
Distributed In-Memory Trajectory Similarity Search
and Join on Road Network

Haitao Yuan Guoliang Li
Department of Computer Science and Technology, Tsinghua University, Beijing, China

{yht16@mails., liguoliang@}tsinghua.edu.cn

Abstract—Many applications, e.g., Uber, collect large-scale
trajectory data from moving vehicles on road network. Trajectory
data analytics can benefit many real-world applications, such as
route planning and transportation optimizations. Two core oper-
ations in trajectory data analytics are trajectory similarity search
and join, and both of them rely on a trajectory similarity function
to measure the similarity between two trajectories. However,
existing similarity functions focus on trajectory points distance
and neglect the fact the trajectories should be on road network.
Obviously aligning trajectories on road network can remove the
noise points introduced by system errors. Toward this goal, we
define a road-network-aware trajectory similarity function to
measure trajectory similarity. To support trajectory similarity
search and join, we propose a filtering-refine framework. In the
filtering step, we compute a signature of each trajectory such
that if two trajectories are similar, they must share a common
signature. We utilize the signatures to prune a huge number of
dissimilar pairs. In the refine step, we design effective algorithms
to verify the candidates that are not pruned in the filtering
step. To support large-scale trajectories, we develop a system
DISON for Distributed In-Memory Trajectory Similarity Search
and Join on Road Network. DISON splits trajectories into disjoint
partitions by considering load balance and locality, and designs
effective global index to prune irrelevant partitions. Extensive
experiments on real datasets showed that our method achieved
high effectiveness, efficiency, and scalability and outperformed
existing solutions significantly.

I. INTRODUCTION

With the development of mobile Internet and positioning
technology, many systems, e.g, Uber, can easily track the
trajectories of moving vehicles. For example, Uber collects
the geo-locations of a vehicle in every six seconds, and
the sequence of these geo-locations form a trajectory of the
vehicle. Trajectory data analytics [26], [27], [34], [17], [39],
[18], [19] can benefit many real-world applications, such as
route planning, frequent trajectory based navigation systems,
and transportation optimizations [13], [21], [23]. Two core
operations in trajectory data analytics are trajectory similarity
search and join, and both of them reply on a trajectory
similarity function to measure the similarity between two
trajectories. Obviously, these vehicles are running on road net-
works. However, existing similarity functions neglect the fact
the trajectory points should be constrained on road network.

Toward this goal, we define a road-network-aware trajectory
similarity function to evaluate trajectory similarity. We first
use map matching algorithms [20], [22], [37], [5], [32] to
align trajectories on road networks, and each trajectory is

1Guoliang Li is the corresponding author.

transformed into a sequence of road segments. Then, we
find Longest Common Road Segment (LCRS) between two
trajectories, and define the trajectory similarity function based
on LCRS. Our similarity function has two salient features.
First, we can remove the noise points introduced by systematic
errors by aligning trajectories on road network. Second, most
of existing functions only use discrete trajectory points and
cannot capture the path between two points, while we use
shared road segments to compute more accurate similarity.

To support trajectory similarity search and join, we propose
a filtering-refine framework. We first define signatures of
trajectories, which are road segments. Then we propose a
filtering condition that if two trajectories are similar, they must
share a common signature. We utilize this property to prune
trajectory pairs that do not share common signatures. In the
refine step, we design an effective position-aware algorithm to
verify the pairs that are not pruned in the filtering step.

To process large-scale trajectory data, we design a dis-
tributed in-memory system on Spark. We first propose an
effective trajectory partitioner to split trajectories into different
partitions based on the first points and last points of trajecto-
ries. The basic idea is that if two trajectories are similar, then
the shortest path distance between their first points must be
smaller than a bound, and so are the distance between their
last points. Then we build a two-layer global index for the
partitions, and use the index to prune irrelevant partitions. For
each partition, we build a local index and use the filtering-
refine framework to find local results. To support trajectory
similarity join, we design a global partitioner based on the
two collections of trajectories, build a global index and use
the index to prune irrelevant partition pairs.

In summary, we make the following contributions.
(1) We propose a road-network-aware trajectory similarity
function, which achieves higher quality than existing trajectory
similarity functions (see Section II).
(2) We design an efficient filtering-refine framework for tra-
jectory search and join. We propose effective signature-based
filtering techniques and refine algorithms (see Section III).
(3) We propose a distributed framework for managing a
huge amount of trajectories and implement the framework on
Spark. We utilize the road network to divide trajectories into
different partitions, build a two-layer global index, and design
distributed search and join algorithms (see Section IV).
(4) We conducted a comprehensive evaluation on real world
datasets. The results showed that our method outperformed

2

v12v12
v13v13

v11v11

v8v8

v15v15

v6v6

v20v20

v10v10

v7v7

v2v2

v14v14

v5v5

v1v1 v3v3

v4v4

v18v18

v17v17

v16v16

v9v9

v19v19

{(T5, 3.5)}{(T5, 3.5)}

{(T3, 0)}{(T3, 0)}

{(T2, 0)}{(T2, 0)}

{(T1, 0)}{(T1, 0)}

{(T2, 2.5)}{(T2, 2.5)}

{(T5, 0)}{(T5, 0)}
{(T4, 0)}{(T4, 0)}

{(T4, 3), (T6, 4)}{(T4, 3), (T6, 4)}
{(T6, 0), (T3, 4)}{(T6, 0), (T3, 4)}

{(T1, 3.5)}{(T1, 3.5)}

Value

hv10, v11ihv10, v11i
hv5, v10ihv5, v10i
hv11, v12ihv11, v12i
hv12, v6ihv12, v6i
hv17, v12ihv17, v12i
hv16, v17ihv16, v17i
hv4, v14ihv4, v14i
hv9, v4ihv9, v4i
hv2, v3ihv2, v3i
hv1, v2ihv1, v2i
Key

Inverted Index()

QQ

T2T2

T3T3

T4T4

T5T5

3.5 2.5 1.5

1.5
2.5

2

3

1.5

3.5
5.5

2

3.5

4

4

3

4

2.5

3

2.5

1

3

T1T1

3

T6T6

Fig. 1. Example Trajectories on Road Network and Signatures Index(⌧ = 0.7)
existing approaches significantly (see Section V).

II. PRELIMINARIES

A. Road Network and Trajectory

Road Network. A road network is modeled as a weighted,
directed graph G = hV, Ei, where V is a vertex set and E
is an edge set. A vertex vi = hxi, yii 2 V represents the end
points of a road segment (e.g., road intersections), where xi, yi

respectively represent the longitude and latitude of the vertex.
An edge ek = h(vi, vj), wki 2 E represents a road segment
from vertex vi to vj and the corresponding length is wk. Note
that a road segment is usually short, e.g., around 50 meters.
For simplicity, we denote ek as hvi, vji if no ambiguity.
Trajectory. Each raw trajectory is a sequence of points
obtained from GPS devices and each point is a 2-dimensional
tuple with the form of (longitude,latitude) typically. Obvi-
ously, trajectory points should be on road network, but due
to systematic errors, the trajectory points may not be on road
network. To address this problem, we align trajectories onto
road segments using existing map-matching algorithms [5],
[32]. For simplicity, we assume the start point and end points
are aligned to vertices on the road networks, and we can
easily handle the case that the two points are aligned to road
segments. In this way, each trajectory is a path on the road
network from the start point to the end point.

Next we formally define a trajectory as below.
Definition 1: (Trajectory) Given a road network G =

hV, Ei, a trajectory T of a moving object on the road network
is a sequence of road segments, ht1, t2, · · · , tmi, where tk 2 E
is an edge. And the end vertex of ti is exactly the same as the
start vertex of ti+1, where i 2 [1, m� 1].

Example 1: For simplicity, we assume that
each road segment is bidirectional. As shown in
the left of Figure 1, there are seven trajectories
{Q, T1, T2, T3, T4, T5, T6}. For example, T1 contains five
edges:

⌦hv1, v2i,hv2, v3i,hv3, v4i,hv4, v9i,hv9, v8i
↵

B. Trajectory Similarity Function

The trajectory here is essentially a sequence of road seg-
ments which is similar to a sequence of letters for a string.
Therefore, similar to finding longest common substring be-
tween two strings, we find longest common road segments
between two trajectories and compute the length of these seg-
ments, denoted as O(T, Q). Then we compute the similarity
by normalizing O(T, Q) to make the similarity between 0 and
1. The normalization method is similar to Jaccard, which is

TABLE I
OVERLAP MATRIX FOR T3 AND T5

(a) road segments overlap
t31 t32 t33 t34 t35 t36

t51 0 0 0 0 3.5 0
t52 0 0 0 0 0 2
t53 0 0 0 0 0 0
t54 4 0 0 0 0 0

(b) O(T3, T5)

t31 t32 t33 t34 t35 t36
t51 0 0 0 0 3.5 3.5
t52 0 0 0 0 3.5 5.5
t53 0 0 0 0 3.5 5.5
t54 4 4 4 4 4 5.5

the ratio of intersection size to the union size for two sets. For
two trajectories, we take the longest common road segments as
the intersection, and the union is the road segments excluding
the intersection. The reason of using longest common road
segments as intersection is that in real applications, e.g.,
carpooling, the two trajectories can only share the longest
common road segments but not all the common road segments.
And the new similarity function LCRS (Longest Common Road
Segments) is defined as below.

Definition 2: (LCRS) Given two trajectory T = ht1, · · · , tm)
and Q = hq1, · · · , qni, O(T, Q) is computed as below.

O(T, Q) =

8
>><

>>:

0 if m = 0 or n = 0
|tm| + O(Tm�1, Qn�1) if tm = qn

max{ O(Tm�1, Qn),
O(Tm, Qn�1) } otherwise

where |tm| is the length of road segment tm and Tm�1 is the
prefix trajectory of T by removing the last road segment tm.
Then the similarity function LCRS is computed as below by
normalizing O(T, Q) into [0, 1].

LCRS(T, Q) =
O(T, Q)

|T | + |Q|�O(T, Q)

where |T | and |Q| respectively represent the length of T and
Q on road network.

According to the definition, given two trajectories T and
Q, we can utilize dynamic programming to compute O(T, Q)
with the time complexity O(mn) and then compute the
similarity based on O(T, Q). In addition, LCRS is symmetrical
such that LCRS(T, Q) = LCRS(Q, T).

Example 2: Considering T = T3 and Q = T5 in Fig-
ure 1, the directed road segment overlap matrix is shown in
Table I(a). According to the definition of LCRS, we construct a
matrix (M) to store overlapping road segments length, where
Mij represents O(T i, Qj), and we have O(T3, T5) = |t35| +
|t36| = 5.5 in Table I(b). Finally, we compute LCRS(T3, T5) =

O(T3,T5)
|T3|+|T5|�O(T3,T5)

= 5.5
20.5+13�5.5 = 0.1964. T3 and T5 share

three road segments hv16, v17i,hv5, v10i, and hv10, v11i, but
these road segments cannot be matched at same time because
they have different orders on these segments. For example,
if hv16, v17i is matched, which is the last segment in T5 as
well as the first segment in T3, then other matched segments
between these two trajectories would cause conflicts. Thus we
use longest common road segment to address this issue.

C. Trajectory Similarity Search and Join

We next define the trajectory similarity search and join
problems. We summarize the notations in Table II.

Definition 3: (Trajectory Similarity) Given two trajectories
T ,Q and threshold ⌧ , if LCRS(T, Q) � ⌧ , T and Q are similar.

Definition 4: (Trajectory Similarity Search) Given a query
trajectory Q, a trajectory set T = {T1, · · · , T|T |} and a
threshold ⌧ , the trajectory similarity search problem is to find
all trajectories T 2 T , such that LCRS(T, Q) � ⌧ .

Definition 5: (Trajectory Similarity Join) Given two sets
of trajectories T = {T1, · · · , T|T |} and Q = {Q1, · · · , Q|Q|},
and threshold ⌧ , the trajectory similarity join problem is to find
all similar pairs (T, Q) 2 T ⇥Q, such that LCRS(T, Q) � ⌧ .
Remark. Our method can be easily extended to support (1)
trajectories with temporal domain, (2) end points on road
segments; (3) other functions, as stated in our technical report2.

D. Related Work

Trajectory Similarity Measures. Most trajectory similarity
functions are based on distance aggregation between trajectory
points, such as dynamic time warping (DTW) [35], longest
common subsequence distance (LCSS) [29], edit distance
on real sequence (EDR) [7], edit distance with real penalty
(ERP) [6] and DISSIM [10]. The limitation of these similarity
functions is that the sample rate of trajectory points has
a major influence on the similarity. Moreover, some noise
points in a trajectory may cause a big trajectory distance.
Obviously, trajectories are essentially continuos, which indi-
cates that using continuous road segments instead of discrete
points to represent trajectory is more accurate. Although
for existing trajectory similarity functions, we can also first
align trajectories to road network and then use the similarity
functions on top of the transformed trajectories to compute the
similarity, they still use the point distance between trajectories
to compute the similarity but not using the shared common
roads. Xia et al. [33] propose a spatio-temporal similarity
measure for network constrained trajectory, but they just
consider the trajectory as a collection of road segments and
ignore the order of road segments. Similarly, Shang et al. [25]
propose a spatio-temporal function on road network, which
respectively aggregates shortest path distance and shortest time
difference between vertices of two trajectories as spatial and
temporal similarity, but they do not consider the order of
vertices. Wang et al. [31] define the Longest Overlapping
Road Segments (LORS) to measure similarity between two
map-matched trajectories. However, LCRS does not consider
the length of the trajectories. We propose the similarity by
normalizing the common overlapping road segments into [0,1]
and devise effective indexing techniques and algorithms.
Trajectory Similarity Search/Join. There are many studies
on trajectory similarity analytics, including trajectory simi-
larity search[3], [4], [8], [31] and similarity join[27], [25].
In addition, to manage and analyze large-scale data more
efficiently, there are also some distributed systems for spatial
and temporal analytics. Spatial-Hadoop [9] and Hadoop GIS
[1] are two distributed spatial data analytics systems over
MapReduce. And some studies focus on distributed spatial
join [36], [40]. However, these studies do not support tra-
jectory analytics. To address these problems, Xie et al.[34]

2http://dbgroup.cs.tsinghua.edu.cn/ligl/dison.pdf

proposed a distributed in-memory system to answer K-NN
queries among trajectories on Spark. However, they partition
the trajectory based on segments, which takes more time to
merge all candidate trajectories and replicate them to workers
for verifying when processing trajectory similarity search.
Moreover, they build dual indexing for storing trajectories
data, which consumes more memory and takes more time.
Another system DITA [26] partitions trajectories based on
selected pivot points. However, DITA cannot be used for
managing trajectories after map matching because it extracts
pivot points from raw trajectory points and builds global and
local indexes based on the pivot points. The main difference
between our work and DITA is that we support road network
and use a new function to evaluate trajectory similarity.

III. A FILTERING-REFINE FRAMEWORK

This section presents a filtering-refine framework to address
the trajectory similarity search and join problem. We first
propose an effective filtering technique in Section III-A and
then present the filtering-refine trajectory search and join
algorithms in Section III-B and Section III-C respectively.

A. Prefix and Signature

Given a query trajectory Q, for any data trajectory T
that is similar to Q, we have O(T,Q)

|T |+|Q|�O(T,Q) � ⌧ , and
thus O(T, Q) � ⌧ |Q|, i.e., the length of matching segments
between T and Q is at least ⌧ |Q|. In other words, the length
of non-matching segments of T to Q is at most (1�⌧)|Q|. We
find a position p such that the length of the first p segments
of Q is larger than (1� ⌧)|Q| but the length of the first p� 1
segments is not larger than (1 � ⌧)|Q|. We call these first p
segments the prefix of Q, denoted by Qp, and each segment
in Qp is called a signature.

Definition 6: (Prefix and Signature) Given a trajectory Q =
{q1, q2, · · · , q|Q|} and a threshold ⌧ , the prefix of Q is the set
of the first p segments of Q, such that

Pp
i=1 |qi| > (1� ⌧)|Q|

and
Pp�1

i=1 |qi|  (1 � ⌧)|Q|. Each segment in the prefix is
called a signature.

We can easily prove that if two trajectories have no common
signature in their prefixes, then they cannot be similar, as
proved in Lemma 1. For example, consider trajectory Q in
Figure 1. If the threshold ⌧ is 0.7, (1� ⌧)|Q| = 4.35 and the
prefix of Q is {hv17, v12i,hv12, v6i}. Then we consider trajec-
tory T5 and compute its prefix, which is {hv5, v10i,hv10, v11i}.
As Q and T5 have no common signature in their prefixes, they
cannot be similar[14].

Lemma 1: Given two trajectories T and Q, if they do not
share any signature, then they cannot be similar.
Filtering Condition. Given a query trajectory Q, all the data
trajectories that do not share signatures with Q can be pruned.
In other words, we find the trajectories that share common
signatures with Q as candidates.

B. Trajectory Search Algorithm

Indexing. Given a trajectory set T , we build an inverted index
for signatures of all trajectories in T . We scan the trajectories

TABLE II
NOTATIONS

Notation Description
T,Q, Ti, Qj trajectory

T ,Q trajectory set
T i,j , T i,Qj trajectory partition
T [1], Q[1] first points of T,Q

T [�1], Q[�1] last points of T,Q
SPD(u, v) shortest-path distance between u, v

N the number of partitions
IG global index

gi, gi,j road network partition
I, I0 local inverted index

LT i,j
, LT i

, LQj
longest length of trajectories in partition

Sf , Sl, ST i

f , ST i

l , SQj

f , SQj

l extended vertex set

BT i

f ,BT i

l ,BQj

f ,BQj

l border vertex set

in T and for each data trajectory T 2 T , we generate its
signatures. For each signature t in the prefix, we build an
inverted list I(t) and append T on I(t).
Filtering. Given a query Q, we first compute its prefix and
signatures. For each signature g, we get the inverted list of the
signature, I(g), and the trajectories on this list are candidates
of query Q.
Verification. For each candidate trajectory T , we verify
whether it is actually similar to Q. A naive method computes
the real LCRS of Q and T . If LCRS(Q, T) � ⌧ , we return
T as an answer; we prune it otherwise. As it is expensive to
compute LCRS, we propose an effective verification technique.
Position-Aware Verification. Consider a candidate T on
the inverted list of a segment g. Let D(T, g) and D(Q, g)
respectively denote the length of segments before g in T
and Q. If D(T, g) + D(Q, g) is larger than a bound, we do
not need to verify the candidate T . Next we discuss how
to estimate the bound. First, we assume that g is the first
matching segment between T and Q. As O(T,Q)

|T |+|Q|�O(T,Q) � ⌧ ,
we have O(T, Q) � ⌧

1+⌧ (|T | + |Q|). Thus the length of their
non-matching segments is at most |T | + |Q| � 2O(T, Q) =
1�⌧
1+⌧ (|T |+ |Q|). Thus if D(T, g)+D(Q, g) > 1�⌧

1+⌧ (|T |+ |Q|),
T and Q cannot be similar, and we do not need to compute
LCRS(Q, T); otherwise we compute LCRS(Q, T) to verify
candidate T . Then, if g is not the first matching segment
between T and Q, T must be also on the inverted list of their
first matching segment g0, and when we access g0, we have
already considered T and Q, and thus we can skip T when
accessing g. Towards this goal, we can maintain a hashset of
the candidate of Q. For each candidate T , if T is in the hashset;
we skip it; otherwise we use the position-aware method to
verify it and put it into the hashset.
Computing D(T, g) and D(Q, g). We can easily compute
D(Q, g) when generating signatures of Q. To avoid computing
D(T, g) online, we can materialize it with T on the inverted
list of g, i.e., instead of keeping T on the inverted list I(g),
we keep (T, D(T, g)) on I(g).
Overview of the Filtering-Refine Algorithm. Algorithm 1
shows the pseudo code of our algorithm.

Example 3: As shown in the right of Figure 1, we first
generate signatures of data trajectories and build an inverted
index for these signatures with the similarity threshold ⌧ =

Algorithm 1: Trajectory Similarity Search
Input: Data Trajectories T , Query Q, Threshold ⌧
Output: Answers A
Inverted Index I = IndexBuilding(T , ⌧) ;1

A FilteringAndRefine(Q, ⌧, I);2

Function IndexBuilding-offline
Input: Data Trajectories T , Threshold ⌧
Output: Inverted Index I
for T 2 T do1

for ti 2 T do2

if D(T, ti)  (1� ⌧)|T | then3

I(ti) (T, D(T, ti))4

Function FilteringAndRefine-online
Input: Query Q, Threshold ⌧ , Inverted Index I
Output: Answers A
candidate hashset C ;;1

for qi 2 Qp do2

if D(Q, qi)  (1� ⌧)|Q| then3

get inverted list I(qi) for signature qi;4

for (T, D(T, qi)) 2 I(qi) do5

if T /2 C then6

if D(T, qi)+D(Q, qi)  1�⌧
1+⌧ (|T | + |Q|)7

then
C T ;8

R = T \Q, TS = T \R, QS = Q\R;9

if LCRS(TS , QS) � ⌧ then A T ;10

0.7. For instance, the inverted list of signature hv12, v6i is
{(T4, 3), (T6, 4)}. Then we generate signatures of query tra-
jectory Q. The prefix length of Q is (1�⌧)|Q| = 4.35 and the
first two segments of Q is larger than 4.35, so the signatures
of Q are the first two segments {hv17, v12i,hv12, v6i}. For
signature hv17, v12i, we get inverted list {(T6, 0), (T3, 4)} and
then refine T6 and T3 by position-aware verification. After
position-aware verification, T6 and T3 are all candidates of the
query, so we put them into a hashset of candidates. Then we
compute LCRS(Q, T6) = 0.45 and LCRS(Q, T3) = 0.71, so we
can prune T6. Next, for signature hv12, v6i, we get inverted
list {(T4, 3), (T6, 4)}. Similarly, we execute position-aware
verification for T4. And D(T4, hv12, v6i) + D(Q, hv12, v6i) =
3 + 4 = 7 is larger than 1�⌧

1+⌧ (|T4| + |Q|) = 4.76, so we can
prune T4. As the candidate hashset contains T6, we can skip
the verification of T6. Finally, we get a similar trajectory set
{T3} for the query trajectory Q.
Early Termination in Verification. According to definition
of LCRS, the dynamic programming method of computing
O(T, Q) is inefficient since it takes O(mn) time complexity,
where m is the numbers of road segments in T and n is the
number of road segments in Q. Instead, we can efficiently
compute the overlap segment set R = T \ Q and |R| is an
upper bound of O(T, Q). If |R|

|T |+|Q|�|R| < ⌧ , we can prune
the pair as proved in Lemma 2.

Algorithm 2: Trajectory Similarity Join
Input: Trajectories Sets T and Q, Threshold ⌧
Output: Answers A
Inverted Index I = IndexBuilding(T , ⌧) ;1

Inverted Index I 0 = IndexBuilding(Q, ⌧);2

A MergingAndRefine(⌧, I, I 0);3

Function MergingAndRefine-online
Input: Threshold ⌧ , Inverted Indexes I and I 0

Output: Answers A
candidate pairs hashset C ;;1

for hqi, I 0(qi)i 2 I 0 do2

get inverted list I(qi);3

for h(Q, D(Q, qi)), (T, D(T, qi))i 2 I 0(qi)⇥ I(qi)4

do
if (Q, T) /2 C ^ (T, Q) /2 C then5

if D(Q, qi)+D(T, qi)  1�⌧
1+⌧ (|T |+ |Q|) then6

C (Q, T);7

if LCRS(Q, T) � ⌧ then A (Q, T)8

if (T, Q) 2 C then A (Q, T)9

Lemma 2: Given two trajectories Q and T , let R = T \Q.
If |R|

|T |+|Q|�|R| < ⌧ , T and Q cannot be similar.
If |R|

|T |+|Q|�|R| � ⌧ , we respectively generate sequence
TS = T \ R and QS = Q \ R for T and Q, and compute
O(TS , QS) using Dynamic Programming and have the fact
that O(TS , QS) is equal to O(T, Q). Generally, the average
number of road segment in TS and QS is far less than the
average number of road segments in T and Q, which will
greatly reduce the space complexity and time complexity. In
addition, when computing the value using the matrix, if we
find that a value is larger than ⌧

1+⌧ (|T |+ |Q|), we can stop as
T and Q share enough common segments and must be similar.
For example, taking the candidate trajectory T6 of Example 3
into consideration, we have R = {hv17, v12i,hv12, v6i} and

|R|
|T6|+|Q|�|R| = 0.45 < 0.7, so we can prune T6. Similarly,
for candidate T3, we get the intersection and compute LCRS

similarity(or O(QS , T3
S)). We first compute the lower bound

of O(QS , T3
S), which is ⌧

1+⌧ (|Q| + |T3|) = 14.41. When
computing O(QS , T3

S), if a value is beyond 14.41, we stop.
C. Trajectory Join Algorithm

Algorithm 2 shows the pseudo codes of the trajectory join.
Indexing. Given two trajectory sets T and Q, we respectively
build inverted index for signatures of all trajectories in T and
Q, which is similar to indexing in trajectory search algorithm.
Merging. For each signature q, if it has inverted list I(q)
on T and inverted list I 0(q) on Q, then the pairs (T, Q) 2
I(q)⇥ I 0(q) are candidate pairs.
Verification. For each candidate trajectory pair hT, Qi, we first
use the position-aware verification to verify it and then com-
pute LCRS(T, Q), which is similar to verification in trajectory
search algorithm.

IV. DISTRIBUTED FRAMEWORK
This section presents a distributed framework, which in-

cludes four main components. (1) Partitioning. We first pro-
pose a partitioning strategy to split trajectories into different

QQ
TT SPD(T [1], Q[1])SPD(T [1], Q[1])

SPD(T [�1], Q[�1])SPD(T [�1], Q[�1])

Fig. 2. An Example of Head-Tail Distance

�

�

T 1,1T 1,1 T 1,
p

NT 1,
p

N

�
T

p
N,1T

p
N,1 T

p
N,

p
NT

p
N,

p
N

�
�

�
��

�
�
�

g1g1 gp
Ngp
N

�
�

�

g1,1g1,1 g1,
p

Ng1,
p

N gp
N,1gp
N,1 gp

N,
p

Ngp
N,

p
N

�

�
�

Fig. 3. Two-Layer Tree Structure of Global Index

partitions in Section IV-A. (2) Global Indexing. We pro-
pose a global index and use it to find relevant partitions
in Section IV-B. (3) Trajectory Search. We devise effective
algorithms and indexes for distributed trajectory search in Sec-
tion IV-C. (4) Trajectory Join. We develop effective algorithms
for distributed trajectory join in Section IV-D.

A. Partitioning
Trajectory partitioning aims to split trajectories into differ-

ent partitions. To get high-quality partitions, we need to con-
sider several factors. (1) Locality. Similar trajectories should
be in the same partition (for avoiding data transmission among
different partitions, especially for join). (2) Load Balance.
Each partition has similar size to guarantee load balance. (3)
Complete and Disjoint. Each trajectory is in one and only
one partition, i.e., different partitions have no overlap to save
storage space and transmission cost. Towards this goal, we
propose a head-tail based trajectory partitioning method.
Head-Tail Based Prunning. We have an observation that
given two trajectories T and Q, if they are similar, their two
first points will not be too far and their two last points will
not be too far either. Formally, if the shortest-path distance
between their first points, called head distance, is larger than a
bound, then they cannot be similar; if the shortest-path distance
between their last points, called tail distance, is larger than a
bound, then they cannot be similar. We can utilize this property
to split the trajectories and prune irrelevant partitions.

Let T [1] and T [�1] respectively denote the first point and
last point of trajectory T . Let SPD(u, v) denote the shortest-
path distance between two vertices u and v. Based on Lem-
mas 3 and 4, given a query trajectory Q, if a data trajectory
T is similar to Q, the length of non-shared segments of T to
Q is at most 1�⌧

1+⌧ (|T | + |Q|) and 1�⌧
⌧ |Q|.

Lemma 3: Given a query trajectory Q and a threshold ⌧ , for
trajectory T , if it is similar to Q, the length of their non-shared
segments is at most 1�⌧

1+⌧ (|T | + |Q|).
Lemma 4: Given a query trajectory Q and a threshold ⌧ ,

for any trajectory, if it is similar to Q, the length of their
non-shared segments is at most 1�⌧

⌧ |Q|.

Moreover, if T and Q do not share the same point, their
head distance is not larger than 1�⌧

1+⌧ (|T | + |Q|) and 1�⌧
⌧ |Q|,

because the length of their non-shared segments is at least
the sum of the distance from the first point of T to the first
meeting point and the distance from the first point of Q to
the first meeting point, which is not smaller than the head
distance, as shown in Figure 2. Similarly, their tail distance
is not larger than 1�⌧

1+⌧ (|T | + |Q|) and 1�⌧
⌧ |Q|. Moreover, the

sum of the head distance and tail distance is not larger than
1�⌧
1+⌧ (|T | + |Q|) and 1�⌧

⌧ |Q| as proved in Lemmas 5 and 6.
Lemma 5: Given a query trajectory Q and a threshold ⌧ , if

trajectory T is similar to Q, we have
SPD(T [1], Q[1]) + SPD(T [�1], Q[�1])  1�⌧

1+⌧ (|T | + |Q|).
Lemma 6: Given a query trajectory Q and a threshold ⌧ , if

trajectory T is similar to Q, we have
SPD(T [1], Q[1]) + SPD(T [�1], Q[�1])  1�⌧

⌧ |Q|.
For example, considering Q and T4 in Figure 1, their LCRS

similarity is 0.169 and the sum of their head distance and tail
distance is SPD(v17, v11)+SPD(v10, v2) = 7+9 = 16. Suppose
the similarity threshold ⌧ is 0.7. We compute 1�⌧

1+⌧ (|Q| +
|T4|) = 0.3

1.7 (14.5 + 12.5) = 4.7647 and 1�⌧
⌧ |Q| = 6.2143.

As the sum of head distance and tail distance is larger than
the two bounds, they cannot be similar. Thus we can use the
head point and tail point to do pruning.
Partitioning. Suppose we want to split the trajectories into
N partitions. We first split the trajectories into

p
N groups

based on their first points, and then for each group, we further
partition the trajectories in this group into

p
N sub-groups

based on their last points. Each sub-group corresponds to a
partition. As each first point or last point must be a vertex on
the road network, we partition the trajectories based on the
vertices on the road network.
Step 1 - Trajectory partitioning based on first points. Formally,
we first assign each vertex with a weight which is the number
of trajectories whose first points are exactly the same as
the vertex. Then we utilize existing graph partitioning algo-
rithms, e.g., [15], to split the road network into

p
N groups

g1, g2, · · · , gp
N , where each group nearly has the same vertex

weight. Thus we get
p

N groups and each group contains a set
of vertices. We assign each trajectory into a group: a trajectory
is in a group if its first point is in the group.
Step 2 - Trajectory partitioning based on last points. Then for
each group gi, we use the similar idea to split the vertex intop

N sub-groups, gi,1, gi,2, · · · , gi,
p

N , based on the last points
of trajectories in this group. Each sub-group gi,j corresponds
to a partition T i,j and we get N partitions. Each sub-group
also contains a set of vertices. Next we assign each trajectory
into a partition: a trajectory is in partition T i,j if its first point
is in group gi and its last point is in sub-group gi,j .

We can see that if two trajectories have similar first points
and last points, they will be in the same partition, and this
partitioning strategy satisfies the above three properties. The
reasons are three-folds.
(1) If the first or last points between two trajectories have large
distance, they are assigned to different partitions. According

to Lemma 3-6, the first or last points of similar trajectories
must be close to each other, so dissimilar trajectories would be
assigned into different partitions and thus our strategy satisfies
the locality property.
(2) We guarantee each partition has the same vertex weight,
where the weight corresponds to the number of trajectories,
so each partition has the same number of trajectories and thus
our strategy can guarantee load balance.
(3) The graph partitioning algorithms guarantee each road ver-
tex is in one and only one partition. Therefore, in step 1, each
trajectory is assigned to one and only one group. Similarly
in step 2, for each group, each trajectory is assigned to one
and only one sub-group. And each sub-group corresponds to
a partition, so each trajectory is in one and only one partition
and thus our strategy satisfies the third property.

B. Local and Global Indexing

Global Indexing. The global index is a two-layer tree structure
as shown in Figure 3. In the root node, we keep a hashmap,
which maps a vertex into a group ID: v ! gi. In the first level,
each node corresponds to a group. For each group, we keep
a hashmap, which maps a vertex into a sub-group ID v !
gi,j . In the second level, each node corresponds to a partition.
For each partition T i,j , we also keep the longest length of
trajectories in this partition, which is denoted as LT i,j

. The
space size of the root is O(|V |) to keep the hashmap, where
|V | is the number of vertices in the road network. The space
of the first level is O(

p
N |V |). The space size of the second

level is N . Thus the global index size is O(
p

N |V | + N),
which is independent on the trajectory size and is very small.
Local Indexing. For each partition, we generate the signatures
for trajectories in this partition and build an inverted index as
described in Section III.

C. Trajectory Search

Given a query Q, we first use the global index to find the
relevant partitions and send the query to the relevant partitions.
Then, each partition uses the local indexes to find local results
and sends back the results to the master. The master collects
all the local results and gets the global results. Algorithm 3
shows the pseudo code.
Global Searching. Given a query Q, we can prune the group
gi if the head distances of all vertices in gi to the first point
of Q (Q[1]) are larger than (1�⌧)

⌧ |Q|. Toward this goal, we
extend Q[1] on the road network using the Disjtrka algorithm,
and find the set Sf of vertices within (1�⌧)

⌧ |Q| distance
to Q[1]. Meanwhile, we record the shortest-path distance
SPD(T [1], Q[1]) between Q[1] and each vertex T [1] in Sf .
Similarly let Sl denote the set of vertices within (1�⌧)

⌧ |Q|
distance to the last point of Q (Q[�1]) and we also record the
shortest-path distance SPD(T [�1], Q[�1]) for each vertex in
Sl. If a node in the first level overlaps with Sf , the node is
relevant. Then for each of its children, if it overlaps with Sl,
the leave node is a relevant partition (and all other partitions
are pruned). Finally, we further verify each relevant partition

Algorithm 3: Distributed Similarity Search
Input: Query Q, Threshold ⌧ , Data trajectories T
Output: Answers A
Partitioning and building global index IG for T ;1

Building local index for each partition;2

Candidate Partitions C = GlobalPruning(Q, ⌧, IG) ;3

for T i,j 2 C do4

I = local inverted index in T i,j ;5

A FilteringAndRefine(Q, ⌧, I)6

Function GlobalPruning

Input: Query Q, Threshold ⌧ , Global Index IG

Output: Candidate Partitions C
Sf = vertices by extending Q[1] within 1�⌧

⌧ (|Q|);1

Sl = vertices by extending Q[�1] within 1�⌧
⌧ (|Q|);2

for hvf , vli 2 Sf ⇥ Sl do3

T 0 the partition which overlaps with vf , vl by IG;4

for T i,j 2 T 0 do5

df = minvf2Sf\gi{SPD(Q[1], vf)};6

dl = minvl2Sl\gi,j{SPD(Q[�1], vl)};7

if df + dl  1�⌧
⌧ |Q| ^ df + dl  1�⌧

1+⌧ (|Q| + LT i,j)8
then C T i,j

T 2,1T 2,1

T 1,2T 1,2

T 2,2T 2,2

T 1,1T 1,1

query trajectory global searching

prune

Sf = {v17}Sf = {v17}

g1g1

g2g2

Sl = {v5, v10, v11}Sl = {v5, v10, v11}

g1,1g1,1

g2,2g2,2
g2,1g2,1

g1,2g1,2g1g1

g2g2

g1,2g1,2

g1,1g1,1

g2,1g2,1

g2,2g2,2

T5T5

T1, T2T1, T2

T4, T6T4, T6

T3T3

T1, T2, T5,T1, T2, T5,

T3, T4, T6T3, T4, T6

T1, T2, T3, T4, T5, T6T1, T2, T3, T4, T5, T6

Fig. 4. An Example of Global Searching

based on Lemmas 5 and 6. For each relevant partition T i,j ,
we compute df = minvf2Sf\gi{SPD(Q[1], vf)}, and dl =

minvl2Sl\gi,j{SPD(Q[�1], vl)}. If df +dl  1�⌧
1+⌧ (LT i,j

+|Q|)
and df + dl  1�⌧

⌧ |Q|, T i,j may contain results; otherwise
T i,j is pruned.

Example 4: Take trajectories and road network in Figure 1 as
an example. As shown in Figure 4, we get four partitions. We
respectively set query trajectory and similarity threshold as Q
and 0.8, and thus we get Sf = {v17} and Sl = {v5, v10, v11}.
Then we use the hashmap in the first point layer of global in-
dex to get the candidate nodes which overlap with Sf , and then
use the hashmaps in these candidate nodes to get candidate
leaf nodes which overlap with Sl. We get candidate partitions
T 1,1, T 1,2. Finally, we refine each candidate partition. For ex-
ample, for partition T 1,1, we compute df = SPD(v17, v17) = 0
and dl = SPD(v10, v5) = 3.5, thus df + dl = 3.5, which is
larger than the upper bound 1�⌧

1+⌧ (|Q| + L1,1) = 3.389, so we
can prune partition T 1,1. And the candidate partition is T 1,2.
Local Searching. Given a query Q, we use the local search
algorithm to compute local results as described in Section III.

Algorithm 4: Distributed Similarity Join
Input: Sets Q and T , Threshold ⌧
Output: Answers A
Build global index IG by partitioning Q and T together;1

CP = GlobalJoin(Q, T , ⌧, G) ;2

Build bi-graph G for pairs in CP using Cost Model;3

Apply Division-based Load Balancing in G;4

for (T i, Qj) 2 CP do5

if T i ! Qj 2 G then send trajectories T 2 T i and6

inverted index IT i

to Qj if T has candidates in Qj ;
if Qj ! T i 2 G then send trajectories Q 2 Qj and7

inverted index IQj

to T i if Q has candidates in T i;
A MergingAndRefine(⌧, IT i

, IQj

)8

Function GlobalJoin

Input: Sets Q and T , Threshold ⌧ , Global Index IG

Output: Candidate Partition Pairs CP

CP = ;;1

for Qj 2 Q do2

BQj

f , BQj

l = two layer border vertices of Qj ;3

SQj

f , SQj

l = set of vertices within 1�⌧
⌧ (|LQj |)4

distance to vertices in BQj

f , BQj

l ;
for hvf , vli 2 SQj

f ⇥ SQj

l do5

T 0 = partitions of T using vf , vl search in IG;6

for T i 2 T 0 do7

BT i

f , BT i

l = two layer border vertices of T i ;8

df = min
vf2SQj

f \BT i
f ,v0

f2BQj

f

{SPD(vf , v0
f)} ;9

dl = min
vl2SQj

l \BT i
l ,v0

l2BQj

l

{SPD(vl, v
0
l)} ;10

if df + dl  1�⌧
⌧ LQj ^ df + dl  1�⌧

⌧ LT i

11

then CP (T i, Qj)

D. Trajectory Join

Given two trajectory sets T and Q, we first construct a
global partitioner and use the partitioner to split them into
different partitions. We still first partition the vertices in the
road network, where the weight of each vertex is the number
of trajectories in T [Q whose first points or last points are the
vertex. Then we have two trajectories partitions T i and Qi in
the i-th partition, where T i denotes the i-th partition of T and
Qi denotes the i-th partition of Q. Thus we have a common
two-layer structure tree global index for T and Q, and the leaf
node corresponding to the i-th partition stores LT i

and LQi

,
which respectively are the longest length of trajectories in T i

and Qi. We then find all partition paris (T i, Qj) such that there
exist trajectory T 2 T i and Q 2 Qj such that LCRS(T, Q) � ⌧
based on global index. Afterward, we compute the join result
between T i and Qj by either sending T i to Qj or sending
Qj to T i. Without loss of generality, suppose |Qj | < |T i| and
Qj is sent to T i for each pair (T i, Qj). Finally, we find all
trajectories pairs (Q, T) 2 (T i, Qj) such that LCRS(T, Q) � ⌧
by querying local indexes, which is similar to the trajectory
join procedure in Section III-C.
Global Join. We build a global index IG for partitions of
T and Q. Without loss of generality, we find all candidate

TABLE III
TRAJECTORY DATASETS

Road Networks # of vertices # of edges
BRN 1,285,215 2,690,296

NRN(original) 21,259 29,901
NRN(new) 496,173 1,009,582

partitions from T for each partition Qj 2 Q by searching
every trajectory Q 2 Qj on the global index. However it is
inefficient to enumerate every trajectory Q 2 Qj and compute
its extended vertex sets to get candidate partitions. To address
this issue, we introduce border vertices, which are a small
subset of vertices, and we only extend the border vertices.

Definition 7: (Border Vertex) For each partition of the road
network, if a vertex has an edge to vertex in other partitions,
it is called a border vertex of the partition [41].

For example, considering T 1,1 in Figure 4. In the first point
layer, the corresponding partition of road network is g1 and
border vertices set of g1 is {v11, v12, v13, v15}. Similarly, in
the last point layer, the partition of road network is g1,1 and
the corresponding border vertex set is {v5, v6, v14}.

Let BQj

f and BQj

l respectively denote border vertex set
of Qj in the first and last point layer. Let SQj

f and SQj

l

respectively denote the set of vertices within 1�⌧
⌧ LQj

distance
to vertices in BQj

f and BQj

l . Similarly, we can get border
vertices sets BT i

f and BT i

l for each partition T i in T . In
global join, for partition Qj , we first use vertices in SQj

f and
SQj

l to get candidate partitions T 0. Then for partition T i in
T 0, we refine the partition pair (T i, Qj) based on Lemma 7.
Algorithm 4 shows the pseudo code.

Lemma 7: Given two trajectory partitions T i, Qj and a
threshold ⌧ , if T i and Qj have similar trajectories, we have
min{SPD(vf , v0

f)}+min{SPD(vl, v
0
l)} 1�⌧

⌧ LQj

,

where vf 2 BT i

f , v0
f 2 BQj

f , vl 2 BT i

l , v0
l 2 BQj

l .

Shuffle Decision. For each partition pair candidate (T i, Qj),
we send them to some workers for local joins. We implement
the cost model in DITA [26] to determine the data shuffle
direction between T i and Qj . The cost model constructs a
directed bi-graph between partitions of T and Q and proposes
a greedy algorithm to determine directions of edges in the
graph to achieve the best performance by reducing total costs.
Moreover, it is a bottleneck when the local join between T
and Q inherently causes huge total costs no matter how the
data shuffle between these two partitions. To maintain load
balancing, we implement Division-based Load Balancing from
DITA [26], which take full advantage of parallel computing by
dividing the workloads of partitions among workers.
Local Join. Given candidate partition pair (T i, Qj), we use
the local join algorithm to compute local join results as
described in Section III.

V. EXPERIMENTS

We conducted experiments to evaluate our techniques. Our
experimental goals includes: 1) evaluate the effectiveness our
similarity function, 2) evaluate the search efficiency of our
filtering-refine algorithm in a centralized setting, and 3) eval-
uate the efficiency and scalability of our distributed algorithms.

TABLE IV
PARAMETERS (DEFAULT VALUE IS HIGHLIGHTED)

Parameter Value
threshold ⌧ 0.5, 0.6, 0.7, 0.8(search), 0.9(join)

N 625, 1296(join), 2041, 4096(search), 6561
of cores 54, 108, 162, 216

sample rate 0.25(join), 0.5, 0.75, 1.0(search)

A. Experimental Setup

Datasets. We used two road networks: Beijing Road Network3

and Nanjing Road Network4. Beijing Road Network contained
1,285,215 vertices and 2,690,296 edges and the length of edge
was from tens of meters to several hundred meters. Nan-
jing Road Network contained 496,173 vertices and 1,009,582
edges. We used taxi trajectories in Beijing and Nanjing5. We
first aligned the trajectories on road network with the map
matching algorithm [20]. Table ?? showed trajectories, where
Avg# of road segments was the average road segments number
of trajectories after map-matching on road network.
Baseline methods. We compared our centralized framework
with five baselines: VP-Tree (vantage point tree) [11], MBE
(the Minimal Bounding Envelop) [30], Torch [31], TP (Two-
Phase algorithm) [25] and the centralized implementation of
DITA [26]. We also compared DISON with three distributed
baselines DFT [34], DITA and distributed implementation of
Torch. Note that some baselines(e.g. MBE, VP-Tree, TP, DFT
and DITA) used distance functions (e.g. Fréchet, DTW), which
was different from our similarity function. Therefore, we
converted similarity threshold ⌧ to distance threshold ⌘ by
the formulation ⌘ = � ln 1

⌧ , where ⌘ represents the distance
threshold and � was a constant value to guarantee that they
found the same number of results to make a fair comparison.
Besides, we adapted Torch to support similarity search on
LCRS. When comparing with Torch in the distributed setting,
we utilized our partition strategy and global pruning algorithm.
Parameters. The parameters used were shown in Table IV.
The default similarity threshold for search was set as 0.8 while
that for join was set as 0.9. The reason was that similarity
join required much more time to get results than search. For
partition number N , we respectively selected 4096 and 1296
as default number for similarity search and join. We sampled
25% of the data for similarity join, because the baselines were
rather slow on large datasets.
Cluster setup. All distributed experiments were conducted on
a cluster with 1 master node and 6 slave nodes. The master
node had an 8-core Intel(R) Xeon(R) E5420 @ 2.50GHz
processor and 40GB main memory reserved for Spark. Every
slave node consisted of 40-core Intel(R) Xeon(R) CPU E5-
2630 v4@2.20GHz and 124GB main memory. And each slave
node was connected to a Gigabit Ethernet switch running
Ubuntu 14.04.1 with Hadoop 2.7 and Spark 2.0.0.

B. Effectiveness of LCRS

To evaluate the effectiveness of our function LCRS, we
designed three methods to compare LCRS with other seven

3https://pan.baidu.com/s/1snbqswd
4https://figshare.com/articles/Urban Road Network Data
5http://more.datatang.com/en

0.5
0.6
0.7
0.8
0.9

DTW LCSS EDR ERP JAC LORS STS LCRS

ac
cu
ra
cy

Similarity functions

(a) Comparison on User-study

0.5
0.6
0.7
0.8
0.9

4 5 6 7

ac
cu
ra
cy

of classes

DTW
LCSS

EDR
ERP

JAC
STS

LORS
LCRS

(b) Comparison on Cluster

0.7

0.8

0.9

1.0

60 70 80 90 100

ac
cu
ra
cy

noise proportion(%)

DTW
LCSS

EDR
ERP

JAC
STS

LORS
LCRS

(c) Varying Noise Proportion

0.7

0.8

0.9

1.0

5 6 7 8 9

ac
cu
ra
cy

K

DTW
LCSS

EDR
ERP

JAC
STS

LORS
LCRS

(d) Varying K
Fig. 5. Effectiveness Comparison with Other Functions

existing trajectory similarity functions DTW[35], LCSS[29],
EDR[7], ERP[6], Jaccard on shared road segments(denoted as
JAC)[33], spatio-temporal similarity STS [25] and LORS [31].
User Study. As there was no benchmark, we sampled 100
trajectories from Beijing dataset and manually found the most
similar trajectory for each trajectory. As shown in Figure 5(a),
LCRS could correctly find the most similar trajectory for 95%
of trajectories while the accuracy of LCSS was only 70%.
Noise-based method. We used the method in [24] to com-
pare accuracy in noisy data between different functions. We
constructed two dataset, D1 and D2, where D1 had 10,000
trajectories sampled from Beijing and D2 generated 10,000
trajectories by adding noise for each trajectory in D1. Specif-
ically, we used one sample point of a trajectory as centre to
construct a circle with 40 meter radius and then leveraged
uniform sampling on the circle to get noisy point, which
substituted the sample point. The reason of 40 meters radius
was that the positioning accuracy of GPS was in the range 0-
40 meters at the 95% confidence level according to [2]. Then
we sampled 1,000 trajectories from D1 as query trajectories
and utilized different functions to process KNN search in D1

and D2. Finally, we compared query results and counted the
proportion of same query results between D1 and D2, which
reflected the accuracy in noisy data. Notably, we added the
noise by changing the position of trajectory points and the
number of points was determined by a given noise proportion.
Therefore, we explored the influence of noise proportion (the
proportion of noisy points in a trajectory) and parameter K
for KNN search, where the default value of noise ratio and K
were set as 80% and 5. And the corresponding results were
shown in Figure 5(c) and 5(d). In summary, LCRS and LORS

were more effective than other functions for computing the
similarity over trajectories, while LCRS was better than LORS,
because LCRS utilized the length to normalize the distance.
Clustering-based method. We utilized another objective eval-
uation method proposed in [16], which leverages nearest
neighbor (1NN) classifier [12], [28] to group labelled data into
disjoint parts. To get labelled data, we generated 7 trajectories
on Beijing Road Network and guaranteed any two trajectories
were far away from each other (e.g. they have no shared

1
10
100
1000
10000

0.50.60.70.80.9

tim
e(
m
ill
is
ec
on
d)

Similarity threshold

DISON
DITA

VP-Tree
MBE

Torch
TP

(a) Beijing(1.5M)

1
10
100
1000
10000

0.50.60.70.80.9

tim
e(
m
ill
is
ec
on
d)

Similarity threshold

DISON
DITA

VP-Tree
MBE

Torch
TP

(b) Nanjing(1.5M)
Fig. 6. Efficiency Comparison with Centralized Baselines(Search)

10

100

1000

10000

0.50.60.70.80.9

tim
e(
se
co
nd
)

Similarity threshold

DISON DITA TP

(a) Beijing(500K)

10

100

1000

10000

0.50.60.70.80.9

tim
e(
se
co
nd
)

Similarity threshold

DISON DITA TP

(b) Nanjing(500K)
Fig. 7. Efficiency Comparison with Centralized Baselines(Join)

road segments and the shortest path distance between their
first points or last points were larger than 5, 000 meters.), and
thus we got 7 classes of trajectories. Then for each class we
generated 1,000 trajectories with the form of points sequence
by sampling and adding noise, which was similar to adding
noise in the noise-based method. Trajectories sampled from
the same class were marked with the same class, so each class
consisted of 1,000 trajectories. As shown in Figure 5(b), we
respectively selected 4, 5, 6 and 7 classes and computed the
accuracy of clustering results using different functions. LCRS
outperformed other distance functions by 5% to 20%.

C. Comparison with Baselines
1) Centralized Trajectory Similarity Search: We first com-

pared the performance of different centralized methods for
trajectory similarity search on a single machine in our cluster
using two small datasets with 1.5M trajectories, which were
called Beijing(1.5M) and Nanjing(1.5M). For each dataset, we
randomly sampled 1,000 queries and compared the average
query latency. As shown in Figure 6, we made the following
observations: (1) All methods took more time for smaller
similarity thresholds. The intuition was that there were more
relevant trajectories. (2) DISON outperformed other methods
both on Beijing(1.5M) and Nanjing(1.5M) by 1-3 orders of
magnitude. For example, when the similarity threshold was
set as 0.8 on Beijing(1.5M), the latency was 2.1 milliseconds
for DISON while the latency of DITA, VP-Tree, MBE, Torch
and TP were respectively 51.1, 112.6, 2051.7, 32.3 and 706.3
milliseconds. The reasons were that DISON utilized effective
LCRS to compute similarity and we reduced the computational
complexity by replacing trajectories with intersection sequence
when verifying candidate trajectories. In addition, our pruning
algorithm with prefix and signatures can effectively prune most
irrelevant trajectories. (3) All methods performed better on
Nanjing(1.5M) than Beijing(1.5M), because there were more
trajectories similar to query trajectories on Beijing(1.5M) than
those on Nanjing(1.5M).

2) Centralized Trajectory Similarity Join: We also com-
pared DISON with centralized baselines for trajectory joins on

1
10
100
1000
10000

0.50.60.70.80.9

tim
e(
m
illi
se
co
nd
)

Similarity threshold

DISON
DITA

DFT
Torch

(a) Varying similarity: Beijing

1
10
100
1000
10000

25 50 75 100

tim
e(
m
illi
se
co
nd
)

Sample rate(%)

DISON
DITA

DFT
Torch

(b) Scalability: Beijing

1
10
100
1000
10000

54 108 162 216

tim
e(
m
illi
se
co
nd
)

of cores

DISON
DITA

DFT
Torch

(c) Scale-up: Beijing

1
10
100
1000
10000

25/54c 50/108c 75/162c 100/216c

tim
e(
m
illi
se
co
nd
)

Sample rate(%)/# of cores

DISON
DITA

DFT
Torch

(d) Scale-out: Beijing
Fig. 8. Comparison with Baselines on Beijing (Search)

1
10
100
1000
10000

0.50.60.70.80.9

tim
e(
m
illi
se
co
nd
)

Similarity threshold

DISON
DITA

DFT
Torch

(a) Varying similarity:Nanjing

1
10
100
1000
10000

25 50 75 100

tim
e(
m
illi
se
co
nd
)

Sample rate(%)

DISON
DITA

DFT
Torch

(b) Scalability: Nanjing

1
10
100
1000
10000

54 108 162 216

tim
e(
m
illi
se
co
nd
)

of cores

DISON
DITA

DFT
Torch

(c) Scale-up: Nanjing

1
10
100
1000
10000

25/54c 50/108c 75/162c 100/216c

tim
e(
m
illi
se
co
nd
)

Sample rate(%)/# of cores

DISON
DITA

DFT
Torch

(d) Scale-out: Nanjing
Fig. 9. Comparison with Baselines on Nanjing (Search)

0.1

1

10

100

0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

tim
e(
m
illi
se
co
nd
)

similarity threshold

DISON/global
DISON/local

DITA/global
DITA/local

DITADISON

(a) Search on Beijing

0.1

1

10

100

0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

tim
e(
m
illi
se
co
nd
)

similarity threshold

DISON/global
DISON/local

DITA/global
DITA/local

DITADISON

(b) Search on Nanjing
Fig. 10. Query Latency in Global/Local Stage

a single machine using two small datasets with 500K trajec-
tories, which were called Beijing(500K) and Nanjing(500K).
Since there were no effective join algorithms for Torch,
VP-Tree and MBE, we only compared our methods with other
two baselines. And for each dataset, we processed trajectory
self-join and reported query latency. As shown in Figure 7,
DISON outperformed DITA and TP on Beijing(500K) and Nan-
jing(500K). The reason were two-folds. First, DITA processed
trajectory join between two trajectories sets by executing
trajectory search for each trajectory in one set. This would
cause duplicate computation especially for self-join. Second,
TP generated candidate trajectories set for each trajectory and
then refined trajectories in each candidate set. Although TP

avoided repeated verification by removing refined trajectories
from the candidate set, the candidate generation procedure still
caused replicated calculation. In contrast, our methods utilized
inverted index and prefix pruning to generate as little candidate
pairs as possible. Meanwhile, we keep a candidate pair hashset
to avoid generating replicated candidate pairs.

3) Distributed Similarity Search: We compared different
distributed methods for trajectory similarity search on Beijing
and Nanjing, and we randomly sampled 1,000 queries and
evaluated the average query latency. Specifically, we compared
these methods in four aspects: (1) The query efficiency by
varying thresholds. (2) The scalability by varying dataset sizes.
(3) Scale-up by varying number of cores. (4) Scale-out by
varying both dataset sizes and the number of cores.

Efficiency. Based on results in Figure 8(a) and Figure 9(a),
we made the following observations. (1) DISON outperformed
other distributed methods on Beijing and Nanjing by 1-3
orders of magnitude. The reasons were three-folds. First,
DISON used effective signature-based techniques to prune

many dissimilar results. Second, DFT required two iterations
for executing the whole search procedure. In the first iteration,
DFT collected candidate trajectory IDs by pruning dissimilar
trajectories. And in the second iteration, it rebuilt and verified
the trajectories based on the dual index. Therefore, DFT took
more time than DISON, DITA and Torch, which only included
one iteration. Third, DITA used the minimal distance between
pivot points and MBRs for global pruning, which was too
loose to filter irrelevant partitions. In addition, the efficiency
of local index mainly depended on the selections of pivot
points. If the number of pivot points was small or there were
many unused pivot points, the local pruning power would be
decreased and the number of candidate trajectories would be
more. In contrast, when the number of pivot points was more,
it would take more time to get candidate trajectories. Although
we extended Torch to support distributed trajectory search
with our partition strategy and global pruning algorithms,
the local pruning method in Torch cannot prune as many
dissimilar trajectories as DISON. (2) The increase of latency
in DISON was slower than Torch, DITA and DFT when the
similarity threshold decreased, because we designed more
effective pruning algorithms to filter dissimilar trajectories, and
thus the increased number of candidate trajectories was less
than Torch, DITA and DFT. As shown in Figure 10, DISON
took less time in local stage, which proved the effectiveness
of global pruning. As DISON had larger pruning power, the
local stage latency of DISON was more stable than DITA.

Scalability. According to the results in Figure 8(b) and Figure
9(b), we found that the performance gap between DISON and
baselines increased with increasing data sizes due to our effec-
tive signature-based techniques. In addition, the query latency
of DISON was stable for different sample rates. Especially, it
only took 0.55, 0.64 and 0.74 milliseconds on Nanjing for
the corresponding sample rate of 25%, 50% and 75%. The
reason was that our well-designed algorithms can filter most
dissimilar trajectories and the cost of query latency in DISON

was mainly caused by global and local pruning, which was
almost constant for different data size.

Scale-up. As shown in Figure 8(c) and Figure 9(c), it was
obvious that the performance would be improved for all

100

1000

10000

100000

0.50.60.70.80.9

tim
e(
se
co
nd
)

Similarity threshold

DISON
DITA

(a) Varying similarity: Beijing

100

1000

10000

100000

25 50 75 100

tim
e(
se
co
nd
)

Sample rate(%)

DISON
DITA

(b) Scalability: Beijing

100

1000

10000

100000

54 108 162 216

tim
e(
se
co
nd
)

of cores

DISON
DITA

(c) Scale-up: Beijing

100

1000

10000

100000

25/54c 50/108c 75/162c 100/216c

tim
e(
se
co
nd
)

Sample rate(%)/# of cores

DISON
DITA

(d) Scale-out: Beijing
Fig. 11. Comparison with Baseline on Beijing (Join)

100

1000

10000

0.50.60.70.80.9

tim
e(
se
co
nd
)

Similarity threshold

DISON
DITA

(a) Varying similarity:Nanjing

100

1000

10000

25 50 75 100

tim
e(
se
co
nd
)

Sample rate(%)

DISON
DITA

(b) Scalability: Nanjing

100

1000

10000

54 108 162 216

tim
e(
se
co
nd
)

of cores

DISON
DITA

(c) Scale-up: Nanjing

100

1000

10000

25/54c 50/108c 75/162c 100/216c

tim
e(
se
co
nd
)

Sample rate(%)/# of cores

DISON
DITA

(d) Scale-out: Nanjing
Fig. 12. Comparison with Baseline on Nanjing (Join)

methods when we increased the number of cluster cores.
Another observation was that DISON still outperformed other
baselines. On the one hand, DFT cannot guarantee the balance
of partitioning, which would alleviate the data skew problem
when the workers reduced parallelism by decreasing the
number of cluster cores. On the other hand, DISON, Torch
and DITA aimed to partition similar trajectories into the same
partitions. Therefore, the number of partitions for Local Search
was less than DFT and the Spark jobs were correspondingly
less. Moreover, each core would be assigned to more jobs
when reducing cluster cores and the latency of each Spark
job in DITA was proved to be bigger than that in DISON,
which caused the faster drop of performance in DITA. For
example, if we decreased the number of cores from 108 to
54 on Beijing, the cost of DITA was respectively 39.66 and
48.54 milliseconds while DISON only took 2.50 and 2.81
milliseconds. In addition, Torch needed to validate more
trajectories than DISON in each candidate partition, which
increased the latency of each Spark Job in Torch.

Scale-out. As shown in Figure 8(d) and Figure 9(d), almost
all methods took more time when we increased data size
and cluster cores. The reason was that all methods were
implemented based on master-slave mode distributed system
Spark [38], computing (e.g. global pruning, collecting results
from slave nodes) on master node cannot be improved by
increasing cluster cores. In contrast, the master node would
be the bottleneck of the performance if the trajectory data
size was more than a certain threshold. Importantly, the gap
between DISON and baselines was also increased, which indi-
cated that our method was more stable than baselines. That is,
if given sufficient computing resources, DISON could process
huge amount of trajectories more efficiently than baselines.

4) Trajectory Similarity Join: As DFT and Torch cannot
support trajectory similarity join, we only compared DISON

with DITA on Beijing and Nanjing. For each dataset, we
processed trajectory self-join and reported query latency.

Efficiency. Figure 11(a) and Figure 12(a) showed the results.
Unfortunately, DITA cannot finish join processing on Beijing
within 10 hours when the threshold was less than 0.7, so
we ignored the results of DITA. And we had the following

observations: (1) Both DISON and DITA took more time to
process trajectory similarity join with the decrease of similarity
thresholds. It was clear that the less the similarity threshold
was, the more the join results were. Therefore, global join
would generate more candidate partition pairs to execute local
join, and the local join would verify more candidate trajectory
pairs if the threshold was smaller. (2) DISON outperformed
DITA by 1-3 orders of magnitude both on Beijing and Nanjing.
For example, when the threshold was set as 0.9, DISON

only took 714.27 seconds Beijing while DITA took 6760.56
seconds. On the one hand, the pruning power of DITA was
proved to be weaker than that of DISON, because we designed
effective algorithm to select candidate partition pairs, which
reduced Spark jobs executed on workers. (3) The gap between
DISON and DITA increased with the decreasing of threshold.
For instance, the threshold was 0.7, DISON took 1, 229 seconds
on Beijing and DITA took 29, 307 seconds.
Scalability. As shown in Figure 11(b) and Figure 12(b),
DISON was significantly better than DITA. Moreover, DITA

seriously depended on the selection of pivot points, because
few pivot points would reduce the pruning power while more
pivot points would increase the pruning latency. For instance,
Beijing was more complicated than Nanjing, because the
trajectory data on Beijing required to use more pivots points
to represent them for DITA, so DITA cannot process similarity
join on Beijing efficiently.
Scale-up. As shown in Figure 11(c) and Figure 12(c), DISON
and DITA gained better performance with the increase of the
number of cores, because more workers indicated that there
were more running jobs at the same time.
Scale-out. As shown in Figure 11(d) and Figure 12(d), DISON
was better than DITA, and DITA could not efficiently handle
larger dataset (especially complicated data) even given more
workers, because DISON designed more effective algorithms
to get candidate partition pairs.

D. Impacts of N

We compared the query latency of searching on Beijing and
Nanjing between DISON and baselines by varying the number
of partitions. As shown in Figure 13, both the performance
on Beijing and Nanjing tended to be better for all methods by

1
10
100
1000
10000

625 1296 2401 4096 6561

tim
e(
m
ill
is
ec
on
d)

of partitions

DISON
DITA

DFT
Torch

(a) Search on Beijing

1
10
100
1000
10000

625 1296 2401 4096 6561

tim
e(
m
ill
is
ec
on
d)

of partitions

DISON
DITA

DFT
Torch

(b) Search on Nanjing
Fig. 13. Varying the Number of Partitions

increasing the number of partitions. The reason was that the
data size in each partition was decreased and thus the paral-
lelism of computing on workers was improved by increasing
the number of partitions. However, the degree of performance
improvement slowly declined with the increase of partitions,
when the amount of partitions exceeds a certain threshold.
Because too many partitions means too many tasks and each
task was too tiny, the bottleneck of the overall performance
would be the cost of task initialization and results collection.

VI. CONCLUSIONS

We proposed a road-network-aware trajectory similarity
function. We designed a filtering-refine framework to solve
trajectory similarity search and join problem. We designed a
scalable distributed framework for processing large-scale tra-
jectories. We proposed an effective partitioning strategy, built
global index for these partitions and local inverted index for
each partition. We designed effective global pruning and local
search algorithms to filter irrelative partitions and dissimilar
trajectories. Extensive experiments on real datasets verified
the effectiveness of our similarity function and efficiency and
scalability of our centralized and distributed methods.

ACKNOWLEDGEMENT

This work was supported by 973 Program of China
(2015CB358700), NSF of China (61632016, 61472198,
61521002, 61661166012), Huawei, and TAL education.

REFERENCES

[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz.
Hadoop-gis: A high performance spatial data warehousing system over
mapreduce. PVLDB, 6(11):1009–1020, 2013.

[2] M. A.Quddus, W. Y.Ochieng, and R. B.Nolandb. Current map-matching
algorithms for transport applications: State-of-the art and future research
directions. Transportation Research Part C, 15(5):3121–328, 2007.

[3] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient
trajectory joins using symbolic representations. In MDM, pages 86–93,
2005.

[4] P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed
spatiotemporal trajectory joins. In GIS, pages 182–191, 2005.

[5] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching
vehicle tracking data. In VLDB, pages 853–864, 2005.

[6] L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance.
In VLDB, pages 792–803, 2004.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for
moving object trajectories. In SIGMOD, pages 491–502, 2005.

[8] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of
large sets of moving object trajectories. In TIME, pages 79–87, 2008.

[9] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In ICDE, pages 1352–1363, 2015.

[10] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar
trajectory search. In ICDE, pages 816–825, 2007.

[11] A. W. Fu, P. M. Chan, Y. Cheung, and Y. S. Moon. Dynamic vp-tree
indexing for n-nearest neighbor search given pair-wise distances. VLDB
J., 9(2):154–173, 2000.

[12] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques,
3rd edition. Morgan Kaufmann, 2011.

[13] J. Jiang, C. Xu, J. Xu, M. Xu, N. Zheng, and K. Kong. Route planning
for locations based on trajectory segments. In SIGSPATIAL.

[14] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[15] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In
PS, page 29, 1995.

[16] E. J. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: A survey and empirical demonstration. Data Min. Knowl.
Discov., 7(4):349–371, 2003.

[17] J. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-
detect framework. In ICDE, pages 140–149, 2008.

[18] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, pages 593–604, 2007.

[19] Z. Li, J. Lee, X. Li, and J. Han. Incremental clustering for trajectories.
In DASFAA, pages 32–46, 2010.

[20] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-
matching for low-sampling-rate GPS trajectories. In SIGSPATIAL, pages
352–361, 2009.

[21] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data.

[22] P. Newson and J. Krumm. Hidden markov map matching through noise
and sparseness. In SIGSPATIAL, pages 336–343, 2009.

[23] M. Qiu and D. Pi. Mining frequent trajectory patterns in road network
based on similar trajectory. In IDEAL, pages 46–57, 2016.

[24] S. Ranu, D. P, A. D. Telang, P. Deshpande, and S. Raghavan. Indexing
and matching trajectories under inconsistent sampling rates. In ICDE,
pages 999–1010, 2015.

[25] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Trajectory similarity join in spatial networks. PVLDB, 10(11):1178–
1189, 2017.

[26] Z. Shang, G. Li, and Z. Bao. Dita: Distributed in-memory trajectory
analytics. In SIGMOD, 2018.

[27] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng. Signature-based
trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870–
883, 2017.

[28] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

[29] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar
multidimensional trajectories. In ICDE, pages 673–684, 2002.

[30] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. J. Keogh. In-
dexing multi-dimensional time-series with support for multiple distance
measures. In KDD, pages 216–225, 2003.

[31] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin. Torch:
A Search Engine for Trajectory Data. In SIGIR, pages 535–544. ACM,
2018.

[32] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching
speed: Localizing globalb curve-matching algorithms. In SSDBM, pages
379–388, 2006.

[33] Y. Xia, G. Wang, X. Zhang, G. B. Kim, and H. Bae. Spatio-temporal
similarity measure for network constrained trajectory data. Int. J.
Computational Intelligence Systems, 4(5):1070–1079, 2011.

[34] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory similarity search.
PVLDB, 10(11):1478–1489, 2017.

[35] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In ICDE, pages 201–208, 1998.

[36] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query
processing in cloud. In ICDE, pages 34–41, 2015.

[37] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. An interactive-voting
based map matching algorithm. In MDM, pages 43–52, 2010.

[38] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In USENIX,
pages 15–28, 2012.

[39] D. Zhang, N. Li, Z. Zhou, C. Chen, L. Sun, and S. Li. ibat: detecting
anomalous taxi trajectories from GPS traces. In UbiComp, pages 99–
108, 2011.

[40] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: parallelizing
spatial join with mapreduce on clusters. In CLUSTER, pages 1–8, 2009.

[41] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong. G-tree: An efficient
and scalable index for spatial search on road networks. IEEE TKDE,
27(8):2175–2189, 2015.

