
Reinforcement Learning with Tree-LSTM
for Join Order Selection

Xiang Yu
Tsinghua University, China

x-yu17@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University, China
liguoliang@tsinghua.edu.cn

Chengliang Chai
Tsinghua University, China

chaicl15@mails.tsinghua.edu.cn

Nan Tang
QCRI, Qatar

ntang@hbku.edu.qa

Abstract—Join order selection (JOS) – the problem of finding
the optimal join order for an SQL query – is a primary focus
of database query optimizers. The problem is hard due to its
large solution space. Exhaustively traversing the solution space
is prohibitively expensive, which is often combined with heuristic
pruning. Despite decades-long effort, traditional optimizers still
suffer from low scalability or low accuracy when handling com-
plicated SQL queries. Recent attempts using deep reinforcement
learning (DRL), by encoding join trees with fixed-length hand-
tuned feature vectors, have shed some light on JOS. However,
using fixed-length feature vectors cannot capture the structural
information of a join tree, which may produce poor join plans.
Moreover, it may also cause retraining the neural network when
handling schema changes (e.g., adding tables/columns) or multi-
alias table names that are common in SQL queries.

In this paper, we present RTOS, a novel learned optimizer
that uses Reinforcement learning with Tree-structured long short-
term memory (LSTM) for join Order Selection. RTOS improves
existing DRL-based approaches in two main aspects: (1) it adopts
graph neural networks to capture the structures of join trees;
and (2) it well supports the modification of database schema and
multi-alias table names. Extensive experiments on Join Order
Benchmark (JOB) and TPC-H show that RTOS outperforms tra-
ditional optimizers and existing DRL-based learned optimizers.
In particular, the plan RTOS generated for JOB is 101% on
(estimated) cost and 67% on latency (i.e., execution time) on
average, compared with dynamic programming that is known to
produce the state-of-the-art results on join plans.

I. INTRODUCTION

Join order selection (JOS) is a key DBMS optimization
problem, which has been extensively studied for decades [1],
[26], [32], [36], [38]. Traditional methods typically search the
solution space of all possible join orders with some pruning
techniques, based on cardinality estimation and cost models.
The dynamic programming (DP) based algorithms [10] often
select the best plan but are very expensive. Heuristic methods,
such as GEQO [3], QuickPick-1000 [38], and GOO [4], may
compute plans more quickly, but often produce poor plans.

Recently, machine learning (ML) and deep learning (DL)
based methods for learned optimizers [11], [15] have become
popular in database community. In particular, deep reinforce-
ment learning (DRL) based methods, such as ReJOIN [20] and
DQ [16], have shown promising results – they can produce
plans that are comparable with native query optimizers but
can execute much faster after learning.

Shortcomings of Existing DRL-based Methods. Existing
DRL-based methods for learned optimizers (e.g., DQ and

T1 T2

T3

T4 T1 T3

T2

T4

1 1 1
T1 T2 T3 T4

0 1/4 1/4 1/4
T1 T2 T3 T4

1/4

T1 T2 T3 T4 T1 T3 T2 T4

(a) DQ (b) ReJOIN
Fig. 1. Different joins trees with the same feature vector.

ReJOIN) encode a join tree as a fixed-length vector, where
the length of the vector is determined by the tables and
columns in a database. This will cause two problems: (1) these
vectors cannot capture the structural information of a join tree,
which may lead to poor plans; and (2) the learned optimizers
will fail when the database schema changes (e.g., adding
columns/tables) or multi-alias table names, which requires a
new input vector with a different length, and then retrains the
neural network. Let us further illustrate through an example.

Example 1: Consider a database with 4 tables T1, T2, T3, T4.
DQ [16] uses one-hot encoding (1 means that a table is in

the tree and 0 otherwise) to encode a join tree: (T1 on T2) on T3
and (T1 on T3) on T2 have the same feature vector [1, 1, 1, 0],
as shown in Figure 1(a).

ReJOIN [20] uses the depth of the table in the join to
construct the feature vectors: (T1 on T2) on (T3 on T4) and
(T1 on T3) on (T2 on T4) have the same feature vector
[12

d
, 12

d
, 12

d
, 12

d
] = [14 ,

1
4 ,

1
4 ,

1
4], where the depth of each table

is d = 2 as shown in Figure 1(b). �

Key Observation. Example 1 shows that, join trees with
different join orders may be encoded into the same feature
vector using existing learners; that is, they only consider the
static information (such as tables and columns) of a join,
without being able to capture the structural information of a
join tree. Intuitively, a better learner should also understand
different structural information of different join trees.

Our Methodology. Based on the above observation, we
present RTOS, a novel learned optimizer using tree-structured
long short-term memory (Tree-LSTM) [35]. RTOS trains a
DRL model for JOS, which can automatically improve future
JOS by learning from previously executed queries.

Tree-LSTM is one kind of graph neural networks (GNNs).
GNNs on graph structure data have shown excellent per-
formance [40] for various applications, such as social net-

works [7] and knowledge graphs [6]. Different from tradi-
tional LSTM structures that take serial data as input, Tree-
LSTM directly reads a tree structure as input and outputs a
representation of the tree. We use tree-based representation
to tackle Shortcoming (1). Furthermore, we use the dynamic
graph feature to support schema changes and multi-aliases, to
overcome Shortcoming (2).

Our essential goal is to generate a plan with low latency
(i.e., the execution time). However, estimating latency is much
more expensive than cost (estimated from a cost model). We
first use cost as feedback to train the model and then switch to
latency as feedback for fine-tuning. Different from [21] that
only uses latency as feedback, we treat these two feedback
as two separate tasks but sharing one common representation,
through multi-task learning [29]. By doing so, the model can
learn cost and latency together, by setting the objective loss
function as a weighted sum of these two problems.

One may concern that training a deep neural network is
not cheap, because it requires a lot of training data and the
feedback from interacting with the neural network, which is
also reported in DQ [16]. However, training a DL model for a
database is typically considered as an off-line operation, and
once it is trained, it is very efficient to use it for prediction.

Contributions and Roadmap. We propose RTOS, using DRL
with Tree-LSTM, to approach JOS. The main contributions
and roadmap of this paper are as follows.
(1) We give an overview of RTOS. (Section II).
(2) We introduce the representation of an intermediate join
plan (i.e., a join forest), which combines the representations
of the given query and the join trees in the join forest, by
leveraging Tree-LSTM. (Section III).
(3) We describe how to adapt Deep Q learning [23] to solve
our DRL problem for JOS. (Section IV).
(4) We discuss how RTOS can handle database modifications
such as adding columns/tables, as well as dealing with multi-
aliases. (Section V).
(5) Extensive experiments on two popular benchmarks, Join
Order Benchmark [17] and TPC-H, show that RTOS outper-
forms existing solutions by producing join plans with lower
latency and cost. (Section VI).

II. AN OVERVIEW OF RTOS

Our primary focus is on SPJ queries, simiar to DQ [16].
RTOS trains a learned optimizer using DRL with Tree-LSTM.
Given an SQL query, it outputs a join plan. A DBMS will
execute this join plan and send feedback, which is then used
by RTOS as new training samples to improve itself.

A. The Working Mechanism

1) Deep Reinforcement Learning (DRL) in RTOS: Rein-
forcement learning (RL) is a method that an agent (e.g.,
the optimizer) learns from the feedback through trial-and-
error interactions with the environment (e.g., a DBMS), which
typically incorporates deep learning (DL). For each state (e.g.,
an intermediate join plan), RTOS reads the plan and leverages

Select *
From T1,T2,T3,T4
Where T1.a = T2.a
 and T3.b = T4.b
 and T1.c = T3.c

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2 T3 T4

T1 T2 T3 T4

T1.a = T2.a

T3.b = T4.b

T1.c = T3.c

Termination State

Intermediate state

Intermediate state

Initial State

actio
n

actio
n

actio
n

Fig. 2. RTOS selects one join as an action until all tables are joined.

Tree-LSTM [35] to compute an estimated long term reward
(e.g., the feedback from a DBMS) of each action (e.g., which
two tables should be joined to make the current state more
complete). It then selects the expected optimal action with the
largest reward (minimum cost). When all the tables are joined
(i.e., a complete join plan is derived), the join plan will be sent
to a DBMS to execute. RTOS will then take the feedback from
the DBMS to train the Tree-LSTM and update the optimizer.

2) Feedback of Latency and Cost: There are two types of
information from a DBMS that we use as feedback: latency
and cost. Latency is the actual execution time of a join plan,
which is the essential goal to optimize. However, it can only
be obtained after executing SQL queries, which is expensive.
Cost is an estimation of latency, which is typically given by
cost models and oftentimes is inaccurate.

Besides using the speed advantage of cost to train a learner,
we also use the latency feedback, with the following two steps.

Cost training first uses cost as a reward to train a RL model.
After this phase is completed, our model can generate a good
plan with cost as the indicator. Meanwhile, the neural network
has an understanding of the database based on the cost.

Latency tuning further incorporates latency as feedback and
uses it as the new optimization goal. Through the previous
step of cost training, the neural network has already had an
approximate understanding of the database. Based on this,
we use the information of latency for continuously training.
Hence, this step can be considered as fine-tuning.

3) Incrementally Maintaining the Model: Deep reinforce-
ment learning has been widely used in dynamic environments,
for which just the rewards of state-action pairs may change
over time. For our problem, we record all the executed queries,
and use the execution result (cost, latency) to update our
model in the background. By doing so, our model can adapt to
modifications in real-time. We have also discussed two cases
“add a column” and “add a table” in Section V.

B. The RTOS Framework

Informally speaking, a state in the join process is a join
forest, which may consists of several join trees.

Example 2: Consider an SQL query in Figure 2. Its initial state
is a join forest with four join trees T1, T2, T3 and T4. The 1st

DRL

Optimizer

SQL

Tree LSTM

Action Space

DBMS

Estimator

Executor

State

Memory Pool

A
ction Selection

Latency Tuning: Cost, Latency

Cost Training: Cost

T1 T2 T3 T4 T1 T2 T3 T4T1 T2 T3 T4 ….

T1.a = T2.aAction

Join Tree

T1.c = T3.c …. T3.b = T4.b

Te
rm

in
at

in
g

St
at

e

T1 T2 T3 T4

Initial State

Intermediate State

Train

Fig. 3. The RTOS framework.

intermediate state is a join forest with three join trees: (T1 on
T2), T3 and T4. The 2nd intermediate state is a join forest
with two join trees: (T1 on T2), (T3 on T4). The terminating
state is a complete plan with only one join tree. �

Next we present its framework, as shown in Figure 3.
1) DRL optimizer: The learned optimizer.

– State maintains the current state information for the join
process. Terminating State is one join tree that all tables are
joined together, which will be converted to a query plan and
passed to a DBMS for execution. Intermediate state is the
state that holds partial join plans. An intermediate state will
be passed to the Optimizer to pick the action that should be
performed now, and State itself is updated according to the
selected action.

– Optimizer corresponds to the agent in RL, which is the core
part of the entire system. For a given state, each candidate join
condition can be considered as an action. The Action Space
contains all possible actions and corresponding join trees (e.g.,
{(T1.a = T2.a, joinTree(T1.a = T2.a)), ...}). For join trees in
the action space, we will use Tree-LSTM to represent them
and get the corresponding estimated long term reward. Action
Selection gets the result of each join tree from Tree-LSTM
and selects the action corresponding to the optimal join tree:

action = arg min
action′∈Action Space

TreeLSTM(joinTree(action′))

– Memory Pool records the status of the plans generated
by RTOS and the feedback from the DBMS. DRL requires
training data to train neural networks. Common practices use
replay memory [23] to record the status and systems feedback.
We use a memory pool here and sample training data from it
to train the Tree-LSTM.

2) DBMS: RTOS generates a join plan for a given query
and then passes it to a DBMS, e.g., PostgreSQL. We use two
components from the DBMS, an Estimator and an Executor.

TABLE I
NOTATIONS.

Notation Description
n the number of tables in database

R(c) representation for column c
R(t) representation for table t
T a join tree

R(T) representation for T
F a join forest that consists of several join trees

R(F) representation for forest F
R(q) representation for SQL q
θ one join condition in query
Θ all join conditions in query
s join state during the join process

R(s) representation for join state s
hs the size of hidden layer in neural network
A an action in RL
A action space of all actions
M attribute matrix for column c in neural network
F (c) Feature vector of column c

Estimator can give the cost of the plan using statistics to
estimate the cost without executing the Executor.

Getting the latency of each join condition is difficult. In
order to reduce the difficulty of implementation and make the
system easier to migrate to other systems, we adopt a classical
approach, which is also used in ReJoin [20] and DQ [16].
We set the feedback (reward) of each step of the intermediate
state to 0, and the feedback of the terminating state to the cost
(latency) of the entire plan.

III. REPRESENTATION OF THE STATE

The performance of ML/DL methods is heavily dependent
on data representations (or features), which are typically
represented by vectors. In our case, we need to learn repre-
sentations of queries, columns, tables and join trees. To learn
the representation R(s) of a state s, we need to consider
both the current status (i.e., a join forest F) and its target
status (i.e., an SQL query q). The representation R(s) of the
state s is the concatenation of the representation R(F) of the
forest F and the representation R(q) of the query q; that is,
R(s) = R(F)⊕R(q).

In what follows, we will first describe the representation
R(q) of query q into a vector (Section III-A). We then
discuss the representations of columns and tables of the given
query into a vector (Section III-B). We introduce Tree-LSTM
(Section III-C1), and discuss how to use Tree-LSTM to learn
the representation of a join tree based on the representations
of columns and tables (Section III-C2). We close this section
by giving the representation R(F) of a join forest F and the
representation R(s) of a state s (Section III-C3).

We summarize the notations used in this paper in Table I.

A. Representation of Queries

The representation R(q) of a query q is a vector that
contains all the join information about the tables in q.

Let n be the number of tables in a database, and each table
has a unique identifier from 0 to n − 1. Let m be a n ∗ n
matrix where each cell is 0 or 1. mi,j is 1 means that there
is a join relation between the i-th table and j-th table and
0 otherwise. This matrix is then flattened into a vector v by

R(T1) R(T1.a) R(T2.a) R(T2)

N-ary
R(T2.b) R(T3.b) R(T3)

N-ary

+
R(q)ChildSum

 10 00

Query q:
Select *
From T1,T2,T3,T4
Where T1.h > 30
 and T1.h < 50
 and T1.a = T2.a
 and T2.b = T3.b
 and T1.c = T4.c

R(q)

…
(T1,T1) (T1,T2) (T4,T3)(T4,T4)…

(A) Query Representation for input query

(B) Table and column representation (C) Join tree and join state representation

on = > <

R(T1.a)

on = > <

R(T1.b)

on = > <

R(T1.h)

…………

+

Pooling

R(T1)

concatenate

0 0 0.3 0.5

R((T1 on T2) on T3)
<latexit sha1_base64="wjlvu2T1dExyf7jzfmtcveNoIYc=">AAACB3icbZDLSsNAFIYnXmu9RV0KMrQILUJJ2oUug27EVZXeoClhMp22QyeTMDMRQujOjXufwo0LRdz6Cu76Nk4vgrb+MPDxn3M4c34/YlQqyxobK6tr6xubma3s9s7u3r55cNiQYSwwqeOQhaLlI0kY5aSuqGKkFQmCAp+Rpj+8mtSb90RIGvKaSiLSCVCf0x7FSGnLM0/Su1EBFmqeDd2bkHJY88rFH6oUPTNvlayp4DLYc8g7OffsaewkVc/8crshjgPCFWZIyrZtRaqTIqEoZmSUdWNJIoSHqE/aGjkKiOyk0ztG8FQ7XdgLhX5cwan7eyJFgZRJ4OvOAKmBXKxNzP9q7Vj1Ljop5VGsCMezRb2YQRXCSSiwSwXBiiUaEBZU/xXiARIIKx1dVodgL568DI1yya6U7Fs771yCmTLgGORAAdjgHDjgGlRBHWDwAJ7BK3gzHo0X4934mLWuGPOZI/BHxuc3C72Z2Q==</latexit>

R(T4)
<latexit sha1_base64="BXKDji5+bGRauzuiZNhstKQkqXk=">AAAB8XicbVBNT8JAEJ3iF+IX6tHLRmKCF9IqiR6JXjyioUCEhmyXLWzYbpvdrQlp+i+8eNAYr/4bb/4bF+hBwZdM8vLeTGbm+TFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlklCXRDySXR8rypmgrmaa024sKQ59Tjv+5Hbmd56oVCwSLT2NqRfikWABI1gb6TF9yKppa1DPzgflil2z50CrxMlJBXI0B+Wv/jAiSUiFJhwr1XPsWHsplpoRTrNSP1E0xmSCR7RnqMAhVV46vzhDZ0YZoiCSpoRGc/X3RIpDpaahbzpDrMdq2ZuJ/3m9RAfXXspEnGgqyGJRkHCkIzR7Hw2ZpETzqSGYSGZuRWSMJSbahFQyITjLL6+S9kXNuaw59/VK4yaPowgncApVcOAKGnAHTXCBgIBneIU3S1kv1rv1sWgtWPnMMfyB9fkD09qQWw==</latexit>

R((T1 on T2) on T3, T4)
<latexit sha1_base64="0/7FRIc80LcanPFU+JAd9WyeX3Y=">AAACFHicbZDLSgMxFIYzXmu9jbp0E1qElkqZaQVdFt2Iqyq9QaeUTJq2oZnMkGSEYZiHEMRXceNCEbcu3PVtTC+Ith4I+fj/c0jO7waMSmVZY2NldW19YzO1ld7e2d3bNw8OG9IPBSZ17DNftFwkCaOc1BVVjLQCQZDnMtJ0R1cTv3lPhKQ+r6koIB0PDTjtU4yUlrpmIY7vklwurnXtxLnxKYcaS0n+h8vJ6eQ6S/JJ18xaRWtacBnsOWQrGafwOK5E1a755fR8HHqEK8yQlG3bClQnRkJRzEiSdkJJAoRHaEDaGjnyiOzE06USeKKVHuz7Qh+u4FT9PREjT8rIc3Wnh9RQLnoT8T+vHar+RSemPAgV4Xj2UD9kUPlwkhDsUUGwYpEGhAXVf4V4iATCSueY1iHYiysvQ6NUtMtF+9bOVi7BrFLgGGRADtjgHFTANaiCOsDgATyDV/BmPBkvxrvxMWtdMeYzR+BPGZ/fccWgJg==</latexit>

R(((T1 on T2) on T3, T4), q)
<latexit sha1_base64="iQDGQmN71XxktMY64hMnirvdu4s=">AAACGXicbZDLSgMxFIYz9VbrbdSlm2ARWihlpi3osuBGXFXpDdphyKRpG5rJjElGKMO8hhtfxY0LRVzqyrcx0xbR1gMhH/9/Dsn5vZBRqSzry8isrW9sbmW3czu7e/sH5uFRWwaRwKSFAxaIrockYZSTlqKKkW4oCPI9Rjre5DL1O/dESBrwppqGxPHRiNMhxUhpyTWt+DYpFApx07WT/nVAOdRYSYo/XE1K6VVLiqX4LinmXDNvla1ZwVWwF5AHi2q45kd/EODIJ1xhhqTs2VaonBgJRTEjSa4fSRIiPEEj0tPIkU+kE882S+CZVgZwGAh9uIIz9fdEjHwpp76nO32kxnLZS8X/vF6khhdOTHkYKcLx/KFhxKAKYBoTHFBBsGJTDQgLqv8K8RgJhJUOMw3BXl55FdqVsl0t2ze1fL22iCMLTsApKAAbnIM6uAIN0AIYPIAn8AJejUfj2Xgz3uetGWMxcwz+lPH5DcNznjY=</latexit>

Fig. 4. Representations in RTOS.

putting all rows, from 0 to n − 1, of the original matrix m
into the vector, i.e., vi∗n+j = mi,j and |v| = n ∗ n.

Afterwards, we apply one Fully connect (FC) layer on the
vector v (see Figure 4(A)) to get the representation of q:

R(q) = FC(v) = σ(vW + b)

where σ is one activation function (e.g., tanh, Sigmoid, ReLU)
in neural network; W (matrix with shape (n ∗ n, hs)) and b
(vector with shape (1, hs)) are parameters in FC layer which
need to be learned using training samples; hs is the size of
hidden layers in neural network; and R(q) is a vector with
shape (1, hs) that represents the query q.

One improved method from this matrix based representation
for learning the query has good properties to handle schema
changes and multi-aliases (see Section V-A for more details).

B. Representation of Columns and Tables

Columns and tables are two key components in a query.
Given a query q, we just need to use the predicates in q
to construct the representations of columns, without scanning
the database. Next we first discuss the representation R(c)
of a column c, followed by using column representations to
construct the representation R(t) of a table t.

Column Representation. We consider two types of columns:
numerical values and other values (e.g., string). Note that in
a query, a column c can be associated with two operations,
Join and Selection, and both need to be considered. In
particular, we encode Selection information into column
representation R(c) for column c, which can be viewed as
pushing all Selection into leaves in join tree.

(i) For a column c with numerical values, the Selection

operation can be categorized into three cases: =, > and<.
Therefore, we encode c as a feature vector of length 4:
F (c) = (con, c=, c>, c<), where con = 1 if the column c
exists in a join predicate and 0 otherwise. For the other

three Selection operations, solely encoding the existence
as the Join operation is not enough because the value in
the predicate matters. For example, given a predicate c > v,
we should consider the value v as the feature. Since data in
different columns has different scales, we normalize the value
into [0, 1] based on the the maximum (cmax) and minimum
(cmin) value in the column. Next we illustrate the three cases.
• For predicate c = v, if v < cmin or v > cmax, we set
c= = −1 because we cannot retrieve any data in that
situation, otherwise c= = vnor + 1 = v−cmin

cmax−cmin
+ 1.

• For predicate c > v, if v ≥ cmax then c> = 1, else if
v < cmin then c> = 0, otherwise c> = vnor.

• For predicate c < v, if v ≤ cmin then c< = 1, else if
v > cmax then c< = 0, otherwise c< = 1− vnor.

Example 3: Consider the query in Figure 4(A), F (T1.h) =
(0, 0, 0.3, 0.5). Column T1.h has no join condition nor “=”
predicate, hence c= = 0 and con = 0. The maximum and
minimum for T1.h are 0 and 100, so we set c> = 0.3 for
T1.h > 30 and c< = 1− 0.5 = 0.5 for T1.h < 50. �

We define a matrix M(c) with shape (4, hs) for each
column c. M(c) has learned parameters that contain the infor-
mation of the column. The representation R(c) for numerical
column c with shape (1, hs) is:

R(c) = F (c) ∗M(c)

For the column c have predicates connected by “or”, we
handle these predicates separately, and apply max pooling to
get one representation.

(ii) For a column c with other values (e.g. string). It cannot be
mapped to a value with interval meaning (“>”,“<”) by a sim-
ple method (e.g. hash), but requires a more complex encoding
method (e.g. word2vec [22]). Here we only encode it using
its selectivity information and get the column representation.

To align with the above feature vector, we also use a
vector of size 4 to encode a column, i.e., (con, c=, c>, c<).

con is computed the same as above. c> = 0 and c< = 0
because interval information of a string column could not
be represented by numerical value directly. For c=, given a
predicate v, we estimate the selectivity of v and set c= to the
estimated selectivity.

Table Representation. For a table t with k columns, we use its
columns’ representations to construct its table representation
R(t). More specifically, we concatenate k column represen-
tations (R(c1), R(c2), ..., R(ck)) into a matrix M(t) with the
shape (k, hs), M(t) = (R(c1) ⊕ . . . ⊕ R(ck)), and apply an
average pooling layer (kernel shape (k, 1)) to get the table
representation (see Figure 4(b)) of shape (1, hs), as:

R(t) = MaxPool(M(t))

C. Representations of Join Tree, Join Forest and the State

Next, we will first describe how to use Tree-LSTM to
learn the representation of a join tree, because a join tree is
a graphical structure and it is difficult to directly obtain its
representation by constructing a feature vector.

1) Tree-LSTM: Traditional LSTM [8] shows its power to
acquire sequential data features even for a long sequence (e.g.,
in natural language processing). We have a sequence input
X = (x1, x2, x3, . . .). At each time step i, hidden state vector
hi represents the current state at step i and the memory cell
vector mi preserves long-term information over x1, x2, . . . , xi
to make it handle the long sequence. LSTM uses an LSTMUnit
over input xi and previous representation (hi−1,mi−1) at step
i− 1 to get hi and mi, hi,mi = LSTMUnit(xi, hi−1,mi−1).

However, traditional LSTM reads sequential data and cannot
be directly applied to complex structures such as trees. In
order to solve this limitation, Child-Sum Tree-LSTM and
N -ary Tree-LSTM [35] have been proposed to run on a
tree structured input. With the given tree, Tree-LSTM can
automatically learn the structure information of the tree and
give its representation.

Child-Sum Tree-LSTM does not consider the order of its
children. For a given tree node j with several child nodes αjk,
it sums all the child nodes’ representations, and then constructs
its representations.

N -ary Tree-LSTM considers the order of its children. For a
given tree node j, the representation of its k-th child node αjk

will be calculated separately. For the k-th child node, it will
have its own weight matrix w.r.t. k. The order information will
be caught by these position dependent weight matrices.

We combine these two Tree-LSTM according to the char-
acteristics of join forest. The forest F is composed of several
join trees {T1, T2, . . .}. Without any human feature on tree
structure, we take the join trees as input and use the model to
automatically learn the representation R(T) for join tree T .

2) Representation for Join Tree: As shown in Figure 4(C),
we construct a tree model for a join tree. The leaf node
could be a table or a column. An internal node in a join
tree corresponds to a join and is composed of 4 nodes
(α0, β0, β1, α1). α0 and α1 are two join trees (tables) need
to be joined. β0 and β1 are nodes corresponding columns in

Function JoinTreeDFS(Node)
Input: Table Representation, Column Representation,

N -aryUnit
Output: State representation of Join Tree
if Node is a leaf then1

h = R(Node)2
m = Zeros init()3
Return h,m4

else5
hα0 ,mα0 = JoinTreeDFS(Node→ α0)6
hα1 ,mα1 = JoinTreeDFS(Node→ α1)7
hβ0 ,mβ0 = JoinTreeDFS(Node→ β0)8
hβ1 ,mβ1 = JoinTreeDFS(Node→ β1)9
Return N -aryUnit(hα0 ,mα0 , hα1 ,mα1 , hβ0 , hβ1)10

Fig. 5. Dynamically constructing the neural network of given join tree.

this join. α0, β0, β1, α1 are position sensitive, we apply N -ary
Tree-LSTM in the join tree.

For a tree node j, we use hj to denote its representation,
and mj for the memory cell.

• If node j is a leaf representing a single table, hj = R(j),
mj will be initialized as a zero vector.

• If node j is a leaf representing a single column, hj =
R(j), mj will be initialized as a zero vector.

• For a node j representing a join, it has 4 child nodes
(αj,0, βj,0, βj,1, αj,1). We apply N -aryUnit in N -ary
Tree-LSTM on the representation of these four nodes to
get hj and mj .

The equations of unit in N -ary Tree-LSTM N -ary
Unit(W∗,U∗,b∗) for a node j are as following:

ij = σ(W i
0hβj,0 +W i

1hβj,1 + U i0hαj,0 + U i1hαj,1 + bi)

fj,0 = σ(W f
0 hβj,0 +W f

1 hβj,1 + Uf0,0hαj,0 + Uf0,1hαj,1 + bf)

fj,1 = σ(W f
0 hβj,0 +W f

1 hβj,1 + Uf1,0hαj,0 + Uf1,1hαj,1 + bf)

oj = σ(W o
0 hβj,0 +W o

1 hβj,1 + Uo0hαj,0 + Uo1hαj,1 + bo)

uj = tanh(Wu
0 hβj,0 +Wu

1 hβj,1 + Uu0 hαj,0 + Uu1 hαj,1 + bu)

mj = ij � uj + fj,0 �mαj,0 + fj,1 �mαj,1

hj = oj � tanh(mj)

where i, f, o, u are the intermediate neural network in the
calculation, corresponding to each gate which is proved to help
catch the long-term information (deep tree or long sequence) in
the traditional LSTM. W ∗p , U

∗
0,p, U

∗
1,p, b

∗
p, ∗ ∈ {i, f, o, u}, p ∈

{0, 1} are parameters corresponding to gates and node’s po-
sitions in neural network that will be trained to minimize the
given loss function.

We have defined N -aryUnit which can calculate the rep-
resentation of a node. We can use the N -aryUnit to get the
representation of this join tree. Benefit from the dynamic graph
feature of PyTorch, we can construct the computation graph of
the neural network after we obtain the tree. We use Depth First
Search (DFS) to traverse the tree and generate the computation
graph as shown in Function JoinTreeDFS(). The hj of the root
node in each join tree can be viewed as the representation
R(T) of this join tree T , R(T) = hj .

3) Representation for Join State: The join state s is
composed of forest F = {T1, T2, . . .} and query q.

For a query q with m tables to be joined, we have m − l
join trees after l joins. For those join trees T that have not
been joined, they are unordered and any two tables can be
joined in the next time. To represent the combination of these
join trees, we use a root node to represent the forest whose
children are all these m-l join trees Ti. Join trees are position
independent, the Child-Sum Tree-LSTM is used here to get
the output of root hroot. The equations of unit in Child-Sum
Tree-LSTM CSUnit(U∗,b∗) for root are as the following:

h =
∑
k

hTk

i = σ(U ih+ bi)

fk = σ(Ufhrootk + bf)

o = σ(Uoh+ bo)

u = tanh(Uuh+ bu)

mroot = i� u+
∑

fk �mTk

hroot = o� tanh(mroot)

where i, f, o, u are the intermediate neural network in the
calculation, corresponding to each gate in the traditional
LSTM. The parameters U∗, b∗, ∗ ∈ {i, f, o, u} in equations
are parameters in neural network that need to be trained. They
are other parameters in CSUnit different from N -aryUnit.
The representation for root hroot can be viewed as the
representation of forest R(F) = hroot. After we have the
representation for forest F and query q, we concatenate these
two representations to get a representation for join state s,

R(s) = R(F)⊕R(q)

R(F) and R(q) are vectors with shape (1, hs) and R(s) is
a vector with shape (1, hs ∗ 2).

IV. DEEP REINFORCEMENT LEARNING IN RTOS

After mapping JOS into an RL problem and describing
the presentation for join states, our next goal is to solve this
problem and give a join plan with a small cost (latency), for
which we use Deep Q Network (DQN) [23].

A. DQN for Join Order Selection

Q-learning [39] is a value-based RL algorithm. Similiar to
DP, Q-learning uses a Q-table to store the best value for
all states. Given several possible actions, it enumerates all
actions and then picks the best one. For JOS, the action space
A(s) = {(A1, s1), (A2, s2), . . .} corresponds to all possible
join conditions θi that Ai = θi and si denotes the new state
that the current state s transfers to after taking action Ai. We
define Q-values Q(s) from function as the expected smallest
cost (latency) of the optimal join plan from a join state s. We
can get the formula of Q as:

Q(s) =

{
cost(latency), s is a termination state

min
(A′,s′)∈A(s)

Q(s′), s is a non-terminating state

Similar to dynamic programming, Q-learning uses a Q-table
to compute Q(s). Q-table uses a list to record all known state-
value pair (s,Q(s)). For asking Q(s) of s, it will return Q(s)

……

Joint Loss

WL WC

R(s)

QL
nn<latexit sha1_base64="o2pCw6YS2dYFWBISb+LXotWYBIA=">AAACIXicbVC7TgJBFJ0FH4gv0NJmIzGxMGRXTbQk2lhYQCKPBJDMDheYMDu7mbmrkA0/YaudX2Nn7Iw/47BQCHiSSU7OuTfnzvFCwTU6zreVSq+tb2xmtrLbO7t7+7n8QU0HkWJQZYEIVMOjGgSXUEWOAhqhAup7Aure8Hbq159AaR7IBxyH0PZpX/IeZxSN1Kg83ndiKSedXMEpOgnsVeLOSYHMUe7krXSrG7DIB4lMUK2brhNiO6YKORMwybYiDSFlQ9qHpqGS+qDbcXLwxD4xStfuBco8iXai/t2Iqa/12PfMpE9xoJe9qfif14ywd92OuQwjBMlmQb1I2BjY09/bXa6AoRgbQpni5labDaiiDE1HCykSnnGEMMKzhCWJCwOeP8ma2tzlklZJ7bzoXhTdymWhdDMvMEOOyDE5JS65IiVyR8qkShgR5IW8kjfr3fqwPq2v2WjKmu8ckgVYP78dg6Ps</latexit>

QC
nn<latexit sha1_base64="uTFkxqXRdvGEijwHbMXxNIlKCk0=">AAACIXicbVDLTgJBEJwFH4gv0KOXjcTEgyG7aqJHIhePkMgjASSzQwMTZmc3M70K2fATXvXm13gz3ow/47BwELCSSSpV3ame8kLBNTrOt5VKb2xubWd2srt7+weHufxRXQeRYlBjgQhU06MaBJdQQ44CmqEC6nsCGt6oPPMbT6A0D+QDTkLo+HQgeZ8zikZqVh/L3VjKaTdXcIpOAnuduAtSIAtUunkr3e4FLPJBIhNU65brhNiJqULOBEyz7UhDSNmIDqBlqKQ+6E6cHDy1z4zSs/uBMk+inah/N2Lqaz3xPTPpUxzqVW8m/ue1IuzfdmIuwwhBsnlQPxI2Bvbs93aPK2AoJoZQpri51WZDqihD09FSioRnHCOM8SJhSeLSgOdPs6Y2d7WkdVK/LLpXRbd6XSjdLQrMkBNySs6JS25IidyTCqkRRgR5Ia/kzXq3PqxP62s+mrIWO8dkCdbPLw3wo+M=</latexit>

Fig. 6. Q-network of latency and cost share the same state representation.

directly if s is in Q-table, or recursively ask Q-table Q(s′)
from its action space A(s) to compute Q(s) according to the
above equations otherwise.

The policy function π(s) is used to return the selected
optimal action for given state s. Once we get the Q-table, we
can use it to guide the strategy function. The policy function
π(s) can be obtained as π(s) = arg min(A′,s′)∈A(s)Q(s′)

However, as dynamic programming, Q-learning needs a
large Q-table, which consumes large memory and costs too
much time to enumerate all states.

DQN improves Q-learning by using a neural network (Q-
network) to estimate the unseen state from the known state
instead of using Q-table. We have obtained the join state
representation R(s) for state s in Section III-C3. We use
Qnn(R(s), ω) to denote the Q-network, where ω is the pa-
rameters in Q-network.

One episode means a complete process that RTOS gen-
erates a join plan and get a feedback v. For each state s
in this episode, similar to Q-learning, Qnn(R(s), ω) has a
target value V = min(v,min(A′,s′)∈A(s)Qnn(R(s′), ω)) . The
difference between target value of Qnn(R(s), ω), δ(R(s)) =
Qnn(R(s), ω)−V could indicate how accurate the Q-network
can estimate the state s, which is closer to zero means a better
estimation. We use the L2 loss to define the loss function for
the Q-network which needs to be minimized to train the Q-
network: Loss(R(s)) = (δ(R(s)))2.

B. Multi-task Learning for the Joint Loss of Cost and Latency

In RTOS, one issue that needs to be considered is the choice
of cost and latency. We hope that RL can give the shortest
execution time, but each step takes too long to get feedback.
The cost model can quickly give an estimated cost but may
be inaccurate. As mentioned in Section II-A, we divide the
training process into two steps: cost training and latency
tuning. When doing latency tuning, we do not directly move
the target from cost to latency as used in previous work.

Instead, we consider them as two similar tasks and train
neural network together, to benefit from the efficiency of
cost and use latency for fine tuning, when large new training
data is needed (e.g., modifications of database schema). This
idea comes from multi-tasking learning [2], which shares the
representation of the neural network and gets the output of
multiple tasks at the same time. In this RTOS, we consider
two Q-network QL

nn, Q
C
nn, which get the Q-value of latency

QL
nn and cost QC

nn, respectively.

During plan generation, QL
nn is used to generate the join

plan. After one episode (one plan generation process) is
completed, we collect both latency L and cost C. For one
state s in this episode, two Q-network will compute with the
same representation for join state s. As shown in the Figure 6,
we get the representation R(s) of state s, then we calculate
QL

nn(s) and QC
nn(s) separately with their own output layer.

The losses of these two Q-network are:

LossL(R(s)) = (min(L, min
(A′,s′)

QLnn(R(s′), ωL))−QLnn(R(s), ωL))2

LossC(R(s)) = (min(C, min
(A′,s′)

QCnn(R(s′), ωC))−QCnn(R(s), ωC))2

We compute a weighted sum of the two loss functions to
get the loss of the entire network.

JointLoss(R(s)) = WLLossL(R(s)) +WCLossC(R(s))

We set the WL = 0,WC = 1 during cost training, which
can be seen that we do not use the latency and set WL =
1,WC = 1 during latency tuning. Cost is used to train the
network and latency is used to find the plan.

V. HANDLING MODIFICATIONS AND MULTI-ALIASES

One major difference between learning methods and tradi-
tional methods is that learning methods need to be trained for
a long time before being applied to real systems. Previously
learned optimizers use a fix-length vector that is related to the
number of tables and columns in database, which makes them
hard to handle the following (frequent) cases:
• Adding columns to a table
• Inserting tables to a database
• Multi-aliases: a table may have multiple aliases in a

query, such as “Select ∗ from T as t1, T as t2 . . .”, where
t1 and t2 are aliases which can be treated as different
tables with the same data in this SQL query.

Adding columns and inserting tables change the schema of
database. Fix-length feature based neural networks need to
change the size of network and retrain all over again. This
process takes a long time and make the system fails during
this time. What’s more, multi-aliases can be viewed as an
“inserting table” at any time that is really hard to handle.
ReJoin [20] defines one more redundant position for each
table and treats t1 and t2 as two totally different tables. The
information of t1 and t2 cannot be shared during training and
this will fail when we have t3 for the reason that we cannot
know how many aliases will occur in advance.

Below we will show how our model supports these oper-
ations using the dynamic feature and shared weight feature
in RTOS. Without otherwise specified, RTOS uses the model
below by default.

A. Variable-length Query Encoding

In Section III-A we use a n∗n matrix to represent the query.
When a table is inserted, the n will be n + 1 which makes
the fully connect layer fail. We explore the representation of
query encoding. For a given query q

……

R(q)

+
+

+
……

Dynam
ic Pooling

R(T1.a)
Select *
From T1,T2,T3,T4
Where T1.a = T2.a
 and T2.b = T3.b
 and T3.c = T4.c
 and T1.d = T3.d

Fully Connect

R(T2.a)

R(T2.b) R(T3.b)

R(T1.d) R(T3.d)

Fig. 7. Variable-length query encoding uses dynamic pooling to encode query
with any number of join conditions in a query.

R(q) = σ(vW + b) = σ(
∑

Vi∗n+j=1

Wi∗n+j + b)

= σ(
∑

i-th table join j-th table

Wi∗n+j + b)

We can know that FC layer uses a vector Wi∗n+j to
represent each join condition. R(q) is the sum of those vectors
of which join is in the query. Join set Θ(q) = {θ1, θ2, . . . , θk}
is the set of all k join conditions θi in the query q. A join
condition is composed of two columns, θi = (ci,0, ci,1).
We apply a fully connect (FC) layer on these two column’s
representation R(ci,0), R(ci,1) to construct the join condition
representation R(θi) = FC(R(ci,0), R(ci,1)). Then we repre-
sent R(q) by replacing W :

R(q) = σ(
∑
θi∈Θ

FC(R(ci,0), R(ci,1)) + b)

= σ(R(θ1) +R(θ2) + . . .+R(θk) + b)

Our goal is to transfer these k (1, hs)-vectors R(θi) (for
i ∈ [1, k]) into one (1, hs)-vector while k is a dynamic param-
eter according to different queries. Dynamic pooling [33] is
proposed to solve this problem. Dynamic pooling is a pooling
layer whose kernel size will be decided according to the
expected output feature size. As shown in Figure 7, we use
the dynamic average pooling over these k vectors R(θi) and
get one vector with shape (1, hs) to represent R(q).

R(q) = σ(DynamicPool(R(θ1), R(θ2), . . . , R(θk)))

where k is the number of joins in the query and independent
of the number n of tables in the database.

B. Adding Columns and Inserting Tables

Adding a column will change the size of a table. When we
want to add a column cnew into table t. We first assigned
attribute matrix M(cnew) for cnew in neural network and then
use F (cnew) to construct R(cnew). In Section III-B we have
used the k column representations R(ci) to construct table
representation R(t). Adding a column will change k to k+ 1,
so we switch simple pooling to dynamic pooling method to
get the R(t).

R(t) = DynamicPool(R(c1)⊕R(c2) . . .⊕R(ck)⊕R(cnew))

We learn the M(cnew) for queries related to cnew. For other
queries have no cnew, the R(cnew) remains zero and keep R(t)
the same as before.

Adding a table tnew will change the size of database from
n to n + 1. We first assigned corresponding attribute matrix
M(tnew.ci) for all columns ci in tnew to construct R(tnew).
Benefit from dynamic feature of Tree-LSTM, the neural net-
work in Tree-LSTM are built by DFS when we get the join
tree. Any node can be added to the join tree at any time.
For those queries related to tnew, we directly add R(tnew)
to the join tree and update the relevant parameters through
Tree-LSTM.

Weight initialization is an important task to reduce the
training time which is known as transfer learning [29]. We
can initialize the parameter of the added column (table) using
previously known similar column (table). Here we simply
initialize the attribute matrix of added column who has join
relations with previous column.

M(cnew) = M(c′)

where c′ has a join relation with cnew (e.g., a foreign key).

C. Multi-aliases

Multi aliases can be viewed as inserting copy tables (t1, t2)
from the origin table t when we execute the query. The copy
tables share the same data as the origin one. What’s more
important is that when we learn the feedback using RL. The
feedback to aliases t1 and t2 will both share parameters of t
in neural network.

Our idea is to use the shared information. t1, t2 will share
the neural network parameters of t. For feature vector of
column ci in t1 and t2, we use attribute matrix of t construct
their column representation.

R(t1.ci) = F (t1.ci) ∗M(t.ci)

R(t2.ci) = F (t2.ci) ∗M(t.ci)

We can construct table representation R(t1(t2)) with those
R(t1(t2).ci). Like the operation “insert a table”, We add these
R(t1(t2)) and R(t1(t2).ci) to join tree and construct the neural
network when needed. They feedback information of t1, t2 will
work on parameters of t due to the shared mechanism.

VI. EXPERIMENTS

The chief purpose of our experiments is to understand the
performance of DRL-based methods and traditional methods
for the problem of join order selection. We build RTOS on
PostgreSQL.

Datasets: We conducted experiments on two datasets:
(1) Join Order Benchmark (JOB) [17]. JOB is a real-world
dataset based on IMDB to provide realistic workload. It has
113 queries from 33 templates. It has 3.6GB data (11GB when
counting indexes) and 21 tables. The number of relations in
each query ranges from 4 to 17.
(2) TPC-H [30]. TPC-H is a standard industry database
benchmark with 8 tables. We have generated 4GB data and
110 queries from 22 templates.

For each dataset, we split all queries into 10 folds and
choose 9 as training set and the other 1 as test set.

Algorithms. For RTOS, by default, we used the final at
Section V. RTOS is implemented on PostgreSQL and improves
the join order part of a query plan and leaves the others (e.g.,
access methods such as hash join or index join) for Post-
greSQL to decide. We compared with the following methods.
- DQ uses three one-dimensional vectors to represent the
selectivity of columns, join state, and projections, respectively.
It also uses the deep Q-network and the model is a two-layer
fully connected network.
- ReJoin uses two n∗n matrices to represent the query and the
join state, respectively, and a one-hot vector to represent the
column existence in the query. It uses PPO [31], another DRL
technique. The model is a two-layer fully connected network.
- SkinnerDB [37] is the latest method that chooses a good
join order according to the RL policy. We compare with the
join order finally generated by Skinner-C.
- QP100 (1000): Given a query, it randomly tests 100 (1000)
possible plans and chooses the plan with the lowest cost.
- Dynamic-program (DP): Given a query, it enumerates all
the join plans using dynamic programming, and chooses the
plan with the lowest cost. We utilize the implementation in
the PostgreSQL to test this method.

All methods conduct PK-FK joins. We tune the parameters
of DQ and ReJoin for better performance. We set the hidden
size as hs = 128, and take Adam [12] with learning rate of
3e − 4 as optimizer for the model. 2 hours are used on cost
training and 10 hours are used on latency tuning.

Training Sample Collection. To explore the learning ability
of the model from feedback (both good and bad samples), all
DRL methods were randomly-initialized and learned from the
feedback only. DQ pre-trains its model by collecting samples
from dynamic programming and making model act as dynamic
programming when the number of join is small, and does
exploration when the number is large which needs complicated
manual intervention. We can hardly know that the model just
acts as dynamic programming (good samples only) or it can
learn from feedback (good and bad samples). What’s more,
during latency tuning, only latency was used as feedback to
improve the model which DP cannot provide. To be fair,
all DRL methods here collected training samples by getting
feedback only from the DBMS.

Latency Collection. We first got the latency LDP (q) and cost
CDP (q) of DP’s plan for each query q. To avoid wasting
unnecessary time, we limited the execution time to 5 times
of latency by DP’s plan 5 ∗ LDP (q) and recorded the latency
of plan. Single core was used when collecting latency.

Planning Time. DRL methods typically use polynomial time,
e.g., O(n2) for ReJoin and O(n3) for DQ, depending on the
calculation of the neural network as a constant. RTOS is also
O(n3) but has a larger constant. The average time to obtain
the representation of a join tree for queries in JOB is around
5ms. The planning time of the largest query (17 relations) in
JOB is 213ms (RTOS), 97ms (DQ), and 63ms (ReJoin). For
all 113 queries in JOB, the total planning time of RTOS is

TABLE II
MEAN RELEVANT COST TO DYNAMIC PROGRAMMING.

algorithm

MRC benchmark
JOB TPC-H

RTOS 1.01 1.00
ReJoin 1.75 1.00
QP100 7.81 1.06

QP1000 1.62 1.00
DQ 2.34 (1.31) 1.01

8s, which is about 1% of the total latency 712s of DP’s plan
Hence, planning time will not be discussed in the following.

A. Cost Training

We first evaluated the cost training which uses cost as
feedback to guide RTOS. We choose DP as the baseline and
reported the mean relative cost (MRC) of other methods as
previous work, where MRC = 1 means the same cost as DP.

MRC =

∑
q∈Q

cost(q)
costDP (q)

|Q|
From Table II, we can see that RTOS outperforms the other

4 methods and performs as good as DP. We did not report the
cost result of Skinner-C here, because it had no cost model
and only used latency to generate the join order. In TPC-H, all
methods can get near optimal plan. After further investigating
TPC-H queries, we found these queries are typically short (do
not exceed 8 relations) which limit the search space. Hence,
join order is not a major problem in TPC-H. QP1000 can
even enumerate the search space and get the equal plan of
DP. Even QP100 achieves MRC of 1.06. In JOB, the MRC
gap between different methods is obvious for the reason that
the queries in JOB are large (up to 17 relations), so it is
harder to enumerate the search space. The MRC of RTOS
(1.01) still outperforms the other two DRL methods (1.75 and
2.34) and QP1000 (1.62). The MRC of RTOS even exceeds
the reported value 1.31 in DQ (pre-trained from good samples
of dynamic programming). The MRC of RTOS 1.01 indicates
the competitive performance of RTOS even on estimated cost.

Figure 8 depicts a training curve on JOB. We can see that all
DRL methods performed bad at the beginning, and much better
after enough training. We can see that RTOS went even beyond
QP1000 after ∼8000 episodes. The results show that RTOS not
only benefits from the random exploration in DRL, but also
learns the join feature of the database. The training curves of
ReJoin and DQ vibrated up and down and cannot converge
to a good one. One major reason is that these two methods
project two different plans into the same representation. Neural
network outputs the right value for one plan which makes
the other fail. This conflict makes neural network difficult to
converge to a real better plan for all queries.

B. Latency Tuning

After cost training, we have got a neural network that has a
understanding of data distribution and can generate a plan with
low cost. From this trained model, we further used latency as
feedback to fine-tune to get a plan with lower latency.

GMRL. We also chose DP as our baseline. Note that DRL-
based methods generate better plans than DP after latency

0 2500 5000 7500 10000 12500 15000 17500 20000
Trained episodes

1

2

4

8

M
RC

DQ
ReJoin
RTOS
QP100
QP1000
DP

Fig. 8. The training curve on JOB. We train RTOS on 90% queries and the
curve show the performance of other 10% queries. One episode means one
time that DRL method generates a plan and gets feedback.

TABLE III
EXPONENTIAL MEAN LOG RELEVANT LATENCY (GMRL) TO DP

algorithm

GMRL benchmark
JOB TPC-H

RTOS 0.67 0.92
ReJoin 1.14 0.96
QP100 NA 1.03
QP1000 1.90 1.00

Skinner-C 0.89 1.03
DQ 1.23 0.99

tuning, which makes MRC unsuitable to capture the relative
performance to DP. For example, given two queries, if a DRL
method generates join plans with twice (2) and half (0.5)
latency, compared with DP, the relative performance should be
1, but MRL will give 2+0.5

2 = 1.25. Hence, we use geometric
average based Geometric Mean Relevant Latency (GMRL).

GMRL = (Πn
i=1

Lantency(qi)

LantencyDP (qi)
)

1
n

GMRL for 2 and 0.5 will be
√

2 ∗ 0.5 = 1 which can
indicate the performance improvement in ratio directly. We
report GMRL as average performance ratio of DP.

Table III shows the GMRL of all methods. We can see that
RTOS outperforms other methods on these two benchmarks.
GMRL (0.67 on JOB and 0.92 on TPC-H) is lower than 1
means that we can get better plan than DP on latency. We
did not give the results of QP100 on JOB because it gave
bad plan for some queries which took long time to execute.
For TPC-H, all DRL methods can get lower GMRL than DP
which is different from the cost results in Table II. This result
shows the inaccuracy of cost model. QP1000 performs the
same as DP. For JOB, the GMRL of RTOS is smaller than all
other methods. 0.67 Of RTOS means an improvement of 37%
compared with DP. We can see that Skinner-C outperforms
DQ, ReJoin and DP but is still worse than RTOS, because
Skinner-C does not learn from previous queries and relies
on online RL model to learn different join orders. Skinner-
C measures a join order by executing it in a small time slice,
which may not be accurate in the entire execution process.

We further grouped queries by their template id. Figure 10
shows the GMRL on different templates for TPC-H, we do
not show the templates that DRL methods perform the same
as DP to have a better view. We can see that for all templates
RTOS can generate the plan no worse than DP (the horizontal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Template ID

0

1

2

3

4

5

6

7

8

GM
RL

GMRL on different templates of JOB
RTOS
DQ
ReJoin
QP1000
Skinner-C

Fig. 9. GMRL on different templates in JOB, 1 is for DP and the lower the better.

2 3 5 7 8 9 10 11 18 21
Template ID

0.0

0.5

1.0

1.5

2.0

2.5

G
M

RL

GMRL on different templates of TPC-H
RTOS
DQ
ReJoin
QP100
Skinner-C

Fig. 10. GMRL on various TPC-H templates, 1 is for DP, the lower the better.

line at GMRL= 1) and better than other methods. Figure 9
shows the results for JOB. We can see that for all templates
RTOS can almost generate the plan no worse than DP. One
interesting point is that Skinner-C and RTOS are obviously
better than DP on template T20,T26, T28, T29 and T31 which
have multi-aliases in these queries, because RTOS can handle
multi-aliases and Skinner-C on-the-fly learns the order. The
traditional cost model failed on this case. For Rejoin and DQ,
they can generate better plans than other methods on queries in
some templates (e.g., T10 of Rejoin and T5 of DQ). However,
they will yield bad plans on other queries which might suffer
from weakness in representations.

C. Recovery From Schema Changes

Schema changes make RTOS fail to generate plans for these
added tables or columns at the beginning. We investigate the
time (episode) of our methods taken for recovery from the fail
state to perform similar as DP on cost.

We compared with two version of RTOS:
• RTOSfix uses the model described in Section III with

fixed size representation. It builds a new neural network
with new size of database and retrain the network.

• RTOSdynamic is the final version that uses the model
described in Section V which tolerates the schema change
and uses the known column to initialize the neural
network of the added column.

1) Insert Table: We choose a table char name in JOB and
split all 113 queries into training set and update set according
to whether the query contains this table or not. We first trained
RTOSdynamic on training set (no table char name) and then
gave the queries in update set to RTOSdynamic and RTOSfix as
if the table was newly added.

Figure 11(a) shows the training (recovery) curve of queries.
RTOSdynamic quickly outperforms QP1000 at the beginning.

0 500 1000 1500 2000
Trained episodes

1

2

4

8

M
RC

RTOSfix

RTOSdynamic

DP
QP1000

(a) Add a table

0 50 100 150 200 250 300
Trained episodes

1

2

4

8

M
RC

RTOSfix

RTOSdynamic

DP
QP1000

(b) Add a column
Fig. 11. training episodes when database schema changes.

0 2500 5000 7500 10000 12500 15000 17500 20000
Trained episodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

G
M

RL

Latency-Only
Cost+Latency
JointLoss
DP

Fig. 12. The training curve when using latency as the feedback. The cost
training process is not counted.

After 750 episodes the RTOSdynamic can generate competitive
plan with DP because it contains the knowledge of other 20
tables in JOB. RTOSfix takes about 2000 episodes to get sim-
ilar performance on update set which cost 2.5 times episodes.
The new trained RTOSfix only contains the information from
update set and totally trained from all queries in JOB will take
20000 episodes (about 2 hours) which is quite long.

2) Add a column: We choose a column char name.name
and then split all 113 queries into training set and update set.

From the curve in Figure 11(b) we can see that when the
columns were added into the table, RTOSdynamic recovered
very quickly even as no modification happens. The reason
is that column (char name.name) only occurs as a predicate.
It does not have complex relationships with other tables or
columns. Its selectivity is the most important information
which is easier to be learned compared with join information.
Join plan is not always sensitive to this column.

D. Effectiveness of Cost

Feedback from latency (even seconds) costs more time than
feedback from cost model (1ms). Using latency as feedback
makes the training take a long time.

Here we explore the effectiveness of cost training. We use
the following setting of RTOS to explore it:

TABLE IV
TIME OF DIFFERENT PART FOR TRAINING 20000 EPISODES ON LATENCY.

nueral network get latency get cost
time used(h) 1.71 10.27 0.05

TABLE V
TIME USED TO GET COMPETITIVE PERFORMANCE OF DP.

Si
cost training latency tuning total time(h)episode time(h) episode time(h)

60 queries Latency-Only 0 0.0 5000 3.61 3.61
JointLoss 10000 0.88 1500 1.27 2.15

add a table Latency-Only 0 0.0 700 0.63 0.63
JointLoss 700 0.06 450 0.45 0.51

• Latency-Only: RTOS will be trained from initial state
and only use latency as feedback.

• Cost+Latency: Cost training based method. We first used
cost as feedback (cost training with 10000 episodes with
about 1 hour) and then changed the target of network
from cost to latency (latency tuning).

• JointLoss: Cost training based method. When doing
latency tuning, we received both latency and cost to train
the neural network, as mentioned in Section IV-B.

Totally using latency as feedback will take a long time to
train the network. We selected 60 queries in JOB with lowest
latency (from 10ms to 2 seconds) as the query set to test the
training process of above methods.

Figure 12 shows the training curve of all these methods
when using latency as feedback. Cost training based methods
(JointLoss and Cost+Latency) only used 1500 episodes to be
competitive to Latency-Only that took about 5000 episodes.
Cost training will reduce many episodes when switching
feedback from cost to latency. Table IV shows the time
consumed of different parts when using latency as feedback.
Time used to get the latency after the plan executed is
quite longer than getting the cost. Getting latency took

10.27
10.27+1.71+0.05 = 85.4% time of latency tuning for one
episode. Table V shows that cost training will increase the
number of episodes but reduce the total time. cost training
based methods Only takes 2.15

3.61 = 59.8% time to train the
RTOS to get competitive performance of DP when compared
with Latency-only method.

JointLoss and Cost+Latency perform almost the same,
which means we can keep the cost information and latency
information in neural network without affecting the model
performance. We switch to cost training and then back to
latency tuning when adding a table. Table V shows that
JointLoss uses less time (0.51 vs 0.63) when adding a table
char name.name on latency tuning.

E. Overall Training Time

Figure 13 shows the GMRL in both cost training and latency
tuning stage with the total training time increasing for JOB
queries. The cost training stage first takes about 1.5 hours
(15000 episodes) and then latency tuning takes 10 hours (8000
episodes). We can see that during the cost training stage, the
GMRL of RTOS fluctuates around one because RTOS focuses
on optimizing the cost in the stage but the cost model of
PostgreSQL is not accurate enough. When we switch to the
latency tuning stage, we can see that RTOS generates much

0 2 4 6 8 10
Trained Time(h)

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

G
M

RL

DP
Cost Training
Latency Tuning

Fig. 13. GMRL in both cost training and latency tuning stage with the total
training time increasing.

better plan because it focuses on optimizing the latency and
the GMRL finally converges to a value much smaller than one.

VII. RELATED WORK

Reinforcement learning for Join Order Selection. The most
similar works to ours are SkinnerDB [37], ReJoin [20] and
DQ [16]. SkinnerDB [37] tries to use RL to select the join
order during query processing. It executes some plans in a
time slice by running the plan on a set of samples, and
uses the performance to measure the plans. It relies on its
customized memory execution engine to support the high-
frequency switching of the join order and is not easy to
integrate existing DBMSs. ReJoin [20] and DQ [16] use DRL
with a preliminary neural network model to learn the join
process from a given workload. RTOS is different from these
two methods by effectively modeling structural information of
join trees using Tree-LSTM and supporting database updates.
The results show that RTOS outperforms ReJoin, DQ, and
SkinnerDB. The work [27] tries to learn the entire plan
generation process through DRL. The idea of DRL can help
the optimizer learn from both cost and latency, and generate
good join plan in a polynomial time complexity. RTOS focuses
on join order selection which is more difficult to represent by a
neural network, when compared with index selection or phys-
ical plan selection (usually encoded as one-hot vectors [16]).
NEO [19] uses a value neural network to search the plan with
low latency. NEO first encodes each node in a join tree into a
feature vector and then uses Tree Convolution Network [24]
to get the representation of join tree. Different from NEO,
our RTOS can support database updates efficiently. Moreover,
RTOS can not only estimate latency but the cost, while NEO
focuses on estimating the latency. SageDB [15] presents a
vision that machine learning (ML) can optimize database by
modeling the data distribution, workload, and hardware.

Cardinality Estimation. Traditional cardinality estimation
methods can be classified into three types: histogram-
based [9], sketching-based [5], and sample-based methods
[18]. Recently, the database community is investigating car-
dinality estimation techniques by leveraging deep neural net-
work. [14] trained a multi-set convolutional network on queries
and [28] proposed a vision of training representation for the

join tree with reinforcement learning. [34] proposed a tree-
structured model to learn the representation of query plans.
RTOS is orthogonal to the cardinality estimation methods.

Accurate selectivity input to RTOS can help do latency tuning
and even good neural network-based methods can be directly
ported to our model (e.g. column representation) in RTOS.

Deep Learning for Databases. Researchers have used DL
on many database problems like entity matching [25], query
optimizer [16] cardinality estimation [13]. This topics demon-
strate the potential of DL. Due to the powerful representation
ability of graph neural networks (GNNs) [40], GNNs achieve
success in many topics [6], [7]. We apply Tree-LSTM, which
is also a GNNs and proposed to represent the join tree.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed RTOS which uses Tree-LSTM to learn
the tree-structure join plan. The results show that our method
can generate good plans both on cost and latency on two
benchmarks. It proves that our method can learn structure of
join tree properly and catch the information of join operations.
We also prove that the cost can pre-train the neural network
and reduce the latency tuning time.

Naturally, there are many future works. (1) It is interesting
to study transfer learning to adapt a model trained on a
database to another database. (2) The latency might increase
when the system in a high workload (e.g. multi-queries exe-
cuting at the same time) for the factors like I/O bottleneck,
memory size. We need to consider more information of
workload if we want the system to learn the feedback from
complex scenarios.

REFERENCES

[1] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: a
principled and practical approach. In SIGMOD, 2005.

[2] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
[3] S. V. Chande and M. Sinha. Genetic optimization for the join ordering

problem of database queries. In 2011 Annual IEEE India Conference,
pages 1–5. IEEE, 2011.

[4] L. Fegaras. A new heuristic for optimizing large queries. In International
Conference on Database and Expert Systems Applications, 1998.

[5] P. Flajolet, ric Fusy, O. Gandouet, and et al. Hyperloglog: The analysis
of a near-optimal cardinality estimation algorithm. In AOFA, 2007.

[6] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto. Knowledge
transfer for out-of-knowledge-base entities: A graph neural network
approach. arXiv preprint arXiv:1706.05674, 2017.

[7] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems,
pages 1024–1034, 2017.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[9] Y. E. Ioannidis. The history of histograms (abridged). In PVLDB, pages
19–30, 2003.

[10] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis
of strategy spaces and its implications for query optimization. ACM
SIGMOD Record, 20(2):168–177, 1991.

[11] T. Kaftan, M. Balazinska, A. Cheung, and J. Gehrke. Cuttlefish: A
lightweight primitive for adaptive query processing. arXiv preprint
arXiv:1802.09180, 2018.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[13] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. arXiv
preprint arXiv:1809.00677, 2018.

[14] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In
CIDR, 2019.

[15] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A learned
database system. In CIDR, 2019.

[16] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica. Learning
to optimize join queries with deep reinforcement learning. arXiv preprint
arXiv:1808.03196, 2018.

[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? VLDB, 2015.

[18] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann. Car-
dinality estimation done right: Index-based join sampling. In CIDR,
2017.

[19] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. Neo: A learned query optimizer.
arXiv preprint arXiv:1904.03711, 2019.

[20] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join
order enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management,
page 3. ACM, 2018.

[21] R. Marcus and O. Papaemmanouil. Towards a hands-free query opti-
mizer through deep learning. arXiv preprint arXiv:1809.10212, 2018.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv:1301.3781, 2013.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[24] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural
networks over tree structures for programming language processing. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[25] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra. Deep learning for entity matching: A
design space exploration. In SIGMOD, 2018.

[26] K. Ono and G. M. Lohman. Measuring the complexity of join
enumeration in query optimization. In VLDB, 1990.

[27] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state
representations for query optimization with deep reinforcement learning.
arXiv preprint arXiv:1803.08604, 2018.

[28] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state
representations for query optimization with deep reinforcement learning.
In DEEM@SIGMOD, pages 4:1–4:4, 2018.

[29] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010.

[30] M. Poess and C. Floyd. New tpc benchmarks for decision support and
web commerce. ACM Sigmod Record, 29(4):64–71, 2000.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[32] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In SIGMOD, 1979.

[33] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng.
Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection. In Advances in neural information processing systems, 2011.

[34] J. Sun and G. Li. An end-to-end learning-based cost estimator. arXiv
preprint arXiv:1906.02560, 2019.

[35] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[36] I. Trummer and C. Koch. Solving the join ordering problem via mixed
integer linear programming. In SIGMOD, 2017.

[37] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis.
Skinnerdb: Regret-bounded query evaluation via reinforcement learning.
In SIGMOD, 2019.

[38] F. Waas and A. Pellenkoft. Join order selection (good enough is easy).
In British National Conference on Databases, 2000.

[39] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[40] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph
neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

