
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 248–266
0306-43

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/infosys
An effective 3-in-1 keyword search method over
heterogeneous data sources
Guoliang Li a,�, Jianhua Feng a, Beng Chin Ooi b, Jianyong Wang a, Lizhu Zhou a

a Department of Computer Science, Tsinghua University, Beijing 100084, China
b School of Computing, National University of Singapore, 117543 Singapore, Singapore
a r t i c l e i n f o

Keywords:

Keyword search

Inverted index

Extended inverted index

Graph index

Ranking

Unstructured data

Semi-structured data

Structured data
79/$ - see front matter & 2008 Elsevier B.V. A

016/j.is.2008.08.001

responding author. Tel.: +86 10 62789150; fax

ail address: liguoliang@tsinghua.edu.cn (G. Li
a b s t r a c t

Conventional keyword search engines are restricted to a given data model and cannot

easily adapt to unstructured, semi-structured or structured data. In this paper, we

propose an efficient and adaptive keyword search method, called EASE, for indexing

and querying large collections of heterogeneous data. To achieve high efficiency in

processing keyword queries, we first model unstructured, semi-structured and

structured data as graphs, and then summarize the graphs and construct graph indices

instead of using traditional inverted indices. We propose an extended inverted index to

facilitate keyword-based search, and present a novel ranking mechanism for enhancing

search effectiveness. We have conducted an extensive experimental study using real

datasets, and the results show that EASE achieves both high search efficiency and high

accuracy, and outperforms the existing approaches significantly.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Keyword search is a proven and widely popular
mechanism for querying document systems and the
World Wide Web. Recently, it has even been extensively
applied to extract useful and relevant information from
the Internet. Furthermore, the database (DB) research
community has also recognized the benefits of keyword
search and has been introducing keyword search cap-
ability into relational DBs [1–8], XML DBs [9–16] and
graph DBs [17–19]. However, the existing web search
engines cannot integrate information from multiple
interrelated pages to answer keyword queries mean-
ingfully. Next-generation web search engines require
link-awareness, or more generally, the capability of
integrating correlative information items that are linked
through hyperlinks. Meanwhile, the efficiency of keyword
search on structured and semi-structured data remains a
challenging problem. This is so because the traditional
ll rights reserved.

: +86 10 62771138.

).
approaches have always employed the inverted index to
process keyword queries, which is effective for unstruc-
tured data but inefficient for semi-structured and struc-
tured data. This is because the inverted index is
inadequate for identifying the ‘‘best’’ answers with
complex structural information, which is rather rich in
XML documents or relational DBs.

To the best of our knowledge, very few existing studies
could be universally applied to unstructured data
(e.g., text documents), semi-structured data (e.g., XML
documents), structured data (e.g., relational DBs) and
graph data. Therefore, providing both effective and effi-
cient search ability over such heterogeneous collections
within a single search engine remains a big challenge. As
it is, the structure of the data, such as the potentially
hierarchical embedding in XML documents, is not fully
exploited for answering keyword queries. It is also not
taken into account for result ranking in most search
engines. Consequently, current implementations focus on
either IR-style search to meaningfully rank the results but
ignore the rich structural information, or DB-style search
to discover answers by identifying structural relationships
but employ a very straightforward ranking mechanism.

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2008.08.001
mailto:liguoliang@tsinghua.edu.cn

G. Li et al. / Information Systems 36 (2011) 248–266 249
This less-than-ideal situation calls for a framework for
indexing and querying over large collections of unstruc-
tured, semi-structured or structured data, and adaptive
ranking of the results retrieved over those heterogeneous
data. In this paper, we propose EASE, an Efficient and
Adaptive keyword SEarch method, as an attempt in that
direction. Our work is in line with the current trend of
seamlessly integrating DBs and information retrieval (IR)
techniques [20,21]. EASE seamlessly integrates efficient
query evaluation and adaptive scoring for ranking results.
From the DB point of view, EASE provides an efficient
algorithmic basis for scalable top-k-style processing of
large amounts of heterogeneous data for the discovery of
rich structural relationships. It works by employing an
adaptive, efficient and novel index beyond the inverted
index. From the IR viewpoint, EASE integrates an effective
ranking mechanism to improve search effectiveness.

In our approach, we model unstructured, semi-struc-
tured and structured data as graphs, with nodes being
documents, elements and tuples, respectively, and edges
being hyperlinks, parent–child relationships (or IDREFS)
and primary–foreign-key relationships, respectively. We
enable efficient keyword queries on these heterogeneous
data by summarizing, clustering the graphs and con-
structing graph indices. To facilitate efficient keyword-
based query processing, we examine the issues of
indexing and ranking to improve search quality. To the
best of our knowledge, this is the first attempt to
efficiently and adaptively process keyword queries on
such heterogeneous data, and also the first work to
propose the novel graph index, which is efficient in
identifying rich structural relationships.

Our contributions in this paper are as follows:
�
 We model unstructured, semi-structured and struc-
tured data as graphs and propose an efficient keyword
search method, EASE, to adaptively process keyword
queries over the heterogeneous data. We devise an
effective graph index as opposed to the inverted index,
to improve search efficiency and effectiveness.

�
 We propose a partition-based method to maintain the

graph index so as to reduce the graph-index size.

�
 We present a novel ranking mechanism for effective

keyword search by taking into account both the
structural compactness of answers from the DB view-
point and the textual relevancy from the IR point of
view.

�

SIGMOD
Homepage
We examine the issues of indexing and ranking, and
devise a simple and yet efficient indexing mechanism
to index the structural relationships between the
transformed data. The index is amenable to the
deployment of existing top-k ranking methods.

�

Call For Important
Dates

Program
Program …
We have conducted an extensive performance study
using real datasets and various queries with different
characteristics. The results show that EASE achieves
both high search efficiency and accuracy, and outper-
forms existing state-of-the-art methods.
Paper Committee

Fig. 1. Conference homepages.
The rest of this paper is organized as follows. We present
the r-radius Steiner graph problem in Section 2. Section 3
introduces a novel graph index. We present a novel
scoring function in Section 4. We examine the issues of
indexing and ranking, and propose an indexing mechan-
ism in Section 5. Extensive experimental evaluations are
provided in Section 6. We review the related work in
Section 7 and conclude the paper with Section 8.

2. Adaptive keyword search model

2.1. Motivation

2.1.1. Unstructured data

Although many prior studies of keyword search over
text documents (e.g., HTML documents) have been
proposed, they all produce a list of individual pages as
results. In the event that there are no pages that contain
all the keywords, they will return pages with some of the
input keywords ranked by relevancy. Even if two or more
interrelated pages contain all the keywords, the existing
methods cannot integrate the pages into one relevant and
meaningful answer. For example, to search for conferences
covering the topic of ‘‘Data Integration’’ held in
‘‘Canada’’ in 2008, one may issue a keyword query of
‘‘Conference 2008 Canada Data Integration’’ to a
search engine such as Google. As we all know, the venue of
‘‘SIGMOD 2008’’ is ‘‘Canada’’ and ‘‘Data Integration’’ is
one of its major research topics. Yet surprisingly, the
homepage of ‘‘SIGMOD 2008’’ is neither in the top 10
results nor even in the first 100 answers. Why? The reason
is that ‘‘SIGMOD 2008’’ homepage splits its information
into several pages methodically as shown in Fig. 1 and
IMPORTANT-DATE page contains the keywords ‘‘2008, Con-

ference’’ while ‘‘Data Integration’’ is contained in the
CALL-FOR-PAPER page. Such data lineage problem also
persists in most recently proposed community informa-
tion management platforms [22].

Consequently, the existing search engines often include
a number of false negatives due to the limitation of their
models, which take only a list of individual pages as
search results but neglect the fact that interrelated pages
linked by hyperlinks may be more meaningful. Yet, this is
not an ad hoc problem but a ubiquitous one over the
Internet. As another example, most researchers organize
their homepages according to content, as shown in Fig. 2.
Suppose a user searches for professors who teach a
specific course and have a specified project, and types in
some keywords. Although there may be no page that

Personal
Homepage

Publications Projects Courses Students …

Fig. 2. Personal homepages.

G. Li et al. / Information Systems 36 (2011) 248–266250
contains all input keywords, the page units composed of
HOMEPAGE, PROJECT and COURSE of some professors may
answer this query meaningfully.

The accuracy and lineage of data have recently received
considerable attention, but mainly from a theoretical
perspective. While existing studies such as Trio [23]
extend conventional data management by incorporating
accuracy and lineage as integral components of both data
and queries, few works are link aware to search text
documents over the Internet and take into consideration
the fact that multiple interrelated pages linked by
hyperlinks may be more meaningful. Indeed, the accuracy
problem of traditional search engines is ubiquitous over
the Internet. This is so because most web sites organize
their data systematically and relevant data may be
separated into different pages but linked through hyper-
links. Although Li et al. [24] have proposed a method of
retrieving and organizing web pages by ‘‘Information
Unit’’, they model the problem of retrieving web pages as
the minimum-weighted group Steiner tree problem,
which is an NP-hard problem. It is rather difficult to
identify Steiner trees over large graphs. Also, their method
employs a heuristic method to identify the top-k answers,
and it may fall into the local optimal point and fail to
reach the global optimum. In this paper, we propose an
effective search method, EASE, to address the problem.
1 There may be a large number of hyperlinks among pages on the

Web; however, to extract more meaningful and relevant answers, we can

only consider the hyperlinks between pages in the same domain.
2.1.2. Semi-structured, structured and graph data

Traditional studies of keyword search over semi-
structured data always compute LCAs (lowest common
ancestors) or its variants [10,16] of content nodes which
directly contain input keywords and take the subtrees
rooted at LCAs as answers. However, the problem as to
which subtrees are more meaningful for answering the
keyword queries remains open. This is because it is not a
straightforward task to decide which subtrees with
meaningful and complementary elements besides the
content nodes should be used as results in order to
meaningfully expand their answerability.

Prior works [2] of keyword search over structured data
always identify connected trees with minimal cost in the
labeled graph as answers. Called Steiner trees, they have
nodes which are tuples in the DB and links which are
primary–foreign-key relationships. The trees are identi-
fied with the use of an approximation to the Steiner tree
problem. However, it is fairly difficult to extract all the
Steiner trees in a large graph, which is NP-hard [2].
Moreover, the Steiner tree problem is difficult to adapt for
complicated graph DBs [17], e.g., complex biological DBs,
as it only discovers simple tree structures but cannot
identify the more meaningful graph structures with rich
structural relationships, such as circles. Although Guo
et al. [17] have proposed data topology search to improve
search effectiveness, their method is constrained by the
input of only two keywords.

Traditionally, the inverted index is employed to answer
keyword queries. It has been shown to be effective for text
and document-based retrieval. However, it is inadequate
for supporting keyword queries over structured, semi-
structured and graph data because it is fairly difficult to
identify the ‘‘best’’ answers that capture rich structural
relationships through the inverted index. To address the
above-mentioned issues, we propose an effective graph
index to improve search performance in this paper.

2.2. r-Radius Steiner graph problem

EASE models unstructured data (e.g., text documents),
semi-structured data (e.g., XML documents) and struc-
tured data (e.g., relational DBs) as graphs, where the nodes
are, respectively, documents, elements and tuples, and the
edges are, respectively, hyperlinks,1 parent–child relation-
ships (or IDREFS) and primary–foreign-key relationships.
The advantage is obvious as EASE addresses the problem
of keyword search over graph data so as to adaptively
answer keyword queries over the heterogeneous data. We
now formally define the problem of modeling hetero-
geneous data as graphs.

Inspired by the Steiner tree problem [2], we introduce
the Steiner graph problem. However, graphs with a larger
diameter (which is defined as the longest distance
between any two nodes in a graph) are not so meaningful
and relevant to queries as users are generally frustrated by
large and complex graphs. Consequently, we introduce the
r-radius Steiner graph problem, which is a more interesting
and challenging problem of identifying meaningful
Steiner graphs with acceptable sizes. To formally describe
this problem, we first present several concepts as follows.

Definition 1 (Centric distance). Given graph G and any
node v in G, the centric distance of v, denoted as CDðvÞ, is
the maximal value among the distances between v and
any node u in G, i.e., CDðvÞ ¼maxu2G fDðv;uÞ}, where
Dðv;uÞ denotes the distance between v and u, i.e., the
length of the shortest path between v and u.

Definition 2 (Radius). The radius of a graph G, denoted as
RðGÞ, is the minimal value among the centric distances of
every node in G, i.e., RðGÞ ¼ minv2G fCDðvÞ}. G is called
an r-radius graph if the radius of G is exactly r.

Definition 3 (r-Radius Steiner graph). Given an r-radius
graph G and a keyword query K. Node o in G is called a
content node if o directly contains some input keywords
in K. Node s in G is called a Steiner node if there exist two

p3

p4 p5 p6 p7

a3 a4 a5

p1 p2

a1 a4a2

Fig. 3. The graph model for the publication database in Table 1.

2 Without loss of generality, we suppose G is a connected graph, the

radius of which is no smaller than r, i.e., RðGÞXr. Even if G is an

unconnected graph, we can decompose it into a set of connected graphs

and thus EASE can adapt to the unconnected graphs.

G. Li et al. / Information Systems 36 (2011) 248–266 251
content nodes, u and v, and s is on the path u v (s may
be u or v), where u v denotes a path between u and v.
The subgraph of G composed of the Steiner nodes and
associated edges is called an r-radius Steiner graph. The
radius of an r-radius Steiner graph may be smaller than r

but cannot be larger than r.

Obviously, we can take the r-radius graphs that contain
all or a portion of the input keywords as answers, as the
r-radius graphs are very compact and meaningful, and also
contain some relevant and complementary nodes for
expanding their answerability. Moreover, r-radius Steiner
graphs are more concise since non-Steiner nodes are
excluded. Although we can take either r-radius graphs or
r-radius Steiner graphs as answers of keyword search over
graph data, we adopt the latter option in this paper.

However, it is very difficult to identify all r-radius
Steiner graphs from a large graph, and hence, we will
introduce an effective index later to improve the efficiency
of extracting r-radius Steiner graphs. Here, to better
explain our proposal, we give a running example as
described in Example 1.

Example 1. Consider the DB in Table 1. We model it to a
graph G as illustrated in Fig. 3. Dða1; a3Þ ¼ 4, CDðp2Þ ¼ 5
and RðGÞ ¼ 4. Given a query ‘‘IR, Hristidis’’ on the DB
in Table 1, we compute the Steiner graph composed of p4,
p5 and a3 with associated edges between them as an
answer. This differs from the Steiner tree (i.e., p52a3) of
prior studies, which can cause the loss of meaning-
ful information, especially in DBs with complicated
structures.

We now formally state the r-radius Steiner graph problem

for identifying the most relevant subgraphs with accep-
table sizes to answer keyword queries over graph data.

The r-radius Steiner graph problem: Given a graph G
and an input keyword query K, the r-radius Steiner graph
problem is to find all the r-radius Steiner graphs in G, which

contain all or a portion of the input keywords in K, ranked

by relevancy with K.
As users are usually interested in the top-k answers, we

mainly discuss how to identify top-k r-radius Steiner
graphs with the highest scores.

3. EASE: an effective and adaptive search method

The efficiency and advantages of using inverted indices
for facilitating the computation of the ‘‘best’’ answers for
online keyword queries are well recognized. However, the
inverted indices are not effective for discovering the much
richer structural relationships existing in DBs with
complicated structures [17]. It is therefore important to
be able to efficiently and effectively discover these
structural relationships, and index them for fast and
accurate response. Intuitively, a straightforward way is to
enumerate all the combinations of keywords, compute the
corresponding r-radius Steiner graphs for each combina-
tion, and index these graphs. However, it is prohibitively
expensive to discover all these structures since the
number of combinations of all keywords in real DBs is
very large.

Consequently, we propose an effective strategy to
discover a portion of the r-radius graphs such that
the number of which is proportional to the number of
nodes in the graph, and we only need to index and
materialize these graphs. More importantly, all of the r-
radius graphs can be effectively identified through the
indexed ones. In a later section, we will address the issue
of extracting r-radius Steiner graphs on the fly by
removing non-Steiner nodes from the corresponding
indexed r-radius graphs.
3.1. Adjacency matrix

In order to efficiently extract r-radius graphs from a
given graph GðRðGÞXrÞ,2 we introduce the concept of
adjacency matrix, M ¼ ðmijÞn�n, with respect to G, which is

an n� n boolean matrix. In M, the element mij is 1, iff,

there is an edge between vi and vj in G, i.e., vi
1vj,

where viðvjÞ denotes the node at the i-th(j-th) row or

column in M while vi
dvj denotes that there is a path

between vi and vj with distance no larger than d;

otherwise, mij is 0 (mii is always 1). Iteratively, mr
ij ¼ 1,

iff, vi
rvj, where Mr

¼M� � � � �M
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{r

¼ ðmr
ijÞn�n.

To ease the discussion that follows, we summarize the
notation we use in Table 2. Mr is said to be the r-th power
of M. Nr

i ¼ fvjjM
r
ij ¼ 1g is the set of nodes which have a

path to vi with distance no larger than r. Gr
i denotes the

subgraph of G with respect to the i-th row of Mr , which is
composed of the nodes in Nr

i and the associated edges.
Gr

vi
ðNr

vi
Þ can be interchangeably employed instead of

Gr
i ðN

r
i Þ if there is no ambiguity. We use GiIGj to denote

that Gi is a subgraph of Gj (equivalently, Gj is also called a
super-graph of Gi). Gi /Gj denotes that Gi is a proper
subgraph of Gj, i.e., Gi /Gj and GiaGj. jGj denotes the
number of nodes in G.

Example 2. We can construct the adjacency matrix of the
graph in Fig. 3 as illustrated in Table 3. We note that

v1 ¼ a1, v2 ¼ p1, v3 ¼ a2 and v4 ¼ p2. N2
2 ¼N2

p1
¼

fa1; p1; a2; p2; p3g and N2
4 ¼N2

p2
¼ fa1; p1; a2; p2; p3;p4g.

Table 1
A publication database

Authors Paper-reference Author-paper

AID Name PID citedPID AID PID

a1 J. Shanmugasundaram p1 p2 a1 p1

a2 L. Guo p2 p3 a1 p2

a3 V. Hristidis p3 p4 a2 p1

a4 Y. Papakonstantinou p4 p5 a3 p4

a5 A. Balmin p5 p6 a3 p5

a4 p5

a4 p6

a4 p7

a5 p6

Papers

PID Title

p1 Topology search over biological databases

p2 XRANK: ranked keyword search over XML documents

p3 Bidirectional expansion for keyword search on graphs

p4 Finding top-k answers in keyword proximity search

p5 Efficient IR-style keyword search over relational databases

p6 Keyword proximity search on XML graphs

p7 DISCOVER: keyword search in relational databases

Table 2
Summary of notations

Notation Descriptions

G A graph

jGj The number of nodes in G

SG A Steiner graph

K An input keyword query

M The adjacency matrix w.r.t. G

Mr The r-th power of M

Nr
i (or Nr

vi
) fvjjM

r
ij ¼ 1g

Gr
i (or Gr

vi
) The subgraph of G composed of the nodes in Nr

i

vi vj There is a path between vi and vj

Dðvi ; vjÞ The distance of vi and vj

CDðvÞ maxu2G fDðv;uÞg

RðGÞ The radius of G and RðGÞ ¼ minv2G fCDðvÞg

vi
dvj vi vj and Dðvi ; vjÞpd

GiIGj Gi is a subgraph of Gj (or Gj is a super-graph of Gi)

Gi /Gj GiIGj and GiaGj

SðGi ;GjÞ The similarity between Gi and Gj

G. Li et al. / Information Systems 36 (2011) 248–266252
N2
p1

and N2
p2

are composed of the nodes that can connect

to p1 and p2 within distance 2, respectively. We can
construct two subgraphs centered at nodes p1 and p2 by

connecting the nodes in the two node sets N2
p1

and N2
p2

.

The two subgraphs G2
2ðG

2
p1
Þ and G2

4ðG
2
p2
Þ are illustrated in

Fig. 4. We can see that the two graphs are compact within

distance 2. We have G2
p1
/G2

p2
. In the remainder of this

paper, we set r as 2 for all the running examples.
To effectively extract r-radius graphs according to the
adjacency matrix, we provide Lemma 1 to determine the
subgraphs in G that are r-radius graphs.

Lemma 1. Given a graph GðRðGÞXr41Þ, 8i; 1pipjGj, Gr
vi

is an r-radius graph, if, 8vk 2N
r
vi

, Nr
vi
D/ Nr�1

vk
.

Proof. As all the nodes in Nr
vi

connect to vi and all the
nodes with distances no larger than r to vi are in Nr

vi
, the

nodes in Nr
vi

and the edges associated with them can
construct a subgraph of G, Gr

vi
. We need to prove

RðGr
vi
Þ ¼ r.

We first prove that RðGr
vi
Þpr.

8u 2Nr
vi

, we have Dðvi;uÞpr according to the definition

of Mr , and thus CDðviÞ ¼ maxu2Gr
vi

fDðvi;uÞgpr. Hence,

based on Definition 2, we have RðGr
vi
Þ ¼ minv2Gr

vi

fCDðvÞgpCDðviÞpr.

We then prove that RðGr
vi
ÞXr.

8vk 2N
r
vi

, as Nr
vi
D/ Nr�1

vk
, there must exist a node uk,

uk 2N
r
vi

and ukeN
r�1
vk

, thus Dðvk;ukÞXr (otherwise, if

Dðvk;ukÞor, uk 2N
r�1
vk

, which contradicts ukeN
r�1
vk

).

Thus, 8vk 2N
r
vi

, we have CDðvkÞ ¼maxu2Gr
vi

fDðvk;uÞgX

Dðvk;ukÞXr in Gr
vi

. Accordingly, RðGr
vi
Þ ¼ minvk2G

r
vi

fCDðvkÞgXr.

Therefore, RðGr
vi
Þ ¼ r and Gr

vi
is an r-radius graph. &

As formalized in Lemma 1, we can determine whether
the subgraph Gr

vi
with respect to the i-th row of Mr is

Table 3
Adjacency matrix of the graph for the publication database

a1 p1 a2 p2 p3 p4 a3 p5 a4 p6 p7 a5

(a) M

a1 1 1 0 1 0 0 0 0 0 0 0 0

p1 1 1 1 1 0 0 0 0 0 0 0 0

a2 0 1 1 0 0 0 0 0 0 0 0 0

p2 1 1 0 1 1 0 0 0 0 0 0 0

p3 0 0 0 1 1 1 0 0 0 0 0 0

p4 0 0 0 0 1 1 1 1 0 0 0 0

a3 0 0 0 0 0 1 1 1 0 0 0 0

p5 0 0 0 0 0 1 1 1 1 1 0 0

a4 0 0 0 0 0 0 0 1 1 1 1 0

p6 0 0 0 0 0 0 0 1 1 1 0 1

p7 0 0 0 0 0 0 0 0 1 0 1 0

a5 0 0 0 0 0 0 0 0 0 1 0 1

(b) M2

a1 1 1 1 1 1 0 0 0 0 0 0 0

p1 1 1 1 1 1 0 0 0 0 0 0 0

a2 1 1 1 1 0 0 0 0 0 0 0 0

p2 1 1 1 1 1 1 0 0 0 0 0 0

p3 1 1 0 1 1 1 1 1 0 0 0 0

p4 0 0 0 1 1 1 1 1 1 1 0 0

a3 0 0 0 0 1 1 1 1 1 1 0 0

p5 0 0 0 0 1 1 1 1 1 1 1 1

a4 0 0 0 0 0 1 1 1 1 1 1 1

p6 0 0 0 0 0 1 1 1 1 1 1 1

p7 0 0 0 0 0 0 0 1 1 1 1 0

a5 0 0 0 0 0 0 0 1 1 1 0 1

p3

p4p1 p2

a1 a4a2

p3

p1 p2

a1 a4a2

Gp1
2 Gp2

2

Fig. 4. Two 2-radius graphs.

G. Li et al. / Information Systems 36 (2011) 248–266 253
an r-radius graph. For example, G2
p2

is a 2-radius graph
while G2

a2
is not as N2

a2
�N1

p1
as shown in Table 3.

In order to extract all of the r-radius Steiner graphs
from G, we must prove that any r-radius Steiner graph in
G corresponds to a subgraph Gr

vi
, and we provide Theorem

1 for extracting r-radius Steiner graphs.

Theorem 1. Suppose fSGr
1;SGr

2; . . . ;SGr
pg is the set of the

r-radius Steiner graphs with respect to a graph GðRðGÞXrÞ

and a keyword query, 81pjpp, 91pipjGj, SGr
jIGr

vi
holds.

Proof. 8SGr
j , there must exist a corresponding r-radius

graph Grj
according to Definition 3, such that SGr

jIGrj
.

We then prove that 9Gr
vi

, Grj
IGr

vi
.

As Grj
is an r-radius graph, there must exist a node vi 2

Grj
and CDðviÞ ¼ r. Since for any node u 2 Grj

, Dðvi;uÞpr,

thus u must be in the node set of Gr
vi

(i.e., Nr
vi

) according

to the definitions of Gr
vi

and Mr . Hence, all the nodes in

Grj
must be in Gr

vi
. Thus, Grj

IGr
vi

. Hence, SGr
jIGrj

IGr
vi

. &

Based on Theorem 1, we can extract r-radius Steiner
graphs through the adjacency matrix. To facilitate efficient
retrieval of r-radius graphs, we construct a novel graph

index. The entries of the graph index are terms contained
in the graph and each entry preserves the r-radius graphs
that contain the term. To construct the graph index, we

G. Li et al. / Information Systems 36 (2011) 248–266254
first extract r-radius graphs as stated in Lemma 1, then
for each term ki, we keep the set of all r-radius graphs
that contain ki, denoted as Iki

, i.e., Iki
¼ fGr

vj
jGr

vj

contains kig.
To process a keyword query K ¼ fk1; k2; . . . ; kmg, we

first retrieve the set Iki
of those r-radius graphs which

contain ki based on the graph index, and then union every
Iki

to compute
Sm

i¼1 Iki
, which is the set of r-radius

graphs that contain all or a portion of the keywords
in K.3 Finally, we extract the r-radius Steiner graphs by
removing the non-Steiner nodes from the corresponding
r-radius graphs, and rank the results to return the top-k

answers.
Given an r-radius graph Gr and its content nodes,

c1; c2; . . . ; cq, which directly contain some of the input
keywords, we compute the Steiner nodes and construct
the corresponding r-radius Steiner graph as follows:
(i)
3

which
Compute PðciÞ, the set of those nodes which have a
path to ci in Gi, i.e., PðciÞ ¼ fuju ci in Gig, where Gi

is the subgraph of Gr , by removing the nodes in
fc1; c2; . . . ; ci�1; ciþ1; . . . ; cqg and the associated edges.
(ii)
 Extract the set of Steiner nodes in Gr , P, where
P ¼

Sq
i¼1

Sq
j¼iþ1 ðPðciÞ \PðcjÞÞ [fc1; c2; . . . ; cqg.
(iii)
 Construct the r-radius Steiner graph, i.e., the sub-
graph of Gr , which is composed of the nodes in P and
the associated edges.
Example 3. Consider the DB described in Table 1, we
obtain its adjacency matrix M and compute Mr as shown
in Table 3 (r is set to 2 in the remaining examples
throughout this paper). Subsequently, we derive the
r-radius graphs, e.g., Gr

p1 and Gr
p2 based on the second

and fourth rows of Mr , respectively, which are illustrated
in Fig. 4. We note that Gr

p1 /Gr
p2. To answer the keyword

query ‘‘Shanmugasundaram, Guo, XRANK’’, we first re-
trieve the r-radius graphs, Gr

p1 and Gr
p2, which contain

the three keywords, based on the graph index, and then
extract the corresponding r-radius Steiner graphs, i.e.,
the circled subgraphs as illustrated in Fig. 4, by removing
the non-Steiner nodes.

From Example 3, we observe that some r-radius
graphs are contained in others. As a further illustra-
tion, we get the following expressions from the graph in
Fig. 3:
(i)
 Gr
a2 /Gr

a1 ¼ Gr
p1 /Gr

p2;

(ii)
 Gr

a3 /Gr
p4;
(iii)
 Gr
a5 /Gr

p6 ¼ Gr
a4 /Gr

p5;

(iv)
 Gr

p7 /Gr
p6 ¼ Gr

a4 /Gr
p5.
Consequently, it is sufficient for us just to keep the graphs
Gr

p2, Gr
p3, Gr

p4 and Gr
p5 in the graph index. We shall address

this problem next.
If we consider ‘‘AND’’ predicate, we merge Iki
to compute

Tm
i¼1 Iki

,

is the set of r-radius graphs that contain all keywords.
3.2. Maximal r-radius graph

To avoid maintaining redundant overlapping r-radius
graphs in the graph index, we introduce the concept of
maximal r-radius graph in this section.

Definition 4 (Maximal r-radius graph). Given a graph G
and an r-radius subgraph Gr

vi
in G, Gr

vi
is called a maximal

r-radius subgraph if there is no other r-radius subgraph
that contains Gr

vi
.

Based on Definition 4, we only need to keep the
maximal r-radius graphs in the graph index to minimize
storage without affecting the search results. This is
because all other r-radius graphs can be reconstructed
from their corresponding super-graphs. For example, Gr

p2,
Gr

p3, Gr
p4 and Gr

p5 are maximal r-radius graphs and will be
kept in the graph index while other graphs, e.g., Gr

p1 and
Gr

a4, can be reconstructed when necessary.
In fact, the maximal r-radius graphs can be directly

extracted from Mr , as captured by Lemma 2.

Lemma 2. Given a graph GðRðGÞXrÞ, 8i, 1pipjGj, Gr
vi

is a

maximal r-radius graph if 8k 2 ftjMr
it ¼ 1, Nr

taNr
i g,

Nr
igNr

k.

Proof. We first prove that Gr
vi

is an r-radius graph.
(i)
 8k 2 ftjMr
it ¼ 1, Nr

taNr
i g, as Nr

igNr
k, there must

exist uk, uk 2N
r
i and ukeN

r
k, and thus we have

Dðvk;ukÞ4r (otherwise, if Dðvk;ukÞpr, uk must be in
Nr

k, which contradicts ukeN
r
k). Hence, CDðvkÞ

¼maxu2Gr
vi

fDðvk;uÞgXDðvk;ukÞ4r.
r r r
(ii)
 8j 2 ftjMit ¼ 1, Nt ¼Ni g, as RðGÞXr, CDðvjÞ ¼ r

in Gr
vi

.

Thus, 8vk 2 G
r
vi

, CDðvkÞXr and CDðviÞ ¼ r. Hence, we have
RðGr

vi
Þ ¼ minvk2G

r
vi

fCDðvkÞg ¼ r, and Gr
vi

is an r-radius
graph.

We then prove that Gr
vi

must be a maximal r-radius

graph.

As 8k 2 ftjMr
it ¼ 1;Nr

taNr
i g, Nr

igNr
k, there cannot

exist another r-radius graph that is a super-graph of Gr
vi

.

Thus, Gr
vi

must be a maximal r-radius graph. &

3.3. Subgraph maintenance

In this section, we discuss how to maintain the
maximal r-radius subgraphs. There are two possible ways
to index the subgraphs. One straightforward method is to
keep all the maximal r-radius subgraphs. Once we find the
subgraphs that are relevant to a given input keyword
query, we use them to answer the query. However, there
are still some overlaps between different maximal r-
radius graphs. For example, Gr

p2 and Gr
p3 both contain the

nodes, a1, p1, p2, p3 and p4. Thus, if there are a large
number of subgraphs, the graph index is rather large, and
it is expensive to maintain such a huge index. Another
approach is that we can maintain the whole graph, and
keep the centered node (vi is called the centered node of

Table 4
Graph similarities

Gr
p2 Gr

p3 Gr
p4 Gr

p5

Gr
p2

1 5/8 3/10 1/6

Gr
p3

– 1 5/9 4/11

Gr
p4

– – 1 2/3

Gr
p5

– – – 1

G. Li et al. / Information Systems 36 (2011) 248–266 255
Gr
vi

) for each maximal r-radius subgraph. Based on the
centered node, we can reconstruct the maximal r-radius
subgraph by traversing the whole graph from the centered
node using the depth-first traversal. However, if the graph
is very large, the memory cannot hold the graph.
Conventional Steiner-tree based methods [2] typically
assume that the graph can be held in memory. They
traverse the graph initializing from the content nodes to
identify the Steiner trees with the minimal cost. They have
to maintain the whole graph in memory, which is not
practical for large graphs. Moreover, it is expensive to
identify the Steiner trees by traversing the whole graph.

To alleviate these problems, we propose a graph
partitioning-based method to achieve the needed search
efficiency and reduce the graph index size. If the graph is
small, we can maintain the whole graph in the memory,
and use centered node-based method, which is very
efficient to identify the Steiner graphs. If the graph is very
large, we partition the whole graph into some subgraphs.
For each subgraph, we employ centered node-based
method. In this way, we maintain the frequent used
subgraphs in the memory and keep the other subgraphs
on the disk. Based on the centered node, we can
reconstruct the maximal Steiner subgraphs from the
partitions. In this way, we can extend our method to
support very large graphs using a disk-based method.

3.4. Graph partitioning

We cluster r-radius graphs so that we can partition the
graph to facilitate identifying r-radius graphs. We first
cluster the r-radius graphs and then partition the whole
graph based on the clusters. Each cluster corresponds to a
portion of the graph. Clustering maximal r-radius graphs
has the following salient advantages: (i) We only need to
maintain a physical graph for each cluster while all the
maximal r-radius graphs only preserve their nodes instead
of the corresponding overlapping graphs. This avoids the
incurrence of huge storage, and is similar to the views on
top of underlying physical tables in RDBMS, in which
clusters correspond to physical tables while maximal
r-radius graphs correspond to views. (ii) We only need to
retrieve the corresponding relevant graph partitions
instead of maintaining the whole graph in order to
identify the r-radius graphs.

To meaningfully cluster r-radius graphs, we first define
the similarity between any two graphs and then cluster
the maximal r-radius graphs based on their similarities.

Definition 5 (Graph similarity). Given two maximal
r-radius subgraphs Gr

i and Gr
j in a given graph, their

graph similarity, SðGr
i ;G

r
j Þ, is jNr

i \N
r
j j=jN

r
i [N

r
j j,

where Nr
i and Nr

j denote the node sets of Gr
i and Gr

j ,
respectively.

A bigger overlap between the nodes of the two graphs
implies a larger graph similarity between them, and
consequently, a higher probability that they will be
clustered together. It is obvious that the graph similarity
scales well with the number of overlapping nodes. More-
over, given two maximal r-radius subgraphs, employing
the number of their overlapping nodes is sound as the
edges associated with the overlapping nodes are also the
same. In addition, we note that the graph similarity
preserves the following properties:
�
 Symmetry: SðGi;GjÞ ¼SðGj;GiÞ;

�
 Positivity: 0pSðGi;GjÞp1, for any Gi and Gj;

�
 Reflexivity: SðGi;GjÞ ¼ 1 iff Gi ¼ Gj;
which indicate that graph similarity is a good metric to
evaluate the similarity between any two graphs. Based on
the graph similarity, we can now cluster the maximal
r-radius subgraphs by employing an existing method such
as the K-mean, K-medoids and EM algorithms.

To effectively compute the graph similarity between
two maximal r-radius graphs, we introduce Lemma 3.

Lemma 3. Given two maximal r-radius subgraphs w.r.t. Mr ,
Gr

i and Gr
j , SðGr

i , Gr
j Þ ¼ jfkjM

r
ik ¼ 1 and Mr

jk ¼ 1gj=jfkj
Mr

ik ¼ 1 or Mr
jk ¼ 1gj.

Proof. We first prove that 8k, if k 2 fMr
ik ¼ 1 and

Mr
jk ¼ 1g, vk 2N

r
i \N

r
j . As Mr

ik ¼ 1, vk 2N
r
i . As

Mr
jk ¼ 1, vk 2N

r
j . Thus, vk 2N

r
i \N

r
j . Similarly, if

vk 2N
r
i \N

r
j , then k 2 fMr

ik ¼ 1 and Mr
jk ¼ 1g.

We then prove that 8k, if k 2 fMr
ik ¼ 1 or Mr

jk ¼ 1g,

vk 2N
r
i [N

r
j . As Mr

ik ¼ 1 or Mr
jk ¼ 1, vk 2N

r
i or

vk 2N
r
j . Thus, vk 2N

r
i [N

r
j . Similarly, if vk 2N

r
i [N

r
j ,

then k 2 fMr
ik ¼ 1 or Mr

jk ¼ 1g. &

Following Lemma 3, we can compute the graph
similarity based on the adjacency matrix, which is much
easier to manipulate than the original graphs.

Example 4. Consider the DB in Table 1, we note that the
four graphs Gr

p2, Gr
p3, Gr

p4 and Gr
p5 are the maximal r-radius

graphs. We can compute their graph similarities as shown
in Table 4 based on the adjacency matrix in Table 3. If we
cluster the four maximal r-radius graphs into two clusters,
Gr

p2 and Gr
p3 will fall into the same cluster while Gr

p4 and
Gr

p5 will be in another cluster as illustrated in Fig. 5. On
the other hand, if we cluster them into three clusters, Gr

p4

and Gr
p5 will fall into the same cluster while Gr

p2 and Gr
p3

are in the other two clusters, respectively.

To summarize, given a graph, we first obtain its
adjacency matrix M and compute Mr . We then extract
the maximal r-radius graphs according to Lemma 2 and
compute the graph similarities between any two maximal
r-radius graphs based on Lemma 3. Subsequently, we
cluster the graphs by employing the existing K-means

p3

p4 p5 p6 p7

a3 a4 a5

p1 p2

a1 a4a2

Gp2 + Gp3 (cluster1) Gp4 + Gp5 (cluster2)
r r

r r

Fig. 5. Two clusters.

Table 5
Graph index

Terms r-Radius graphs: Iki

Database Gr
p2

, Gr
p3

, Gr
p4

, Gr
p5

DISCOVER Gr
p5

Papakonstantinou Gr
p4

, Gr
p5

Relational Gr
p3

, Gr
p4

, Gr
p5

G. Li et al. / Information Systems 36 (2011) 248–266256
algorithm and partition the graph. Finally, we construct
the graph index to materialize the maximal r-radius
graphs based on the graph partitions: we maintain each
partition, and the centered nodes in each partition. To
illustrate, we consider the example below, which com-
putes the set of r-radius Steiner graphs that contain all or a
portion of the input keywords.

Example 5. Given the DB in Table 1 and a keyword query
‘‘DISCOVER, Relational, Database, Papakonstantinou’’,
we first retrieve the keyword lists based on the graph
index (Table 5). We then derive the set of {Gr

p2
, Gr

p3
, Gr

p4
,

Gr
p5

}, where each graph contains some input keywords.
Gr

p5
contains all of the input keywords. Finally, we refine

the maximal r-radius graphs on top of the corresponding
graph partitions (instead of traversing the whole graph) to
obtain the r-radius Steiner graphs. For instance, we can get
SGr

p5
by removing the non-Steiner nodes, e.g., p3, p4, a3

and a5, from Gr
p5

, as shown in Fig. 6.

3.5. Update issue

In terms of update issues, we note that there is no need
to re-index the whole graph from scratch. We can
incrementally update the index as follow: (1) node
relabeling: only the partitions that contain the relabeled
node and the corresponding graph index are updated.
Note that we only need to modify the entries that
contain the label. (2) Node insertion: we only update the
index corresponding to the partitions that have nodes
connecting to the inserted node. We need not consider
any other partitions. (3) Node deletion: which is the
same as (2). (4) Edge insertion/deletion: which is the same
as (2).

4. Ranking functions

In this section, we first discuss how to meaningfully
rank r-radius Steiner graphs and identify the top-k

answers based on the existing proposals. Next, we propose
a new measure based on the structural compactness
between content nodes and the structural relevancy
between input keywords with respect to an r-radius
Steiner graph.

4.1. IR ranking

4.1.1. TF � IDF-based ranking

The basic idea of the ranking method used in the
existing literature, such as [5–7], is to first assign each
r-radius graph a score using a standard IR-ranking formula
(or its variants), and then combine the individual scores
using a score aggregation function, such as SUM, to obtain
the final score. For example, the TF � IDF-based IR-style
ranking function weights an r-radius Steiner graph by
considering textual relevancy in IR literature, which takes
into account term frequency (tf), inverse document
frequency (idf) and normalized document length (ndl).
tf and idf are well employed to rank documents in the IR
literature while ndl is used to normalize document length
as a longer document has a higher likelihood to contain
many more keywords. We can compute the three para-
meters as follows:

ntf ðki ;GÞ
¼ 1þ lnð1þ lnð1þ tf ðki ;GÞ

ÞÞ (1)

idf ki
¼ ln

N þ 1

Nki
þ 1

(2)

ndlG ¼ ð1� sÞ þ s �
tlG

avgtl

(3)

p3

p4 p5 p6 p7

a3 a4 a5

p5 p6 p7

a4

Fig. 6. (a) G2
p5

and (b) SG2
p5

.

G. Li et al. / Information Systems 36 (2011) 248–266 257
where tf ðki ;GÞ
in Eq. (1) denotes the term frequency of ki in

G; N and Nki
in Eq. (2), respectively, denote the number of

maximal r-radius graphs and the number of those
maximal r-radius graphs that contain ki. tlG in Eq. (3)
denotes the total number of terms in G and avgtl is the
average number of terms among all such r-radius graphs
while s is a parameter taken from IR literature, which has
been extensively discussed and typically set to 0.2 [6]. We
combine the three parameters to evaluate the document
relevancy between an input keyword ki and a given
Steiner graph SG, denoted as ScoreIRðki;SGÞ as for-
malized in Eq. (4), where G is the corresponding r-radius
graph w.r.t. SG4:

ScoreIRðki;SGÞ ¼
ntf ðki ;GÞ

� idf ki

ndlG
(4)

Based on the textual relevancy of ki in SG, we compute
the overall score between an input keyword query K and
SG by summing up ScoreIRðki;SGÞ, as shown in the
equation

ScoreIRðK;SGÞ ¼
X

ki2K

ScoreIRðki;SGÞ (5)

Although the TF � IDF-based IR ranking methods are
efficient for textual documents, they do not consider node
prestige. To address this issue, we propose a more
effective IR ranking function in the following sections.
4.1.2. Node prestige-based ranking

This section considers node prestige. There exists a rich
body of literature dealing with node ranking in graphs,
such as PageRank [25], HITS [26], SALSA [27], ObjectRank
[28] and EntityRank [29]. While these work mainly from
the IR domain can be adopted to assign node weights in a
DB graph, they only evaluate, however, the prestige (or
authority, importance) of nodes in the graph. For example,
the weight of node v, oðvÞ, is set to PRðvÞ, which can be
defined as

PRðvÞ ¼ ð1� dÞ þ d �
PRðu1Þ

Doutðu1Þ
þ � � � þ

PRðumÞ

DoutðumÞ

� �
(6)
4 ntf ðki ;SGÞ ¼ ntf ðki ;GÞ
; tf ðki ;SGÞ ¼ tf ðki ;GÞ

for each input keyword ki.
where PRðvÞ is the prestige of node v; PRðuiÞ is the
prestige of node ui which directly links to node v; DoutðuiÞ

is the outdegree of node ui; and d is a damping factor that
can be set between 0 and 1.

Although node prestige-based ranking consider the
relationships between nodes, they do not consider the
term information. To address this problem, we introduce
link-based ranking in the next section.
4.1.3. Link-based ranking

As tf � idf-based IR ranking does not consider the nodes
which indirectly contain a keyword (i.e., those nodes
which do not contain the keyword but have paths to the
nodes that contain the keyword) and node prestige-based
ranking does not consider term frequency and inverse
document frequency, to address this issue, we combine
these two features and propose a more effective ranking
function so as to improve result quality. We assign the
score of a Steiner graph by integrating PageRank and term
importance scores defined by term frequency and inverse
document frequency ðtf � idfÞ as illustrated below:

ScoreIRðki;SGÞ ¼ a � PRðSGÞ þ ð1� aÞ �Rðki;SGÞ (7)

where

Rðki;SGÞ ¼

ScoreIRðki;SGÞ SG directly contains k

ZdðSG;SG0 Þ

�ScoreIRðki;SG0Þ SG indrectly contains k

8><
>:

(8)

ScoreIRðki;SGÞ is the combined score of SG with respect
to term k by integrating node prestige PRðSGÞ and tf � idf-
based relevance Rðki;SGÞ, which evaluates the relevance
between SG and ki. a is a tuning parameter to
differentiate the importance of node prestige and tf � idf-
based score, which is between 0 and 1 and usually set to
0.8. SG0 is the subgraph which contains ki and has the
minimal distance with SG.5 Thus, ScoreIRðki;SG0Þ can be
computed based on Eq. (4). Z is a damping factor between
0 and 1 and usually set to 0.6. dðSG;SG0Þ is the distance
between SG and SG0.
5 The distance between two SG’s is the minimal distance between

the two nodes from the two graphs among all the node pairs.

G. Li et al. / Information Systems 36 (2011) 248–266258
Note that traditional tf � idf-based methods only con-
sider the node which contains a given keyword. However,
the node which indirectly contains a keyword is also
relevant to the keyword. For example, consider p1 in Fig. 3,
although p1 does not contain ‘‘keyword search’’, it should
be relevant to them, as it cites (is cited by) papers which
contain the keywords. Alternatively, we also score the
node which does not directly contain a keyword and
compute the extended tf � idf score as described in Eq. (8).

Accordingly, we incorporate both the PageRank score
and the extended tf � idf score into the scoring function as
described in Eq. (7), which can effectively measure the
importance of a node and its relevance for a given
keyword.

We note that node prestige values are very important
in DB structures (capturing the primary–foreign-key
relationship between tuples). Take the DBLP dataset as
an example. Although some papers discussing ‘‘Data
Cube’’ or ‘‘Modeling Multidimensional Databases’’
do not contain the keyword ‘‘OLAP’’ in their titles (not
even in abstracts), they may still constitute relevant and
potentially important papers in OLAP since they may be
referenced by other papers in OLAP or written by the
authors who authored other important OLAP papers.
Based on the links between papers (citations), we can
evaluate the prestige values, which can then be used for
effective node ranking. tf � idf score is also important for
node weight. As the more keywords contained in the
nodes, the more likely the nodes are relevant to the
keyword queries. We will experimentally prove that node
weights can improve the result quality in Section 6.

Although the TF � IDF-based and node prestige-based
IR ranking methods are efficient for textual documents,
they are inefficient for semi-structured and structured
data. From the IR perspective, traditional textual relevancy
is important. However, due to our use of graph in
modeling, the ranking of graph data becomes equally if
not more important, and the structural compactness of
r-radius Steiner graphs is the essence of the comparison.
This is so because identifying rich structural relationships
should be at least as important as discovering more
keywords, and in some cases, even more crucial. There-
fore, we propose a novel ranking function by incorporat-
ing structural compactness from the DB point of view.
4.2. Structural compactness-based DB ranking

Intuitively, when an r-radius Steiner graph SG is more
compact, SG is more likely to be meaningful and
relevant. Accordingly, the structural compactness score
should be larger. As such, the compactness of SG should
include the following parameters: (i) the structural
compactness between content nodes in SG and (ii) the
structural relevancy between input keywords w.r.t. SG.
We note that when the length of a path between two
content nodes is larger, the relevancy between them is
smaller. Further, there may be multiple paths between
two content nodes, and we should consider all of them.
Based on the above rationale, we propose Eq. (9) to score
the overall structural compactness between any two
content nodes:

Simðni;njÞ ¼
X

ni nj

1

ðjni njj þ 1Þ2
(9)

where ni and nj are two content nodes, ni nj is any path
between ni and nj, and jni njj is the length of ni nj.
An important feature of Simðni;njÞ is that it can be pre-
computed and materialized off-line, based on the fact that
SimGðni;njÞ ¼ SimSGðni;njÞ holds as formalized in Lemma
4, where G denotes the corresponding r-radius graph of
SG while SimGðni;njÞ and SimSGðni;njÞ denote the
structural compactness between ni and nj in G and SG,
respectively. It is clear that we can compute the overall
structural compactness by summing up several materi-
alized scores. For example, in Fig. 6, SimSG2

p5

ða4; p5Þ ¼

SimG2
p5

ða4;p5Þ ¼1=ðja4 p5j þ 1Þ2 þ 1=ðja4 p6 p5j

þ1Þ2 ¼ 1
4þ

1
9 ¼

13
36.

Lemma 4. Given an r-radius graph G and its corresponding

Steiner graph SG with respect to a given keyword query, the

following equation holds:

SimGðni;njÞ ¼ SimSGðni;njÞ

where ni and nj are any two content nodes in SG.

Proof. Note that if there is a path from ni to nj in G,
there must be a similar path in SG and vice versa
based on Definition 3. Thus, we have SimGðni;njÞ ¼

SimSGðni;njÞ. &

Although the structural compactness between two
content nodes can measure the structural relevancy of
r-radius graphs, it cannot evaluate the structural relevancy
among input keywords, which captures the phrase-based
relevancy between input keywords. It follows that a
smaller distance between input keywords indicates a
higher structural relevancy between them. This is parti-
cularly so for keywords in the same node that will
represent a phrase. We therefore propose Eq. (10) to
capture this parameter:

Simðhki; kjijSGÞ ¼
1

jCki
[Ckj

j

X
ni2Cki

;nj2Ckj

Simðni;njÞ (10)

where Cki
denotes the set of all the content nodes that

contain ki in SG, and jCki
j denotes the number of nodes

in Cki
, which is used to normalize the structural relevancy

between two input keywords. Consequently, a larger
overall structural compactness score of SG indicates that
SG is more likely to be relevant and meaningful to K.

We note that the structural relevancy between input
keywords has a salient feature that if Simðhki; ktijSGÞ and
Simðhkt ; kjijSGÞ are large, Simðhki; kjijSGÞ must be also
large and thus ki, kj and kt must be very relevant to each
other w.r.t. SG. Thus, a key feature of structural relevancy
is that we can use the structural relevancy between any
two input keywords to capture the relevancy between all
of the input keywords as illustrated in Eq. (11). This
feature can help capture the rich structural information of
SG while the textual relevancy in Eq. (5) cannot.
Formally, given a keyword query K ¼ fk1; k2; . . . ; kmg and

Table 6
EI-Index: an extended inverted index

Keyword pair hr-radius graph, scorei

hDatabase, DISCOVERi Gr
p5

,1.53

hDatabase, Papakonstantinoui Gr
p5

,0.38; Gr
p4

,0.19

hDatabase, Relationali Gr
p5
;0:85; Gr

p3
;0:35; Gr

p4
;0:34

hDISCOVER, Papakonstantinoui Gr
p5
;0:54

hDISCOVER, Relationali Gr
p5

,1.95

hPapakonstantinou, Relationali Gr
p5
;0:57; Gr

p4
;0:28

h. . . ; . . .i � � �

G. Li et al. / Information Systems 36 (2011) 248–266 259
an r-radius Steiner graph SG, the overall structural
compactness of SG w.r.t. K, denoted as ScoreDBðK;

SGÞ, can be computed as follows:

ScoreDBðK;SGÞ ¼
X

1piojpm

Simðhki; kjijSGÞ (11)

By taking into account both document relevancy from the
IR perspective and structural compactness/relevancy from
the DB perspective to capture structural relationships, we
present a more accurate function for scoring r-radius
Steiner graphs as given below6

ScoreðK;SGÞ ¼
X

1piojpm

Scoreðhki; kjijSGÞ (12)

where

Scoreðhki; kjijSGÞ ¼ Simðhki; kjijSGÞ

� ðScoreIRðki;SGÞ þ ScoreIRðkj;SGÞÞ

(13)

Scoreðhki; kjijSGÞmeasures the overall relevancy score of
hki; kji in SG based on the structural compactness/
relevancy and IR scores. Note that, Simðhki; kjijSGÞ is
taken as the weight of the sum of two IR scores,
i.e., ScoreIRðki;SGÞ and ScoreIRðkj;SGÞ. A larger
Simðhki; kjijSGÞ means that ki and kj are more relevant
w.r.t. SG, and thus, the overall score of hki; kji in SG is
expected to be larger.

5. Indexing

To efficiently identify the top-k answers with the
highest scores, we examine the issues of indexing in this
section.

Given any two keywords ki and kj in the graph, and an
r-radius graph SG, the scores of ScoreIRðki, SG) and
ScoreIRðkj, SG) in Eq. (4) and Simðhki; kjijSGÞ in Eq. (10)
share the key feature that they can be pre-computed and
materialized off-line. Based on this observation, we can
materialize Scoreðhki; kjijSGÞ. We devise an extended
inverted index (EI-Index) to maintain such scores. Differ-
ent from the traditional inverted index, the entries of
EI-Index are keyword pairs (combinations of two key-
words), and the values of each entry is the maximal
r-radius graphs that contain the keyword pair and the
corresponding scores. For example, we can construct the
EI-Index of the graph in Fig. 3 as illustrated in Table 6.

To answer a keyword query K ¼ fk1; k2; . . . ; kmg, we
first retrieve the maximal r-radius graphs for each
keyword pair hki; kji according to EI-Index, and then
compute the scores of every relevant maximal r-radius
graph according to Eq. (12). Finally, we rank the results
and return the top-k r-radius Steiner graphs with the
highest scores by refining the corresponding r-radius
graphs.

For example, in Example 5, recall the query ‘‘DIS-
COVER, Relational, Database, Papakonstantinou’’.
We first retrieve the relevant maximal r-radius graphs
6 Note that for the keyword query with a single keyword, we employ

ScoreIRðki ;SGÞ to rank the query.
based on EI-Index and compute the corresponding overall
scores. We then rank them based on such scores, i.e., G5,
G4, G3. Finally, we identify the r-radius Steiner graphs on
top of the corresponding graph partitions.

However, this method needs to first compute the
scores for all relevant maximal r-radius graphs and then
rank them. This leads to low efficiency in the presence of
large numbers of r-radius Steiner graphs. To alleviate the
problem, we introduce an effective technique of progres-
sively identifying the top-k answers. Note that there are
many studies of effectively retrieving top-k answers from
multiple inverted lists, such as Fagin Algorithm (FA) [30]
and Threshold Algorithm (TA) [31]. We can employ
such techniques to identify the top-k answers on top of
our EI-Index as follows: Given a keyword query K ¼
fk1; k2; . . . ; kmg, we can retrieve the inverted lists com-
posed of relevant r-radius graphs and corresponding
scores for every keyword pair according to our EI-Index.
Then, we adopt existing algorithms to progressively
identify the top-k answers. The advantage of our approach
is obvious—we need not discover the structural relation-
ships by traversing the whole graph. Instead, we first
materialize such rich relationships into our EI-Index

off-line, and then identify the top-k answers according
to EI-Index online.
6. Experimental study

We have designed and performed a comprehensive set
of experiments to evaluate the search performance of
EASE. We employed the datasets of DBLife,7 DBLP,8 and
IMDB9 to evaluate EASE on unstructured, semi-structured
and structured data, respectively. There were about
10,000 pages in the DBLife dataset, and the raw file of
DBLP was about 400 MB. IMDB contained about one
million anonymous ratings of approximately 3900 movies
made by 6040 users. All the experimental results in this
paper were verified by the SIGMOD repeatability commit-
tee. Code and data used in the paper are available at
http://www.sigmod.org/codearchive/sigmod2008/.
7 http://dblife.cs.wisc.edu/download/surfaceWeb-2007-07-25.tgz
8 http://dblp.uni-trier.de/xml
9 http://www.grouplens.org/node/73 (1,000,000 Data Set (5.73 MB))

http://www.grouplens.org/system/files/million-ml-data.tar__0.gz

http://www.sigmod.org/codearchive/sigmod2008/
http://dblife.cs.wisc.edu/download/surfaceWeb-2007-07-25.tgz
http://dblp.uni-trier.de/xml
http://www.grouplens.org/node/73
http://www.grouplens.org/system/files/million-ml-data.tar__0.gz

Table 7
Queries employed in the experiments

Query ID Queries

(a) Queries on unstructured data (DBLife)

Q1 2007 conference data integration

Q2 XML relational keyword search

Q3 Turkey conference 2007 uncertainty fuzziness

Q4 Berkeley phone dataspaces information management

Q5 Beijing conference 2007 data integration

(b) Queries on semi-structured data (DBLP)

Q6 Information retrieval database

Q7 IR database

Q8 DB IR XML

Q9 XML relational keyword search

Q10 Data mining algorithm 2006

(c) Queries on structured data (IMDB)

Q11 Lethal Weapon 4 academic

Q12 Police Academy 3 customer

Q13 Halloween 5 college

Q14 Love 45 tradesman

Q15 Robocop 3 college

(d) Queries on heterogeneous data

Q16 XML keyword search 2007

Q17 Dennis Shasha database tuning

Q18 Dataspaces 2006 information management

Q19 Database indexing ranking search

Q20 Romance action educator

Table 8
Graph index size

Datasets Index size (MB)

r-Radius subgraph-

based method

Partition-based

method

DBLife 246 121

IMDB 218 88

DBLP 2896 862

G. Li et al. / Information Systems 36 (2011) 248–266260
The experiments were conducted on an Intel(R)
Core(TM) 2.0 GHz computer with 2 GB of RAM running
Windows Vista, and the algorithms were implemented in
Java. We used MYSQL 5.0.4510 to maintain the graph
index. We employed the TA [31] to progressively identify
the top-k answers based on the EI-Index. We compared
our approach with existing state-of-the-art approaches.
For the unstructured data, we compared EASE with
DBLife [22] by submitting keyword queries to its interface
and InfoUnit [24]. For the semi-structured data, we
compared EASE with SLCA [16] while for structured data,
we compared it with DPBF [3]. We selected 20 queries as
illustrated in Table 7 for testing different aspects of search
problems such as the ability of the methods in capturing
data lineage and relationships, and their search accuracy.

6.1. Graph index evaluation

The graph w.r.t. DBLife contains about 10,000 nodes,
which are far fewer than the approximate 1,000,000 nodes
of IMDB and 12,000,000 nodes of DBLP. Note that the
graph w.r.t. IMDB is much denser than that of DBLP, which
in turn is denser than that of DBLife. The elapsed time of
indexing DBLife, IMDB and DBLP is, respectively, 13, 25
and 87 min. The sizes of the graph indices of DBLife, IMDB
and DBLP using the maximal r-radius-based method are,
respectively, 246, 218 and 2896 MB, compared with the
data sizes of 131, 30 and 405 MB as shown in Table 8.
10 http://dev.mysql.com/downloads/mysql/5.0.html
While the graph index by employing the graph-partition-
based method brings the index sizes down to 121, 88 and
862 MB, respectively. This is attributed to that the graph-
partition-based method can reduce the redundancy of the
graph index. Moreover, the graph index of DBLife is
smaller than its data size due to: (i) tokenization for
removing tags and (ii) its sparser structure.
6.2. Search efficiency on different datasets

We evaluate the search efficiency of EASE in this
section. We tested every algorithm on the selected
queries, identified the top-100 results and compared their
corresponding elapsed time. Fig. 7 summarizes the
experimental results. We observe that EASE always
achieves the best performance for various keyword
queries and outperforms the other methods significantly
on different datasets.

On unstructured data, InfoUnit identifies Steiner trees
by traversing the whole graph to discover structural
relationships online, which is not as efficient as our
method that materializes rich structural information into
the graph indices for facilitating online keyword-based
query processing. On semi-structured data, SLCA has to
first identify all the relevant results, and then ranks them
and returns the top-k answers with the highest scores. In
contrast, EASE employs the threshold-based algorithm
[31] to progressively identify top-k answers and thus
produces a dramatic improvement over the existing
methods. On structured data, although DPBF can progres-
sively compute the top-k answers, it has to discover the
structural information between tuples in different rela-
tional tables online. At the same time, it also needs to
identify the Steiner trees on top of the whole graph. These
needs lead to low efficiency. In contrast, EASE first
identifies the r-radius graphs based on EI-Index and then
constructs r-radius Steiner graphs on top of the corre-
sponding graph partitions. These partitions are much
smaller than the whole graph, and the method therefore
achieves better search performance and outperforms
DPBF significantly.

To better evaluate the selected algorithms, we identi-
fied the top-k answers with different values of k and
compared the corresponding average elapsed time. Fig. 8
illustrates the experimental results obtained. We observe
that EASE outperforms the other methods significantly.
We note that, with the increase of k values, the elapsed
time of InfoUnit and DPBF also increases, but the elapsed
time of EASE varies only slightly (as SLCA cannot

http://dev.mysql.com/downloads/mysql/5.0.html

 1

 10

 100

 1000

 10000

100000

Q5Q4Q3Q2Q1

E
la

ps
ed

 T
im

e
(m

s)

InfoUnit
EASE

 1

 10

 100

 1000

 10000

Q10Q9Q8Q7Q6

E
la

ps
ed

 T
im

e
(m

s)

SLCA
EASE

 1

 10

 100

 1000

 10000

 100000

 1e+006

Q15Q14Q13Q12Q11

E
la

ps
ed

 T
im

e
(m

s)

DPBF
EASE

Fig. 7. Search efficiency on various queries. (a) Queries (unstructured), (b) Queries (semi-structured) and (c) Queries (structured).

 1

 10

 100

 1000

 10000

 100000

10050201051

E
la

ps
ed

 T
im

e
(m

s)

InfoUnit
EASE

 1

 10

 100

 1000

 10000

10050201051

E
la

ps
ed

 T
im

e
(m

s)

SLCA
EASE

 1

 10

 100

 1000

 10000

 100000

 1e+006

10050201051

E
la

ps
ed

 T
im

e
(m

s)

DPBF
EASE

Fig. 8. Search efficiency with different values of k. (a) Top-k (unstructured), (b) top-k (semi-structured) and (c) top-k (structured).

 0

 1000

 2000

 3000

 4000

 5000

Q20Q19Q18Q17Q16

E
la

ps
ed

 T
im

e
(m

s)

EASE (Mixed)
EASE (DBLife)
EASE (DBLP)
EASE (IMDB)

 0

 500

 1000

 1500

 2000

 2500

top-50top-20top-10top-5top-1

E
la

ps
ed

 T
im

e
(m

s)

EASE (Mixed)
EASE (DBLife)
EASE (DBLP)
EASE (IMDB)

Fig. 9. Search efficiency on heterogeneous data. (a) Queries (Top-100) and (b) Top-k.

G. Li et al. / Information Systems 36 (2011) 248–266 261
progressively identify answers, its elapsed time also varies
little). The elapsed time of InfoUnit and DPBF to return
top-100 results is always a little more than that of top-5
while the elapsed time of EASE remains about the same.
This is so because we adopt the threshold-based techni-
que to progressively identify the top-k answers.
6.3. Search efficiency on heterogeneous datasets

To evaluate the overall performance of EASE on
heterogeneous data, we mixed the three datasets and
tested EASE on the combined data. We constructed the
graph index on top of the heterogeneous data and
employed Q162Q20 to evaluate the search efficiency of
EASE over heterogeneous data. To better understand the
performance of EASE, we first evaluated the elapsed time
of identifying the top-100 answers for every query. We
then varied the values of k to evaluate the average elapsed
time. We also provide the elapsed time of EASE on
different datasets as a baseline to show the search
efficiency of EASE over heterogeneous data. The results
are summarized in Fig. 9. We can see that EASE is still
capable of achieving high search efficiency over hetero-
geneous data and is not much worse off than on
homogeneous datasets. That is, even for a large volume
of heterogeneous data, EASE can still effectively identify
the top-k answers.
6.4. Search accuracy on different datasets

This section evaluates search accuracy, indicating the
fraction of relevant results in the approximate answer that

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

50201051

Pr
ec

is
io

n
(%

)

InfoUnit
DBLife

EASE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

50201051

Pr
ec

is
io

n
(%

)

SLCA
EASE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

50201051

Pr
ec

is
io

n
(%

)

DPBF
EASE

Fig. 11. Top-k precision with different values of k. (a) Top-k (unstructured), (b) top-k (semi-structured) and (c) top-k (structured).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Q5Q4Q3Q2Q1

To
p-

10
0

Pr
ec

is
io

n
(%

)
InfoUnit
DBLife

EASE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Q10Q9Q8Q7Q6

To
p-

10
0

Pr
ec

is
io

n
(%

)

SLCA
EASE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Q15Q14Q13Q12Q11

To
p-

10
0

Pr
ec

is
io

n
(%

)

DPBF
EASE

Fig. 10. Top-100 precision on various queries. (a) Queries (unstructured), (b) Queries (semi-structured) and (c) Queries (structured).

G. Li et al. / Information Systems 36 (2011) 248–266262
are correct. We employed the metric, top-k precision,
which measures the ratio of the number of relevant
answers among the first k answers with the highest scores
of an algorithm to k. Answer relevance is judged from
discussions of researchers in our DB group. Interested
readers can test our algorithm through our deposited
demo as per submission requirement. Moreover, to
evaluate the search accuracy of the selected algorithms,
we identified the top-100 results for every query and
compared the corresponding top-100 precision. Fig. 10
illustrates the experimental results obtained. We observe
that EASE achieves much higher precision than existing
methods such as, DBLife, InfoUnit, SLCA and DPBF on the
corresponding datasets.

On unstructured data, as InfoUnit and EASE integrate
relevant pages to answer keyword queries, they achieve
much higher precision than DBLife. EASE is better than
InfoUnit because EASE employs a ranking mechanism
that takes into account both the structural compactness of
answers from the DB viewpoint and textual relevancy
from the IR viewpoint. On semi-structured data, r-radius
Steiner graphs, alongside content nodes, also contain
some relevant elements, such as the Steiner nodes, which
may expand the answerability. They are more meaningful
than the subtrees/path-trees rooted at LCAs (or its
variants) of existing methods, which may miss some
relevant information. Thus, EASE yields higher precision.
On structured data, EASE also outperforms DPBF in that:
(i) r-radius Steiner graphs are more meaningful than
Steiner trees and (ii) again, this is due to the consideration
of structural compactness between input keywords in our
ranking function.

For example, consider query Q7. Its answer should be
the papers about ‘‘Database’’ and ‘‘IR’’. However, ‘‘IR’’
may appear in the name of an author, and traditional
methods such as SLCA cannot distinguish the papers
entitled with ‘‘Database’’ and ‘‘IR’’ and the papers with
‘‘IR’’ being a term of the author and ‘‘Database’’ being a
term of the title. They may mistakenly take the latter as
answers, leading to low search accuracy. As another
example, two input keywords may appear in two different
authors of a paper, and the conventional methods will
mistakenly take the two keywords as an author. EASE

ranks the results with structures that are less compact
lower. This is done by means of our structural relevancy-
based ranking method. In addition, some answers which
even if do not contain ‘‘Database’’ and ‘‘IR’’ but include
‘‘DB’’ and ‘‘IR’’ are also relevant to query Q7. Our method
still can find such answers. Hence, EASE achieves much
higher precision.

As users are usually interested in top-k answers, we
varied different values of k to evaluate the selected
algorithms. The average results of the top-k precision for
Q12Q15 are illustrated in Fig. 11. As expected, EASE

consistently achieved high precision in many queries,
which is approximately 10–30% higher than those of
InfoUnit, DBLife, DPBF and SLCA.

In addition, we evaluate our method with different
ranking functions, such as tf � idf-based ranking, link-based
ranking, and DB ranking. The experimental results are

Table 9
Top-k precision with different ranking functions

Query tf � idf tf � idfþ Link tf � idfþ DB tf � idfþ Linkþ DB

Q7 67 75 89 98

Q8 45 64 83 95

Q15 36 62 88 93

Q19 30 44 82 93

Q20 35 53 85 95

 40

 50

 60

 70

 80

 90

 100

Q20Q19Q18Q17Q16

To
p-

k
Pr

ec
is

io
n

(%
)

 40

 50

 60

 70

 80

 90

 100

top-50top-20top-10top-5top-1

To
p-

k
Pr

ec
is

io
n

(%
)

EASE (IR)
EASE (DB+IR)

Fig. 12. Search accuracy on heterogeneous data. (a) Queries (Top-100), and (b) Top-k.

Table 10
Index update

Datasets Elapsed time (min)

Indexing from scratch Incrementally indexing

DBLife 13 1.8

IMDB 25 3.1

DBLP 87 10.2

G. Li et al. / Information Systems 36 (2011) 248–266 263
illustrated in Table 9. We note that all of the three ranking
functions are important to rank the results. tf � idf-based
ranking ranks the answers with more keywords higher.
Link-based ranking considers the results which even do
not include input keywords but have relationships with
the input keywords through links between nodes. DB
ranking ranks the result with more compact structures
higher.
6.5. Search accuracy on heterogeneous datasets

To evaluate the robustness of our algorithm, we
evaluate its search accuracy using the heterogeneous
dataset. We first evaluated search accuracy by identifying
the top-100 results on various queries, and then varied
different values of k to evaluate the average precision. For
a better understanding of our ranking method, we
compared EASE employing IR ranking parameters
(ref. Eq. (5)) with EASE considering both DB and IR
(ref. Eq. (12)). Fig. 12 summarizes the experimental
results. We observe that EASE(DBþIR) consistently
achieves much higher accuracy than EASE(IR). This again
confirms that TF � IDF-based IR ranking cannot capture
the structural relationships effectively. For example,
consider query Q20. Some results on DBLife dataset will
obtain higher IR scores than those on IMDB dataset as the
term frequencies of some documents on DBLife dataset
are larger than those on IMDB dataset. Thus, the IR-based
ranking method will rank the results on DBLife dataset
higher. However, in the IMDB dataset, which is a
collection of ratings of movies made by users, the three
input keywords can describe the instances of users with
occupation of Educator scoring the movies with genres of
Romance and Action. Hence, the three keywords are
more compact and highly relevant to IMDB dataset. Our
DBþIR ranking method considers the structural relevancy
and ranks the results on the IMDB dataset higher, and thus
achieves much higher precision. This comparison reflects
the effectiveness and applicability of our proposed
ranking mechanism.

6.6. Update of index

In this section, we evaluate the cost of DB update. We
first created the indices on top of the three datasets by
using 90% data, and then inserted the other 10% data. We
evaluate the running time of indexing the new 10% data as
shown in Table 10. We note that it is rather expensive to
re-index the data from scratch. Instead, we can incremen-
tally update the index based on the partitions, which is
much more efficient than indexing the whole data from
scratch.

6.7. Sensitivity of indexing

In this section, we evaluate the sensitivity of our
indexing method. We first created the indices on top of

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20%15%10%5%0%

Pr
ec

is
io

n
(%

)

top-1
top-5

top-10
top-20
top-50

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20%15%10%5%0%

Pr
ec

is
io

n
(%

)
Q1
Q2
Q3
Q4
Q5

Fig. 13. Sensitivity of indexing. (a) Inserted data/original data (Top-100) and (b) Inserted data/original data (Top-k).

G. Li et al. / Information Systems 36 (2011) 248–266264
the DBLife dataset, and then inserted 5% additional new
irrelevant data in each step. After each set of insertions,
we evaluated EASE on the updated indices by using
queries Q12Q5. Fig. 13 summarizes the effects of inser-
tions on our indexing method. We observe that the search
accuracy of EASE does not degrade drastically with the
increase of new data. This demonstrates the robustness
and scalability of our method with respect to data
insertions.
7. Related work

The first area of research related to our work is
keyword search over relational DBs by identifying Steiner
trees. As opposed to the traditional Steiner tree-based
methods, which identify the structural relationships on-
line, EASE identifies and materializes the rather rich
structural relationships so as to improve the online
processing of keyword queries.

DBXplorer [1], DISCOVER-I [5], DISCOVER-II [4],
BANKS-I [2] and BANKS-II [19] are systems built on top
of relational DBs. DISCOVER and DBXplorer generate trees
of tuples connected through primary–foreign-key rela-
tionships that contain all of the input keywords. BANKS
identifies connected trees in a labeled graph by using an
approximation of the Steiner tree problem. DISCOVER-II
considers the problem of keyword proximity search in
terms of disjunctive semantics, as opposed to DISCOVER-I
which only considers conjunctive semantics. Kacholia
et al. [19] presented the bidirectional strategy (BANKS-II)
to improve the efficiency of keyword search over graph
data. However, their method still works by identifying
Steiner trees from the whole graph, which is inefficient as
it is rather difficult to identify structural relationships
through inverted indices. Liu et al. [6] proposed a novel
ranking strategy to solve the effectiveness problem for
relational DBs. It employs phrase-based and concept-
based models to improve search effectiveness by introdu-
cing IR techniques.

More recently, Ding et al. [3] employed dynamic
programming (DPBF) to improve the efficiency of identi-
fying Steiner trees. Guo et al. [17] proposed data topology
search to retrieve meaningful structures from richer
structural data, such as complex biological DBs. He et al.
[18] proposed a partition-based method to improve search
efficiency with a novel BLINKS index. Markowetz et al. [8]
studied the problem of keyword search over relational
data streams in a first attempt to answer keyword search
over relational data streams. Luo et al. [7] proposed a new
ranking method that adapts state-of-the-art IR ranking
function and principles into the ranking trees of joined DB
tuples. In addition, Yu et al. [32] studied the problem of
relational data source selection in P2P environments by
summarizing the relationships between keywords in
underlying DBs.

In terms of keyword search over XML documents, the
subtrees rooted at the LCAs of content nodes have been
proposed as answers. As an extension of LCA, SLCA,
Multiway-SLCA, XSeek and GDMCT have recently been
proposed to answer keyword queries over XML docu-
ments in [11,14–16], respectively. SLCA [16] can avoid the
false positives of LCA but it does so at the expense of false
negatives. Multiway-SLCA [15] offers a search paradigm in
support of keyword search beyond the traditional AND
semantics, including both AND and OR boolean operators.
Xu and Papakonstantinou [41] proposed the semantics of
exclusive lowest common answer (ELCA) to improve
result quality. GDMCT [11] returns grouped connected
trees as answers but it still needs to traverse the whole
graph to identify answers by employing the inverted
index. XSeek [14] generates return nodes which can be
explicitly inferred from keywords or dynamically con-
structed according to entities in the data that are relevant
to the search. Li et al. [37] proposed a more effective
ranking mechanism to improve search effectiveness by
combining structural compactness and textual relevance
to rank the answers. The ranking functions are indepen-
dent of the search algorithms, and thus could be applied
to any search algorithm.

XRANK [10] and XSEarch [9] are systems facilitating
keyword search for XML documents, and they return
connected subtrees as answers for keyword queries.
XRANK presents a ranking method, where for a given tree
T containing all the keywords, a score is assigned to T
with an adaptation of PageRank for XML documents.
XSEarch focuses on semantics and the ranking of results;
during execution, it uses an all-pairs interconnection
index to check the connectivity between nodes. XKeyword
[12] is a system that offers keyword proximity search over

G. Li et al. / Information Systems 36 (2011) 248–266 265
XML documents that conform to an XML schema.
However, it needs to compute candidate networks and
thus is constrained by schemas. Schema-Free XQuery [35]
uses the idea of meaningful LCA (MLCA), and proposes a
stack-based sort-merge algorithm by considering a part of
structures and incorporating a new function mlcas into
XQuery. TopX [33] is a prototype search engine for the
ranked retrieval of XML, but it processes XML queries with
support for XPath axes but not the more simple keyword
queries, and it cannot adapt to relational DBs. Graupmann
et al. [34] presented the SphereSearch engine to provide
unified ranked retrieval on heterogeneous XML and Web
data. However, it is orthogonal to our method in that: (i) it
does not support relational DBs and it transforms HTML
documents into XML and (ii) it depends on its own query
language to discover structural relationships and thus is
not a pure keyword-based search method. Chaudhuri et al.
[20] point out a number of interesting research opportu-
nities for integrating DB and IR technologies. In [21],
Weikum provides a summary of existing DB and IR
techniques and discusses the difficulties, opportunities
and challenges of combining DB and IR. Li et al. [38]
proposed a unified keyword search framework, namely
SAILER, for answering keyword queries over unstructured
and semi-structured data. Li et al. [39] proposed EASE to
adaptively and effectively answer keyword search over
heterogeneous data sources composed of unstructured,
semi-structured and structured data by summarizing the
graphs transformed from the heterogeneous data sources.
They proposed Steiner subgraphs to effectively answer
keyword queries over graphs. Li et al. [40] presented a
demonstration of keyword search over heterogeneous
data.
8. Conclusion

In this paper, we have proposed an efficient and
adaptive keyword search method, EASE, to answer key-
word queries over unstructured, semi-structured and
structured data. EASE seamlessly integrates the efficient
query evaluation of DB and the adaptive scoring models of
IR for the ranking of results. EASE models heterogeneous
data as graphs and processes keyword queries on the
graphs. To the best of our knowledge, this is the first
attempt to efficiently and adaptively process keyword
queries on heterogeneous data. We have proposed
summarizing and clustering the graphs, and devised
effective graph indices to materialize structural relation-
ships for fast and accurate response. To facilitate efficient
keyword-based query processing, we have examined the
issues of indexing and ranking by taking into account both
the structural compactness of r-radius graphs from the DB
point of view and textual relevancy from the IR viewpoint.
Finally, we have conducted an extensive performance
study to evaluate the efficiency and effectiveness of our
approach using real datasets. The experimental results
show that EASE achieves both high search efficiency and
quality for keyword search over heterogeneous data, and
significantly outperforms the existing methods.
Acknowledgments

The research of B.C. Ooi was in part funded by NUS
Grant R-252-000-338-112. This work was also in part
supported by the National Natural Science Foundation of
China under Grant No. 60573094, the National High
Technology Development 863 Program of China under
Grant No. 2007AA01Z152, the National Grand Fundamen-
tal Research 973 Program of China under Grant No.
2006CB303103, and 2008 HP Labs Innovation Research
Program.

References

[1] S. Agrawal, S. Chaudhuri, G. Das, Dbxplorer: a system for keyword-
based search over relational databases, in: ICDE, 2002, pp. 5–16.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan,
Keyword searching and browsing in databases using banks, in:
ICDE, 2002, pp. 431–440.

[3] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, X. Lin, Finding top-k min-
cost connected trees in databases, in: ICDE, 2007.

[4] V. Hristidis, L. Gravano, Y. Papakonstantinou, Efficient IR-style
keyword search over relational databases, in: VLDB, 2003,
pp. 850–861.

[5] V. Hristidis, Y. Papakonstantinou, Discover: keyword search in
relational databases, in: VLDB, 2002.

[6] F. Liu, C. Yu, W. Meng, A. Chowdhury, Effective keyword search in
relational databases, in: SIGMOD, 2006.

[7] Y. Luo, X. Lin, W. Wang, X. Zhou, Spark: top-k keyword query in
relational databases, in: SIGMOD, 2007.

[8] A. Markowetz, Y. Yang, D. Papadias, Keyword search on relational
data streams, in: SIGMOD, 2007.

[9] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, Xsearch: a semantic search
engine for XML, in: VLDB, 2003.

[10] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram, Xrank: ranked
keyword search over XML documents, in: SIGMOD, 2003, pp. 16–27.

[11] V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava, Keyword
proximity search in XML trees, in: IEEE TKDE, vol. 18(4), 2006,
pp. 525–539.

[12] V. Hristidis, Y. Papakonstantinou, A. Balmin, Keyword proximity
search on XML graphs, in: ICDE, 2003, pp. 367–378.

[13] G. Li, J. Feng, J. Wang, L. Zhou, Efficient keyword search for valuable
LCAs over XML documents, in: CIKM, 2007.

[14] Z. Liu, Y. Chen, Identifying return information for XML keyword
search, in: SIGMOD, 2007.

[15] C. Sun, C.Y. Chan, A.K. Goenka, Multiway SLCA-based keyword
search in XML data, in: WWW, 2007.

[16] Y. Xu, Y. Papakonstantinou, Efficient keyword search for smallest
LCAs in XML databases, in: SIGMOD, 2005, pp. 527–538.

[17] L. Guo, J. Shanmugasundaram, G. Yona, Topology search over
biological databases, in: ICDE, 2007.

[18] H. He, H. Wang, J. Yang, P. Yu, Blinks: ranked keyword searches on
graphs, in: SIGMOD, 2007.

[19] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
H. Karambelkar, Bidirectional expansion for keyword search on
graph databases, in: VLDB, 2005, pp. 505–516.

[20] S. Chaudhuri, R. Ramakrishnan, G. Weikum, Integrating DB and IR
technologies: What is the sound of one hand clapping? in: CIDR,
2005, pp. 1–12.

[21] G. Weikum, DB & IR: both sides now (keynote), in: SIGMOD, 2007,
pp. 25–30.

[22] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, R.
Ramakrishnan, Dblife: a community information management
platform for the database research community, in: CIDR, 2007.

[23] M. Mutsuzaki, M. Theobald, A. Keijzer, J. Widom, P. Agrawal, et al.,
Trio-one: layering uncertainty and lineage on a conventional DBMS,
in: CIDR, 2007.

[24] W.-S. Li, K.S. Candan, Q. Vu, D. Agrawal, Retrieving and organizing
web pages by information unit, in: WWW, 2001.

[25] S. Brin, L. Page, The anatomy of a large-scale hypertextual web
search engine, in: WWW, 1998.

[26] J.M. Kleinberg, Authoritative sources in a hyperlinked environment,
J. ACM 46 (5) (1999) 604–632.

[27] R. Lempel, S. Moran, The stochastic approach for link-structure
analysis (SALSA) and the tkc effect, in: WWW, 2000.

G. Li et al. / Information Systems 36 (2011) 248–266266
[28] A. Balmin, V. Hristidis, Y. Papakonstantinou, Objectrank: authority-
based keyword search in databases, in: VLDB, 2004, pp. 564–575.

[29] S. Chakrabarti, Dynamic personalized pagerank in entity relation
graphs, in: WWW, 2007.

[30] R. Fagin, Combining fuzzy information from multiple systems, in:
PODS, 1996, pp. 216–226.

[31] R. Fagin, Fuzzy queries in multimedia database systems, in: PODS,
1998, pp. 1–10.

[32] B. Yu, G. Li, K. Sollins, A.K.H. Tung, Effective keyword-based
selection of relational databases, in: SIGMOD, 2007.

[33] M. Theobald, R. Schenkel, G. Weikum, An efficient and versatile
query engine for topx search, in: VLDB, 2005.

[34] J. Graupmann, R. Schenkel, G. Weikum, The spheresearch engine for
unified ranked retrieval of heterogeneous XML and web documents,
in: VLDB, 2005, pp. 529–540.
[35] Y. Li, C. Yu, H.V. Jagadish, Schema-free xquery, in: VLDB, 2004,
pp. 72–84.

[37] G. Li, J. Feng, J. Wang, L. Zhou, RACE: finding and ranking compact
connected trees for keyword proximity search over XML docu-
ments, in: WWW, 2008.

[38] G. Li, J. Feng, J. Wang, L. Zhou, SAILER: an effective search engine for
unified retrieval of heterogeneous XML and web documents, in:
WWW, 2008.

[39] G. Li, B.C. Ooi, J. Feng, J. Wang, L. Zhou, Ease: efficient and adaptive
keyword search on unstructured, semi-structured and structured
data, in: SIGMOD, 2008.

[40] G. Li, J. Feng, J. Wang, L. Zhou, An effective and versatile keyword
search engine on heterogeneous data sources, in: VLDB, 2008.

[41] Y. Xu, Y. Papakonstantinou, Efficient LCA based keyword search in
XML data, in: EDBT, 2008, pp. 535–546.

	An effective 3-in-1 keyword search method over heterogeneous data sources
	Introduction
	Adaptive keyword search model
	Motivation
	Unstructured data
	Semi-structured, structured and graph data

	r-Radius Steiner graph problem

	EASE: an effective and adaptive search method
	Adjacency matrix
	Maximal r-radius graph
	Subgraph maintenance
	Graph partitioning
	Update issue

	Ranking functions
	IR ranking
	TF IDF-based ranking
	Node prestige-based ranking
	Link-based ranking

	Structural compactness-based DB ranking

	Indexing
	Experimental study
	Graph index evaluation
	Search efficiency on different datasets
	Search efficiency on heterogeneous datasets
	Search accuracy on different datasets
	Search accuracy on heterogeneous datasets
	Update of index
	Sensitivity of indexing

	Related work
	Conclusion
	Acknowledgments
	References

