourced entity col-
lection. The first is to estimate the completeness of the

1We will introduce other question types later.

collected entities and we can use existing estimation technique
to address this problem (Section II-B). The second is to
guarantee the correctness of the collected entities, which
may affect both the completion estimation and the collection
cost. Moreover, workers can provide any “open” entities and
traditional majority-voting based techniques do not work since
different workers may provide different entities. We propose
worker-quality estimation and entity validation techniques to
address this problem (Section IV). The third is to reduce
duplicated entities and we propose incentive pricing technique
to encourage workers to provide distinct entities (Section V).

B. Completion Estimation
A previous work [25] on crowdsourced entity collection

formalizes the problem as species estimation, which is well
studied in biology and statistics. The basic idea is to con-
sider that workers won’t provide incorrect entities and model
each worker as a sampling process from the underlying data
domain Ω, where the entities in Ω have unknown probabil-
ities tp1, p2, ..., p|Ω|u to be sampled. Based on this worker
modeling, the work in [25] focuses on estimating whether the
sampled set R of entities is complete, i.e., O “ Ω. For ease
of presentation, we call this problem completion estimation.

As the work assumes that workers won’t make mistakes,
the key problem becomes how to estimate cardinality of the
Ω, i.e., |Ω|, since Ω is unknown to us. For simplicity, we
also denote the estimate of |Ω| as pN . Fortunately, we have
the Chao92 [3] estimator. Intuitively, Chao92 first estimates
|Ω| based on the sample coverage, denoted by SC. The idea is
that, if we know, say 50% distinct entities have been collected,
then pN can be easily computed as pN “ |O|{SC. However,
the obstacle is that even the the sample coverage SC is very
difficult to estimate. To this end, the work in [25] employs the
Good-Turing estimator [13] as

ŜC “ 1´
f1

|R|
, (1)

where fi is the number of distinct entities that occurs exactly i
times in R. For example, f1 counts the number of “singleton”
entities in R. The intuition of Equation (1) is that the smaller
the f1 is, the more likely that fewer new entities will be
sampled from the workers in the future.

On the other hand, Chao92 considers that the underlying
sampling probabilities tp1, p2, ..., p|Ω|u are not evenly dis-
tributed. To address this problem, Chao92 uses the coefficient
of variance of the distribution γ to improve the estimation.
Specifically, it uses the following equation to estimate γ,

γ̂2 “ maxt

|O|
ŜC

ř

i ipi´ 1qfi

|R|p}R| ´ 1q
´ 1, 0u (2)

Based on both γ̂2 and ŜC, Chao92 estimates pN by combining
these two factors using

pN “
|O|
ŜC

`
|R|p1´ ˆSCq

ŜC
γ2. (3)

Trushkowsky [25] proposed an approach for crowd enumer-
ation to estimate pN based on the Chao92 method. So we use
their method to estimate pN . Based on the estimate, if pN“|O|,
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Notation Description
Ω the ground-truth of entity set
W set of workers
Rj set of worker wj answers
R set of collected answers
Ej the number of errors of wj

vj throughput of wj

qj wj ’s probability of changing another answer
pj wj ’s probability of requesting a task
DW the error-bounded distinctness of W

TABLE I
NOTATIONS USED IN THIS PAPER.

we terminate the collection process, as all distinct entities in
Ω have been collected.

Note that the above estimation methods do not consider that
workers may provide wrong entities (that are not in Ω), which
would lead to a larger f1 and thus overestimation of N̂ . We
address this issue by using our quality control techniques that
validate the entities during the collection time in Section IV.

For ease of presentation, we summarize notations used in
this paper in Table I where some will be introduced later.
C. Related Work

Recently some works on crowdsourcing entity collection
[25], [21], [9], [24], [4] have close relationship with our work.
Fan et al. [9] proposed a distribution-aware crowdsourced
entity collection framework. It aims to leverage the crowd to
provide a set of entities and minimize the difference of entity
distribution between what the crowd collected and an expected
distribution. They focused on how to select workers adaptively
to achieve the expected distribution. Park and Widom pre-
sented a system, CrowdFill [21], which leverages the crowd’s
ability to collect structured data. CrowdFill asked workers
to work collaboratively to contribute new entities, fill some
empty cells and upvote or downvote other workers’ answers.
Although CrowdFill also considers quality control (upvote
or downvote) and pricing, the techniques in CrowdFill focus
on interface design while we focus on cost optimization.
Trushkowsky et al. used statistical methods to reason about
the completeness of collected entities in a domain. They
focused on how to estimate the cardinality of the domain
size accurately based on crowdsourcing collection [25]. Chung
et al. [4] utilized the statistic techniques to estimate the impact
of the unknown data on aggregate queries like SUM, AVG, MAX,
etc. They focused on overlap between different data sources
to estimate the missing data. Rekatsinas et al. [24] focused on
collecting entities from structured domains, which consists of
attributes with hierarchical structure. They aimed to maximize
the number of collected entities within a monetary budget.

The key difference of our framework from these existing
ones is two-fold. Firstly, the problem settings are different.
Duplicated answers are very common in the crowdsourcing
collection task, which results in huge costs. We address this
problem in an incentive way but other works ignore this
phenomenon. Secondly, the optimization goals are different.
They mostly aimed to estimate the cardinality accurately.
We aim to spend the minimum cost to collect all entities.
Moreover, we also focus on maximizing the workers’ utility
and controlling the quality. Although CrowdFill also con-
siders quality control (upvote or downvote) and pricing, the

techniques in CrowdFill focus on interface design while we
focus on cost optimization.

Recently crowdsourced data management has become an
area of increasing interest in research and industry [17]. In
order to encapsulate the complexities of interacting with the
crowd, several crowdsourced database systems, e.g., Deco
[20], Qurk [19], CrowdDB [11], CrowdOp [10] and CDB
[16] were proposed. Besides, many studies leverage crowd’s
ability to improve database operators like crowdsourced join
[2], [8], [12], [27], crowdsourced selection [1], crowdsourced
max [26], [14], crowdsourced sort [29]. Since the crowd may
make mistakes, many techniques are proposed to improve the
quality [7], [18], [30], [15], [22]. Compared with these studies,
we focus on collecting distinct and high quality entities with
a minimum cost, which is not well studied in existing works.

Qiu et al. [23] studied the incentive and pricing mechanisms
for improving crowdsourcing utility. Different from that work,
we focus more on collecting a complete entity set with less
duplicates, which is not the crowdsourcing objectives of [23].
Moreover, we adopt different crowdsourcing settings. In [23],
all workers finish one task before any move to the next (i.e.,
“coordination of tasks”). On the contrary, the coordination of
tasks is not realistic in our setting due to the dynamic worker
set in most real crowdsourcing platforms.

III. INCENTIVE-BASED CROWDSOURCING

Our incentive-based crowdsourced entity collection frame-
work is illustrated in Figure 1: it interacts with the workers
through a crowdsourcing platform, such as AMT, in the
following way. At each time a worker requests for a new
task, the framework first examines if the worker is qualified
to provide “beneficial” entities using a WORKER CHECKING
component. If not, it blocks the worker by not assigning
any tasks to the worker. For a qualified worker who is
not blocked, the framework applies a TASK MANAGEMENT
component to assign the worker a task and collect the entities
submitted by the worker. In particular, instead of using a
fixed price for each task, it determines the pricing scheme,
e.g., whether giving bonus to encourage the worker to submit
more entities in the task (Bonus or NoBonus). Moreover, a
COMPLETION ESTIMATION component continuously tracks
progress of the collection (see Section II-B), and terminates the
framework if it estimates that all distinct entities are collected,
i.e., O “ Ω.

To support the framework, we develop two incentive tech-
niques, worker elimination and incentive pricing.

Worker Elimination. This technique estimates the utility
of workers, so as to eliminate the ones with limited utility
and therefore avoid monetary incentives. To facilitate our
collection objective, we consider two factors that constitute
worker utility. The intuition is that we prefer a worker set that
is more likely to provide correct and distinct entities.
(1) entity distinctness: We focus on retrieving a complete
set of entities with less duplicates. Thus, it is desirable to
encourage workers to provide distinct entities, which are
not yet collected. First, it would lead to faster completion
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Fig. 1. Incentive-based crowdsourcing.

convergence. Second, it will also reduce the duplicates in the
result, thus incurring less crowdsourcing cost.
(2) worker quality: we also consider worker quality in the
proposed utility to improve the correctness of the result set
R, as some bad workers may give wrong entities.

For new workers, there is a “cold-start” problem that we
may not have enough information to judge worker quality and
entity distinctness. We address the problem by not considering
a worker in WORKER ELIMINATION until she has contributed
enough number of entities larger than a threshold.

To this end, as illustrated in Figure 1, worker elimination
takes as input the workers’ entity submissions and estimations
of completion status. Based on the inputs, it selects a set of
workers such that the utility of the worker set is maximized,
and then inserts the workers not in the set into the blacklist.
To support utility computation, we also devise the following
two techniques: 1) the first technique is entity validation that
facilitates the computation of worker’s quality. The idea is to
estimate the accuracy of each submitted entity from a worker
by either checking if the entity can be cross-validated by other
workers or publishing a new crowdsourcing task for entity
validation. 2) The second technique is entity resolution that
verifies whether two answers from different workers actually
refer to the same entity. In this paper, we consider that entity
resolution has been addressed manually or by the existing
techniques [6], which is orthogonal to this paper. Even though
the utility is intuitive, the problem of utility maximization is
NP-hard. Thus, we introduce effective heuristic algorithms to
solve the problem. More details on entity validation and utility
maximization can be referred in Section IV.
Incentive Pricing. A straightforward solution to obtain more
distinct entities is to publish more entity collection tasks.
However, this will incur much more cost. For further reducing
the cost, we propose a novel incentive pricing technique to
encourage each qualified worker to provide distinct entities
rather than duplicates.

Our technique is based on a bonus-based incentive mech-
anism that offers bonus to a worker if she submits distinct
entities, which are essential to CrowdEC with respect to both

Submit

Task A

Check the Bonus

Task B

Please give us a NBA player’s name

Instructions

Submit

Please give us a NBA player’s name

Instructions

Fig. 2. Interfaces designed for pricing schemes.

complete and less-duplicated properties. Moreover, the reason
that this paper does not use a more generalized and dynamic
pricing scheme is due to the following two reasons. First, most
crowdsourcing platforms, such as AMT and CrowdFlower,
do not support any dynamic pricing schemes. Instead, they
support a bonus mechanism to allow the requester to give
extra rewards to some workers afterward2. Second, given that
worker set on these platforms is very dynamic, we use the
bonus to encourage a good worker to keep working for us,
thus increasing the chance of providing distinct entities per
unit cost. We will leave varying the bonus or more generalized
pricing schemes as a future work. More specifically, our
framework supports the following pricing schemes:

1) NoBonus: It gives a worker only one chance to submit
an entity. No matter whether the entity is distinct or not, it
will always give the worker the base reward.

2) Bonus: It gives a worker multiple chances to submit more
than one entities. After each submission, it checks whether the
entity is distinct. If so, it gives the worker the base reward as
well as an extra bonus. Otherwise, it reminds the worker of the
duplication and asks her to change her answer by submitting
a new entity. If all the submissions fail to provide a distinct
entity, the scheme only gives the worker the base reward. As
the bonus is typically smaller than the base reward, the scheme
has the potential to collect more entities using less cost.

For example, Figure 2 illustrates the interfaces designed
for the two pricing schemes. The left interface supports the
NoBonus scheme: a worker inputs an entity in the text box,
submits the entity, and gets the base reward. On the other hand,
the right interface supports the Bonus scheme: a worker can
click the “Check the Bonus” button each time after she inputs
an entity. The worker can click the button in multiple times
to try getting the bonus (i.e., providing a distinct entity).
NoBonus suits for the workers who always submit distinct

entities while Bonus suits for the workers who want to get
more award by trying more entities. Our framework makes
a decision that which pricing scheme (Bonus or NoBonus)
should be provided each time a worker requests for a task.
We formulate this as an optimization problem, and devise a
lightweight method with good approximate property to solve
the problem. Section V gives the details of incentive pricing.
Incentive-Based Framework. The pseudo-code of our frame-
work is shown in Algorithm 1. The algorithm takes as input
a small number ε for determining when to terminate and
outputs a set O of distinct entities submitted by the crowd
workers. After initializing worker set W , entity multiset R

2See http://docs.aws.amazon.com/ for details about awarding bonus on the
AMT platform.
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Algorithm 1: Incentive-Based Crowdsourcing
Input: ε: A small number
Output: O: A set of distinct entities.
Initialize a worker set W ÐH ;1

Initialize an entity multiset RÐH, entity set O ÐH;2

for each request from worker w do3
pN Ð ESTIMATECOMPLETION (R) ;4

if
ˇ

ˇ

ˇ

pN ´ |O|
ˇ

ˇ

ˇ
ă εˆ pN then break ;5

if w RW then W ÐW Y twu ;6

W 1

Ð MAXWORKERUTILITY(W , R) ;7

if w RW 1

then Block worker w ;8

else9

bÐ DETERMINEBONUS (w) ;10

if b “ 0 then11

Assign an HIT t with NoBonus to w ;12

else13

Assign an HIT t with Bonus to w ;14

Rt Ð SUBMITENTITIES (w, t);15

R1t Ð VALIDATEENTITIES (Rt) ;16

Insert R1t into R ;17

O Ð RESOLVEENTITIES (R);18

return O ;19

and entity set O, it processes workers’ requests iteratively.
At each request from worker w, it first computes the current
estimate pN for the size of entity domain Ω (line 4). If the
difference between the number of distinct entities collected
so far and pN is smaller than a small number ε ˆ pN , i.e.,
ˇ

ˇ

ˇ

pN ´ |O|
ˇ

ˇ

ˇ
ă ε ˆ pN , the algorithm terminates and returns

O. Otherwise, the algorithm first selects workers by utility
maximization and obtains worker set W 1

(line 7). Then, it
blocks worker w if the worker is not selected, i.e., w R W 1

.
Note W varies with the collection process going and the algo-
rithm won’t block those new-coming workers. It will decide
these workers’ eligibility after collecting enough number of
entities for them. If worker w is not blocked, the algorithm
then decides whether to give bonus (line 10), and assigns a
corresponding task. After worker w answering the task, the
algorithm checks the submitted entities (line 16). If the entities
are of high quality, it will add them to multiset R (line 17) and
also update the entity set O using entity resolution techniques.

Example 1: Suppose the workers in Table II answer our
NBA player tasks. The first answer is “Curry” given by w1

under a NoBonus task (with cost of $1). We check the entity
and add it in to O. Similarly, w2 gives an entity “Harden” and
we add it into O. Then we provide a Bonus task (with cost of
$1.5) for w1, and w1 answers a duplicated entity “Harden”.
After our reminder, she changes it to “James”. Similarly, w2

answers a duplicated entity “Curry” and she changes it to
“James Jones” after the reminder. Therefore we spend $5
to collect 4 different entities, which should take $6 in the
traditional way.

IV. WORKER ELIMINATION

This section presents worker elimination that eliminates the
“unqualified” worker for entity collection. The challenge is

Worker Answer set R v E
w1 {“Curry”, “Harden”, “James”} 3 0
w2 {“Harden”, “Curry”, “Jones”} 1 0
w3 {“Curry”, “Durant”, “Redick”, “Young”} 6 0
w4 {“Beckham”, “Curry”, “Charlie”, “Lisa” } 8 3

TABLE II
AN EXAMPLE FOR WORKER ELIMINATION.

to determine what constitutes the “unqualified” workers who
make limited contributions to entity collection. We introduce
the following two factors to address this challenge.

The first factor is worker quality. Workers with low qual-
ity who often provide incorrect entities should be naturally
eliminated, so as to avoid wasteful incentive. For instance,
consider our example of collecting active NBA players. Some
low-quality workers may submit players in other colleagues
or just irrelevant entities (e.g., nations, teams) for cheating
the rewards. Some other workers may be so careless that
they submit famous but retired NBA players. In either of the
aforementioned cases, we would collect useless entities not
belonging to our target domain Ω while still paying rewards.

The second factor is entity distinctness. We observe that,
in some worker sets, entities from different workers have
significant overlaps to each other. This is because the workers
may have similar background about the entities. For example,
workers familiar with the same NBA team are likely to provide
overlapping players. For such worker sets, employing a few
representative workers could be better than using them all.
The other reason is that providing a distinct entity would
become more and more difficult as the collection process
goes. Especially at the late period of the collection, some
workers will not accept the bonus mechanism (see Section V)
and provide many entities duplicated with others. Thus, we
naturally would like to eliminate such workers.

We formalize worker quality and entity distinctness and
combine these two factors in an optimization problem, called
worker utility maximization. We introduce the problem and
prove its hardness in Section IV-A. Then, we provide a
heuristic algorithm to solve the problem in Section IV-B, and
present an entity validation technique that facilitates estimation
of worker’s quality in Section IV-C.
A. Worker Utility Maximization

Intuitively, worker utility is proposed to formalize the two
factors, worker quality and entity distinction, which are intro-
duced previously. Our basic idea is to derive these two factors
from the existing entities which have already been submitted
by the workers. To this end, we first introduce some notations.
Let Rj denote the multiset of entities submitted by worker wj .
Note that a worker may provide duplicated entities, and so
Rj may contain an instance in multiple times. Nevertheless,
for ease of presentation, we first consider that Rj is a set
without multiple instances of a same entity, which can be
easily extended to the case that Rj is a multiset.

Worker quality. Based on the notations, we first define worker
quality. A natural way is to examine the entities submitted
by a worker and measure the number of the worker’s error
entities, denoted by Ej . The more error entities provided
by the worker, the lower the worker’s quality is. Formally,
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consider a worker wj and her entity multiset Rj . According
to the definition of entity collection, we consider an entity oi
as an error one iif it does not belong to our target domain Ω,
i.e., oi R Ω. However, the non-trivial part is that we do not
know whether a collected entity oi belongs to Ω or not. We
devise an entity validation technique to address this problem,
and the output of entity validation is the probability that oi is
incorrect, denoted by Prpoi R Ωq. We postpone the description
of entity validation in Section IV-C. Given the probabilities
returned by entity validation, we can compute Ej of worker
wj as Ej “

ř

oiPRj
Prpoi R Ωq.

Intuitively, considering a worker set W , we would like
to control the total number of error entities to make sure
the number will not be too large. Formally, we introduce a
tolerance threshold τ that represents the maximum ratio of
error entities we can tolerate. Based on this, we introduce a
worker quality constraint for worker set W as

ÿ

wjPW
Ej ď τ ¨ |R|, (4)

where |R| is the total number of entities collected so far, and
τ ¨|R| is the maximum number of error entities we can tolerate.
Entity distinctness. We prefer the workers who will provide
more distinct entities in their following requests, as mentioned
previously. To this end, we introduce the entity distinctness,
denoted by DW , of a worker set W , that represents the number
of distinct entities in any time of the collection process. To
compute it, we consider the following two aspects.

First, we examine all the entities submitted by the workers
in W , and estimate the likelihood of distinctness. Formally,
let us consider entity set Rj of each worker wj in W .
Then, p|YRj |q{p

ř

|Rj |q is the proportion of distinct entities
provided by the workers in W , and we use this proportion
to estimate the likelihood. However, solely considering the
aforementioned likelihood may not be good. On the one hand,
it would lead to a result consisting of only one worker (the
likelihood for any individual worker is 1). On the other hand,
it does not consider the “throughput” (number of entities per
time) of the worker set. Obviously, a worker set with high
throughput would benefit many other components of CrowdEC,
such as entity validation, incentive pricing, etc. Thus, we
introduce vj to denote the throughput of worker wj , i.e., the
number of entities per time provided by wj . This can be
also estimated from worker’s submission history in Rj . Then,
ř

wjPW vj can be used to represent the throughput of W .
Based on the above-defined notations, we compute the entity

distinctness DW as follows.

DW “

ˇ

ˇ

ˇ

Ť

wjPW Rj

ˇ

ˇ

ˇ

ř

wjPW vj
ř

wjPW |Rj |
(5)

For instance, considering the example in table II, given W “

tw1, w2u,
|R1YR2|ˆp3`1q
|R1|`|R2|

“ 16
6 .

Combining both entity distinctness and worker quality, we
formalize worker elimination as an optimization problem that
maximizes entity distinctness while bounding the errors.

Definition 2: (Error-Bounded Distinctness Maximization)
Given a set W of workers, it selects a subset W˚ Ď W to

Algorithm 2: Heuristic Algorithm for Worker Selection
Input: W ,R
Output: the selected workers set W˚

Sort workers in W in descending order by vj
|Rj |

;1

max “ 0;2

for i from 1 to |W| do3

W 1

Ð tu;4

for j from 1 to i do5

W 1

.addpwjq;6

while
ř

wkPW 1 Ek ď τ ¨ |R| do7

Find the worker wk1 largest Ek1 ;8

W 1

.removepwk1 q;9

if DW 1 ą max then10

max Ð DW 1 ;11

W˚ ÐW 1

;12

return W˚;13

maximize entity distinctness while bounding the errors, i.e.,
W˚ “ argW 1

ĎW maxDW 1 s.t.
ř

Ej ă τ ˆ |R|, wj PW˚.
After determining W˚, we eliminate workers in WzW˚

from W and only use qualified worker in W˚.
Example 2: For example, assume that we have 4 workers,

table II shows their answer set, throughput and the number
of errors respectively. We can see that w1, w2 and w3 does
not make mistake so their errors number is 0. However,
since E4 “ 3 and 3 ą 0.1 ˆ 14, w4 can not be in-
volved in the optimal worker set. If we choose tw1, w2, w3u,
Dtw1,w2,w3u “

7ˆp3`1`6q
3`3`4 “ 7. If we choose tw1, w3u,

Dtw1,w3u “
6ˆp3`6q

3`4 “ 7.7 and W˚ “ tw1, w3u.
Next, we show the hardness of error-bounded distinctness

maximization problem, and we have the following theorem.
We omit the proof due to the space constraint.

Theorem 1: The error-bounded distinctness maximization
problem is NP-hard.

B. Heuristic Algorithm
This section presents a heuristic algorithm to address the

error-bounded distinctness maximization problem. We find that
workers with high value of vj

|Rj |
are likely to contribute much

to maximize DW according to Lemma 1. Therefore, given
a worker set W , the idea is to first sort the workers in the
descending order of vj

|Rj |
, i.e.,

v1

|R1|
ě

v2

|R2|
ě . . . ě

vi
|Ri|

ě . . . ě
v|W|

|R|W||
. (6)

Then, we have the following interesting property. Consider
any worker set W 1 and wj has the largest vj

|Rj |
among workers

in W 1. Then, we can always improve entity distinctness DW if
we insert the “prefix” of wj in the above sequence (Equation 6)
into W 1, as stated in the following lemma.

Lemma 1: Assume that wj has the largest vj
Rj

among
workers in W 1 and Ws is a set of workers who satisfy that
vi
Ri
ě

|vj |
|Rj |

, wi PWs. Then we have DWsYW 1 ě DW 1 .
Based on Lemma 1, we design a heuristic algorithm and the

pseudo code is given in Algorithm 2. The algorithm first sorts
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the workers in W in the descending order of vj
|Rj |

(line 1), and
generates a worker sequence. Then, it examines every prefix of
this sequence on distinctness and worker quality. If the workers
in the prefix exceed the error bound τ ¨ |R|, the algorithm
iteratively removes the workers with largest Ej until the error
is bounded (line 8 and 9), and updates the value of DW . After
considering all such prefixes, the algorithm chooses the one
with the largest DW (line 11 and 12).

Example 3: Given workers in Table II, we get v4
|R4|

ą
v3
|R3|

ą v1
|R1|

ą v2
|R2|

. We first consider w4. Since w4 provides
so many wrong answers that E4 “ 3 is already larger that 1.4,
she will be removed in any workers set. Therefore we consider
worker set tw3u, tw3, w1u and tw3, w1, w2u in turn. Finally
we return tw3, w1u and block w2 and w4.

C. Entity Validation

Now, we discuss how to validate correctness of an entity ot
in R, i.e., evaluating whether ot P Ω. Obviously, traditional
quality control techniques in crowdsourcing, such as majority
voting, will not work for this open-end task. To address the
challenge, we introduce an entity validation method, and the
idea is two-fold. On the one hand, we solve this problem also
using crowdsourcing, i.e., publishing entity validation tasks,
such as “Is Stephen Curry an active NBA player?”. However,
to reduce crowdsourcing cost, we may not be able to publish
too many such tasks. So on the other hand, if an entity is
collected by multiple workers, we can identify that it would
be more likely to be correct.

The non-trivial part here is to determine which entities
should be crowdsourced for validation. Based on our observa-
tion, we find that few workers would give the same incorrect
entity. Thus, we focus on crowdsourcing the distinct entities.
However, especially in the beginning of collection, most of
the collected entities are distinct, and we cannot afford to
crowdsource them all. As a result, we need an effective method
to distinguish which distinct entities are more likely to be error
and thus should be crowdsourced.

Technically, we utilize a Bayesian-based method to address
this problem. Formally, we slightly abuse the notation to also
use ot to denote the event that ot P Ω, and ot to denote ot R Ω.
Moreover, we also introduce θt to denote the event that ot is
distinct and use θt to represent negated event. Given a distinct
entity, we compute the following probability

Prpot|θtq “
Prpθt|otq ¨ Prpotq

Prpθt|otq ¨ Prpotq ` Prpθt|otq ¨ Prpotq
. (7)

In Equation 7, Prpθt|otq is the probability of distinctness for
a correct entity, which can be easily estimated by the sample
coverage SC (Section II-B), i.e., Prpθt|otq “ 1´SC. More-
over, consider probability Prpθt|otq that means the probability
of distinctness for an incorrect entity. As incorrect entity would
have large likelihood to be distinct, we estimate Prpθt|otq as
1. For the priors Prpotq and Prpotq, we estimate them by
previously estimates of error rate of the worker providing the
entity, i.e., Ej{|Rj | (see Section IV-A for Ej).

After estimating Prpot|θtq for each distinct entity in R,
we use a threshold β, crowdsource all the entities whose
Prpot|θtq ě β, and collect validation results from workers.
Remark. We can avoid asking the worker to validate the entity
provided by herself via recording worker ID. To prevent work-
ers from maliciously forming a group and submitting identical
but wrong entities, we can use techniques in [28] to identify
sybil workers who deliberately give the same entities and block
them. Besides, utilizing external sources, such as Wikipedia,
could be beneficial for the entity validation of some coarse-
grained entity collection tasks, e.g., all countries, cities, etc.
Nevertheless, it is challenging to employ Wikipedia for many
collection tasks which require to find fine-grained entities
satisfying some conditions, such as active NBA players.

V. INCENTIVE PRICING
This section presents our incentive pricing technique that

encourages each qualified worker to provide distinct entities
rather than duplicates. We first introduce our pricing schemes,
i.e., NoBonus and Bonus in Section V-A, and then formalize
a decision making problem that aims to minimize the overall
collection cost by judiciously assigning workers with appro-
priate pricing schemes in Section V-B. Finally, we present a
lightweight algorithm that solves the decision-making problem
with superior approximation guarantee in Section V-C.
A. Pricing Schemes

We introduce a bonus-based incentive mechanism, as most
of the crowdsourcing platforms do not support dynamic pric-
ing. The idea is to promise a worker an extra bonus if the
worker wants to try multiple times and eventually submits a
distinct entity. For example, suppose that we allow a worker
to try at most 3 times. Then, we will not offer the bonus until
a distinct entity, which is not duplicated with the others in
R, is submitted within the 3 times of attempts. Formally, we
use cr and cb to respectively represent the base reward and
the bonus of a collection task t, and cptq to denote the total
reward paid for t. Let h denote an attempt constraint, i.e.,
the maximum number of entities we allow a worker to try.
Moreover, recall that we have defined θo (θo) to represent that
entity o is distinct (duplicated) as discussed in Section IV-C.
Based on the notations, we define the bonus scheme as follows.

Definition 3 (Bonus Scheme): Given a constraint h, it uses
task t to collect a set of entities, denoted by Rt “

to1, . . . , o|Rt|u s.t. |Rt| ď h. It decides the reward cptq by

cptq “

"

cr ` cb Do P Rt, Irθos “ 1
cr otherwise,

(8)

where Ir¨s is an indicator function that return either 1 or 0,
and Irθos “ 1 means that entity o is distinct.

On the other hand, we also provide the normal interface
without bonus that allows worker to submit only one entity
and always provides base reward, i.e.,

Definition 4 (NoBonus Scheme): It uses a task t to collect
only one entity, i.e., |Rt| “ 1, and offers reward cptq “ cr.

Example 4: Suppose that a worker is assigned with the
Bonus scheme and provides three entities to1, o2, o3u with
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distinctness status tθo1 , θo1 , θo1u. Moreover, consider base
reward cr “ 1.0 and bonus cb “ 0.5. We need to pay 1.5
to the worker given the bonus scheme. On contrary, we have
to pay 3.0 if a NoBonus scheme is assigned.
B. Optimal Incentive Pricing Problem

This section presents the optimal incentive pricing problem.
Intuitively, for each request from a qualified worker, we need
to make a decision that which pricing scheme (Bonus or
NoBonus) should be assigned to the worker, so as to reduce the
overall cost. Interestingly, we find there is no clear winner in
these schemes. For example, in the beginning of the collection,
NoBonus may be better because most of collected entities
would be distinct. On the contrary, as more and more entities
are collected, the difficulty of providing a distinct entity should
be higher, and thus Bonus may be superior. Moreover, the
decision may also depend on whether the requesting worker
wants to try multiple attempts for submitting a distinct entity.
If not, Bonus may not be better than NoBonus as bonus is
useless to incent the worker.

To formalize the aforementioned intuitions, we introduce a
cost-based optimization method. Formally, consider a request
from worker wj at any time of the collection process, and
suppose that the number of entities collected in current R is
N . For ease of presentation, we define xwj , Ny as a state
of the collection process, the intuition of which is that we
have collected N entities and encountered a request from
worker wj . Then, we introduce Cpwj , Nq to represent the total
cost we paid from the state xwj , Ny to the end of collection.
Intuitively, Cpwj , Nq depends on the following factors.

1) Our pricing decisions: for every requesting worker from
wj to the end of collection, we need to decide a bonus scheme.
More formally, we introduce binary variable X where X “ 1
if providing Bonus scheme, and X “ 0 otherwise.

2) Requesting workers: we actually do not know which
workers will request for our tasks in the future. To address
this, we consider the expectation. We introduce pj as the prob-
ability that wj will request for our task, and the summation
ř

wjPW pj “ 1 for all the qualified workers.
3) Worker’s behavior: when assigned with a Bonus scheme,

even being notified with duplications, a worker may not want
to continuously submit more workers. This may be mainly
because the bonus is not enough to incent the worker. To
formulate this behavior, we introduce a probability qj that
models the likelihood the bonus can incent worker wj to
provide a new entity. Then, we introduce a random variable
Nwj

that captures the number of entities provided by wj if
assigned with Bonus scheme. Given an attempt constraint h,
the possible values of Nwj are t1, 2, . . . , hu. We introduce
notation PrpNk

wj
q to indicate the probability that Nwj

“ k

where 1 ď k ď h. We postpone the estimation of PrpNk
wj
q,

and first assume that it is already known.
4) Worker’s reward: according to Equation 8, the reward

paid to worker wj depends on whether wj provides a distinct
entity, which is a probabilistic event. For ease of presentation,
we use Ercwj s to represent the expected cost. The estimation
of Ercwj s will be described later.

Cost optimization. We first discuss the problem of optimizing
cost Cpwj , Nq. We define C˚pwj , Nq as the minimum expec-
tation of cost among all the possible values of Cpwj , Nq, and
we can see that C˚pwj , Nq can be computed by its optimal
subproblems. Let us introduce C0 and C1 to respectively
denote the cost of assigning NoBonus (i.e., X “ 0) and Bonus

(X “ 1). Then, we have
C0 “ cr `

ÿ

wi

pi ¨ C
˚pwi, N ` 1q, (9)

which means paying cr to wj and
ř

wi
pi ¨ C

˚pwi, N ` 1q is
the expectation of optimal subproblems.

Similarly, we have C1 for assigning Bonus. The idea is to
consider every possible workers in the following requests and
every possible number of entities submitted by wj submitted
in this request, i.e.,

C1 “ Ercwj
s `

ÿ

wi

pi
ÿ

k

PrpNk
wj
q ¨ C˚pwi, N ` kq (10)

Based on these equations, we can compute C˚pwj , Nq as

C˚pwj , Nq “ mintC0, C1u. (11)

Now we define the optimal incentive pricing problem.
Definition 5: (Optimal Incentive Pricing Problem) Given

current state xwj , Ny, it decides the best pricing scheme for
wj that leads to the minimum total cost C˚pwj , Nq from the
state to the end of collection, i.e., X “ argi miniPt0,1u Ci.
Probability estimation. We next present how to estimate
PrpNk

wj
q and Ercwj s in the above equations.

1) Estimation of PrpNk
wj
q: recall that this is the probability

of the event that the number of entities submitted by wj equals
k. Based on Definition 3, this is equivalent to an event that wj

submits at least one distinct entity or wj stops after submitting
k duplicated entities. Recall that we use θ (θ) to represent the
event that an entity submitted by wj is distinct (duplicated).
Thus, PrpNk

wj
q can be computed as

PrpNk
wj
q “

`

qj ¨ Prpθq
˘k´1

¨
`

1´ qj ¨ Prpθq
˘

, (12)

where
`

qj ¨ Prpθq
˘k´1

captures the probability that wj pro-
vides k ´ 1 duplicated entities, and

`

1 ´ qj ¨ Prpθq
˘

is the
probability that wj either provides a distinct entities or stops
after submitting a duplicated one.

Note that pj can be computed by wj’s historical behaviors
and Prpθq (Prpθq) can be obtained from our completion
estimator, which will be updated as R changes.

2) Estimation of Ercwj s: according to Equation 8, the key
to estimate Ercwj s is to determine when the event that wj

provides a distinct entity, denoted by θRt
, occurs. Similar to

previous estimation, this probability can be estimated by

PrpθRt
q “

h
ÿ

k“1

Prpθq ¨ pqj ¨ Prpθqq
k´1, (13)

where the intuition of the equation is that wj first provides
k´ 1 duplicated and then gives a distinct one. Based on this,
Ercwj s is estimated as

Ercwj s “ cr ` cb ¨ PrpθRtq. (14)
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For example, suppose h “ 2, Prpθq “ 0.9 , qj “ 0.8 and wj

requests task t. Then PrpθRt
q “ 0.9` 0.9ˆ 0.8ˆ 0.1 “ 0.97

and PrpN2
wj
q “ 0.8ˆp1´0.9qˆp1´0.8ˆp1´0.9qq “ 0.074.

C. Online Algorithm with Theoretical Guarantee

Since Equation 11 is a recursive function, we solve the
optimal incentive pricing problem using a dynamic program-
ming (DP) algorithm. However, there are two obstacles which
prevent us from doing like that. Firstly, we require to know
Prpθq in the future if we want to run the DP algorithm. But
it is too hard to predict it because our problem is an online
problem. Secondly, we cannot decide the boundary condition
of the DP algorithm because we don’t know how many entities
needed to result in the completion of the collection. In order to
address these problems, we propose a greedy online algorithm
to solve this problem, which has an approximate ratio close to
1. We first illustrate the algorithm as follows. Each time when
a worker wj requests the task t, if wj satisfies Equation 15,

cb ¨ PrpθRtq ě pcr ` cbq ˆ
h
ÿ

k“2

PrpNk
wj
qpk ´ 1q (15)

we assign her NoBonus schema. Otherwise we assign her
Bonus schema. For example, suppose h “ 2, Prpθq “
0.9, and wj requests the task t with qj “ 0.8. Besides,
cr “ 1, cb “ 0.5, then cb ¨ PrpθRt

q “ 0.5 ˆ 0.97 “ 0.49,
pcr ` cbq ˆ

řh
k“2 PrpN

k
wj
qpk ´ 1q “ 1.5ˆ 0.074 “ 0.11, so

we choose the NoBonus schema.
Theorem 2 shows that even though we do not know these

probabilities in advance, our greedy algorithm has an approx-
imate ratio of p1` 1

OPT
q, where OPT is the minimum cost, so it

achieves a solution that is extremely close to the optimal one.
We omit the proof due to the space constraint.

Theorem 2: The online algorithm has an approximate ratio
of p1` 1

OPT
q.

VI. EXPERIMENT EVALUATION

This section evaluated our incentive-based framework. We
have implemented our framework in Python on a Ubuntu
server with Intel 2.4GHz Processor and 32GB memory, and
interacted with AMT using their API.
A. Experimental Settings

Datasets. We evaluated CrowdEC using three real datasets. The
statistics and default values of the parameters were shown in
Table III. (1) ActiveNBA is for collecting active NBA players.
A typical task for ActiveNBA is to ask the question, “Could
you please give me a name of an active NBA player?”. The
ground-truth Ω of ActiveNBA contained 450 active players
in NBA teams. Using crowdsourcing, we have collected
1059 entities in total from 27 workers. (2) TopUniv is for
collecting top-100 universities in the world. Similarly, we ask
the question, “Could you give me a name of one of top-100
universities?”. The ground-truth contains 100 universities
and we have collected 248 entities from 15 workers. The
ground-truth is generated by merging two well-accepted
university rankings, the 2017 U.S. News ranking3 and the

3https://www.usnews.com/education/best-global-universities/rankings

Name |Ω| #workers # entities cr cb
ActiveNBA 450 27 1059 $0.1 $0.15
TopUniv 100 15 248 $0.1 $0.15
AllNBA 4260 53 11500 $0.1 $0.15

TABLE III
DATASET

2017 Academic Ranking of World Universities4. We
first compute the intersection of these to rankings and obtain
a new set U . Then, we determine the ranking order of
the universities in U . There are multiple strategies to get
top-100 from U [5]. We use a simple strategy that sorts the
universities in U by the sum of rankings in the two lists. We
can also use more sophisticated strategies [5]. (3) AllNBA is
for collecting all (4260) NBA players. We get similar results
and observations to the ActiveNBA dataset and we omit the
results due to space constraints.
Implementation. We have deployed CrowdEC on AMT. There
were two issues about the implementation. First, we needed
to assign different pricing schemes as the collection process
goes and eliminated unqualified workers, both of which were
not natively supported by AMT. Thus, we used the “External
Question” mechanism on AMT. We built a web server and
interacted with AMT using the APIs for assigning optimal
pricing scheme and eliminating workers. Second, as AMT did
not support dynamic pricing, we utilized its bonus mechanism.
We set the price of each task as the base reward, and utilized
AMT’s bonus API for giving the extra bonus.

Next, we presented parameter settings in our experiments.
We set the error bound τ as 0.1. We set β “ 0.6 and ε “ 0.1.
For incentive pricing, we set the base reward cr “ $0.1 and
bonus cb “ $0.5. For entity validation, we paid $0.05 for task,
and applied majority voting from 3 workers. Moreover, we set
the attempt constraint in Bonus, i.e., the maximum number of
answers a worker can provide as h “ 4. We set qj “ 1 initially,
and continuously updated it as we collected the entities.
Comparisons with state-of-the-art techniques. We
compared CrowdEC with the existing approaches
Enumeration [25] and CrowdFill [21]. For fair comparison,
we made sure that different approaches were evaluated on
the same set of workers. To this end, we collected as many
entities as possible from the workers. For example, for the
eliminated workers in CrowdEC, we will not block them and
still assign NoBonus tasks to them for collecting entities.
Based on the collected entities, we generated a sequence of
worker requests, where each request in the sequence consisted
of a worker and an entity from the worker. Then, based on
the same sequence of worker requests, we respectively ran
Enumeration, CrowdFill and CrowdEC, and evaluated their
performance on crowdsourcing cost and entity quality.
Evaluation on alternative strategies. Based on the sequence
of worker requests mentioned above, we also evaluated alter-
native strategies that could be used in CrowdEC.

For evaluating worker elimination, we compared our pro-
posed method with three baselines D only, Q only and None.
1) None did not performs worker elimination. 2) D only only
considered entity distinctness while ignoring the error bound

4http://www.shanghairanking.com/ARWU2017.html
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Fig. 5. Evaluate Worker Elimination: Recall
for worker quality. 2) Q only only selected workers such that
their errors were bounded while ignoring entity distinctness.

For evaluating incentive pricing, we also considered the
following two baselines. 1) NoBonus assigns NoBonus pricing
scheme to all tasks. 2) AllBonus assigns Bonus pricing
scheme to all tasks. Note that, when evaluating incentive
pricing, the worker elimination was considered by default.
Evaluation metrics. We evaluated the performance of ap-
proaches on cost, precision and recall. Cost was the total cost
an approach takes to complete the collection task. Precision
and recall were used to measure the quality of the collected
entities. Suppose the subset of correct entities in O was OT .
Then the precision p “ |OT |

|O| and the recall r “ |OT |

|Ω| .

B. Evaluation on Worker Elimination

We compared the cost, precision and recall among algo-
rithms None, D only, Q only and CrowdEC.

For cost, as Figure 3 shows, the x-coordinate and the
y-coordinate represented the number of distinct entities we
have collected and the cost respectively. We can see that
Q only and None were merely different. This is because the
factor worker quality has limited affect on the cost. On the
other hand, D only took much less than Q only and None.
For example, on the ActiveNBA dataset, D only took $80,
which was 20% less than None when the distinct number was
470. The reason is that D only blocked those workers who
provided duplicated entities or were unwilling to submit a new
distinct one. Our framework, CrowdEC outperformed D only

on both datasets. We can see that on ActiveNBA dataset,
CrowdEC took $60 at last but D only took $80 because
CrowdEC considered both the utility and quality. Another
observation was that D only took less than CrowdEC when the
distinct number was less than 420 on data ActiveNBA. This
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is because D only could lead to wrong answers since it did
not have entity validation. And wrong answers were always
distinct ones because those low quality workers provided them
to cheat money by giving some random strings, e.g., adding or
removing some characters based on the true answers, which
were not likely to be duplicated. Therefore, given the same
number of distinct entities, D only took less. However, since
low quality workers gave more distinct answers, the comple-
tion estimator overestimated the size of Ω. Therefore, we can
see that CrowdEC stops when it collected 420 distinct answers
while D only collected 470 in total on ActiveNBA. Moreover,
on datasets ActiveNBA and TopUniv, we can see that when
the number of distinct entities was smaller than 200 and 60
respectively, the difference of these four approaches was not
distinct. This is because most workers provided distinct entities
at the beginning and the entity validation threshold has not
been below the parameter β.

For precision, we can see from Figure 4 that when the
collection task completed, the precisions of D only and None

were much lower than Q only and CrowdEC. This is be-
cause Q only and CrowdEC not only checked some wrong
entities and removed them but also eliminated those low
quality workers to control quality. For example, on ActiveNBA

dataset, Q only and CrowdEC achieved a quality of 96%
while the other two approaches were only 85% when the
process stopped. Another observation is that the precision of
all approaches went down during the front collection process
because the entity validation had not started to work then.
And during that time, the answers’ quality was relative high
because workers were patient and careful at the beginning.
Since CrowdEC and Q only had entity validation, the precision
of them went up, and finally achieved 96% on both datasets,
which was much higher than the other two approaches.
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Fig. 9. Varying # Distinct Entities: Cost
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Fig. 11. Varying # Distinct Entities: Recall
For recall, we can see from Figure 5 that with the number of

distinct answers increasing, the recall kept increasing on both
datasets. During the front collection process, since workers
had high quality, there was almost no difference among these
four approaches. When the distinct number began to increase,
CrowdEC and Q only achieved a higher recall than the other
two methods. Finally, since D only and None collected more
entities and stopped later, they achieved an almost equal high
recall. They had a recall of 92% on both datasets.
C. Evaluation on Incentive Pricing

We evaluated the incentive pricing module. We can see
from Figure 6 that at the beginning of the collection process,
NoBonus took less than AllBonus because few workers
provided duplicated answers at the beginning so that paying
bonus was wasteful. For example, when the distinct num-
ber was 150 on dataset ActiveNBA, AllBonus costs $30,
more than NoBonus ($20). As the collection process went,
it was necessary to provide Bonus schema to incent workers
to provide more answers because many duplicated answers
appear. Therefore, NoBonus took more than AllBonus af-
terwards. For example, NoBonus took $110 and $25 while
AllBonus took $80 and $17 on ActiveNBA and TopUniv

respectively when the collection completed. Our framework
CrowdEC outperformed both methods because we considered
the sample coverage and the workers’ individuality like qj
sufficiently. When a worker wj had a low qj , which indicated
that she was not willing to change new answers, assigning
NoBonus schema would be a better choice. For example, on
ActiveNBA, when the distinct number was 420, CrowdEC cost
$60, which saved nearly 200% and 50% than NoBonus and
AllBonus respectively. On dataset TopUniv, when the distinct
number was 95, CrowdEC also took much less than NoBonus

and AllBonus. Moreover, since there was worker elimination
module in all three approaches, they all stopped when about
420 and 95 distinct entities were collected on ActiveNBA and
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Fig. 12. Varying Threshold β
TopUniv respectively.

For precision, since we eliminated low quality workers
during the collection time, our method achieved high precision
on both ActiveNBA and TopUniv datasets (96% and 97%
respectively), as shown in Figure 7. Besides, since the worker
elimination algorithms of these 3 approaches were the same,
the precision of them was almost the same. Furthermore, we
can see from Figure 7 that the precision went down first and
went up afterwards because the entity validation had started
to work after some entities have been collected.

For recall, we can see from figure that the recall increased
with the number of distinct entities increasing. Finally, we
achieved recall of 92% on both datasets. Similar to the case of
precision, there was little difference about the recall among the
three methods as they used the same quality control method.
D. Comparation with Existing Work

In this section, we compared our framework CrowdEC

with Enumeration [25] and CrowdFill [21] . Enumeration
mainly focused on using collecting to estimate the cardinality
of the Ω without considering the cost and quality. CrowdFill
focused on the fill operation, but we can think about that
filling a new record in a database was the same as collecting a
new item in our task. CrowdFill used simple majority voting
entity validation approach like us to control quality, but it did
not consider duplicated answers.

For cost, we can see from Figure 9 that CrowdEC,
Enumeration and CrowdFill took almost the same at the be-
ginning because there were few duplicated answers and worker
elimination module had not started at that time. Therefore,
the advantage of CrowdEC has not been revealed yet. Then
with the number of distinct entities increasing, considering
many important factors like workers changing probability
qj , the sample coverage, CrowdEC can incent workers to
provide more distinct answers to reduce the global cost. Also,
CrowdEC can eliminate those workers who always submit
duplicated answers. Therefore, it achieved much less cost than
Enumeration. For example, on ActiveNBA dataset, CrowdEC
took $60, which saved 2 times more than Enumeration

and CrowdFill. And on TopUniv, Enumeration spent $34,
which also took 2 times more than CrowdEC ($14).

For precision, we can see from Figure 10 that the pre-
cision of Enumeration went down all the time because
there was not any quality control approach method applied
in it. But CrowdEC and CrowdFill can achieve a better
precision because it can find out some wrong answers and
remove them. Also, CrowdEC can eliminate those low quality
workers through entity validation to prevent them from provid-
ing wrong answers continuously. For example, CrowdEC and
CrowdFill achieved precision of about 95% on both datasets,
which was much higher than that of Enumeration (85% and
80% on ActiveNBA and TopUniv respectively).

For recall, we can see from Figure 11 that the recall kept in-
creasing on both datasets with the distinct number increasing.
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At the beginning, all approaches had the nearly same recall.
Afterwards, since CrowdEC and CrowdFill applied quality
control method, it achieved higher recall than Enumeration.
For example, on dataset ActiveNBA, when the distinct number
was 420, CrowdEC had a recall of 85%, which was more than
that of Enumeration (78%). Since Enumeration involved
many wrong distinct answers, it will collect more answers
than CrowdEC to arrive at the stop condition. Therefore, they
achieved almost the same recall at the end(90% and 92%
ActiveNBA and TopUniv respectively).

Evaluate β. In this paragraph, we evaluated an important
parameter β, which helped to decide whether to check an
entity. Intuitively, if we set β a high value, we can get a
relative higher quality but cost more. If we set β a low value,
we can save some money with sacrificing the quality. So we
varied the value of β and evaluate the cost, precision and
recall. For cost, we can see from the first picture in Figure
12 that when β “ 0.4, the costs on two datasets were about
$58(ActiveNBA) and $18(TopUniv). And with β increasing,
the cost increased because we must check more in those cases.
For example, when β “ 0.8, the costs on two datasets were
about $78(ActiveNBA) and $20(TopUniv). For precision, the
second picture of in Figure 12 showed that the precision
went up with β increases. For example, the precisions for
ActiveNBA and TopUniv were 88% and 90% respectively
when β “ 0.4. When β “ 0.8, the precisions increased to
98% for both datasets. It was noteworthy that when β ą 0.5,
the precision can be up to a high level(around or above
95%). This is not only because the entity validation is an
effective quality control method, but also workers can check
each other’s answers during their collection process. So it is
not necessary to set a so high value, which is kind of wasteful.
For recall, in the third picture, we can see that the recalls for
different β fluctuated slightly around 90% for both datasets,
which indicated that β had little impact on recall and CrowdEC

obtained most of entities in Ω robustly.
VII. CONCLUSION

We studied the crowdsourced entity collection problem. We
proposed an incentive-based framework that collects entities
with low cost and high quality. We devised a worker elimina-
tion approach to block those workers who always contribute
low quality or duplicated answers. We designed two pricing
schemes and formalized the optimal incentive pricing problem
that assigns the best pricing schemes to different workers.
Experimental results on real datasets showed that CrowdEC

outperformed state-of-the-art methods on both cost and quality.
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