
A Location-Aware Publish/Subscribe Framework for
Parameterized Spatio-Textual Subscriptions

Huiqi Hu† Yiqun Liu† Guoliang Li† Jianhua Feng† Kian-Lee Tan‡

†Department of Computer Science and Technology, TNList, Tsinghua University, Beijing 100084, China
‡School of Computing, National University of Singapore, Singapore.

hhq11@mails.tsinghua.edu.cn,{liguoliang,yiqunliu,fengjh}@tsinghua.edu.cn,tankl@comp.nus.edu.sg

Abstract—With the rapid progress of mobile Internet and
the growing popularity of smartphones, location-aware pub-
lish/subscribe systems have recently attracted significant atten-
tion. Different from traditional content-based publish/subscribe,
subscriptions registered by subscribers and messages published
by publishers include both spatial information and textual de-
scriptions, and messages should be delivered to relevant sub-
scribers whose subscriptions have high relevancy to the messages.
To evaluate the relevancy between spatio-textual messages and
subscriptions, we should combine the spatial proximity and
textual relevancy. Since subscribers have different preferences
– some subscribers prefer messages with high spatial proximity
and some subscribers pay more attention to messages with high
textual relevancy, it calls for new location-aware publish/subscribe
techniques to meet various needs from different subscribers.

In this paper, we allow subscribers to parameterize their
subscriptions and study the location-aware publish/subscribe
problem on parameterized spatio-textual subscriptions. One big
challenge is to achieve high performance. To meet this require-
ment, we propose a filter-verification framework to efficiently
deliver messages to relevant subscribers. In the filter step, we
devise effective filters to prune large numbers of irreverent results
and obtain some candidates. In the verification step, we verify the
candidates to generate the answers. We propose three effective
filters by integrating prefix filtering and spatial pruning tech-
niques. Experimental results show our method achieves higher
performance and better quality than baseline approaches.

I. INTRODUCTION

Content-based publish/subscribe systems have been widely
deployed and accepted in many applications, e.g., dbworld1

and Google scholar citation alert2. Subscribers register their
interests as subscriptions and publishers post messages in a
publish/subscribe system, and the system delivers messages
to relevant subscribers whose subscriptions have high rele-
vancy to the messages. With the rapid progress of mobile
Internet and the growing popularity of smartphones, sub-
scribers have location-aware requirement in their subscrip-
tions. For example, in a Groupon system, subscribers reg-
ister their spatio-textual subscriptions to capture their in-
terests (e.g., “nike t-shirt discount at Seoul, Ko-
rea”). For each Groupon message with textual description and
location (e.g., “nike clothing at cheap prices,
including running shoes, t-shirts at nike fac-
tory store, Seoul, Korea”), the system delivers the message
to relevant subscribers. There are many other real-world appli-
cations, e.g., location-aware advertisements and location-aware
tweets/news delivery [3, 15]. For example, seafood restaurants
in Korea want to deliver their advertisements to tourists
at Korea (e.g., ICDE’15 attendees) who like seafood.

1https://research.cs.wisc.edu/dbworld/
2http://scholar.google.com

Twitter users want to be informed of relevant tweets posed
near their locations.

Different from the content-based publish/subscribe prob-
lem, subscriptions and messages in our problem include both
spatial information and textual descriptions. Although Li et.
al. [15] studied the location-aware publish/subscribe prob-
lem, they separately handled the textual relevancy and spatial
proximity and delivered a message to relevant subscribers if
(1) all tokens of their subscriptions appear in the message
and (2) these subscriptions have spatial overlaps with the
message. To better quantify the relevancy, existing studies used
a parameter to combine textual relevancy and spatial proxim-
ity [4, 6]. Generally subscribers have different preferences –
some subscribers prefer messages with high spatial proximity
while other subscribers pay more attention to messages with
large textual relevancy to their subscriptions. It calls for new
location-aware publish/subscribe techniques to meet various
needs from different subscribers.

In this paper, we allow subscribers to parameterize their
subscriptions and study the location-aware publish/subscribe
problem on parameterized spatio-textual subscriptions. One big
challenge in a location-aware publish/subscribe system is to
achieve high performance as a publish/subscribe system is re-
quired to support millions of subscriptions and filter a message
in milliseconds. To meet this high-performance requirement,
we propose a filter-verification framework to efficiently deliver
messages to relevant subscribers. In the filter step, we devise
effective filters to prune large numbers of irreverent results
and obtain some candidates. In the verification step, we verify
the candidates to generate the final answers. We propose three
effective filters to achieve high filtering power.

To summarize, we make the following contributions. (1)
We formulate the location-aware publish/subscribe problem on
parameterized spatio-textual subscriptions which support flexi-
ble requirements from different subscribers (see Section II). (2)
We devise a filter-verification framework to deliver messages
to relevant subscribers. We propose the spatial-oriented prefix
which integrates spatial-pruning techniques into the prefix
to prune irrelevant subscriptions (see Section III). (3) We
present the region-aware prefix which utilizes hierarchical
spatial index to improve the pruning power (see Section IV).
(4) We seamlessly integrate prefix filtering and spatial-pruning
techniques and propose the spatio-textual prefix to further
enhance pruning power. We devise a cost-based method to
select the best filtering strategy (see Section V). To the best
of our knowledge, this is the first attempt to integrate prefix
filtering and spatial-pruning techniques to support location-
aware publish/subscribe. (5) The experimental results show our
method achieves high quality and good performance and sig-
nificantly outperforms baseline approaches (see Section VII).

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015711

II. PROBLEM FORMULATION

Spatio-Textual Subscription. Subscribers register spatio-
textual subscriptions to capture their interests. A spatio-textual
subscription s includes a textual description sT and a spatial
location sL, denoted by s = (sT, sL). sT is a set of tokens
{t1, t2, · · · , t|sT|} and each token ti is associated with a weight
w(ti). The token weight can be set as the inverted document
frequency (IDF) of the token. sL is a spatial location with
latitude and longitude. For simplicity, in the paper we use
subscribers and subscriptions interchangeably.

Spatio-Textual Message. A spatio-textual message m also
consists of a textual description mT and a message location
mL, denoted by m = (mT,mL).

Location-Aware Publish/Subscribe. A location-aware pub-
lish/subscribe system delivers each message to its relevant
subscriptions. To quantify the relevancy between a subscription
and a message, we use a similarity-based method. Before
introducing the spatio-textual similarity metrics, we first define
the spatial similarity between a message m and a subscription
s. For simplicity, we use m, mT, mL (and s, sT, sL) inter-
changeably if the context is clear.

Definition 1 (Spatial Similarity): The spatial similarity
SSIM(s,m) between s and m is defined as

SSIM(s,m) = max(0, 1− DIST(sL,mL)

MAXDIST
).

where DIST(sL,mL) is the Euclidian distance between sL and
mL, and MAXDIST is the maximum user-tolerated Euclidian
distance between subscriptions and messages (which can be
set to the maximum distance between subscriptions).

Next we define the textual similarity between a subscription
s and a message m.

Definition 2 (Textual Similarity): The textual similarity
TSIM(s,m) between s and m is defined as

TSIM(s,m) =

∑
t∈sT∩mT

w(t)∑
t∈sT w(t)

.

The function is similar to the weighted Jaccard coefficient
and the difference is that the Jaccard function uses the
union size of two token sets as the denominator. However,
in a publish/subscribe system, messages usually have
many more tokens than subscriptions, and the union
size will significantly affect the textual similarity. For
instance, consider a subscription “kobe, shoes” and two
messages “Kobe NBA player” and “Kobe Bryant
basketball shoes sales promotion. Large
amount of discount.” Obviously the second message
is more relevant to the subscription. However, the second
message has smaller Jaccard similarity to the subscription.
Instead, our similarity function can alleviate this problem.
Moreover, our techniques can be easily extended to support
other functions (see Section VI).

Then, we combine the textual similarity and spatial simi-
larity to quantify the spatio-textual similarity.

Definition 3 (Spatio-Textual Similarity): The spatio-
textual similarity SIM(s,m) between s and m is

SIM(s,m) = δ · TSIM(s,m) + (1− δ) · SSIM(s,m).

m1

s0

s1

s2
s3

s4
s5

s6

s7

s8
s9

R

R4

R

0

R5

6

R3

m2

weight

id

0.5

t5

0.4

t4

0.3

t3

0.2

t2 t1

0.1

0.550.6

s3

sSIM(s,m) 0.6

s2s s0 s1

0.6 0.7

s4

0.55

s5

0.4

s6

0.3

s7 s8 s9

0.4 0.3

1 2

s10

0.4

s10

Fig. 1. A Running Example.

where δ is a preference parameter to tune the weight of textual
and spatial similarity. The larger δ is, the more important the
textual similarity is. A subscription s and a message m is called
relevant if their similarity exceeds a threshold τ . Subscribers
usually have different preferences and requirements on δ and
τ . For instance, some subscribers prefer highly relevant results
while some subscribers want to get more results. To address
these problems, we allow subscribers to parameterize their
parameters δ and τ .

Parameterized Spatio-Textual Subscription. A parameter-
ized spatio-textual subscription s includes a textual description
sT, a spatial location sL, a preference parameter sδ , and a
threshold sτ , denoted by s = (sT, sL, sδ, sτ).

Location-Aware Publish/Subscribe Problem on Parame-
terized Spatio-Textual Subscriptions. Given a set of sub-
scriptions S, a message m, deliver the message m to the
subscription s ∈ S if SIM(s,m) ≥ sτ .3

Example 1: Figure 1 shows 11 parameterized spatio-
textual subscriptions and 2 messages m1=({t4=adidas,
t2=t-shirt},lm1) and m2=({t4=adidas, t3=nike,
t1=shoes}, lm2), where lm1 and lm2 denote the same
location. The spatial similarities between messages and
subscriptions are shown in the figure. The weights of
t5, t4, t3, t2, t1 are respectively 0.5, 0.4, 0.3, 0.2, 0.1. Consider
subscription s0 = ({t4=adidas, t2=t-shirt}, l0, 0.7, 0.8).
SIM(s0,m1) = 0.7 ∗ 0.4+0.2

0.4+0.2 + 0.3 ∗ 0.6 = 0.88 > s0τ = 0.8.
Thus s0 is an answer of m1. Consider subscription
s8 = ({t5=discount, t4=adidas,t2=t-shirt}, l8, 0.7, 0.7).
SIM(s8,m1) = 0.7∗ 0.4+0.2

0.5+0.4+0.2+0.3∗0.4 = 0.5 < s8τ = 0.7.
Thus s8 is not an answer of m1. Similarly, we can compute
the result of m1: {s0}, and the result of m2: {s2, s5}.

III. SPATIAL-ORIENTED PREFIX

In this section, we first introduce the spatial-oriented prefix
filter (Section III-A) and then develop a spatial-aware pruning
technique (Section III-B). Finally we devise a spatial-oriented
prefix based filter-verification framework (Section III-C).

3In this paper we focus on efficiently filtering parameterized spatio-textual subscrip-
tions and obviously our method can also support subscriptions with the same parameters.

712

A. Spatial-Oriented Prefix Filter
Based on the spatio-textual function, given a subscription

s = (sT, sL, sδ, sτ), as the spatial similarity cannot exceed 1,
we can deduce a textual similarity threshold

sT
τ =

sτ − (1− sδ)
sδ

. (1)

We first assume sT
τ > 0. If a message m is similar to

s, the textual similarity cannot be smaller than sT
τ . Based on

the threshold, we can select a prefix for each subscription
as follows. We first determine a global token ordering. (In
this paper we sort the tokens by their weights in descending
order.) For each subscription s, we deduce its textual similarity
threshold sT

τ . Based on its token set sT = {t1, t2, · · · , t|sT|},
we compute minimum p such that∑|sT|

i=p w(ti)

w(sT)
< sT

τ , (2)

where w(sT) =
∑|sT|
i=1 w(ti) is the total weight of tokens in sT.

The spatial-oriented prefix of sT is SIG(s) = {t1, t2, ..., tp−1}
and each token in SIG(s) is called a spatial-oriented token.
We can prove if a subscription s is similar to a message m
(i.e., TSIM(s,m) ≥ sT

τ), they must share at least one common
spatial-oriented token, because the total weight of tokens after
tp is smaller than sT

τ .

For example, consider two subscriptions s9 =
({t4, t2, t1}, l9, 0.5, 0.8) and s3 = ({t5, t4, t1}, l3, 0.6, 0.75)
in Figure 1. We can get the textual similarity threshold
s9

T
τ = 0.8−(1−0.5)

0.5 = 0.6 and s3
T
τ = 0.75−(1−0.6)

0.6 = 0.58.
For s9, as w(t2) + w(t1) < w(s9T) · 0.6 and
w(t4) + w(t2) + w(t1) > w(s9T) · 0.6, SIG(s9) = {t4}.
Similarly for s3, SIG(s3) = {t5}. For message
m1 = ({t4, t2}, lm1), s9 is a candidate as m1 contains
a spatial-oriented token t4 while s3 can be pruned as m1 does
not include any spatial-oriented token of s3.

Special Case. If sT
τ = sτ−(1−sδ)

sδ
≤ 0, a message m may

be similar to s no matter whether they share common tokens.
To address this issue, for a subscription s, if sτ ≤ 1− sδ ,
we introduce a virtual dummy token ∗ with weight of 0 (i.e.,
w(∗) = 0), and the prefix of s includes its tokens and ∗.
For example, consider s6 = ({t3, t2, t1}, l6, 0.2, 0.7). sT

τ =
0.7−(1−0.2)

0.2 = −0.5 and SIG(s6) = {t3, t2, t1, ∗}.
B. Spatial-Aware Pruning

The spatial-oriented prefix uses the maximum spatial sim-
ilarity (i.e., 1) as a loose spatial similarity bound, and it may
involve many candidates. To alleviate this problem, we propose
a spatial-aware pruning technique. Given a subscription s and
a message m, suppose tokens in s and m are globally sorted.
Let ti denote the first match token between SIG(s) and m
(i.e., m does not contain tokens before ti in SIG(s)). We can
estimate an upper textual similarity bound of the message to
subscription s based on the first match token as below.

UTB(s | ti) =
∑|sT|
j=i w(tj)∑|sT|
j=1 w(tj)

≥ TSIM(s,m). (3)

Accordingly, we can estimate a lower spatial similarity
bound between m and s as below.

LSB(s | ti) =
sτ − sδ · UTB(s | ti)

1− sδ
≤ SSIM(s,m). (4)

For any message, if its spatial similarity to s is smaller than
the lower spatial similarity bound LSB(s | ti), the subscription
s can be pruned as formalized in Lemma 1. Due to space
constraints, we omit all the proofs in the paper.

Lemma 1: Given a message m and a subscription s, sup-
pose their first match token is ti. If SSIM(s,m) < LSB(s | ti),
s is not similar to m.

For example, consider s9 = ({t4, t2, t1}, l9, 0.5, 0.8) and
m1 = ({t4, t2}, lm1

). Their first match token is t4. We
compute the upper textual similarity bound UTB(s9 | t4) =
0.7
0.7 = 1 and lower spatial similarity bound LSB(s9 | t4) =
0.8−0.5

0.5 = 0.6. As SSIM(s9,m1)=0.3 < LSB(s9 | t4), we
prune s9 without needing to verify its similarity to m1.

Given a subscription s and a message m, we do not
know which token is their first match token (if they have),
and the first match tokens for different messages to the
subscription are different. To address this issue, for each token
t in the spatial-oriented prefix of s, we compute the upper
textual similarity bound UTB(s | t) and the lower spatial
similarity bound LSB(s | t). If subscription s is similar to
message m, there must exist a token t in s ∩ m such that
SSIM(s,m) ≥ LSB(s | t) as formalized in Lemma 2.

Lemma 2: Given a message m, if a subscription s is
similar to the message, there must exist a token t in s ∩ m
such that SSIM(s, t) ≥ LSB(s | t).

For example, consider s6 = ({t3, t2, t1, ∗}, l6, 0.2, 0.7).
Its prefix is {t3, t2, t1, ∗}, and the lower spatial similarity
bounds for each token are {0.63, 0.75, 0.83, 0.88}. Especially,
for token ∗, we estimate UTB(s6 | ∗) = 0 and LSB(s6 | ∗) =
0.7−0
1−0.2 = 0.88. Given a message m1 = ({t3, t2}, lm1

), as
SSIM(s6,m1) = 0.4 which is smaller than all the spatial
similarity bounds, s6 is not similar to m1.

C. The Filter-Verification Framework
Spatial-Oriented Prefix Index. To index the spatial-oriented
prefixes, we build an inverted index. The entries are tokens in
the spatial-oriented prefix. Each token t is associated with an
inverted list of triples 〈s,LSB(s | t), Idx(s, t)〉, where s is a
subscription that contains the token, LSB(s | t) is the lower
spatial similarity bound, and Idx(s, t) is the token order of
t in s. We utilize L(t) to denote the inverted list of token t.
Figure 2 shows the spatial-oriented prefix index. Consider s6 =
({t3, t2, t1, ∗}, l6, 0.2, 0.7). Its prefix is {t3, t2, t1, ∗} and lower
spatial similarity bounds are {0.63, 0.75, 0.83, 0.88}. We in-
sert {〈s6, 0.63, 1〉, 〈s6, 0.75, 2〉, 〈s6, 0.83, 3〉, 〈s6, 0.88, ∗〉} into
inverted lists of t3, t2, t1, ∗ respectively, where 1, 2, 3 denote
token orders of t3, t2, t1 and ∗ denotes the dummy token. The
number of entries is the number of distinct tokens. The total
size of the inverted lists is at most the total number of tokens in
the subscriptions. Thus the space complexity is O(

∑
s∈S |s|).

Spatial-Oriented Filter-Verifiation Framework. Based on
Lemma 2, given a message m, if a subscription s is a candidate
of m, s must share at least one common token (denoted as t)
with m such that SSIM(s,m) ≥ LSB(s | t). We utilize this
property to devise a filter-verification framework.

Filter. For each token t in m (including the dummy to-
ken ∗), we identify its inverted list L(t). For each element
〈s,LSB(s | t), Idx(s, t)〉 ∈ L(t), if SSIM(s,m) ≥ LSB(s | t),

713

s

s4,

s

s
ss

s

s s

s
s

s

s

s
s

s

s

Fig. 2. Spatial-Oriented Prefix Index.
s is a candidate to the message m and we add 〈s, Idx(s, t)〉
into the candidate set C; otherwise, we prune the subscription.
The filtering complexity is O(

∑
t∈m |L(t)|).

Verification. We verify the candidate 〈s, Idx(s, t)〉. If s is an
answer, we deliver the message m to the subscription s. Based
on the similarity function, s and m are similar, if and only if
w(s ∩m) =

∑
t∈sT∩mT

w(t) ≥ minw, where

minw =
sτ − (1− sδ) · SSIM(s,m)

sδ
· w(sT). (5)

SSIM(s,m) can be easily computed in O(1) time and w(sT)
can be materialized, thus it is easy to compute minw. To
compute w(s ∩ m), we check whether each token t in s
from position Idx(s, t) appears in m. If yes, we add the
corresponding weight w(t) into w(s ∩ m). To facilitate the
checking, we build a hash map for tokens in m. (We only
need to build the hash map for the message once.) Thus the
time complexity of verifying a subscription s is O(|s|).
Filtering Algorithm. The pseudo-code is shown in Figure 3.
To cover the special case, we add a dummy token ∗ into
the message (line 2). For each message token t, we retrieve
L(t). For each element 〈s,LSB(s | t), Idx(s, t)〉 in L(t), if
SSIM(s,m) ≥ LSB(s | t), s is a candidate, and if it is not in
the candidate set, we add 〈s, Idx(s, t)〉 as a candidate (lines 4-
7). Finally we verify the candidates to generate the answer
(lines 8-10). In the verification algorithm, we compute minw
based on Equation 5 (line 2) and w(s∩m) by checking whether
each token in s from position Idx(s, t) appears in m. If a token
appears in m, we add its weight to w(s ∩m) (lines 3-4). If
w(s ∩m) ≥ minw, s is an answer (line 5).

IV. REGION-AWARE PREFIX

The spatial-oriented prefix based method requires to scan
the inverted lists of message tokens. If the inverted lists are
long, the method is expensive. To address this issue, we
group the subscriptions based on their locality and prune a
group if all subscriptions in the group have small similarity
to the message. To achieve this goal, we propose region-based
pruning techniques (Section IV-A) and devise the region-aware
prefix (Section IV-B). Finally we incorporate these techniques
into our framework (Section IV-C).

A. Region-Based Pruning
We partition the whole space into multiple regions (e.g., R-

tree) and split the subscriptions in each inverted list L(t) into
several sublists based on the regions. Formally, for each region
R, we create a sublist L(t,R) which contains all subscriptions
in L(t) that appear in R. For each region R, we maintain
a lower spatial similarity bound to each token t, denoted by
LSB(R | t), which is the minimum value among all lower
spatial similarity bounds of subscriptions in R, i.e.,

LSB(R | t) = min
s∈L(t,R)

LSB(s | t). (6)

Then given a message m, for each token t in the message, we
retrieve the sublists of the token. For each sublist L(t,R), we

Algorithm 1: Spatial-Oriented Prefix Filtering
Input: m: A message; L: Spatial-oriented index for S
Output: A: Answers of m
begin1

mT.Push(∗) and sort mT;2
Candidate set C = ∅;3
for t ∈ m do4

for 〈s, LSB(s | t), Idx(s, t)〉 on L(t) do5
if SSIM(s,m) ≥ LSB(s | t) then6

if s 6∈ C then C.Add(〈s, Idx(s, t)〉);7

for 〈s, Idx(s, t)〉 ∈ C do8
if VERIFIY(s, Idx(s, t),m) then9
A.Add(s);10

return A;11
end12

Function VERIFIY(s, Idx (s,t), m)
Input: s: A subscription; Idx(s, t): Token order;

m: A message
Output: true or false
begin1

w(s ∩m) = 0; minw = sτ−(1−sδ)·SSIM(s,m)
sδ

· w(sT) ;2
for i ∈ [Idx(s, t), |sT|] do3

if ti ∈ m then w(s ∩m) = w(s ∩m) + w(ti);4

if w(s ∩m) ≥ minw then return true;5
else return false ;6

end7

Fig. 3. Spatial-Oriented Filtering Algorithm.

compute the maximum spatial similarity from the message to
the corresponding region R as below.

MAXSIM(m,R) = max(0, 1− MINDIST(m,R)
MAXDIST

) (7)

where MINDIST(m,R) is the minimum distance from the
message location to the region. If m ∈ R, MINDIST (m, R)
= 0; otherwise it is the minimum value among the distances
from the message to the four corners and four boundaries of
the region (which can be easily computed in O(1) time).

We prove SSIM(m, s) ≤ MAXSIM(m,R) as stated in
Lemma 3. Based on this property, for each region R, if
MAXSIM(m,R) < LSB(R | t), we have SSIM(m, s) <
LSB(R | t) for s ∈ R, and thus we can prune the sublist
L(t,R). On the contrary, we need to access each subscription
on the sublist L(t,R).

Lemma 3: Given a message m and a subscription s ∈ R,
we have SSIM(m, s) ≤ MAXSIM(m,R).

Example 2: Consider regions R3-R6 in Figure 1.
L(t4) = {s0, s1, s2, s7, s9}. Region R5 contains subscriptions
{s0, s1, s2} and region R6 contains subscriptions {s7, s9}.
We split the list into sublists L(t4,R5) = {s0, s1, s2} and
L(t4,R6)={s7, s9}. We compute LSB(R5 | t4)=0.33.
LSB(R6 | t4)=0.6. Given a message m1, as
MAXSIM(m1,R6) = 0.55 < LSB(R6 | t4), we prune
L(t4,R6). As MAXSIM(m1,R5)=0.75>LSB(R5 | t4), we
access the subscriptions on the sublist L(t4,R5).

B. Region-Aware Prefix

The spatial-oriented prefix filter uses the maximum spatial
similarity to estimate the spatial similarity bound. If a message
is outside of a region, the estimation is loose and we need to

714

deduce a tighter bound. To this end, we propose a new region-
aware prefix to prune the messages outside the region R.

Considering each subscription s in R, we compute its
maximum spatial similarity to the messages outsideR, denoted
by MAXSIM(s, R̃), which can be computed as below.

MAXSIM(s, R̃) = max(0, 1− MINDIST(s, R̃)
MAXDIST

), (8)

where MINDIST(s, R̃) is the minimum distance from subscrip-
tion s to the four boundaries of region R.

Thus for messages outside region R, we can deduce a
tighter spatial similarity bound

sT
τ (R̃) =

sτ − (1− sδ) ·MAXSIM(s, R̃)
sδ

. (9)

Obviously sT
τ ≤ sT

τ (R̃). Using the tighter bound sT
τ (R̃), we

select the region-aware prefix for each subscription to prune
messages outside the region R. Given a subscription s and
a region R (s ∈ R), the region-aware prefix is SIG(s, R̃) =
{t1, · · · , tr−1} where r is the minimum value such that∑|sT|

i=r w(ti)

w(sT)
< sT

τ (R̃), (10)

The region-aware prefix is a subset of the spatial-oriented
prefix. The larger the region, the shorter the region-aware
prefix. Consider region R6 with subscriptions {s7, s8, s9}.
For s7 = ({t5, t4, t1}, l7, 0.6, 0.7), sT

τ = 0.7−(1−0.6)
0.6 = 0.5.

The spatial-oriented prefix of s7 is SIG(s7) = {t5, t4}.
As MAXSIM(s7, R̃6) = 0.9, we compute a tighter spatial
similarity bound sT

τ (R̃6) = 0.7−0.4∗0.9
0.6 = 0.57. Its region-

aware prefix contains token t5 and SIG(s7, R̃6)={t5}.

C. Hierarchical Spatial Prefix Index

The region-based pruning technique and the region-aware
prefix have a limitation. On one hand, if each region is very
large, it is hard to prune a whole region. On the other hand,
if each region is small, a region contains a small number
of subscriptions and the pruning power is low. It is rather
hard to select an appropriate region granularity. To address
this issue, we propose a hierarchical spatial index. Notice that
any existing hierarchical indexes can be integrated into our
techniques, and here we adopt the R-tree as an example.

Observations. To use the region-based pruning and region-
aware prefix to filter a message, we make two observations.
First, if the message m is in region R, we use the spatial-
oriented prefix to find answers in the region. If m is outside
of R, we use the region-aware prefix to find answers in
the region. Second, the region-based pruning can prune R
if MAXSIM(m,R) < LSB(R | t) for t ∈ m. However if
m ∈ R, MAXSIM(m,R) = 1, and it cannot prune R. In
other words, when computing LSB(R | t), we only need to
consider the tokens in the region-aware prefix. Following these
two observations, we build a hierarchical prefix index.
Hierarchical Prefix Index. We first build a spatial index. For
each leaf region R, we generate the spatial-oriented prefix
and region-aware prefix for each subscription, and build the

inverted indexes for them. For each token in the spatial-
oriented prefix, we keep a spatial-oriented list L(t,R), and
for each token in the region-aware prefix, we keep a region-
aware list L(t, R̃). As the region-aware prefix is a subset of the
spatial-oriented prefix, physically we only maintain a spatial-
oriented list, and for each subscription on the list, we add a
“region-aware” mark if the token is also in the region-aware
prefix of the subscription. For ease of presentation, we still
say there are two lists: the region-aware list is used to filter
the messages outside the region and the spatial-oriented list is
used to filter messages inside the region.

To prune a whole region, for each (leaf or non-leaf) region
R, we also maintain a lightweight signature which is a set of
pairs 〈t,LSB(R | t)〉 where t is a token in the region-aware
prefix and LSB(R | t) is the lower spatial similarity bound
which is the minimum value among lower spatial similarity
bounds of all subscriptions in the region. It is worth noting
that for different regions, LSB(R | t) may be different.

Suppose the height of the spatial index is D. For each token
in the subscriptions, the token is visited at most D times to gen-
erate the lower bounds for different regions. Thus the worst-
case complexity for building the index is O(D·

∑
s∈S |s|) and

the space complexity is also O(D ·
∑
s∈S |s|).

Example 3: Figure 4 shows the hierarchical prefix
index. Consider the leaf region R6 with subscriptions
{s7, s8, s9}. SIG(s7)={t5, t4}, SIG(s8)={t5}, SIG(s9)={t4}.
SIG(s7, R̃6)={t5}. SIG(s8, R̃6)={t5}. SIG(s9, R̃6)={t4}. t5
is in the region-aware prefix of s7 while t4 is not. L(t4,R6)=
{s7, s9} and L(t4, R̃6)={s9}. L(t5,R6)=L(t5, R̃6)=
{s7, s8}. As there are two region-aware tokens t4 and t5 inR6,
we have LSB(R6 | t4)=LSB(s9 | t4)=0.6 and LSB(R6 | t5)=
min(LSB(s7 | t5),LSB(s8 | t5))=0. Consider the non-leaf
region R1. R4 is one of its subregion. SIG(s5, R̃4)={t3, t2}.
As MAXSIM(s5, R̃1)=0.65, we compute sT

5τ (R̃1)=0.55
and SIG(s5, R̃1)={t3}. Therefore, we find that
LSB(R1 | t2)=LSB(s6 | t2)=0.75>LSB(R4 | t2)=0.7.
For m1=({t4, t2},lm1), which is outside of R1, as
MAXSIM(m1,R1)=0.7<LSB(R1 | t2), we prune R1.

Filtering Algorithm. Given a message m, we access the
children of the root. Consider each region R.
Case 1: The message is inside R. If R is a non-leaf re-
gion, we access its children; otherwise we scan the spatial-
oriented list of t, L(t,R). For each subscription s on the
list, if SSIM(s,m) < LSB(s | t), we prune the subscription;
otherwise s is a candidate.
Case 2: The message is outside of R. We check each pair
〈t,LSB(R | t)〉. (2.1) If there does not exist a token t such
that MAXSIM(m,R) ≥ LSB(R | t), we prune the region as
formalized in Lemma 4; (2.2) otherwise, if the region is a non-
leaf region, we access its children; otherwise, for each token
t such that MAXSIM(m,R) ≥ LSB(R | t), we enumerate
the subscriptions on the region-aware list L(t, R̃). For each
subscription s on the list, if SSIM(s,m) < LSB(s | t), we
prune the subscription; otherwise s is a candidate.

Lemma 4: Given a message m, a region R, and m is
outside of R, if there does not exist a token t ∈ m such
that MAXSIM(m,R) ≥ LSB(R | t), we can safely prune R.

Figure 5 shows the pseudo-code of the algorithm. We first
add the dummy token ∗, initialize the queue Q, and push the

715

R

R R

R4

t t

s ,0.25,1 s ,1,2
s ,0.6,1s ,0,1

t t

s ,0.2,1 s ,0.7,2

t t

s ,0.33,1 s ,0.9,2

t

s ,0.38,1

s ,0.6,1

s ,0.4,1

t t

s ,0.63,1 s ,0.75,2

t

s ,0.83,3

*

s ,0.88,*

t :0.6

t :0t :0.2

t :0.2

t :0.7

t :0.38

t :0.33

t :0.9

t :0.6

t :0.75

t :0.83

*:0.88

t :0.2

t :0.75

t :0.83

*:0.88

t :0

t :0.33

R6R5R3

Region-Aware

s ,0.83,2

t

s ,0.2,1

s ,0.6,1

t :0.2

R2R1

R4R3
R2R1

Fig. 4. Hierarchical Spatial Prefix Index.

root into the queue (line 2). Then we process each region in
Q. For each popped region R, if m ∈ R and the region is a
non-leaf region, we push each children of the region into Q
(lines 5-8). If it is a leaf region, for each t ∈ m which satisfies
MAXSIM(m,R) ≥ LSB(R | t), we check the spatial-oriented
list to generate the answer (lines 9-12). For m 6∈ R, if the
region is a non-leaf region and there exists t ∈ m such that
MAXSIM(m,R) ≥ LSB(R | t), we access the children of R
and push the children into Q (lines 14-17); otherwise for each
t ∈ m such that MAXSIM(m,R) ≥ LSB(R | t), we check the
region-aware list to generate the answer (lines 18-22). Finally
we verify the candidates (lines 23-25).

V. SPATIO-TEXTUAL PREFIX

The spatial-oriented and region-aware prefix based methods
generate candidates sharing a single token with the message.
However, for some subscriptions, a single token is not enough.
Consider s1 = ({t4, t3, t2}, l1, 0.5, 0.8) in Figure 1 and m
shares a common token t4 with s1. Even if m and s1
have the maximum spatial similarity (i.e. SSIM(s1,m)=1),
SIM(s1,m) is at most 0.5 · 0.40.9+0.5=0.72 < s1τ=0.8. Thus
if s1 is similar to m, s1 must share another common token
with m. Previous work [22] used this observation to improve
the pruning ability for set similarity joins. However, it only
considered the textual dimension with a unified threshold while
we face spatio-textual subscriptions with diverse thresholds.
We propose different indexes, algorithms and cost models
to deal with spatio-textual data. We first propose the spatio-
textual prefix (Section V-A) and then devise the corresponding
filtering strategy (Section V-B). Finally we develop a cost-
based method to select the best filtering strategy (Section V-C).

A. Spatio-Textual Prefix
Given a subscription s, if a message m shares only one

common token ti ∈ SIG(s), the spatial-oriented prefix based
method may take s as a candidate. However we observe that
if sδ · w(ti)

w(sT)
+ (1− sδ) < sτ (i.e., w(ti)

w(sT)
< sT

τ), m requires to
share another token with s (if m is similar to s). Thus, given a
subscription s, we generate its spatio-textual prefix, SIG+

1 (s) =
{tp, tp+1, · · · , tq−1}, where p is computed by Equation 2 and
q is the minimum number such that

w(t1) +
∑|sT|
j=q w(tj)

w(sT)
< sT

τ . (11)

If there is no such q (i.e., w(t1)+w(t|sT|)

w(sT)
≥ sT

τ), SIG+
1 (s) =

{tp, tp+1, · · · , t|sT|}. As w(ti) ≤ w(t1), if m does not share

Algorithm 2: Spatial Index Based Prefix Filtering
Input: m: A message; HI: Hierarchical Index of S
Output: A: Answers of m
begin1

mT.Push(∗) and sort mT; A = ∅; Q.Push(HI.root);2
while Q is not empty do3
R = Q.Pop();4
if m ∈ R then5

if R is a non-leaf node then6
for each child region Rc of R do7
Q.Push(Rc);8

else for t ∈ m do9
for s ∈ L(t,R) do10

if SSIM(s,m)≥LSB(s | t) then11
if s 6∈ C then C.Add(〈s, Idx(s, t)〉);12

else13
if R is a non-leaf node then14

if ∃t∈m,MAXSIM(m,R)≥LSB(R|t) then15
for each child region Rc of R do16
Q.Push(Rc);17

else for t ∈ m do18
if MAXSIM(m,R)≥LSB(R|t) then19

for s ∈ L(t, R̃) do20
if SSIM(s,m)≥LSB(s | t) then21

if s 6∈ C then22
C.Add(〈s, Idx(s, t)〉);

for s ∈ C do23
if VERIFIY((s, Idx(s, t)),m) then24
A.Add(s);25

return A;26
end27

Fig. 5. Hierarchical Prefix Filtering Algorithm.

another token with s in SIG+
1 (s), we have

w(ti)+
∑|sT|
j=q w(tj)

w(sT)
<

sT
τ , and thus m is not similar to s. To utilize this property

to do further pruning, besides maintaining the spatial-oriented
prefix SIG(s) = {t1, t2, · · · , tp−1}, we also generate its spatio-
textual prefix SIG+

1 (s) = {tp, tp+1, · · · , tq−1}. For each token
tj in SIG+

1 (s), we also keep a lower spatial similarity bound
LSB+

1 (s | tj) where

LSB+
1 (s | tj) =

sτ − sδ · UTB+
1 (s | tj)

1− sδ
, (12)

UTB+
1 (s | tj) =

w(t1) +
∑|sT|
i=j w(ti)∑|sT|

i=1 w(ti)
. (13)

Given a message m, assume s and m share only one
common token in their spatial-oriented prefixes. The spatial-
oriented prefix based method may take s as a candidate.
However if sδ ∗ w(ti)

w(sT)
+ (1 − sδ) · SSIM(1, s)m < sτ , s

requires to share another common token tj in SIG+
1 (s) such

that SSIM(s,m) ≥ LSB+
1 (s | tj). If there is no such token in

the spatio-textual prefix, we can prune s.

Example 4: Consider s2 = ({t4, t3, t1}, l2, 0.5, 0.7). sT
τ =

0.7−(1−0.5)
0.5 = 0.4. The spatial-oriented prefix of s2 is

SIG(s0) = {t4, t3}. UTB(s2 | t4) = 1 and LSB(s2 | t4) =
0.7−0.5

0.5 = 0.4. UTB(s2 | t3) = 0.5. LSB(s2 | t3) =

716

0.7−0.5·0.5
0.5 = 0.9. SIG+

1 (s2)={t1}. UTB+
1 (s2 | t1)=0.63 and

LSB+
1 (s2 | t1)=0.78. Given a message m1 = ({t4, t2}, lm1

),
it only contains token t4 in SIG(s2). As SSIM(s2,m1) =
0.6 ≥ LSB(s2 | t4)=0.4, s2 cannot be pruned by the spatial-
oriented prefix and is taken as a candidate. As 0.5· 0.40.8+0.5·0.6
=0.55<0.7, m1 requires to share another token with s2. As
m1 ∩ SIG+

1 (s2)=∅, s2 is pruned by the spatio-textual prefix.

Next we generalize this idea. We divide all the tokens in
sT into disjoint sets: SIG(s), SIG+

1 (s), SIG+
2 (s), · · · , where

SIG(s) = {t1, t2, · · · , tp−1} and SIG+
1 (s) = {tp, · · · , tq−1}

are computed based on Equations 2 and 11 respectively. We
compute SIG+

k (s) = {tpk , · · · , tqk−1} based on SIG+
k−1(s) =

{tpk−1
, · · · , tqk−1−1} for k > 1, where pk = qk−1 (p1 = p

and q1 = q) and qk is the minimum number such that∑k
i=1 w(ti) +

∑|sT|
j=qk

w(tj)

w(sT)
< sT

τ . (14)

If
∑k
i=1 w(ti)+w(t|sT|)

w(sT)
≥ sT

τ , SIG+
k (s) = {tpk , · · · , t|sT|} and

we terminate; otherwise we compute SIG+
k+1(s) based on

SIG+
k (s). Similar to Equations 12 and 13, we compute textual

upper bound and spatial lower bound as below:

LSB+
k (s | tj) =

sτ − sδ · UTB+
k (s | tj)

1− sδ
, (15)

UTB+
k (s | tj) =

∑k
i=1 w(ti) +

∑|sT|
i=j w(ti)∑|sT|

i=1 w(ti)
. (16)

We can also integrate the spatio-textual prefix into the
region-aware prefix by replacing sT

τ with sT
τ (R̃) for a leaf

region R. Due to space constraints, we omit the details.

B. Spatio-Textual Prefix Filtering
To use the spatio-textual prefix, we make a minor mod-

ification on the hierarchical index. For leaf-regions, we add
the spatio-textual index. Given a leaf region R, for each
subscription in R, we add the tokens in its spatio-textual prefix
into the spatio-textual lists. We use L(t,R) and L+

k (t,R) to
respectively denote the spatial-oriented list for SIG(s) and
the spatio-textual list for SIG+

k (s) in R. As the spatial-
oriented prefix and the spatio-textual prefix have no overlap,
the index contains the tokens of each subscription and the
space complexity is O(D ·

∑
s∈S |s|).

Given a message m, after generating candidate C using the
spatial-oriented prefixes (as discussed in Section IV-C), there
are two strategies to compute the answers.
Strategy 1. We directly verify the candidates in C by checking
the tokens in the candidates.
Strategy 2. We use spatio-textual prefixes to prune irrelevant
subscriptions from C and get a smaller candidate set C′ ⊆ C.

Next we discuss how to implement the second strategy. We
use a hash table C to keep the candidates and a hash table A to
keep the answer. For each candidate s on the spatial-oriented
list of ti ∈ m,
(1) If s is already in A, we skip s.
(2) If s is not in A, (2.1) If s is not in C, we compute
SSIM(s,m). If SSIM(s,m) < LSB(s | ti), we skip s; oth-
erwise if sδ ∗ w(ti)

w(sT)
+(1− sδ) · SSIM(s,m) < sτ , s requires to

appear in a spatio-textual list, and we add 〈s, Idx(s, ti)〉 into
C; otherwise s is an answer, we add it into A. (2.2) If s is
already in C, we remove it from C and verify the candidate
by scanning tokens in s from Idx(s, ti). If s is an answer,
we add it into A. After accessing all spatial-oriented lists,
we get some answers in A and some candidates in C. For
candidates in C, they share only one common token with the
message. We have two strategies to verify them. The first one
is to verify the candidate by directly checking tokens. The
second one is to use the spatio-textual prefix to do further
pruning. It first retrieves spatio-textual lists of tokens in m. For
each subscription s in L+

1 (t ∈ m,R), if s appears in C and
SSIM(s,m) ≥ LSB+

1 (R | t), we add it into a new candidate
set C′ (C′ ⊆ C). Next we verify candidates in C′ with two
possible strategies: the first directly verifies C′ and the other
uses SIG+

2 (s) to do further pruning.

Example 5: Consider message m1 = ({t4, t2}, lm1
).

For R9, we retrieve L(t4,R9). For s0 ∈ L(t4,R9),
as SSIM(s0,m1)=0.6>0.14, s0 is a candidate. Simi-
larly, 〈s1, 1〉 and 〈s2, 1〉 are candidates. Thus C =
{〈s0, 1〉, 〈s1, 1〉, 〈s2, 1〉}. For the second strategy, we retrieve
L+
1 (t4,R9)={s3},L+

1 (t2,R9)={s0, s1}. s0 is accessed again
in L+

1 (t2,R9). We verify s0 and it is an answer. s1 is
also on the list L+

1 (t2,R9). As SSIM(s1,m1) = 0.7 <
LSB+

1 (s1 | t2) = 0.93, s1 is pruned. As s2 does not appear in
the spatio-textual lists, s2 is pruned. Thus the second strategy
checks 3 subscriptions on the lists. The first strategy verifies
C = {s0, s1, s2} directly and accesses 1 + 2 + 2 tokens as
shown in Figure 6. The second strategy is better for m1.
Consider message m2 = ({t4, t3, t1}, lm2

). For region R9,
we retrieve L(t4,R9) = {s0, s1, s2}, L(t3,R9) = {s2}. For
s2, when we access L(t4,R9), we put 〈s2, 1〉 into C. When
scanning L(t3,R9), we find s2 again and it is an answer.
Finally C = {〈s0, 1〉, 〈s1, 1〉}. The second strategy retrieves
L+
1 (t4,R9) = {s3},L+

1 (t3,R9) = {s1},L+
1 (t1,R9) =

{s2, s3}. As s0 does not appear in the lists, it is pruned. As
s1 appears in L+

1 (t3,R9), it generates a smaller candidate set
C′ = {s1}. Next it verifies C′ by checking its third token. The
second strategy accesses 4 subscriptions and verifies another
token for s1. The first strategy checks 1+2 tokens to verify the
two candidates in C and thus is better for m2.

C. Cost-based Method
The first strategy scans smaller numbers of inverted lists

and the second strategy accesses more inverted lists but
with larger pruning power. Inspired by adaptive prefix select-
ing [22], we develop a similar cost-based method to select the
best filtering strategy to compute the answers. To determine
whether to use SIG+

k (s) for further pruning (strategy 2),
we estimate the cost of the two strategies when processing
SIG+

k−1(s). We denote the cost of the first verification strategy
by COSTkV and the cost of the second filtering strategy by
COSTkF . If COSTkV ≤ COSTkF , we select the first strategy and
directly verify the candidates; otherwise we continue to use
SIG+

k (s).

We start by considering SIG+
1 (s). The first strategy needs

to verify the candidates in C by scanning tokens and the
complexity is COST1

V =
∑
s∈C |s| − Idx(s, t), where Idx(s, t)

is the token order of t in m. Obviously the cost COST1
V

can be exactly computed when scanning the spatial-oriented

717

C={s /1,s /1,s /

1}

5 4 1

+

4 3

s1,0.6,2

2 1

s0,0.14,2

s1,0.93,3

s3,0.38,2

m ,{t ,t }

3

s2,0.78,3

m ,{t ,t ,t }

s3,0.38,1

s2,0.4,1

s1,0.6,1

s0,0.14,1 s2,0.9,2

s3,0.98,3

L(t), L(t)
Method 1

Method 2

C={s /1,s /1,s /1}

L1
+
(t4),L1

+
(t2)

A={s }

C’=<s /2>

C={s /1,s /1}

A={s }

L(t), L(t), L(t)
Method 1 C={s /1,s /1}

L1
+
(t4),L1

+
(t3),

L1
+
(t1)

A={s }

C’=<s1/2>Method 2

Fig. 6. An Example of Spatio-Textual Filter.

inverted lists. The second strategy includes two steps. The first
step scans the spatio-textual lists and the time complexity is∑
t∈m |L

+
1 (t,R)| where |L+

1 (t,R)| is the size of spatio-textual
list L+

1 (t,R), which can be materialized. The second step
verifies the number of candidates in C′. As C′ is unknown, we
need to estimate its size. Adaptive prefix selecting [22] adopted
a sample based method to estimate candidate. However, it will
invoke many additional sampling cost if we use the same
method in every leaf nodes. To this end, we estimate the
number based on appropriate proportions. The number of
candidates should be in proportion to

∑
t∈m |L

+
1 (t,R)|∑

t∈R |L
+
1 (t,R)| and can

be estimated as |C′| = |C|
∑
t∈m |L

+
1 (t,R)|∑

t∈R |L
+
1 (t,R)| . The second strategy

needs to verify candidates in C′ and the complexity can be
estimated by COST1

V·
|C′|
|C| −|C

′| = (COST1
V−|C|)·

∑
t∈m |L

+
1 (t,R)|∑

t∈R |L
+
1 (t,R)|

The complexity of the second strategy can be estimate by
COST1

F =
∑
t∈m |L

+
1 (t,R)|+(COST1

V − |C|) ·
∑
t∈m |L

+
1 (t,R)|∑

t∈R |L
+
1 (t,R)| .

If COST1
V ≤ COST1

F , we select the first strategy; otherwise, we
select the second strategy.

Example 6: Consider m1 in R9. C = {s0, s1, s2}.
COST1

V =
∑
s∈C |s| − Idx(s, t) = 1 + 2 + 2 = 5.

COST1
F = |L+

1 (t4,R9)| + |L+
1 (t2,R9)| + (COST1

V − |C|) ·
|L+

1 (t4,R9)|+|L+
1 (t2,R9)|∑

t∈R9
|L+

1 (t,R9)|
= 3+(5−3)∗3/6=4. Thus the second

strategy is better. It probes L+
1 (t4,R9) and L+

1 (t2,R9). s0 is a
result. s1 and s2 are pruned. Consider m2 in R9. C = {s0, s1}.
COST1

V =
∑
s∈C |s| − Idx(s, t) = 1 + 2 = 3. COST1

F =
|L+

1 (t4,R9)|+ |L+
1 (t3,R9)|+ |L+

1 (t1,R9)|+(COST1
V − |C|) ·

|L+
1 (t4,R9)|+|L+

1 (t3,R9)|+|L+
1 (t1,R9)|∑

t∈R9
|L+

1 (t,R9)|
= 4+(3−2)∗4/6 = 4.67.

The first strategy is better and it verifies candidates in C.
After getting the candidate set C′, we still need to decide

which strategies should be used to compute answers based on
C′ and SIG+

k (s). Similar to SIG+
1 (s), we compare the cost of

the first strategy as COSTkV =
∑
s∈Ck−1 |s| − Idx(s, t) and the

cost of the second strategy is COSTkF =
∑
t∈m |L

+
k (t,R)| +

(COSTV−|Ck−1|)·
∑
t∈m |L

+
k (t,R)|∑

t∈R |L
+
k (t,R)| , where Ck−1 is the candidate

set computed by SIG+
k−1(s).

We devise a cost-based algorithm to automatically select
the best strategy. Figure 7 shows the pseudo-code. We replace
lines 9-12 in Algorithm 2 with Algorithm 3. We iteratively
visit L,L+

1 , · · · ,L
+
k . In each iteration, for each token ti in

m, we access subscription s on list L+
k (ti,R) (line 3). We

skip s if it is in the answer set (line 5). Otherwise, we insert
s into candidate set C and update COSTV (lines 8-11) if s is
not in C. If s is already in C and cannot be pruned by the

Algorithm 3: Cost-based Algorithm
Input: m: A message; L: Spatial-oriented index on S;

Spatio-textual index L+
k on S;

Output: A: Answer to m
begin1

// Replace lines 9-12 in Algorithm 2
L+

0 = L; k = 0; C = ∅; COSTV = COSTF = 0;2
while COSTV ≥ COSTkF & L+

k 6= φ do3
for ti ∈ m do4

for s ∈ L+
k (ti,R) & s 6∈ A do5

if s ∈ C then6
if c(s) >= k ‖ SSIM(s,m) ≥7
LSB+

k (s | ti) then
UPDATE(s,C,A,COSTV,ti);

else if k = 0 & SSIM(s,m)≥LSB(s | ti)8
then

COSTV = COSTV + |s| − Idx(s, ti);9
C.Add(〈s, Idx(s, ti), 0, 0);10
UPDATE(s,C,A,COSTV,ti);11

COSTk+1
F =

∑
t∈m |L

+
k+1(t,R)|+(COSTV−|C|)·

∑
t∈m |L

+
k+1

(t,R)|∑
t∈R |L

+
k+1

(t,R)|
;

12

if L+
k 6= φ then13
for 〈s, Idx(s, t), c(s), w(s)〉 ∈ C & c(s) > k do14

if VERIFIY+(s, Idx(s, t),m,w(s)) then15
A.Add(s);

return A;16
end17

Function UPDATE(s,C,A,COSTV,ti)
w(s) = w(s) + w(ti); c(s) + +;1
if w(s) ≥ minw(s) ‖ Idx(s, ti) = |sT| then2
C.Remove(s);3
COSTV = COSTV − (|s| − Idx(s, ti));4
if w(s) ≥ minw(s) then5
A.Add(s);6

Function VERIFIY+(s,Idx (s,t),m,w(s))
Same as Function VERIFIY by replacing w(s ∩m) = 0 with1
w(s ∩m) = w(s);

Fig. 7. Cost-based Algorithm.
prefix filter, we update C and COSTV (lines 6-7). We keep
four elements 〈s, Idx(s, t), c(s), w(s)〉 in C, where c(s) is the
current number of common tokens between s and m and w(s)
is the current common token weights, and update it with the
UPDATE function. If the common token weight is larger than
the required token weight (minw in Equation 5) or the current
common token is the last token of s (lines 2-6 in the UPDATE
function), s should be removed from C. COSTV is updated
on each deletion of C. After accessing the lists, we compute
COSTk+1

F and decide whether L+
k+1 should be used for further

pruning (line 12). If COSTV ≤ COSTk+1
F , we stop the iteration

and use the VERIFIY+ function to verify candidates (lines 13-
15). Otherwise we use L+

k+1 to do further pruning. If all lists
have already been visited, C is pruned.

VI. DISCUSSION

A. Support Other Similarity Functions
Overlap. Overlap is a special case of our textual similarity
function with each token weight of 1.
Weighted Jaccard. Suppose we use the weighted Jaccard
function, i.e, JAC(s,m) =

∑
t∈sT∩mT

w(t)∑
t∈sT∪mT

w(t) . As w(sT) =

718

TABLE I. DATASETS.
Datasets TWITTER POI
Message (Avg Token Number) 12.1 41
Subscription (Number) 10M 10M
Subscription (Avg Token Number) 3 3
Subscription (Size, GB) 0.58 0.6∑|sT|

i=1 w(ti) ≤
∑
t∈sT∪mT

w(t), JAC(s,m) ≤ TSIM(s,m). We
can select the same spatial-oriented prefix SIG(s) using the
textual threshold sT

τ . Similarly UTB(s | ti) (UTB+
k (s | ti))

is still an upper textual similarity bound, and LSB(s | ti)
(LSB+

k (s | ti)) is still a lower spatial similarity bound.
Dice. Suppose we use the dice similarity function, i.e.,
DICE(s,m) = 2|sT∩mT|

|sT|+|mT| , where the weight of each to-
ken is 1. To select the spatial-oriented prefix, we have

2
∑
ti∈sT∩mT

w(ti)∑
ti∈sT

w(ti)+
∑
ti∈mT

w(ti)
> 2·TSIM(s,m). Thus, we generate

SIG(s) with textual threshold sT
τ

2 . We compute a similar lower
spatial similarity bound, LSB(s | ti) = sτ−2sδ·UTB(s | ti)

1−sδ .

Cosine. Suppose we use the cosine function, i.e., COS(s,m) =
|sT∩mT|√
|sT|·
√
|mT|

. We select SIG(s) using threshold
√
|sT| · sT

τ and

compute a lower spatial similarity bound, LSB(s | ti) =
sτ−sδ·UTB(s | ti)

1−sδ , where UTB(s | ti) =
∑|sT|
j=i w(tj)√∑|sT|
j=1 w(tj)

.

B. Index Updates
First consider adding a new subscription. We insert it into

the spatial index and locate the leaf region R. We generate its
spatial-oriented and spatio-textual prefix, compute the lower
spatial bounds LSB(s | t) and LSB+

k (s | t) for each t in the
prefix, and insert it into the index. Next we generate its region-
aware prefix using MAXSIM(s, R̃) and insert them into the
index. We also update the lower spatial similarity bound for
R (andR’s ancestor regions). For each region-aware token t, if
the lower spatial bound LSB(s | t) is smaller than the current
lower bound LSB(R′ | t), we update the new lower bound
as LSB(R′ | t) = LSB(s | t). The worst-case complexity
is O(D · |sT|). Second consider deleting a subscription s. We
locate the leaf region and remove s. As deleting a subscription,
the bound LSB(R | t) on non-leaf regions will not decrease,
thus we will not remove it from non-leaf nodes. Instead we
use a widely-adopted delay manner to support deletions.

VII. EXPERIMENTAL STUDY

In this section we conduct extensive experiments to evalu-
ate the efficiency and quality of our proposed techniques.

A. Experimental Setup
Datasets. We used two real datasets: TWITTER and POI. The
TWITTER dataset was collected from twitter.com, which had
10 million tweets with locations. The POI dataset contained 10
million points of interests in USA. We randomly selected 1-5
tokens from each tweet/POI to generate subscriptions. We also
randomly selected 2000 tweets/POIs as messages. To generate
long messages, we combined 10 POIs as a single message.
The datasets are shown in Table I.
Parameters. There are four main parameters. (1) Preference
sδ: It varied from 0 to 1. (2) Threshold sτ : It varied from
0.5 to 1. (3) Message token number: It varied from 1 to 50.
(4) Subscription token number: It varied from 1 to 5. When
we varied a parameter, other parameters will be in the default
range. We used idf to generate token weight.

TABLE II. USER STUDY.

(a) User Votes

sδ

sτ
0.2 0.8 sτ

1 2 2 4

0 0 1 2

0.5 5 4 10

sδ 8 7 55

(b) Effectiveness

sδ

p/r/f sτ
0.2 0.8 sτ

1 0.40/0.90/0.55 0.51/0.20/0.29 0.50/0.69/0.58

0 0.37/0.95/0.53 0.48/0.23/0.31 0.47/0.80/0.59

0.5 0.41/0.88/0.56 0.58/0.20/0.30 0.53/0.83/0.65

sδ 0.45/0.90/0.60 0.63/0.23/0.34 0.59/0.83/0.69

Baselines. Existing approaches cannot be directly applied to
our problem on parameterized spatio-textual subscriptions.
We extended two related state-of-the-art methods to support
our problem. (1) IR-tree based methods. We extended spa-
tial keyword search method IR-tree [6, 16] to support our
problem. We kept the minimum and maximum preference
parameters, minimum thresholds and minimum total weight
of a subscription’s token set in each IR-tree node, and used
the bounds to do pruning. We further improved the method
by separately constructing multiple IR-tree indexes based on
different possible sδ and sτ . As sδ and sτ are consecutive, we
keep 10 discrete points (0.1, 0.2, · · · , 1) for each parameter.
Thus we built 10 × 10 IR-tree indexes and inserted subscrip-
tions to corresponding indexes based on sδ and sτ . We call
the basic IR-tree IRTREE-1 and the improved one IRTREE-
100. (2) Rt++ based method. We extended state-of-the-art
location-aware publish/subscribe method Rt++ [15] to solve
our problem. Rt++ assigned the tokens of each subscription
into different ancestors of the leaf node where the subscription
is located. To support ranking queries, we extended the method
by keeping a textual similarity upper bound UTB(s | t) for
each token t of subscription s and a spatial similarity lower
bound LSB(s) = sτ−sδ·UTB(s | t)

1−sδ on node n, and kept the
minimum bound LSB(n) for all subscriptions on node n.
Experimental Setting. All the algorithms were implemented
in C++, using R-tree as the spatial index. We used in-memory
setting. All the experiments were run on a computer with 40GB
RAM, Intel Xeon CPU 2.93GHz, running Linux Ubuntu.

B. Effectiveness Study
To validate the utility of our parameterized solution, we

deployed a system to conduct a user study. The system asked
users to select parameter values between 0 and 1 using sliders
(default 0.5) based on their own interests. We used four settings
for sδ: (1) textual similarity only (sδ = 1), (2) spatial similarity
only (sδ = 0) (the results must contain at least one query
token), (3) fixed parameter sδ = 0.5, and (4) user defined sδ ,
and three settings for sτ : (i) a small threshold (sτ = 0.2), (ii)
a large threshold (sτ = 0.8), (iii) user defined sτ . Thus there
were 12 combinations for the two parameters.

We conducted two experiments. First, we asked 100 differ-
ent users to select their most satisfied setting, and the results
are shown in Table II(a). We can see that the parameterized
setting is most attractive and most of users prefer to define their
own parameters. For example, 86% users voted the setting with
a user-defined parameter and 55% users selected the setting
with two user-defined parameters. Second, we evaluated the
precision, recall, and F-measure. For each subscription, we
returned a set of relevant results (i.e the messages contained
at least one token and regardless of spatial constraint) and
asked the user to mark their interested results. Taking the
marked results as ground truth, we can compute the precision,
recall and F-measure. Table II(b) shows the results. We had the
following observations. First, sτ can affect the result quality.
A small threshold (sτ = 0.2) leaded to high recall but low

719

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

δ

SP
ST

Cost-Model

(a) Filter Performance(sδ)

0

10

20

30

40

50

60

0.5 0.6 0.7 0.8 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

τ

SP
ST

Cost-Model

(b) Filter Performance(sτ)

0

0.5

1

1.5

2

2.5

0.1 0.3 0.5 0.7 0.9
0

0.4

0.8

1.2

1.6

2

A
v
e
ra

g
e
 T

o
k
e
n
 N

u
m

b
e
r

P
re

fi
x
 S

iz
e
(G

B
)

δ

SP(SIG)
ST(SIG1

+
)

ST(SIG2
+
)

ST(SIG3
+
)

ST(SIG4
+
)

(c) Prefix Size (sδ)

0

0.5

1

1.5

2

2.5

0.5 0.6 0.7 0.8 0.9
0

0.4

0.8

1.2

1.6

2

A
v
e
ra

g
e
 T

o
k
e
n
 N

u
m

b
e
r

P
re

fi
x
 S

iz
e
(G

B
)

τ

SP(SIG)
ST(SIG1

+
)

ST(SIG2
+
)

ST(SIG3
+
)

ST(SIG4
+
)

(d) Prefix Size (sτ)
Fig. 8. Evaluation on Cost Model (TWITTER).

0

20

40

60

80

100

120

140

0.1 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

δ

SP
SP+HI

SP+RP+HI
SP+ST+HI

SP+RP+ST+HI

(a) Varying sδ (TWITTER)

0

20

40

60

80

100

120

140

0.1 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

δ

SP
SP+HI

SP+RP+HI
SP+ST+HI

SP+RP+ST+HI

(b) Varying sδ (POI)

0

20

40

60

80

100

120

140

0.5 0.6 0.7 0.8 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

τ

SP
SP+HI

SP+RP+HI
SP+ST+HI

SP+RP+ST+HI

(c) Varying sτ (TWITTER)

0

20

40

60

80

100

120

140

0.5 0.6 0.7 0.8 0.9

R
u
n
n
in

g
 T

im
e
(m

s
)

τ

SP
SP+HI

SP+RP+HI
SP+ST+HI

SP+RP+ST+HI

(d) Varying sτ (POI)
Fig. 9. Filtering Performance on Different Filters.

0

1

2

3

4

5

0.1 0.3 0.5 0.7 0.9

C
a
n
d
id

a
te

 P
e
rc

e
n
ta

g
e
(%

)

δ

5K 14K
25K

15K 12K

SP
SP+HI

SP+ST+HI
SP+RP+HI

SP+ST+RP+HI
Result

(a) Varying sδ(TWITTER)

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9

C
a
n
d
id

a
te

 P
e
rc

e
n
ta

g
e
(%

)

δ

3K 5K 6K 7K 13K

SP
SP+HI

SP+ST+HI
SP+RP+HI

SP+ST+RP+HI
Result

(b) Varying sδ(POI)

0

1

2

3

4

5

0.5 0.6 0.7 0.8 0.9

C
a
n
d
id

a
te

 P
e
rc

e
n
ta

g
e
(%

)

τ

80K 65K 49K 33K 21K

SP
SP+HI

SP+ST+HI
SP+RP+HI

SP+ST+RP+HI
Result

(c) Varying sτ (TWITTER)

0

2

4

6

8

10

0.5 0.6 0.7 0.8 0.9

C
a
n
d
id

a
te

 P
e
rc

e
n
ta

g
e
(%

)

τ

27K 18K 13K 9K 7K

SP
SP+HI

SP+ST+HI
SP+RP+HI

SP+ST+RP+HI
Result

(d) Varying sτ (POI)
Fig. 10. Pruning Ability on Different Filters(bottom:candidates, top:accessed subscriptions).

precision as a small threshold returned more results. On the
contrary, a large threshold (sτ = 0.8) had low recall but high
precision. Second, sδ can also influence the quality. Using
both spatial and textual similarity (sδ = 0.5) had better
quality than simply using one factor of them (sδ = 1, 0),
and parameterized sδ always achieved the best precision under
different thresholds as parameterized setting allowed users to
select their preference. Third, the parameterized setting on
both sδ and sτ outperformed other settings. To summarize,
the parameterized setting can help users generate more related
and accurate results and is better than other settings.
Help Users Understand The Parameters. We used two useful
strategies to help users understand the parameters. (1) Expla-
nations of the parameters. We used previous subscriptions as
examples to help users understand the the parameters. (2) User-
friendly parameter tuning. We used sliders to help users select
preference among textual and spatial relevancy and users can
select parameter values using the sliders easily.
C. Efficiency Study

1) Evaluation on Cost Model: We evaluated our cost-based
method on the TWITTER dataset. We compared three methods.
(1) SP: using spatial-oriented prefix to generate candidates and
then directly verifying all candidates; (2) ST: using spatial-
oriented prefix to generate candidates and then always using
spatio-textual prefixes to do further pruning; (3) Cost Model:
adaptively selecting the best filtering strategy. Figure 8 shows
the average filtering performance. We can see that ST was
more efficient than SP as spatio-textual prefixes had larger
textual pruning power than spatial-oriented prefixes. Among
the three methods, the cost-based method performed the best
as it adaptively selected the best filtering strategy.

Figure 8 also shows the average token number in the
prefixes and the prefix size. ST achieved higher performance
at the expense of involving a bit larger prefix sizes, because

SP only maintained the spatial-oriented prefixes (SIG) and
ST also required to keep additional spatio-textual prefixes
(SIG+

1 , SIG+
2 , · · ·). It is worth noting that the average token

number in all prefixes (including both SIG and SIG+
k) was

exactly the average token number in all subscriptions and the
prefix size was the same as the data size, because each token
in every subscription appeared in at most one prefix.

2) Evaluation on Different Filters: We compared spatial-
oriented prefix (SP), spatial-oriented prefix with hierarchical
index (SP+HI), region-aware prefix with hierarchical index
(SP+RP+HI), spatio-textual prefix with hierarchical index
(SP+ST+HI), and spatio-textual and region-aware prefix with
hierarchical index (SP+RP+ST+HI) where we used the cost-
based algorithm for the methods using the spatio-textual pre-
fixes. Here the fanout of R-tree was 5000 as it achieved the
highest performance at this point. We will show more results
by varying the fanout later. We varied sδ and sτ on the two
datasets. Figure 9 shows the filtering performance of different
filters and Figure 10 shows the number of real results (5k-
80k) and the ratios of the numbers of candidates (bottom
bar) and accessed subscriptions (top bar) to the number of
total subscriptions, where the candidates refer to subscriptions
that were verified using the VERIFIY function and accessed
subscriptions refer to subscriptions that were accessed on the
inverted lists for different algorithms.

We made the following observations. First SP+HI outper-
formed SP as SP+HI used the hierarchical index to improve
the pruning power which can avoid visiting the inverted lists of
a whole region. SP+RP+HI further improved the performance
by using tighter bounds. SP+RP+ST+HI achieved the highest
performance, because SP+RP+ST+HI had the largest pruning
power by integrating all the proposed techniques. For example,
in Figure 9(a), on the Twitter dataset, for sδ = 0.5, SP took
82 ms, SP+HI improved it to 50 ms, SP+RP+HI further

720

0

10

10
2

10
3

10
4

1e2 5e2 1e3 2e3 5e3 1e4 2e4 5e4

R
u

n
n

in
g

 T
im

e
(m

s
)

Fanout

IRTree-1
IRTree-100

RT++
Stamp

(a) Fanout (TWITTER)

0

10

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

R
u

n
n

in
g

 T
im

e
(m

s
)

δ

IRTree-1
IRTree-100

RT++
Stamp

(b) sδ (TWITTER)

0

10

10
2

10
3

10
4

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
(m

s
)

τ

IRTree-1
IRTree-100

RT++
Stamp

(c) sτ (TWITTER)

0

10

10
2

10
3

10
4

5 10 15 20

R
u

n
n

in
g

 T
im

e
(m

s
)

Message Token Number

IRTree-1
IRTree-100

RT++
Stamp

(d) Message(TWITTER)

0

10

10
2

10
3

10
4

2 3 4 5

R
u

n
n

in
g

 T
im

e
(m

s
)

Subscription Token Number

IRTree-1
IRTree-100

RT++
Stamp

(e) Subscription(TWITTER)

0

10

10
2

10
3

10
4

1e2 5e2 1e3 2e3 5e3 1e4 2e4 5e4

R
u

n
n

in
g

 T
im

e
(m

s
)

Fanout

IRTree-1
IRTree-100

RT++
Stamp

(f) Fanout (POI)

0

10

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

R
u

n
n

in
g

 T
im

e
(m

s
)

δ

IRTree-1
IRTree-100

RT++
Stamp

(g) sδ (POI)

0

10

10
2

10
3

10
4

0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
(m

s
)

τ

IRTree-1
IRTree-100

RT++
Stamp

(h) sτ (POI)

0

10

10
2

10
3

10
4

20 30 40 50

R
u

n
n

in
g

 T
im

e
(m

s
)

Message Token Number

IRTree-1
IRTree-100

RT++
Stamp

(i) Message(POI)

0

10

10
2

10
3

10
4

2 3 4 5

R
u

n
n

in
g

 T
im

e
(m

s
)

Subscription Token Number

IRTree-1
IRTree-100

RT++
Stamp

(j) Subscription(POI)
Fig. 11. Comparison with State-of-the-art Algorithms.

improved to 43ms and SP+RP+ST+HI only took 25ms.
Second, the region-aware prefix and the hierarchical index can
reduce the number of accessed subscriptions using the spatial-
pruning techniques. Thus SP, SP+HI, SP+RP+HI had the
same number of candidates, however SP+RP+HI accessed
smaller numbers of subscriptions than SP+HI which in turns
visited less subscriptions than SP. Third, the spatio-texutal pre-
fix accessed more subscriptions but reduced the number of can-
didates. For example, although SP+RP+ST+HI (SP+ST+HI)
accessed many more subscriptions than SP+RP+HI (SP+HI),
SP+RP+ST+HI (SP+ST+HI) involved less candidates as
they utilized spatio-texutal prefixes to do pruning. Fourth, with
the increase of sτ , the performance increased, because for
larger sτ there were smaller numbers of subscriptions required
to be visited and verified, and we had greater opportunity to
prune more irrelevant subscriptions. Fifth, with the decrease
of sδ , SP, SP+HI, SP+ST+HI and SP+RP+HI took much
longer time, because for smaller sδ , the spatial similarity
is more important and they cannot estimate accurate prefix
bounds. SP+RP+ST+HI was slightly affected as it selected
the best strategy to prune many irrelevant subscriptions.

3) Comparison with State-of-the-art algorithms: We com-
pared our best algorithm SP+RP+ST+HI, denoted by
STAMP (spatio-textual prefix for parameterized subscriptions),
with state-of-the-art algorithms IRTREE-1, IRTREE-100 and
Rt++. We first compared the performance by varying R-tree
fanout from 100 to 50, 000. Figure 11 shows the result. With
increase of the fanout, the performance first increased and then
decreased, and the best fanout for R-tree was around 5000.
This is because for smaller fanout, the depth of the R-tree
become larger and these methods took higher cost to traverse
the index; for larger fanout, a region contained many more
subscriptions and these methods had lower pruning power on
each region. STAMP always outperformed existing algorithms
with different fanouts, because we integrated prefix-based
filters and spatial-pruning techniques together and achieved
much larger pruning power than existing methods.

We then varied different parameters to compare these algo-
rithms. As Rt++ reached the best performance on the fanout
of 5000, we reported performance on this point in other exper-
iments. We had the following observations. First, IRTREE-100
was always better than IRTREE-1 since the pruning ability of
each IR-tree node was improved after separating different sδ
and sτ values and IRTREE-100 can get much tighter bounds.
Second, STAMP significantly outperformed IRTREE-100 by 2
orders of magnitude and was 10-50 times better than Rt++

on different parameters and datasets. Third, as the increase of

0

20

40

60

80

100

120

10% 20% 30% 40% 50%A
v
e
ra

g
e
 U

p
d
a
te

 T
im

e
(µ

s
)

Insertion

IRtree-100
IRtree-1

Rt++
Stamp

(a) Update Cost

0

10

100

1000

10000

0% 10% 20% 30% 40% 50%

R
u
n
n
in

g
 T

im
e
(m

s
)

Insertion

IRTree-1
IRTree-100

RT++
Stamp

(b) Filtering Performance
Fig. 12. Update (TWITTER).

threshold sτ , the performance increased as it was much easier
to support larger thresholds. Fourth, with the increase of the
message token numbers, the running time sightly increased as
long messages contained more tokens and involved more an-
swers. Fifth, with the increase of subscription token numbers,
the running time also slightly increased, because more tokens
in subscriptions generated longer prefixes.

4) Update: We evaluated the update cost and filtering per-
formance after updates. We first created indexes for 5 million
subscriptions, then inserted 10% (0.5 million) subscriptions
each time and reported the average update cost (Figure 12(a))
and the average filtering performance (Figure 12(b)) after
updates. We can see with increase of updates, the average
update time and average filtering time increased. However
STAMP achieved higher filtering performance than existing
methods as our prefix filters had larger pruning ability. STAMP
had similar update cost as Rt++ and lower update cost than
IRTREE-1 and IRTREE-100, as STAMP and Rt++ kept each
token in a single R-tree node while IRTREE-1 and IRTREE-
100 assigned a token to multiple R-tree nodes.

5) Scalability: We evaluated the scalability by varying the
numbers of subscriptions on the TWITTER dataset. Figure 13
shows the results. We can see our method scaled much better
than existing methods, because IR-tree added many tokens into
R-tree nodes which were space consuming. With the increase
of the numbers of subscriptions, the filtering performance of
STAMP increased sublinearly. This is because STAMP can
prune more dissimilar subscriptions on more subscriptions.
In addition, STAMP and Rt++ had smaller index sizes and
time than IRTREE-1 and IRTREE-100, because IRTREE-1
and IRTREE-100 assigned tokens to multiple R-tree nodes,
and STAMP and Rt++ assigned tokens to a single R-tree node.
We also evaluated other similarity functions and Figure 13(d)
shows the results. We see that our method also achieved high
performance on other similarity functions, because our method
can easily adapt to different functions.

721

0

10

100

1000

10000

2 4 6 8 10

R
u

n
n

in
g

 T
im

e
(m

s
)

Number of Subscriptions(x1M)

IRTree-1
IRTree-100

RT++
Stamp

(a) Filtering Perforamnce

0

10

100

1000

10000

2 4 6 8 10

In
d

e
x
 T

im
e

(s
e

c
)

Number of Subscriptions(x1M)

IRTree-1
IRTree-100

RT++
Stamp

(b) Index Time

0

1

2

3

4

5

2 4 6 8 10

In
d

e
x
 S

iz
e

(G
B

)

Number of Subscriptions(x1M)

IRTree-1
IRTree-100

RT++
Stamp

(c) Index Size

0

10

20

30

40

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
(m

s
)

Number of Subscriptions(x1M)

Weighted Jaccard
Dice

Cosine
Our Similarity

(d) Other Similarity Functions

Fig. 13. Scalability.
VIII. RELATED WORK

To the best of our knowledge, this is the first study on the
location-aware publish/subscribe problem for parameterized
spatio-textual subscriptions. Most related studies are location-
aware filtering [15, 3]. Li et. al. [15] designed a location-
aware publish/subscribe system which used spatial overlap to
evaluate spatial similarity and the “AND” semantics to evaluate
textual relevancy. Chen et al. [3] proposed an efficient index
to match a stream of boolean range continuous queries over a
stream of geo-textual objects. They focused on the “AND” and
“OR” semantics to evaluate textual relevancy. Their problems
are different from ours, and we generalized the problem and
provided a fundamental technique to address this problem.
Spatial Keyword Search. There are many studies on spatial
keyword search [9, 6, 20, 25, 5, 8, 18, 2, 14, 17, 26, 11, 13].
Chen et. al. [4] provided a survey of 12 traditional geo-
textual indices and compared spatial keyword queries. Felipe
et. al. [9] integrated text signatures into R-tree. Cong et.
al. [6] and Rocha et. al. [20] combined inverted lists and R-
tree. Zhang et. al. [25] combined Quadtree and inverted lists
with text schema constraints. A region-based keyword query
returns the objects relevant to the keywords within a query
region [5, 11, 13]. A general solution is also to integrate textual
information into some spatial indexes. Fan et. al. [8] studied
a kind of searching problem, which finds similar regions
by considering spatial overlap and textual similarity. Other
research on spatial keyword search includes reverse spatial
and textual knn query [18], collective keyword search [2] and
moving top-k spatial keyword query [23, 12]. Michael et.al.
[17] implemented a spatio-textual search engine. Different
from spatial keyword search, we adopt a publish/subscribe
model while it is a traditional search problem.
Information Filtering & Publish/Subscribe Services. Ben-
jamin et.al. [21] built an information system to display spatial
related news, but it did not provide publish/subscribe service.
Foltz et. al. [10] studied how to deliver interest information
to different users by a space vector model and a latent
semantic indexing. Yan et. al. [24] provided an information
filtering tool. Fabret et. al. [7] and Aguilera et. al. [1] studied
the publish/subscribe problem, focusing on subscriptions with
conjunction predicates. Traditional publish/subscribe methods
only consider textual description [24, 19] while we consider
both spatial information and textual descriptions.

IX. CONCLUSION
We have studied the location-aware publish/subscribe prob-

lem on parameterized spatio-textual subscriptions. We pro-
posed a filter-verification framework and developed three ef-
fective filters. The spatial-oriented prefix filter utilized the
maximum spatial similarity to generate the prefix. The region-
aware prefix filter improved the spatial-oriented prefix filter
using tighter bounds. The spatio-textual prefix filter utilized
multiple tokens to do pruning. We integrated three filters into
the hierarchical spatial index. Experimental results showed that

our method significantly outperformed baseline approaches in
terms of both performance and result quality.
Acknowledgement This work was partly supported by the 973
Program of China (2015CB358700 and 2011CB302206), and
the NSFC project (61373024 and 61422205), Beijing Higher
Education Young Elite Teacher Project (YETP0105), China
Information Technology Security Evaluation Center, Huawei,
Tencent, SAP, the “NExT Research Center” (WBS:R-252-300-
001-490), and the FDCT/106/2012/A3.

REFERENCES

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In PODC, pages 53–61,
1999.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying.
In SIGMOD Conference, pages 373–384, 2011.

[3] L. Chen, G. Cong, and X. Cao. An efficient query indexing mechanism for filtering
geo-textual data. In SIGMOD Conference, pages 749–760, 2013.

[4] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing:
An experimental evaluation. PVLDB, 6(3):217–228, 2013.

[5] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic
web search engines. In SIGMOD Conference, pages 277–288, 2006.

[6] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. PVLDB, 2(1):337–348, 2009.

[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe. In SIGMOD
Conference, pages 115–126, 2001.

[8] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. Seal: Spatio-textual similarity search.
Proceedings of the VLDB Endowment, 5(9):824–835, 2012.

[9] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In
ICDE, pages 656–665, 2008.

[10] P. W. Foltz and S. T. Dumais. Personalized information delivery: An analysis of
information filtering methods. Commun. ACM, 35(12):51–60, 1992.

[11] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk)
queries in geographic information retrieval (gir) systems. In SSDBM, page 16,
2007.

[12] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region construction for
moving top-k spatial keyword queries. In CIKM, pages 932–941, 2012.

[13] P. Jin, H. Chen, S. Lin, X. Zhao, and L. Yue. Hybrid index structures for temporal-
textual web search. In APWeb, pages 271–277, 2011.

[14] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial keyword search. In ICDE,
pages 474–485, 2012.

[15] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware publish/subscribe. In KDD,
pages 802–810, 2013.

[16] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. Ir-tree: An
efficient index for geographic document search. IEEE Trans. Knowl. Data Eng.,
23(4):585–599, 2011.

[17] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling. STEWARD:
architecture of a spatio-textual search engine. In ACM-GIS 2007, November 7-9,
2007, Seattle, Washington, USA, Proceedings, page 25, 2007.

[18] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest neighbor search.
In SIGMOD Conference, pages 349–360, 2011.

[19] K. Mouratidis and H. Pang. Efficient evaluation of continuous text search queries.
IEEE Trans. Knowl. Data Eng., 23(10):1469–1482, 2011.

[20] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient processing
of top-k spatial keyword queries. In SSTD, pages 205–222, 2011.

[21] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan, H. Samet, and
J. Sperling. Newsstand: a new view on news. In ACM-GIS 2008, November 5-7,
2008, Irvine, California, USA, Proceedings, page 18, 2008.

[22] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In SIGMOD Conference, pages 85–96, 2012.

[23] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously moving top-k
spatial keyword query processing. In ICDE, pages 541–552, 2011.

[24] T. W. Yan and H. Garcia-Molina. Index structures for selective dissemination of
information under the boolean model. ACM Trans. Database Syst., 19(2):332–364,
1994.

[25] D. Zhang, K.-L. Tan, and A. K. H. Tung. Scalable top-k spatial keyword search.
In EDBT, pages 359–370, 2013.

[26] R. Zhong, J. Fan, G. Li, K. Tan, and L. Zhou. Location-aware instant search. In
CIKM, pages 385–394, 2012.

722

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Guoliang Li
	Also by Jianhua Feng
	Also by Kian-Lee Tan
