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Abstract—Indexes are vital to enhance the lookup on single or
multiple columns, and building proper indexes can significantly
improve the database performance. Existing works focus on
adding new indexes that can benefit the read queries, but
they have several limitations. First, real-world workloads may
have numerous queries and it is tricky to analyze their index
requirements and find the most beneficial indexes within resource
limit. Second, they fail to consider the update of existing indexes,
which may be redundant or even have negative effects to current
workload. Third, they cannot estimate the index maintenance
costs, which are affected by multiple index utilization factors
and can significantly affect the index benefits, especially for high-
write-ratio workloads. To address those challenges, we propose an
incremental index management system AUTOINDEX for dynamic
workloads. First, to support incremental index management, we
map the incoming queries into query templates and efficiently
generate promising candidate indexes from matched templates.
And then we propose to utilize Monte Carlo Tree Search to
incrementally add indexes from the candidate indexes or remove
indexes from existing indexes, so as to ensure high workload
performance. Besides, we propose a deep index estimation model,
which integrates the practical experience to extract critical cost
features and applies deep regression to estimate index benefits
from historical index management data. We have implemented
the modules like candidate index generation and index estimator
in an open-sourced database system openGauss. Experimental re-
sults showed that our method outperformed existing approaches
on both testing and real-world workloads.

Index Terms—index management, database, machine learning

I. INTRODUCTION

Indexes in data management systems can speed up data
retrieval at the cost of index maintenance and storage over-
head, which can significantly affect the workload performance.
And index management aims to judiciously create or remove
indexes so as to ensure (1) the index size is within storage
constraint and (2) the workload performance is optimized.
Next we use two cases to demonstrate the importance and
challenges in index management.
Example 1: Index Management in Real Scenarios. In
the real transactional scenarios, there are numerous work-
load queries, which have various index requirements (e.g.,
accessing different columns). And it is laborious for DBAs
to analyze the index requirements of those queries and find
the optimal index combinations. For example, as shown in
Figure 1, for the withdraw business (around 2.2M queries) in
banking scenario, DBAs have carefully crafted 263 indexes,
but there are still many redundant indexes. By judiciously
removing the redundant indexes and adding the performance-
critical indexes (e.g., high lookup frequency), we can save over

Original Configuration

#-Indexes: 263

Storage: 2.1GB

Performamce: 276 tps

Using AutoIndex
#-Indexes: 44 (83% )

Storage: 0.6GB (70% )

Performamce: 288 tps (4% ) 

Fig. 1. An Example Index Management for the Withdraw business in Banking
Scenario. AUTOINDEX removes 83% indexes, saves 70% storage space, and
still achieves 4% throughput improvement.

70% storage space and gain even better performance (e.g.,
over 4% throughput increase). Hence, it is vital to conduct
effective index management so as to optimize the workload
performance within storage constraints.

Example 2: Index Management for Dynamic Workloads.
Moreover, the workloads may continuously change in real
scenarios. Figure 2 illustrates an example of index manage-
ment for dynamic workloads. For an epidemic database, the
table records the information of potentially infected people.
There are three historical workloads, which have their own
index requirements: (1) At the beginning of the epidemic,
the table contained rare data and the workloads were some
random queries accessing the table (W1). And we can di-
rectly recommend indexes on the frequently-used columns,
i.e., idx temperature and idx community; (2) Afterwards, the
epidemic quickly spread to other communities, and there
were insert queries that recorded new potentially-infected
people (W2). Here we found the maintenance cost of index
idx community was higher than the reduced query costs, and
thus we removed the index idx community; (3) Finally, after
the epidemic got controlled, there were rare inserts but many
update queries that refreshed the people’s temperatures (W3),
and so we can build multi-column index on the columns name
and community so as to speed up the temperature updates.
Meanwhile, although tuples in temperature were frequently
updated, we reserved the index idx temperature because the
reduced query cost (for Q2, Q4) by idx temperature is higher
than the maintenance cost of idx temperature.

Key Observations. From above two examples we have three
observations. First, workloads may have different index pref-
erence, and so we need to update indexes based on workload
characters so as to ensure high performance. Second, the index
benefits depend on both the cost reduction for read queries and
index update overhead for write queries. Third, data columns
have correlations (e.g., columns in the same predicate), and
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Q1 : Select * From c Where community = 
‘Comm1’;

Q2 : Select * From c Where temperature > 
37;

Q1 : Insert into values (‘Peop3’, ‘Comm1’, 35.1);

Q4 : Select * from c Where community=‘Comm2’;

Q3 : Select * from c Where temperature>37;

Q2 : Insert into values (‘Peop4’, ‘Comm2’, 36.3); Q2 : Select * From c Where temperature>37;
Q3 : Update c set temperature=37.1 Where 
name = ‘Peop3’ and community=‘Comm1’;

Q4 : Select * From c Where temperature>37;

Q1 : Update c set temperature=36.3 Where 
name = ‘Peop2’ and community=‘Comm2’;
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idx_community on info(community);

idx_temperature on info(temperature);

idx_community on info(community);

idx_temperature on info(temperature);

idx_temperature on info(temperature);

idx_info on info(name, community);
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Fig. 2. An Example of Incremental Index Management.

building multi-column index may gain higher benefit than
multiple single-column indexes.
Limitations of Existing Methods. Most existing index man-
agement methods [5], [31], [2], [3], [26] utilize cost estimator
in the database to estimate the index benefit and greedily
select indexes with maximum estimated cost reduction. And
they have three limitations. First, most methods work in
query level, i.e., adding indexes as long as they have positive
effects to at least one query, and they ignore the correlations
between indexes (e.g., index on column A can be replaced
by multi-column index on (A,B)) and queries (e.g., read
and write queries on the same columns), which are vital to
index management. Second, the candidate index space can be
very large, but they adopt greedy algorithms (e.g., top-k, hill-
climbing) and may cause sub-optimal solutions. Third, they
estimate index benefits based on the database cost estimator,
which ignores the index maintenance cost and may make
significant errors.

Moreover, there are some machine learning based methods
in index management [8], [21], [25]. They either utilize deep
reinforcement learning to select indexes [21], [25], or design
deep learning model to estimate index benefits [8]. However,
we argue that those methods have their own limitations and
cannot be directly used in our problem.

(1) DRL-based index selection. First, DRL requires ex-
tremely long training time (e.g., days to weeks) for a specific
workload, and so cannot efficiently work for dynamic work-
loads. Second, it is tricky for DRL to support index removal,
since it only reserves current index selection state and cannot
go back to previous steps by the learned policy.

(2) DL-based estimation method. They recommend for
single queries (e.g., comparing query plans before/after using

the indexes), and they fail to estimate in workload level, which
may cause performance regression because some queries may
only appear once and never reoccur, or the recommended index
has high update frequency. Moreover, they mainly work for
analytical queries, and cannot estimate the index update costs
for write queries. In many scenarios, there are a large number
of redundant or even negative benefit indexes that cannot be
directly reflected by query plans, and existing plan-based ML
method fails to identify those indexes.

Challenges. As observed above, index management for dy-
namic workloads is challenging and existing methods suffer
from three main challenges. First, how to efficiently capture
the index requirements (C1). The real-world workloads may
contain numerous queries and they are continuously changing.
Second, how to effectively update indexes so as to ensure high
performance (C2). There can be a large number of candidate
indexes and we need to conduct incremental index update
based on existing indexes. Third, how to estimate the index
benefits for both read and write queries (C3). It is hard to
estimate the overall index benefits, which involve multiple
factors around data lookup and index maintenance.

Our Proposed Methods. To address above challenges, we
propose an incremental index management system AUTOIN-
DEX for dynamic workloads in the real scenarios, which inputs
the coming queries and historical index statistics, and updates
the existing index set for performance improvement (e.g.,
higher throughput) within resource limit. First, AUTOINDEX
monitors the workload performance and issues index update
requests if there are performance regression caused by index
problems. Second, AUTOINDEX proposes an incremental in-
dex management method, which matches coming workloads



with templates, extracts promising candidate indexes from the
templates (for C1), and utilizes Monte Carlo Tree Search to
select high-benefit indexes based on both the existing and
candidate indexes (for C2). In MCTS, to efficiently estimate
the benefits of different indexes, AUTOINDEX proposes an
index benefit estimation model which trains a deep regression
model to estimate the overall index benefit (according to both
read and write queries) (for C3).
Contributions. We make the following contributions:
(1) We propose a workload-level index management system,
which incrementally updates indexes based on both historical
and incoming queries under storage constraints.
(2) We propose a MCTS-based index update method, which
maintains a policy tree to represent existing indexes and
updates indexes by judiciously exploring the policy tree.
(3) We propose an index benefit estimation method, which
computes critical cost features by practical experience and
utilizes deep regression to estimate the benefits based on the
computed features.
(4) We have implemented AUTOINDEX in an open-sourced
database openGauss 1 (e.g., in-kernel estimator). Experimental
results showed that our method outperformed existing ap-
proaches on both testing and real-world workloads.

II. PRELIMINARIES

A. Indexes and Benefits

Building indexes can significantly reduce the lookup time,
because it can directly locate the required data within a
relatively small region. Hence, we first define the benefits of
single or multiple indexes.
Benefit of single indexes. For a workload W and any index
I , we define the benefit of I as the difference of execution
costs with/without the index, i.e., B(I) =

∑
(cost(W ) −

cost(W, I)), where cost(W ) denotes executing W without
index and cost(W, I) denotes the execution cost of W using
index I .

Example 1: In Figure 2, for workload W1, queries Q1, Q2

access the columns community and temperature, whose
selectivity is no less than than 1/3. Hence, we can build single
indexes on the two columns to enhance Q1, Q2.
Remark. We interchangeably use execution cost and perfor-
mance in the following sections if there is no ambiguity.
And we will formally define and explain how to compute the
execution cost with different indexes in Section V.
Benefit of multiple indexes. Similarly, given a set of indexes
I, the benefit of I can be written as B(I) = ∑

(cost(W )−
cost(W, I)). However, different from single indexes, multiple
indexes have correlations with each other when speeding up
any workload.

Example 2: In Figure 2, for workload W2, similar to the in-
dex idx temperature, multi-column index on (temperature,
community) can also speed up Q3. However, it brings
extra maintenance cost to update community, and so we

1github.com/zhouxh19/autoindex

only reserve idx temperature for W2. Besides, for work-
load W3, we cannot enhance Q1 only with the index on
community. Instead, we need to separately build indexes on
both name and community (or a multi-column index on
(name, community)).

In summarization, to improve the overall index benefits, it
is vital to select indexes that can benefit lookup queries, cause
little maintenance overhead, and have minor function overlaps
with other indexes (more details in Section IV).

B. Index Management

Index Management for Static Workloads. Given a workload
W and a storage budge B, if a query needs to filter out many
tuples (high selectivity) which takes much time, it is vital to
build indexes (e.g., B+Tree) on columns involved in the query,
such that reducing the lookup time. Hence, when any query
contains the columns in the index, it is possible to utilize the
index to optimize the query.

Definition 1 (Index Management): Given a workload W and
storage budget B, there exist a large number of indexes which
may optimize at least one workload query in W , i.e., a set I
of candidate indexes. Index management aims to judiciously
select a subset of candidate indexes Ic ⊆ I such that (i) the
total size of indexes in Ic is within B and (ii) the workload
performance is optimized.

Example 3: Figure 2 shows an example of index
management. For W1, it has two representative queries
whose predicates separately access columns community and
temperature. We can separately create two indexes on the
two columns so as to speed up the lookup time of Q1, Q2.
Index Management for Dynamic Workloads. However, in
reality, the workload may continuously change (e.g., read/write
ratio, access patterns). Hence, we need to conduct incremental
index management (IIM) for dynamic workloads. That is,
given existing indexes built based on historical workloads, for
a newly coming workload, the IIM problem aims to incremen-
tally update the indexes (e.g., adding/removing indexes) so as
to ensure high performance on the new workload.

Definition 2 (IIM problem): Given existing indexes I built
based on historical workloads and the storage budget B, for
a newly coming workload W , incremental index management
is to update the index set I into I ′ by removing redundant
indexes or adding new indexes, such that (1) the size of I ′
does not exceed B and (2) I ′ can optimize the performance
of the future workload, i.e.,

∑
(cost(W, I)−cost(W, I ′)) > 0,

where cost(W, I) denotes the execution cost of W using the
index set I. And the index set is continuously updated based
on the incoming workloads.

Example 4: Figure 2 shows an example of incremental index
management. Before executing the workload W3, the index
set is {idx temperature}. Within the workload, Q2, Q4

can utilize the existing index idx temperature, but Q1, Q3

require an additional index on (name, community). Hence,
we update the index set as {idx temperature, idx info},
which does not exceed the resource limit and can further
optimize the performance of W3.
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III. SYSTEM OVERVIEW

In this section, we first explain the motivation of utilizing
Monte Carlo Tree Search in our problem, and then we present
the overall framework of AUTOINDEX, with which we can
solve the challenges in basic MCTS and efficiently update the
existing indexes based on the workload characters.
Motivation of using MCTS. Recap that index update is
one of the core parts in incremental index management.
Specifically, index update is important because it needs to (1)
remove existing low-efficiency indexes and (2) add promising
indexes. Moreover, there are correlations between indexes and
workloads, and greedily selecting high-benefit indexes may
fall into sub-optimum. For example, in TPC-DS, separately
creating indexes on i manufact id and date dim may have
minor benefits (directly dropped in hill-climbing algorithm) .
Instead, if we create the two indexes together, the execution
time of query Q32 is greatly reduced because the subquery in
Q32 is enhanced only when the two indexes are available.

To address this issue, we utilize the guided searching policy
in MCTS to incrementally remove/add indexes based on the
existing policy tree (intermeidate states) and efficiently find
promising solutions by evaluating the long-term index benefits
(Section IV). However, basic MCTS still encounters several
challenges in our problem. First, it takes long exploration time
if the index space is too large (candidate index generation).
Second, dynamic workloads may cause the estimated values
of the tree nodes out-of-the-date (incremental update). Third,
it requires efficient cost estimator to estimate the benefits of
selected index combinations (index benefit estimation). Thus,
next we introduce the framework of AUTOINDEX that helps
to solve those challenges.
Workflow. For any new workload being executed in the
database, we first diagnose the index problems when perfor-
mance regression occurs. If any index problem is identified, we
generate candidate indexes from the workload queries (logged
in the server that runs the index management process) and
utilize Monte Carlo Tree Search (MCTS) to explore for the
optimal combination of both candidate and existing indexes
under the resource constraints. In MCTS, we propose an index

benefit estimation method that estimates index benefits based
on both the read and write queries. Finally, we update the
existing index set with the recommended indexes, where we
also figure out redundant or negative indexes based on the
index benefit estimation results.

Index Diagnosis. Index Diagnosis module monitors the
system metrics during workload execution. Any time this
module detects abnormal status (e.g., performance regression),
it will call the index analysis component to decide whether
there are any needs to update the existing indexes (e.g.,
removing redundant indexes, creating beneficial indexes). For
example, we compute the ratio of three classes of indexes, i.e.,
(i) beneficial indexes that have not been created, (ii) rarely-
used indexes, and (iii) indexes that have negative effects to the
workload performance. If the ratio of those indexes is higher
than a threshold, we will issue an index tuning request to the
Index Recommendation module.

Index Management. For any index tuning request, the Index
Recommendation module inputs the workload and index
statistics and outputs the recommended indexes. This part
contains three components: SQL2Template, Candidate Index
Generation, Index Selection. At first, since the workload can
be large (e.g., with millions of queries) and it is costly to
recommend indexes in workload level, we use SQL2Template
to map the workload queries into a fixed number of query
templates, which denote the set of most-frequently-used ac-
cess patterns. For each query template, we use Candidate
Index Generation to parse predicates from the query clauses
(e.g., FROM, WHERE, GROUP, and ORDER), and generate
candidate indexes based on the columns involved in each
predicate. For example, for predicate “a=$ and b>$”, we
will generate a candidate index on (a, b). Finally, with the
candidate indexes, we utilize Index Selection to recommend
optimal indexes based on current workload. In particular, we
maintain a policy tree built on existing indexes, based on which
we explore new optimal indexes by taking actions like adding
candidate indexes or removing existing indexes.

Moreover, we can support index type selection for the data
partitioning scenarios, which is vital to improve the workload
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performance (e.g., “global” index has high lookup speed, but
takes much storage space; and “local” index is less efficient
but takes much less space).
Index Estimator. Generally current database cannot estimate
the index maintenance costs, which involve complex factors
(e.g., the page splitting strategy) and are vital to estimate
the overall performance of workloads with different indexes.
Hence, in Index Estimator, we design a deep regres-
sion model, which inputs the workload features and indexes
(together with the index statistics), and outputs the execution
cost of the workload. That model is trained with numerous
historical index management data and can efficiently diversify
the costs of queries under different indexes.

IV. INCREMENTAL INDEX MANAGEMENT

In this section, we introduce how to conduct incremental
index management. Existing index management methods only
support creating indexes for single queries or static work-
loads [5], [31], [8], and there are several remaining challenges.
First, how to efficiently extract candidate indexes from real-
world workloads. In real scenarios, there can be millions of
queries and it is costly to analyze the required indexes for
each query (C1.1). Second, how to represent such a large index
space and efficiently search for promising index combinations.
Existing methods heuristically select high-benefit indexes,
where they ignore the combined benefits of multiple indexes
and often find suboptimal solutions (C1.2). Third, how to
effectively adapt to dynamic workloads. For a coming work-
load, the queries and index requirements may significantly
change, which requires to update the estimated benefits of
existing indexes, synchronize the index requirements of current

workload, and design efficient algorithms so as to merge
new beneficial indexes into existing indexes (C1.3). Before
illustrating the details, we first define the policy tree.
Policy Tree. In order to represent the index space and conduct
incremental index management, we build a policy tree, where
the root denotes the initial index set (e.g., primary columns,
some distinct columns) and other nodes denote all the possible
index combinations. The advantage of policy tree is that it
can represent both the previous selected indexes (explored tree
nodes) and new index combinations (unexplored tree nodes).

Example 5: In Figure 4, before index update, the policy
tree has three selected nodes and we can see there are two
existing indexes {I1, I2}. For the coming workload, we add
a candidate index Ic3 and there is a new explored node in the
policy tree, which denotes the index set {I1, I2, Ic3}.

With the policy tree, we accordingly solve the above three
challenges so as to efficiently search promising index combi-
nations on the policy tree for the coming workloads.

A. Template-based Candidate Index Generation.

For any coming workload W , we first generate candidate
indexes from the queries in W , which bring new index
combinations, i.e., more unexplored nodes in the existing
policy tree (for C1.1). Specifically, this procedure includes
three main steps.
Step 1: Reduce workload size by mapping queries into
templates. Since workloads may involve numerous queries
and it is costly to analyze the index requirements of each
query, first we propose to maintain a set of query templates,
each of which represent a class of queries with similar index
requirements. For example, in Figure 4, queries Q2, Q3 have



similar access patterns (e.g., used columns, sql format) and
so they are both mapped to T2. More concretely, for any
new query, we replace the predicate values in the query
with placeholders and match that query with the most similar
template. If none of the templates is matched, we record that
query as a new template. Note that we only reserve limited
template (e.g., 5000 for TPC-C), and so we will update the
templates when arriving the maximum number (Section IV-B).
Remark. This trick is useful, because, in many scenarios (e.g.,
online balance inquiry), many queries come from the same
templates and only some predicate values are different.

Step 2: Exploit candidate indexes based on the matched
templates. Next we generate candidate indexes based on
the matched query templates. There are two problems. First,
indexes can be derived from various query clauses (e.g., the
filter predicate in WHERE clause, the expression in ORDER
clause) and we need to extract useful indexes from those
clauses based on their effectiveness. Second, for boolean
predicates, there can be complex predicate expressions (e.g.,
expressions linked by multiple ANDs or ORs), which have
various equivalent forms. We may derive different candidate
indexes from those forms.

Example 6: For predicates “(a AND b) OR (a AND c)” and
“a AND (b OR c)”, they are two forms of the same expression,
but the former requires two indexes on (a, b) and (a, c), while
the latter requires three indexes on a, b, c, which may perform
worse if the results of “(b OR c)” is large.

To solve those problems, for any query template, we
first extract expressions from different clauses (expression
extraction), and then separately generate indexes from those
expressions (index generation).

Expression Extraction. Based on the index effectiveness, we
extract expressions from the query template, which can be
divided into three types, including the filter predicates, join
predicates, and other expressions: (1) For filter predicates, we
can enhance the lookup of single tables, i.e., single-column
indexes for atomic predicates and multi-column indexes for
composite predicates linked by ANDs; (2) For join predicates,
we can enhance table joins by building indexes for the driven
tables of the join; (3) For other expression that occur in the
GROUP or ORDER clauses, we can speed up their operations
by creating indexes on the involved columns.
Index Generation. We separately generate indexes from the
three types of expressions:

(1) Filter predicates: Firstly, we rewrite the boolean pred-
icate expressions in Disjunctive Normal Form (DNF) [6],
[4], which provides a unified form and simplifies predicate
factorization. For any atomic predicate or composite predicate
linked by ANDs (derived from predicate factorization), if its
selectivity is higher than a threshold (e.g., 1/3), we generate
candidate index on the column(s) of the predicate; otherwise,
we assume it has low selectivity and give up the index.

(2) Join predicates: We extract atomic joins between any
two tables. For any atomic join, we generate a candidate index
on the join column of the driven table, which is generally the

smaller table and looked up during join.
(3) Other expressions: For expressions in clauses like

GROUP and ORDER, if the expression actually takes effects
(e.g., the columns in the GROUP clause are not distinct), we
generate candidate indexes on the involved columns.
Step 3: Check and remove redundant indexes. With the
generated indexes, we filter out duplicate indexes, merge
indexes based on the leftmost matching principle. For example,
for indexes on (a, b) and a, only (a, b) is reserved because
(a, b) can also enhance the access of column a. Then we
remove the indexes that already exist in the database. Finally,
the remaining indexes form the candidate index set.

B. MCTS-based Index Update.

After generating the candidate index set, whose size is
greatly reduced (compared with picking any used columns
as indexes), we utilize MCTS to update the existing index
set with the candidate indexes in the policy tree. Recap that,
in the policy tree, each node corresponds to a combination
of existing or candidate indexes. And so index update is to
expand the existing policy tree based on the candidate indexes
so as to find new index combinations (expended tree nodes)
with higher performance improvement (for C1.2).

However, even if we have filtered most useless indexes
in last step, the index space is still very large (e.g., the
factorial of dozens of indexes). To efficiently find the optimal
node in the policy tree, we propose a Monte Carlo Tree
Search based strategy that judiciously explores the nodes to
obtain the optimal node. The core idea in MCTS [23] is to
balance between exploitation (high benefit) and exploration
(low frequency) when searching on the policy tree, which
helps to avoid sub-optimum. To apply MCTS, the first step
is to define the benefits of any node in the policy tree.
Node Utility. A node has higher node utility if it is on the
path from the root to the optimal node. However, it is hard
to predict whether the node is on the optimal path since each
node may have numerous descendant nodes. To address this
issue, given a node, we compute its node utility by considering
two main factors:

(1) Node Benefit B(vi). Given a policy tree, we define the
global node benefit of a node vi as the highest cost reduction
of vi or vi’s descendant nodes,

B(vi) =
{
cost(W )− cost(W, Ii) leaf node

max(cost(W )− cost(W, Ii)), vj ∈ Vi otherwise

where Vi denotes the descendant nodes of vi. If vi is a
leaf node, B(vi) equals to the difference of workload perfor-
mance with/without indexes; otherwise, B(vi) is the highest
performance improvement of its descendant nodes. Since vi
may have numerous descendant nodes, we randomly explore
several leaf nodes rooted at vi or descendant nodes that arrive
the storage constraint (e.g., 5 leaf nodes for dozens of indexes)
to enhance the exploration procedure.

Obviously, we want to access the node with high benefit.
However, the estimated benefit may not be accurate, and if we



always access such nodes, we may miss the real optimal node.
To address this issue, we also consider the access frequency
of a node and balance the benefit and frequency in order to
avoid falling into a local optimum or wrong directions.

(2) Access frequency F(vi). The access frequency repre-
sents the number of visits of the node vi when selecting new
child nodes. Besides node benefits, we tend to select the node
that is rarely accessed in order to try more possible indexes and
avoid falling in local-optimum. For example, in Figure 4, when
selecting from the candidate indexes, if we greedily select Ic3 ,
we can only further select Ic1 or Ic2 for storage limit. Instead,
the combination of Ic1 and Ic2 can achieve higher benefits, and
so we need to try out less frequently selected nodes.

This way, we define the node utility as the upper confidence
bound (UCB) of the probability that vi is on the path from the
root to the optimal node, by considering node benefit B(vi)
and access frequency F(vi),

U(vi) = B(vi) + γ

√
ln(F(v0))
F(vi)

where F(v0) =
∑

i≥1 F(vi) is the number of total accesses,
γ is the exploration parameter that adjusts the amount of
explorations of uncovered index combinations.

MCTS-based Index Update. As shown in Figure 4, to
efficiently update the selected indexes (explored nodes) and
explore new indexes (unexplored nodes), the complete index
update procedure includes three steps.

Step 1: Node Selection and Expansion. As the node with the
maximum utility has the largest possibility of leading to the
optimal node, we select the node v with the maximum utility
to explore. (i) If the selected node has not been expanded,
we enumerate candidate indexes Ii ∈ Ic. For each candidate
index Ii, we generate a new node representing the indexes
in v plus Ii within storage limit. (ii) If the node has been
expanded, we select a node with the maximum utility from
the descendants of this node.

Step 2: Node Utility Computation. For the selected node v,
we estimate the node benefit of v. Specifically, we randomly
explore K descendants of v and take the maximum estimated
cost reduction as the node benefit of v. Note that, to provide
more accurate estimation, the query cost is estimated by our
index benefit model which takes both the index effects to read
and write queries into consideration (see Section V).

Step 3: Utility Update. As the node utility of v is updated
from 0 to B(v), some ancestors may have smaller benefit than
v, and we need to update their subsequent cost reductions
based on that of v, i.e., redirecting to a descendant node with
higher cost reduction.

Remark. We repeat above steps until arriving the maximum
iteration number or meeting the performance expectation, i.e.,
the estimated cost reduction is approaching max(B(vi) −
B(v0)), where vi is a tree node.

C. Incremental Template Update.

Since we rely on templates (which denote the index re-
quirements of distinct queries) to extract candidate indexes,
it is vital to update the templates when the workload has
changed. However, it is tricky to forecast workloads, which are
affected by many factors outside databases. Hence, we have
summarized some practical experience to handle workload
changes (for C1.3).

First, for most workloads, there are always some query
templates that frequently occur. And so we actually can foresee
the main trend of future queries based on historical queries,
i.e., familiar historical templates have high possibility to recur.
Hence, similar to the LRU strategies, we only reserve templates
that are most frequently matched.

Second, there is some common knowledge that hints when
the workload may have significant changes, e.g., the update
frequencies of most historical templates are lower than a
threshold. In those cases, we need to multiple a decay factor
with the frequency values of all the templates, remove the
templates with low frequency values, and use the templates of
most recent workloads (e.g., within 2 days).

V. INDEX BENEFIT ESTIMATION

In index management, accurate index benefit estimation is
vital to the final performance [8]. However, existing methods
have two limitations. First, most methods [5], [31], [2], [3],
[26] rely on the empirical cost estimator in databases, which
can make significant errors [34], [14]. Second, deep learning
based method [8], [32], [28], [41] has much higher accuracy,
but it mainly works for anlytical queries. Moreover, those
methods do not consider the costs of updating indexes for write
queries, which is extremely important for index management
under high-write-ratio scenarios.

To efficiently estimate the index benefit, we need to address
three challenges. First, actually building indexes wastes much
time and storage space, we utilize the hypothesis index tech-
nique to save the index creation overhead 2 (C2.1). Second,
although the cost estimator in databases like PostgreSQL is
relatively powerful, they cannot estimate index update costs,
which depend on the execution mechanism and are hard to
estimate (C2.2). Third, traditional cost model is based on the
weighted sum of cost features, where the weights are static and
may cause great errors. We can utilize historical index data to
train a deep regression model, which dynamically learns the
weights of cost features and achieves higher accuracy (C2.3).

We solve this problem by computing cost features based on
practical experience (e.g., how to compute the CPU overhead).
Foremost, we define the execution costs.
Execution Cost. Generally, for any query q, the execution cost
is computed based on the IO and CPU consumption. If q is a
write query, there can be additional index update cost. Hence,
the execution cost of query q can be written as,

cost(q) =Model(Cdata, Cio, Ccpu)
2github.com/opengauss-mirror/openGauss-server/search?q=hypopg index



, where Cdata is the data processing cost, Cio and Ccpu are
separately the IO and CPU costs for index update.

There have been many cost estimation methods that focus
on accurately estimating the data lookup cardinality/cost [27],
[29]. Instead, we aim to estimate the index update costs, which
heavily depend on the mechanism of query execution. For
example, for a high-level deep estimation model, it is hard to
capture the effects of splitting index pages unless we encode
that knowledge within the cost features.

Remark. First, among the write queries, updates and inserts
instantly update the index, which can cause overhead to the
queries; while deletes update the index after finishing the
query, whose index update cost is 0. Second, there are some
special mechanisms for index update that are hard to estimate.
For example, there can be in-placement update, i.e., the new
and old index tuples are recorded in the same heap page, where
the index update cost is greatly reduced. Here we mainly focus
on more general index update cases (e.g., involving disk IO).

A. Computing Cost Features

There are many index statistics that are available within
the database kernel (e.g., the number of accessed pages, the
tree height of the indexes). Based on those statistics, we can
efficiently compute the IO and CPU costs.

IO Cost. IO costs are mainly spent in accessing pages from
disk. And so we can use the accessed page number to reflect
the io number, and the io cost can be written as Cio = |pages|∗
seq page cost, where seq page cost is a hyper parameter.

CPU Cost. We mainly use the number of accessed tuples to
reflect the CPU cost, which is mainly composed of the start
up cost and running cost. Start up cost (tstart) denotes the
cost to find desired index tuples, and running cost (trunning)
is for inserting the new or updated tuples.

Ccpu = tstart + trunning

tstart = {ceil(log(N)) + (H +1) ∗ 50} ∗ cpu operator cost

trunning = Ninsert ∗ cpu index tuple cost

, where N denotes the number of index tuples, H denotes the
tree height of the index, Ninsert is the inserted tuple number,
and cpu index tuple cost is the hyper parameter.

B. Deep Regression for Cost Model

After computation, the IO and CPU costs have already
provided the critical cost information and taking them as the
execution cost features can significantly reduce the estimation
complexity. However, traditional methods simply sum up those
costs based on static weights (e.g., Cio + 0.01Ccpu), which
can be inaccurate in many cases. To solve this problem, we
propose to design a one-layer deep regression model, i.e.,
cost(q) = Sigmoid(Wcost · C+ bcost), where Wcost and bcost
are dynamically learned from historical data, so as to achieve
higher estimation accuracy.

VI. EXPERIMENTS
In this section, we conducted extensive experiments to

evaluate the proposed techniques and studied the following
aspects of our approaches.

RQ1: Did AUTOINDEX gain higher performance (e.g.,
throughput, total latency) than state-of-the-art methods? We
focus on the workload performance in both testing and real
banking scenarios.

RQ2: How well did important components in AUTOINDEX
perform? For space constraint, we mainly report the experi-
mental results on template-based candidate index generation.

RQ3: How well did AUTOINDEX performance for dynamic
scenarios? It is vital to support various index requirements in
AUTOINDEX. In particular, we ask two sub-questions. RQ3.1:
Can AUTOINDEX ensure high performance for dynamic work-
loads? RQ3.2: Can AUTOINDEX generalize to various storage
constraints?

A. Experiment Setting

Implementation. We deployed AUTOINDEX in the open-
sourced database system openGauss [1], [18], [39], where in-
dex selection was written in Python scripts, and other modules
were implemented inside the database kernel.
Environment. In standard testing, we provisioned on a server
with 16GB RAM, 256GB disk, and 4Gh CPU. In banking
scenario, we used a three-node cluster with one primary node
and two replicates. We trained the one-layer estimation model
on the same server, for which we sampled 0.01% workload
queries and conducted 9-fold cross validation.
Datasets. In standard testing, we used four standard datasets,
including TPC-C1x, TPC-C10x, TPC-C100x, and TPC-DS.
For TPC-C, it is a standard OLTP benchmark, which contains
10 tables. For TPC-DS, it is a standard OLAP benchmark,
which contains 25 tables and around 1G data. In the banking
scenario, we tested AUTOINDEX on the hybrid workload of
summarization and withdrawal services (over 2.2M queries).
The dataset contains 144 tables and 1G data.
Performance Metrics. We evaluated AUTOINDEX with two
aspects of metrics. (1) Workload Performance: for a
workload, the performance includes the total latency, av-
erage throughput, and the number of optimized queries;
(2) Management Overhead: we used the latency of up-
dating indexes to estimate the overhead caused by index
management.
Baseline Methods. We mainly compared with two base-
lines. First, we compared with default index configurations
(Default), e.g., indexes on the primary columns for the
testing datasets and manually-crafted indexes for the real
datasets. In many cases Default gained good performance,
and AutoIndex aimed to find better indexes. Second, we im-
plemented a heuristic method (Greedy), commonly adopted
in existing works [2], [3], [26]. Greedy greedily selected
indexes with the highest benefits until arriving resource limit.
To ensure the fairness, Greedy and AutoIndex utilized the
same cost estimation method (see Section V).
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Fig. 5. Performance Comparison on three TPC-C datasets.

TABLE I
ADDED INDEXES COMPARED WITH DEFAULT (TPC-C1X). cost ↓
DENOTES THE PERCENTAGE OF REDUCED COST WITHIN ALL THE

SELECTED INDEXES.

Greedy AutoIndex Cost ↓
(o c id, o w id, o d id) (o c id, o w id, o d id) 99.4%

s quality 21.4%
(o c id, o d id) 3.6%

B. Performance Comparison

To answer RQ1, we evaluated the index management results
on two standard benchmarks and the real-world banking
scenarios. We separately demonstrated the performance on
TPC-C (Figures 5(a)- 5(f)) and TPC-DS (Figure 6- 7).

Performance Comparison in Testing Datasets. We compared
the workload performance (e.g., total latency, throughput)
with two state-of-the-art methods, i.e., default configuration
(Default), and heuristic method (Greedy).

TPC-C. As shown in Figures 5(a)- 5(f), AutoIndex outper-
formed Default and Greedy in all the cases. For example,
for TPC-C100x, AutoIndex gained over 25.4% latency
reduction and 34% throughput improvement than Default;
and gained over 4.7% latency reduction and 7.8% throughput
improvement than Greedy.

The reasons are three-fold. First, there can be numerous
high-concurrency queries in the TPC-C workloads. We have
two main observations: (i) they are simple SPJ queries and

(ii) many queries come from similar templates. For those
queries, AutoIndex can efficiently convert those queries
into a few templates, which helped filter most queries and
simplified index selection. Instead, Greedy enumerated each
query and parsed the candidate indexes from those queries.
However, some queries did not frequently occur. So even if
the indexes created for those queries can reduce the query
cost, if the index cannot be utilized by other queries, it had
minor impact on the overall performance. Second, compared
with Greedy which only selected atomic indexes (extracted
from predicates) with high benefits, AutoIndex considered
the combined benefits of multiple indexes. For example, table I
demonstrated the indexes separately selected by AutoIndex
and Greedy. We can find that, AutoIndex selected two
more indexes, i.e., s quality and (o c id, o w id), which had
relatively low benefits if we separately compute them, based
on which Greedy has dropped them. Instead, AUTOINDEX
explored different index combinations in the policy tree and
selected the two indexes because them gained extremely high
benefits when used together. Third, Default could also gain
relatively good performance, because the indexes in Default
were most frequently accessed columns or the primary keys.
However, some indexes in Default were also frequently
updated for the write operations, which may cause negative
effects instead. Hence, AutoIndex and Default relied
on our index benefit estimator that took the update effects
into consideration, and can efficiently avoid selecting columns
with high maintenance costs. Moreover, by combining differ-
ent indexes as multi-column indexes, AutoIndex can gain
extremely high cost reduction. For example, by building the
index (o c id, o w id, o d id), the query cost was reduced
from 406.45 to 20.45 and gained over 99% cost reduction.

TPC-DS. Similarly, in the TPC-DS dataset, AutoIndex
also achieved best performance. Instead of directly analyz-
ing the overall performance, we have also demonstrated the
detailed optimization levels of the TPC-DS queries. First,
in Figure 6, we have three observations: (i) Most queries
can be optimized by AutoIndex, since it could judiciously
select beneficial indexes that enhanced most queries; (ii)
AutoIndex worked better than Greedy because the TPC-
DS queries were more complex than the TPC-C queries, and so
there were more correlations between the indexes and queries.
This way, AutoIndex could utilize the UCT function in
MCTS method to estimate the long term benefits of different
queries and indexes. Instead, Greedy could only evaluate the
benefits of single queries, and led to suboptimal solutions;
(iii) For TPC-DS, AutoIndex selected a few more indexes
than Greedy (i.e., 9 indexes by AutoIndex and 3 indexes
by Greedy). Since the total size of the indexes was still
within the resource limit and it was acceptable to gain higher
performance at the cost of storage space. Note that, we will
discuss the performance changes under different storage limits
in the following sections. Second, as shown in Figure 7, an-
other interesting observation is that the optimization levels of
some queries in AutoIndex were much higher than queries
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Fig. 6. Execution time reduction of TPC-DS queries.

in Greedy. For example, in AutoIndex, the execution
time of over 44 queries was reduced by over 10%, while
there were only 15 queries in Greedy. The reason was that
AutoIndex built more beneficial indexes, which can serve
for more queries. Moreover, the co-effects of indexes selected
by AutoIndex may bring in higher cost reduction. For
example, for a query “select * from t1, (select * from t2 where
a’ = 2) where a = 1 and t1.b = t2.b” (we replace the table and
column names for easy description), Greedy separately tested
indexes on a and a′, which can only enhance their own table
scan and had relatively low cost benefit. Instead, AutoIndex
built indexes on both a and a′, based on which the two table
scans can utilize indexes and enhanced the join operation.

Performance Comparison in Real Datasets. Besides the
standard testing datasets, we also verified the effectiveness of
AutoIndex in the real services of a banking scenario. In this
part we actually have conducted two experiments, including
removing redundant indexes (Figure 1) and adding beneficial
indexes (Table II- III).

(1) For index removal, as shown in Figure 1, recap that we
could remove over 80% indexes and still achieve performance
improvement. There are three main observations. First, with
the lightweight modules like SQL2Template and candidate
index generation, AutoIndex can finish index management
for the 2.2M SQL queries within 11 minutes. Note that the
SQL collection process has minor impact on the workload
performance, i.e., < 1%. Second, AutoIndex has efficiently
reduced 83% indexes and 70% disk space, because there are
many redundant or even negative indexes that can be identified
by our benefit estimation model. Third, to answer why we
can achieve throughput improvement after removing so many
indexes, one reason is that removing indexes can enhance
available memory searching and optimize the utilization of
memory space.

(2) For index creation, as shown in Table II and Table III,
AutoIndex could gain obvious performance improvement. It
took minor storage space for storing the new indexes. Specifi-
cally, AutoIndex only created 33 more indexes, which could
serve for different workloads from the hybrid services. That
was because it identified the index requirements of different
typical queries, and so the most common queries in the two
services were identified and optimized. While methods that
separately considered each workload (like manual methods), it
could not achieve that performance of AutoIndex. Second,
we can find the summarization service gained a bit higher
throughput improvement, because it was of OLAP type and

TABLE II
PERFORMANCE IMPROVEMENT IN BANKING SCENARIO

Default AutoIndex
# Non Primary Index 601 +33
The Size of Disk Space (G) 24.4 +1.27G
Summarization Service (tps) 235 +10%
Withdrawal Flow Service (tps) 488 +6%

TABLE III
EXAMPLE RECOMMENDED INDEXES IN THE BANKING SCENARIOS.

Index Query Cost (no index) Query Cost (with index)
ind15 12.33 8.32
ind20 59495 7655
ind32 0.101 0.051

contained more complex queries that owned higher optimiza-
tion potential. Third, as shown in Table III, we showcased
some typical indexes selected by AutoIndex. We can see,
at most, ind20 can reduce over 98.7% execution time and
significantly improved the service quality. In the future we
will conduct more experiments to verify the effectiveness of
our system in different online businesses.

C. Evaluating Template-based Index Management

To answer RQ2, the results are shown in Figure 8. We can
see that template-level index management can significantly en-
hance indexing without obvious performance regression. And
there are several observations. First, template-based can reduce
over 98.5% overhead, including candidate index generation
and existing index update. Because there were numerous TPC-
C queries, but those queries may come from a few query
templates based on the service types. And thus we can directly
capture the query patterns based on the matched templates,
rather than asking the index preferences of each query. That
was because they could only occur in one of the templates.
Second, there were no significant performance regression,
i.e., query-based method only outperformed AutoIndex by
0.1%, which was not so necessary in comparison with the
significant time wasted in candidate index generation by the
query-level method. And the reason why AutoIndex did
not work much worse was two-fold. First, as talked above,
the templates were relatively few for TPC-C, i.e., simple
queries were more easily captured. Second, we can infer
the queries that were not matched with any templates in
AutoIndex, with the index benefit estimation model, which
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provided important hints of the index preference of the overall
workload, which helped to avoid select suboptimal indexes.

D. Evaluating Adaptivity for Dynamic Workloads

To answer RQ3.1, we tested the performance of
AutoIndex and the other two methods on dynamic TPC-
C workloads. We continuously issued TPC-C tasks (with
different concurrency), and every five minutes we conducted
once index management. Note that, there were many insert
operations in TPC-C workloads and they caused the table
data to grow, and so the performance slightly decreased in
the Default method.

As shown in Figure 9, AutoIndex can adaptively rec-
ommend high-performance indexes during workload execu-
tion and worked better than the other two methods. There
are several observations. First, compared with Greedy,
AutoIndex outperformed Default and Greedy, because
(i) AutoIndex efficiently characterized the workload fea-
tures (e.g., access patterns, frequencies) and the candidate
generation model can select a small part of candidate in-
dexes for updating the index set; (ii) Greedy can capture
changes with the index estimator and prepared index (e.g.,
very bad estimation results of the recommended indexes,
or most templates were not matched for a period of time)
and it helped AUTOINDEX to update the templates based
on current workloads and find high benefit single indexes.

Second, AUTOINDEX still worked best under different storage
constraints (i.e., from no limit to 50M). Because the tree search
policy in AutoIndex can efficiently select indexes that took
small space and had high benefits, because it selected optimal
indexes by the exploration-and-exploitation strategy. If the
storage has arrived limit, it will try out other branches and
found better solutions. Instead, Greedy only considered high
benefits and cannot select any more indexes after picking a few
indexes and arriving the resource limit. Third, AutoIndex
also met performance regression when the storage constraint
got smaller, since effective indexes usually took more space
to record distinct tuples. Fourth, in some cases, AutoIndex
got better performance under even smaller storage constraint,
i.e., from no limit to 150M. In this case, we found that
some indexes may have both relatively small storage space
and high performance. Hence, for AutoIndex, it is vital
to explore untouched part in the policy tree so as to find
such index combinations. Fifth, AutoIndex achieved lower
index latency than Greedy, which needed to enumerate each
coming query. Hence AutoIndex is more suitable to provide
online index management for dynamic workloads.

E. Evaluating Adaptivity for Various Storage Constraints

To answer RQ3.2, as shown in Figure 10, AUTOINDEX
still worked best under different storage constraints (i.e.,
{nolimit, 150M, 100M, 50M}). We have three main obser-
vations. First, AutoIndex can achieve high performance
for various storage constraints. The tree search policy in
AutoIndex can efficiently select indexes that took small
space but high benefits, because it selected optimal indexes
based on the exploration-and-exploitation strategy (the utility
function). If arriving the storage limit, AutoIndex will
try out other branches and found better solutions. Instead,
Greedy only considered high benefits and cannot select any
more indexes after picking a few indexes and arriving the
resource limit. Second, AutoIndex also met performance
regression when the storage constraint got smaller, since
effective indexes usually took more space to record distinct
tuples. Third, in some cases, AutoIndex got better solution
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with even smaller storage constraint, i.e., from no limit to
150M, AutoIndex recommended indexes with even higher
benefit. Hence, we found some indexes may have both cheaper
price but high performance. It is vital to explore untouched
part in the policy tree so as to find such index combinations.

VII. RELATED WORK

Index Management. Existing index management meth-
ods can be broadly divided into two categories, including
the optimizer-based methods and ML-based methods. For
optimizer-based methods, they rely on traditional database
estimator to estimate the costs of queries with different
indexes, and utilize some heuristic algorithms (e.g., top-K,
hill-climbing) to select indexes that can cause execution cost
reduction [5], [31], [2], [3], [26], [19]. However, the estimated
costs can be inaccurate and mislead to suboptimal solutions.
For machine learning based method, to solve the problem of
inaccurate cost estimation, Ding et al [8] proposed to design a
neural network that estimates index benefits based on the plans
before/after creating indexes, based on which they recommend
any indexes with positive benefits. However, it does not
consider (i) the correlations between indexes and queries (e.g.,
the maintenance cost may be higher than reduced lookup cost)
and (ii) the removal of redundant/negative indexes, which can
significantly affect the performance.

Machine Learning for Databases. There are increasingly
more works that adopt machine learning in database opti-
mization [38], [16], [33], [15], [22] (e.g., deep reinforce-
ment learning for join enumeration [26], [12], [24], [35],
[13], [7], view management [36], [9], data partition [10]).
However, the advanced DRL methods (e.g., DQN [36], [11],
DDPG [37], [20]) cannot be directly applied to our problem
for two reasons. First, RL is based on static environment-actor
interactions and takes long time (e.g., several days or weeks)
to adapt to dynamic workloads [30], [17], which is intolerable
in reality. Second, advanced RL methods like DDPG only
support creating several indexes at each iteration, but it is
hard to support other actions like index removal, because
it cannot go back to previous steps. Hence, we propose to
utilize a lightweight exploration method (MCTS) [23], [30],
[40], which can not only balance between exploration-and-
exploitation (finding promising index solutions), but maintains
a policy tree (representing all the index solutions), which
helps to update historical indexes (parent nodes) and add new
indexes (child nodes) for dynamic workloads.

VIII. CONCLUSION

In this paper we proposed an incremental index management
system AUTOINDEX for real-world dynamic workloads. We
proposed a template-based candidate index generation method
to efficiently capture the index requirements of coming work-
loads. We proposed a MCTS-based index selection method
which incrementally updated the indexes to ensure high per-
formance. We proposed a deep index estimation model to
estimate the index benefits based on read and write queries.
We have implemented the cost estimator inside the database
kernel of openGauss. Experimental results showed that our
method outperformed existing approaches on both testing and
real-world workloads.
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