
Cost-Effective Crowdsourced Entity Resolution:
A Partial-Order Approach

Chengliang Chai†, Guoliang Li†, Jian Li‡, Dong Deng†, Jianhua Feng†
†Department of Computer Science, Tsinghua National Laboratory for Information Science and

Technology (TNList), Tsinghua University, Beijing, China
‡Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
{liguoliang, lijian83,fengjh}@tsinghua.edu.cn; {chaicl15, dd11}@mails.tsinghua.edu.cn

ABSTRACT
Crowdsourced entity resolution has recently attracted signif-
icant attentions because it can harness the wisdom of crowd
to improve the quality of entity resolution. However ex-
isting techniques either cannot achieve high quality or incur
huge monetary costs. To address these problems, we propose
a cost-effective crowdsourced entity resolution framework,
which significantly reduces the monetary cost while keeping
high quality. We first define a partial order on the pairs of
records. Then we select a pair as a question and ask the
crowd to check whether the records in the pair refer to the
same entity. After getting the answer of this pair, we infer
the answers of other pairs based on the partial order. Next
we iteratively select pairs without answers to ask until we
get the answers of all pairs. We devise effective algorithms
to judiciously select the pairs to ask in order to minimize
the number of asked pairs. To further reduce the cost, we
propose a grouping technique to group the pairs and we only
ask one pair instead of all pairs in each group. We develop
error-tolerant techniques to tolerate the errors introduced
by the partial order and the crowd. Experimental results
show that our method reduces the cost to 1.25% of existing
approaches (or existing approaches take 80× monetary cost
of our method) while not sacrificing the quality.

Categories and Subject Descriptors
H.2 [Database Management]: Database applications
Keywords:Crowdsourcing;Entity Resolution;Partial Order

1. INTRODUCTION
Entity resolution aims to find records that refer to the

same entity from a collection of records. For example, con-
sider the 11 records in Table 1. r1, r2 and r3 refer to the
same entity. r4, r5, r6 and r7 refer to the same entity. Entity
resolution has many real-world applications, particularly in
health data integration, knowledge-base construction, web
search, comparison shopping, and law enforcement.

However existing machine-based methods are still far from
perfect[22, 24], because the same entity may have many un-
predictable representations. Crowdsourced entity resolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26 - July 1, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915252

that leverages the crowd’s ability to solve this problem has
attracted significant attentions[12, 21, 23, 24, 25].

A brute-force method enumerates every pair of records
and asks the crowd to check whether they refer to the same
entity. This method involves huge monetary costs, espe-
cially for large datasets. To address this problem, several
algorithms have been proposed to reduce the cost by prun-
ing some pairs that do not need to be asked. Wang et al. [23]
utilized the transitivity to reduce the cost, but the quality
may not be guaranteed. This is because the transitivity may
not hold for some records, which leads to incorrect deduc-
tion and uncontrollable error propagation. Wang et al. [24]
proposed a correlation-clustering method, which adaptively
assigned the records referring to the same entity into the
same cluster. This method improves the quality at the ex-
pense of asking many more questions and thus involves high
monetary costs. In summary, existing methods either can-
not achieve high quality or involve huge monetary costs.

To address these problems, we propose Power, a partial-
order based crowdsourced entity resolution framework, which
significantly reduces the monetary cost while keeping high
quality. The basic idea is that we define a partial order on
the record pairs and prune many pairs that do not need to
be asked based on the partial order. Specifically, we first
define a partial order: (1) If a pair of records refer to the
same entity, then the pairs preceding this pair also refer to
the same entity; (2) If a pair of records refer to different
entities, then the pairs succeeding this pair refer to differ-
ent entities. Then we select a pair as a question and ask
the crowd to check whether the records in the pair refer to
the same entity. Based on the answer of this pair, we infer
the answers of other pairs based on the partial order. Thus
our goal is to judiciously select the pairs to ask in order to
minimize the number of asked pairs. To this end, we de-
vise effective algorithms to iteratively select pairs without
answers to ask until we get the answers of all the pairs. To
further reduce the cost, we propose a grouping technique to
group the pairs such that we only need to ask one pair in-
stead of all pairs in each group. Since asking only one pair
in each iteration leads to a high latency, we propose effec-
tive techniques to select multiple pairs in each iteration. As
both the partial order and the crowd may introduce errors,
we develop error-tolerant techniques to tolerate the errors.

To summarize, we make the following contributions.
(1) We propose a partial-order based crowdsourced entity
resolution framework. We define a partial order on record
pairs and utilize the partial order to infer the answers of
some unasked pairs so as to reduce the monetary cost.

http://dx.doi.org/10.1145/2882903.2915252

(2) We construct a graph based on the partial order and
utilize the graph to ask questions and infer answers. We de-
vise efficient algorithms to construct the graph. We develop
a grouping technique to group the record pairs, which can
further reduce the cost. We prove that the optimal grouping
is NP-hard and propose approximation algorithms.
(3) We judiciously select pairs to ask in order to minimize
the number of asked pairs. We propose a path-based al-
gorithm that asks one question in each iteration and prove
that the algorithm is optimal in general. To reduce the la-
tency, we devise a topological-sorting-based algorithm that
asks multiple questions in parallel in each iteration.
(4) We develop a probability-based method to tolerate the
errors introduced by the crowd and the partial order.
(5) We conduct experiments using real-world datasets on
a real crowdsourcing platform. Experimental results show
that our method reduces the cost to 1.25% of existing ap-
proaches (or existing approaches take more than 80 times
money of our method) while not sacrificing the quality.

The rest of this paper is structured as follows. We first
define the problem and review related work in Section 2 and
then propose our framework in Section 3. The grouping
strategy, question selection, and error-tolerant techniques
are discussed in Sections 4, 5, 6 respectively. We report
experimental results in Section 7 and conclude in Section 8.

2. PRELIMINARIES
2.1 Problem Definition

Definition 1 (Crowdsourced Entity Resolution).
Consider a table T with m attributes {A1,A2, . . . ,Am} and
n records {r1, r2, . . . , rn}, where each record denotes an en-
tity. The entity resolution aims to identify the records that
refer to the same entity. Crowdsourced entity resolution
leverages the crowd’s ability to address this problem.

For example, Table 1 shows a table with 4 attributes and
11 records. r1, r2, and r3 refer to the same entity. r4, r5, r6,
and r7 refer to the same entity. Each of r8, r9, r10, r11 rep-
resents a different entity. Crowdsourced entity resolution
asks questions to the crowd (or workers) for identifying the
records referring to the same entity. As we need to pay the
workers for answering a question, the objective is to reduce
the number of questions while keeping high quality.

2.2 Related Work
2.2.1 Crowdsourced Entity Resolution
Generating Questions for Workers. An important prob-
lem in crowdsourced entity resolution is to design questions
for workers. A straightforward method is to generate pair-
comparison-based questions, where each question is a pair
of two records and asks workers to check whether the two
records refer to the same entity. This method may gener-
ate a large number of questions. To address this problem,
clustering-based questions are proposed [12, 22], where each
question is a group of records and asks workers to classify
the records into different clusters such that records in the
same cluster refer to the same entity and records in differ-
ent clusters refer to different entities. As the clustering-
based method does not need to enumerate every pair, it can
reduce the monetary cost. However, workers prefer the pair-
comparison question as it is much easier to answer.
Pruning Dissimilar Pairs. Intuitively, we do not need to
ask the dissimilar pairs that have low probabilities referring

to the same entity. Wang et al. [22] proposed a similarity-
based method, which computed the similarity of record pairs
and pruned the pairs with small similarities. As this method
can prune many dissimilar pairs without sacrificing the qual-
ity of final answers, most of existing studies used this tech-
nique to reduce the cost.
Leveraging Transitivity to Reduce The Cost. Transi-
tivity can be used to reduce the cost: Given three records,
r1, r2, r3, if r1 = r2 (r1 and r2 refer to the same entity) and
r2 = r3, we can deduce that r1 = r3 and do not need to ask
whether r1 = r3. Wang et al. [23] and Vesdapunt et al. [21]
studied how to utilize the transitivity to reduce the number
of questions. Although this method can reduce the cost, the
quality may be reduced. For example, suppose r1 = r2 and
r2 6= r3, but the crowd returns r1 = r2 and r2 = r3. Then
it introduces an incorrect deduction r1 = r3.
Improving The Quality. Wang et al. [24] proposed a
correlation-clustering method, which includes three steps.
It first prunes dissimilar pairs with small similarities. Then,
it selects some pairs to ask and divides the records into a
set of clusters based on the workers’ results of these asked
pairs. Finally, it refines the clusters by selecting more pairs
to ask, checking whether their answers are consistent with
the initial clusters, and adjusting the clusters based on the
inconsistencies. This method improves the accuracy at the
expense of huge monetary costs.
Question Selection. A natural problem is how to se-
lect next questions to ask in order to improve the quality.
Whang et al. [25] proposed a probabilistic model to select
high-quality questions. Verroios et al. [20] improved the
model by tolerating workers’ errors. Gokhale et al. [7] stud-
ied the crowdsourced record linkage problem, which linked
two records from two tables, which is different from ours as
we focus on linking multiple records in the same table.

Compared with existing techniques, our model can signif-
icantly reduce the cost while not sacrificing the quality.

2.2.2 Other Related Work
Crowdsourced Operators. There are many studies on
leveraging crowd’s ability to improve database operators,
e.g., crowdsourced selection [1, 26], crowdsourced sort[18,
2], crowdsourced max/top-k [8, 19]. They focus on trading-
off monetary cost, quality and latency.
Crowdsourced Systems. Several crowdsourced databases,
e.g. Deco[16, 17], Quak[13], CrowdDB[5], were proposed,
aiming to implement and optimize crowdsourced operators.
Crowdsourced Quality Control. Many methods are pro-
posed to improve the quality[9, 15, 3, 11, 27]. Most of
these studies focus on devising a worker model to capture
worker’s quality, computing the worker’s model, eliminating
bad workers, assigning questions to appropriate workers, and
aggregating the results from multiple workers.

3. PARTIAL-ORDER-BASED FRAMEWORK
We first define a partial order (Section 3.1) and then pro-

pose a partial-order-based algorithm (Section 3.2).

3.1 Partial Order
Record Similarity. Given two records ri and rj , we use
pij to denote the pair (ri, rj) and use skij to denote the sim-
ilarity of pij on attribute Ak. We can utilize any similarity
function to compute the similarity, e.g., edit distance, Jac-
card, Euclidean distance. Here we take Jaccard and edit
similarity as examples. Let ri[k] denote the value of ri on
attribute Ak. For Jaccard, we tokenize ri[k] into a set of

Name (A1) Address (A2) City (A3) Flavor (A4)
r1 ritz-carlton restaurant (atlanta) 181 w. peachtree st. atlanta european french
r2 ritz-carlton restaurant 181 peachtree dr atlanta european(french)
r3 ritz-carlton restaurant Georgia 181 peachtree st. city of atlanta european France
r4 cafe ritz-carlton buckhead 3434 peachtree rd. city of atlanta american
r5 cafe ritz-carlton (buckhead) 3434 peachtree rd. city of atlanta american
r6 dining room ritz-carlton buckhead 3434 peachtree ave. atlanta international
r7 dining room ritz-carlton (buckhead) 3434 peachtree ave. atlanta international
r8 cafe claude 201 83rd st. new york cafe
r9 cafe bizou (american) 13 54th st. new york american food
r10 gotham bar & grill 12th rd. new york american(new)
r11 mesa grill 102 5th rd. new york southwestern

Table 1: Eleven Records In A Real Restaurant Dataset.

pij s1ij s2ij s3ij s4ij pij s1ij s2ij s3ij s4ij
p12 0.72 0.4 1 0.88 p37 0.28 0.2 0.33 0
p13 0.75 0.75 0.33 0.8 p45 0.92 1 1 1
p23 0.77 0.5 0.33 0.69 p46 0.69 0.5 0.33 0
p24 0.51 0.2 0.33 0 p47 0.65 0.5 0.33 0
p25 0.53 0.2 0.33 0 p56 0.63 0.5 0.33 0
p26 0.42 0.2 1 0 p57 0.71 0.5 0.33 0
p27 0.45 0.2 1 0 p67 0.94 1 1 1
p34 0.39 0.2 1 0 p89 0.33 0.2 1 0
p35 0.39 0.2 1 0 p10,11 0.5 0.25 1 0

Table 2: Record Similarity.

tokens and compute Jaccard on token sets as below.

skij = Jac(ri[k], rj [k]) =
|ri[k] ∩ rj [k]|
|ri[k] ∪ rj [k]| , (1)

where |ri[k]| is the token-set size of ri[k].
For edit similarity, we first compute their edit distance,

which is the minimum number of edit operations (insertion,
deletion, substitution) required to transform one string to
the other, and then compute the edit similarity as below.

skij = EDS(ri[k], rj [k])) = 1− ED(ri[k], rj [k])

max(|ri[k]|, |rj [k]|) , (2)

where EDS(ED) is the edit similarity (distance) function.
For example, we use the edit similarity on attributes A1

and A4, and Jaccard on attributes A2 and A3. For instance,
s112 = 1− 9

33
= 0.72, and s212 = 2

5
= 0.4. As discussed in Sec-

tion 2.2, we do not need to consider pairs whose similarities
are smaller than a similarity bound τ , as they have small
probabilities to be the same entity. Formally, we only con-
sider the similar pair pij such that (1) sij = Jac(ri, rj) ≥ τ
for Jaccard, where Jac(ri, rj) is the Jaccard similarity on
the token sets of ri and rj ; or (2) sij = EDS(ri, rj) ≥ τ for
edit similarity, where EDS(ri, rj) is the edit similarity on
records ri and rj . The similar record pairs with τ = 0.2 are
shown in Table 2. If skij < τ , we set skij = 0 for simplicity.

Partial Order. We define a partial order on record pairs.
Given two pairs pij = (ri, rj), pi′j′ = (ri′ , rj′), pij � pi′j′ ,
if (ri, rj) has no smaller similarities than (ri′ , rj′) on every
attribute. pij � pi′j′ , if pij � pi′j′ and (ri, rj) has larger
similarities on at least one attribute than (ri′ , rj′). Formally,

pij � pi′j′ if skij ≥ ski′j′ for 1 ≤ k ≤ m (3)

pij � pi′j′ if pij � pi′j′ and ∃k, skij > ski′j′ (4)

For example, in Table 2, p34 � p35, p27 � p34, and p27 � p35.

3.2 Graph-Based Algorithm
We model the pairs as a graph based on the partial order.

Definition 2 (Graph Model). Given a table T , we
build a directed acyclic graph G = (V, E), where each vertex
in V is a similar record pair. Given two pairs pij and pi′j′ ,
if pij � pi′j′ , there is a directed edge in E from pij to pi′j′ .

p67 p45

p12 p13

p23

p27 p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

same entity

different entities

p67
p45

p12 p13
p23

p27

p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

Figure 1: Partial Order and Graph Model.

Figure 1 shows the graph for the pairs in Table 1. In the
figure, we do not show all the edges for illustration purpose:
given two vertices, if there is already a path between them,
we do not show the direct edge between them. For example,
there should be an edge between p67 and p12, but we omit
it as there is already a path from p67 to p12.
Graph Coloring. Each vertex in G has two possibilities:
(1) they refer to the same entity and we color it Green; (2)
they refer to different entities and we color it Red. Initially
each vertex is uncolored. Our goal is to utilize the crowd to
color all vertices. A straightforward method is to take the
record pair on each vertex as a question and ask workers
to answer the question, i.e. whether the two records in the
pair refer to the same entity. If a worker thinks that the two
records on the vertex refer to the same entity, the worker
returns Yes; No otherwise. For each pair, to tolerate the
noisy results from workers, we assign it to multiple workers,
say 5. Based on the workers’ results, we get a voted answer
on each vertex. If majority workers vote Yes, we color it
Green; otherwise we color it Red. Next, we interchange-
ably use vertex, pair and question if the context is clear.

Obviously this method is rather expensive as there are
many vertices on the graph. To address this issue, we pro-
pose an effective coloring framework to reduce the number
of questions. Algorithm 1 shows the pseudo code. It first
computes the partial orders between pairs and constructs
a graph (line 1). Then it selects an uncolored vertex pij
(line 3) and asks workers to answer Yes or No on the vertex,
(1) If majority workers vote Yes, we not only color pij Green,
but also color all of its ancestors Green (line 5). In other
words, for pi′j′ � pij , we also take ri′ and rj′ as the same
entity. This is because pi′j′ has larger similarity on every at-
tribute than pij , and since ri and rj refer to the same entity
(denoted by ri = rj), we deduce that ri′ = rj′ .
(2) If majority workers vote No, we not only color pij Red,
but also color all of its descendants Red (line 7). In other
words, for pij � pi′j′ , we also take ri′ and rj′ as different

Algorithm 1: A Partial-Order-Based Framework

Input: T = {r1, r2 · · · , rn}
Output: All vertices are colored as Green or Red
Construct G = (V, E) based on partial orders;1

while there exist uncolored vertices in V do2

Select an uncolored vertex pij to ask workers;3

if majority workers vote Yes then4

color pij and pi′j′ (pi′j′ � pij) Green;5

else6

color pij and pi′j′ (pij � pi′j′) Red;7

return colored V;8

entities. This is because pi′j′ has smaller similarity on ev-
ery attribute than pij , and since ri and rj refer to different
entities (denoted by ri 6= rj), we deduce that ri′ 6= rj′ .

If all the vertices have been colored, the algorithm termi-
nates (line 7); otherwise, it selects an uncolored vertex and
repeats the above steps (lines 2-7).

Obviously, this method can reduce the cost as we can
avoid asking many unnecessary vertices. For example, con-
sider the constructed graph in Figure 1. A naive method is
to ask all eighteen pairs. However, if we first ask p10,11, as
majority workers vote No, we can color p10,11 and its descen-
dants p27, p26, p34, p35, p89 and p37 Red without needing
to ask these descendants. Then if we select p56, as majority
workers vote Yes, we color p56 and its ancestors p46, p47, p57,
p23, p45, p67 and p13 Green without needing to ask them.
In Section 5, we will show that we need to ask at least 4
questions (e.g., p12, p10,11, p25, p56) to color all vertices.

There are several challenges in this algorithm.
(1) Graph Construction. As there are large numbers of
pairs, how to efficiently construct the graph? Can we reduce
the graph size so as to reduce the number of questions?
(2) Question Selection. How to select the minimum num-
ber of vertices to ask in order to color all vertices?
(3) Error Tolerant. The coloring strategy and the workers
may introduce errors. So how to tolerate the errors?

We address these challenges in the following sections.

4. GRAPH CONSTRUCTION
We first propose efficient graph-construction algorithms

(Section 4.1) and then present grouping methods (Section 4.2).

4.1 Graph Construction Algorithms
Brute-Force Method. It enumerates every pair of vertices
and checks whether they satisfy the partial order. If so, the
algorithm adds an edge between them. The complexity of
this method is O(|V|2). Obviously this method is rather
expensive, especially if there are a large number of vertices.

Quicksort-Based Method. Quicksort is an efficient al-
gorithm for the sorting problem and it can be extended to
construct the graph. We first randomly select a vertex pij as
pivot, and then split other vertices into three disjoint parts
by comparing them with pij :
(1) Parent Vertex Set: P(pij) = {pi′j′ |pi′j′ � pij}. For each
pi′j′ in P(pij), we add an edge from pi′j′ to pij ;
(2) Child Vertex Set: C(pij) = {pi′j′ |pij � pi′j′}. For each
pi′j′ in C(pij), we add an edge from pij to pi′j′ ;
(3) Incomparable Vertex Set: U(pij) = V−P(pij)−C(pij) =
{pi′j′ |pij 6� pi′j′ & pi′j′ 6� pij}. For each pi′j′ , there is no
edge between pij and pi′j′ , as they are incomparable.

Obviously, ∀p ∈ P(pij), p
′ ∈ C(pij), p � p′, and thus we do

not need to compare the pairs in P(pij)× C(pij). Then, we

consider the pairs in (P(pij)∪U(pij))×(P(pij)∪U(pij)) and
(C(pij) ∪ U(pij))× (C(pij) ∪ U(pij)). To add edges between
these pairs, we can recursively utilize the above method.1

The worst-case complexity of this method is also O(|V|2) if
all the vertices are incomparable. However, this method has
better performance than brute-force in practice, because it
can prune many unnecessary pairs (e.g., P(pij)× C(pij)).
Index-Based Method. The quicksort-based method still
has poor performance for large datasets. To address this
issue, we propose an index-based method. As the similarity
skij is a numerical value, we can utilize geometric relationship
to compare two pairs. For simplicity, we first assume there
are two attributes (m = 2). So the similarity of pij has
two components s1ij and s2ij . Therefore, we can map each
vertex to a point in a two-dimensional coordinate as shown
in Figure 2(a).

If we want to find the child set of pij , C(pij) = {pi′j′ |pij �
pi′j′}, we report the left-bottom vertices (i.e., vertices in the
rectangle). Similarity, if we compute P(pij) = {pi′j′ |pi′j′ �
pij}, we report the top-right vertices. We can utilize the
2-dimensional range trees to achieve this goal [10].
Range Search Tree Construction. We first construct a first-
level balanced binary tree based on s1ij for all vertices as
shown in Figure 2(b), where leaves are vertices in V and the
internal nodes are guided search values. (There are multiple
pairs in a node because they have the same similarity. For
example, p34, p35 are in the same node, because s134 = s135 =
0.39.) The value of a node is the largest s1ij for all vertices

in its left subtree, and thus the s1ij values of vertices under
the left subtree are not larger than the value of this node;
while the s1ij values of vertices under its right subtree are
larger than the value. We can build the binary tree in a
bottom-up way. For each internal node, we construct the
second-level balanced binary tree based on s2ij for vertices
under this node.
Reporting C(pij) with Range Search Tree. Given a vertex
pij , we use the range search tree to report C(pij). We first
find the tree nodes whose descendants’ similarities on A1

are not larger than s1ij using the first-level tree. For each
of such qualified nodes on A1, we visit its second-level tree
and find the nodes whose descendants’ similarities on A2 are
not larger than s2ij . Then the vertices under these nodes are
added into C(pij). Next we discuss how to find such qualified
nodes in the first-level tree and the same techniques can be
used to search the second-level tree.

To find the qualified nodes on A1, we search the first-level
tree from the root. For each node, (1) If its value is not
larger than s1ij , (1.1) if it is a leaf, it is a qualified node;
(1.2) if it is not a leaf, the similarities of all the vertices
under its left child on attribute A1 are not larger than s1ij ,
and its left child is a qualified node. Next we recursively
process its right child; (2) If its value is larger than s1ij , (2.1)
if it is a leaf, we prune it; (2.2) if it is not a leaf, we prune its
right subtree as the similarities of all the vertices under its
right child on attribute A1 must be larger than s1ij . Next we
recursively process its left child. Iteratively, we can identify
all qualified nodes on A1. This method accesses at most
log(|V|) nodes in the first-level tree.

For example, suppose we want to compute C(p12) where
s112 = 0.72 and s212 = 0.4. We first compare s112 with the
root s156 = 0.63. As s112 > s156, its left child (i.e., p26) is

1
Note to avoid duplicately comparing two pairs in U(pij), we can

only select pivots from C(pij) and P(pij).

0.5

0.5

0 1

1

pijpij
s1ij = 0.5s1ij = 0.5

s2ij = 0.5s2ij = 0.5

(a) 2d coordinate

0.69

0.53

0.39

0.33

0.28

0.28 0.33

0.45

0.42

0.5

0.51

0.510.50.42 0.45

0.72

0.65

0.77

0.63

0.71 0.75 0.92

0.94

0.94

0.920.75 0.770.71 0.72

0.63

0.690.530.39 0.65

0.25

0.2

0.2 0.25 0.5

0.5

p56

p26
p12

p89

p10,11
p46

p23

p37 p35p34 p27 p24 p47 p57 p13 p45

p67p25

p67

p45p23p13p12p57p46p47

p56p25

p24p10,11
p27

p26p37 p89p35p34

p56

p56

p10,11

p10,11

p37

p37

p35p34

p27p25

p24

p26

p89

(b) Rang Search Tree
Figure 2: Index-based Graph Construction.

g9

g1

g2
g3

g4

g5 g6

g7

g8
boundary

boundary

p67 p45

p12 p13

p23

p27 p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

g9

g2

g1

g8

g3 g4

g5

g7

g6

Figure 3: Vertex Grouping.

a qualified node. Next we go to the right child p12. As
s112 = s112, we visit its left child p46. As s112 > s146, its left
child p47 is a qualified node. Next we go to the right child
p57. As s112 > s157, its left child p57 is a qualified node and
we go to its right node p12. As p12 is a leaf, it is a qualified
node. Next for each qualified node (p26, p47, p57, p12), we
check it on the second attribute. Take p26 as an example.
As s212 = 0.4 is larger than the root’s value, its left child
p37 is a qualified node. We then visit its right child p56. As
s212 ≤ s256, we go to its left child which is a leaf. As the value
is larger than s212, we prune it. Thus the pairs under node
p37 are added into C(p12).
Building The Graph with Range Search Tree. For each vertex
pij , we use the range search tree to find C(pij) and add
vertices in C(pij) as the children of pij . Then we can build
the graph. It is straightforward to generalize 2-dimensional
range trees to m-dimensional range trees.
Complexity. Both the time and space complexities of con-
structing the tree is O(|V| logm−1 |V|). The time complexity
of computing C(pij) is O(logm |V|+ |C(pij)|), where |C(pij)|
is the size of C(pij). After using the fractional cascading
technique [10], the complexity is reduced to O(logm−1 |V|+
|C(pij)|). Thus the overall time complexity of constructing
the graph is O(|V| logm−1 |V|+ |E|).

4.2 Vertex Grouping
Note that some vertices have very close similarities and

we can combine them to reduce the graph size, which not
only reduces the cost but also saves the graph construction
cost. For example, p67 and p45 have close similarities on the
four attributes, i.e., p67:(0.94, 1, 1, 1) and p45:(0.92, 1, 1, 1) as
shown in Table 2. Thus we can combine them as a single
vertex. Next we formulate the problem.

Definition 3 (Vertex Group). Given a threshold ε,
a subset g ⊆ V is called a vertex group, if for any pairs pij
and pi′j′ in g, |skij − ski′j′ | ≤ ε for 1 ≤ k ≤ m.

As the similarities between different pairs in a group should
not have large gap, we use ε to set a constraint. For example,
suppose ε = 0.1. {p26, p34, p35} is a group as the difference
of their similarities on every attribute is smaller than 0.1
(p26:(0.42,0.2,1,0), p34:(0.39,0.2,1,0), p35:(0.39,0.2,1,0)).

Next we partition the vertices into different groups.

Definition 4 (Grouping Strategy). Given a set of
vertices V, a grouping strategy is a partition of V to generate
a set of groups g1, g2, . . . , gx, which satisfies,
(1) Complete: For any pij ∈ V, ∃gt, pij ∈ gt; and
(2) Disjoint: For any two groups gi, gj, gi ∩ gj = φ.

For example, consider the eighteen pairs in Table 1. Given
threshold ε = 0.1, the groups {p67,p45}, {p12}, {p13}, {p23},
{p10,11, p27}, {p57,p47,p46,p56},{p24,p25}, {p26,p34,p89,p35},
{p37} satisfy the two constraints.
Partial Order on Groups. We can define the partial
order on the groups. For any two groups gi and gj ,

gi � gj if ∀p ∈ gi, p′ ∈ gj , p � p′ (5)

gi � gj if ∀p ∈ gi, p′ ∈ gj , p � p′ (6)

Let gk.l/gk.u denote the smallest/largest similarity of pairs
in g on Ak, i.e., gk.l = minpij∈g s

k
ij and gk.u = maxpij∈g s

k
ij .

We can prove that if gki .l ≥ gkj .u for 1 ≤ k ≤ m, gi � gj ; if

gki .l ≥ gkj .u and ∃k gki .l > gkj .u, gi � gj . Thus we can use

gki .l and gkj .u to easily determine the partial orders of two
groups. Given a set of groups, if gi � gj , we add an edge
from gi to gj . Then we can construct a grouped graph.

Definition 5 (Grouped Graph). Given a set of ver-
tices V and a set of groups g1, g2, . . . , gx generated using
the grouping strategy, we construct a grouped graph G′ =
(V ′, E ′), where each vertex in V ′ is a group, and there is an
edge in E ′ from gi to gj if gi � gj.

Coloring The Grouped Graph. We ask workers to color
the grouped graph. If a group is selected to ask, we randomly
select a pair in the group and take the answer of this pair
as the answer of the group. Then we utilize our coloring
algorithm (Section 3.2) to color the grouped graph.
Optimal Group Generation. There are multiple group-
ing strategies. We quantify how good a grouping strategy is.
Obviously, the smaller the number of vertices in the grouped
graph is, the lower the cost is. Thus we aim to generate the
minimum number of groups.

Definition 6. (Optimal Group Generation). Given a set
of vertices V and a threshold ε, we aim to generate the min-
imum number of groups.

We can prove that the optimal group generation problem
is NP-hard as proved in Theorem 1.

Theorem 1. The optimal group generation problem is NP-
Hard. (See Appendix D.1 for the proof.)

We propose a greedy algorithm and a heuristic algorithm.
Greedy Algorithm. The basic idea is that we first gener-
ate all the maximal groups, which are defined as below.

Definition 7 (Maximal Group). A group g is called
a maximal group if ∀pij ∈ V − g, g ∪ {pij} is not a group
(i.e., it does not satisfy the ε-constraint in Definition 3.).

All pairs

[0.28,0.94], [0.2,1]
[0.33,1], [0,1]

p12

(0.61,0.94]
 [0.2,0.6]
 (0.67,1]
 (0.5,1]

 p45 p67

p24 p25 p37
p26 p27 p34 p35

p89 p10,11

p46 p47

p56 p57

(0.61,0.94]
(0.6,1]

(0.67,1]
(0.5,1]

[0.28,0.61]
[0.2,0.6]

 [0.33,0.67]
[0,0.5]

(0.61,0.94]
[0.2,0.6]

 [0.33,0.67]
 [0,0.5]

[0.28,0.61]
[0.2,0.6]
 (0.67,1]
[0,0.5]

p23

p24 p25 p37 p34 p35 p26 p89 p10,11 p27

[0.28,0.41]
[0.2,0.2]

 [0.33,0.33]
[0,0]

(0.42,0.5]
[0.2,0.25]

 [1,1]
[0,0]

p13

(0.61,0.94]
 (0.6,1!

 [0.33,0.67!
 (0.5,1]

(0.61,0.94]
 [0.2,0.6]

 [0.33,0.67]
 (0.5,1]

N1N1

N2N2

N3N3

N4N4

N5N5 N6N6

N7N7

N8N8

N9N9

N10N10

N11N11

[0.33,0.42]
[0.2,0.25]

 [1,1]
[0,0]

(0.41,0.53]
[0.2,0.2]

 [0.33,0.33]
[0,0]

N12N12

Figure 4: The Group Tree.

For example, {p26, p34, p35} is a group, but it is not a
maximal group, because if we add p89, {p26, p34, p35, p89} is
still a group satisfying Definition 3, which contradicts with
Definition 7. {p26, p34, p35, p89} is a maximal group, as we
cannot add any pair to form a new group.

Next we introduce a greedy algorithm (see more details
in Appendix A). We first generate the set of all maximal
groups, denoted by M. Then we greedily pick the largest
group g in M with the maximum number of vertices. For
each gi inM, we remove the vertices in g from gi and update
gi to gi-g. (If gi-g is empty, we remove it fromM.) Next we
iteratively pick the largest group fromM untilM is empty.
This greedy algorithm has a ln(|V|) approximation ratio.
However it is expensive to generate the maximal groups and
the complexity of this greedy algorithm is O(|V|m).

For example, we want to group the vertices in Figure 1.
Firstly, we generate all the maximal groupsM ={{p67, p45},
{p12}, {p13}, {p23}, {p10,11, p27, p26}, {p27, p26, p34, p35},
{p26, p34, p35, p89}, {p47, p57, p46, p56}, {p24, p25}, {p37}}.
Then we select the largest group {p27, p26, p34, p35} from the
maximal group set as a group. Next we remove vertices in
it from other maximal groups. NowM ={{p67, p45}, {p12},
{p13}, {p23}, {p10,11}, {p89}, {p47, p57, p46, p56}, {p24, p25},
{p37}}. Then we select the largest group. Finally the groups
areM ={{p67, p45}, {p12}, {p13}, {p23}, {p10,11}, {p27, p26,
p34, p35}, {p89}, {p47, p57, p46, p56}, {p24, p25}, {p37}}.
Split-Based Algorithm. As the greedy algorithm is ex-
pensive, we propose an efficient algorithm. The basic idea
is that we first take all the pairs as a group, and if any
attribute does not satisfy the threshold constraint, we par-
tition the group based on this attribute. The pseudo code is
shown in Algorithm 2. Formally, we build a tree structure
and the root is N1 = V. Let N i

1 .l/N i
1 .u denote the mini-

mal/maximal similarity of pairs in N1 on attribute Ai. If
N i

1 .u−N i
1 .l > ε, we split N1 based on Ai and generate two

ranges [N i
1 .l,

N i
1.l+N

i
1.u

2
], (
N i

1.l+N
i
1.u

2
,N i

1 .u]; otherwise, we do
not split N1 based on this attribute. Suppose we split N1

based on Ai1 ,Ai1 , . . . ,Ait . We generate 2t children of N1

by enumerating the two ranges of these attributes. For each
node, we add the pairs that fall in the corresponding ranges
into the node. If a node cannot be split on any attribute, it
is a leaf. Finally the groups on leaves are the result.

For example, we walk through our algorithm on the records
in Table 2. Suppose ε = 0.1. Figure 4 shows the group tree.
Firstly, the root N1 ([N 1

1 .l,N 1
1 .u],[N 2

1 .l,N 2
1 .u], [N 3

1 .l,N 3
1 .u],

[N 4
1 .l,N 4

1 .u]) is denoted as ([0.28, 0.94], [0.2, 1], [0.33, 1], [0, 1])
in Figure 4. As N i

1 .u − N i
1 .l > ε for i ∈ [1, 4], we split

[N 1
1 .l,N 1

1 .u], [N 2
1 .l,N 2

1 .u], [N 3
1 .l,N 3

1 .u] and [N 4
1 .l,N 4

1 .u] into

Algorithm 2: Vertex Grouping: Split

Input: G = (V, E)
Output: A set of groups g1, g2, ..., gx
N1 ← V; Priority queue Q = {N1};1

while Q is not empty do2

Pop node Ni from Q;3

for k ∈ [1,m] do4

if N k
i .u−N k

i .l > ε then5

Split Ni based on Ak ;6

if Ni is split by Ai1 ,Ai2 , . . . ,Ait then7

Generate 2t children of Ni;8

Move pairs in Ni into corresponding children;9

Add these children into Q;10

else11

Ni is a leaf and taken as a group g;12

return the groups on the leaves;13

〈[0.28, 0.61], (0.61, 0.94]〉, 〈[0.2, 0.6], (0.6, 1]〉, 〈[0.33, 0.67], (0.67, 1]〉
and 〈[0, 0.5] (0.5, 1]〉 respectively. Then we move each pair
in N1 into the 24 children (empty children are removed).
For i ∈ [1, 4], si45 and si67 are in the range of (0.61, 0.94],
(0.6, 1], (0.67, 1], (0.5, 1], and p45 and p67 are added into
N4. Then we calculate N i

4 .l,N i
4 .u and get ([0.92, 0.94], [1, 1],

[1, 1], [1, 1]). As each range is smaller than ε, N4 = {p45, p67}
is a leaf. Next, we move {p24, p25, p37} into N5 ([0.28, 0.53],
[0.2, 0.2], [0.33, 0.33], [0, 0]). It is not a group and split
again. As [N 2

5 .u − N 2
5 .l] < ε, [N 3

5 .u − N 3
5 .l] < ε and

[N 4
5 .u − N 4

5 .l] < ε, we split N 1
5 and get two leaves N9 and

N10. At last, we get 9 groups (as shown in Figure 3).

Complexity. The tree has at most log 1
ε

levels. Thus the

time complexity of constructing the tree is O(|V| log 1
ε
).

5. QUESTION SELECTION
An important problem is to select the minimum number

of vertices as questions to color all vertices. We first formu-
late the question-selection problem (Section 5.1,) and then
propose a serial algorithm that selects one vertex in each
iteration (Section 5.2) and parallel algorithms that select
multiple vertices in each iteration (Section 5.3).

5.1 Optimal Vertex Selection
We first assume that (1) if a vertex is Green, then all of

its ancestors are Green; and (2) if a vertex is Red, then all
of its descendants are Red. We will discuss how to support
the case that the two conditions do not hold in Section 6.

Definition 8 (Optimal Graph Coloring). Given a
graph, the optimal graph coloring problem aims to select the
minimum number of vertices as questions to color all the
vertices using the coloring strategy.

For example, in Figure 3, if we sequetially select vertices
g8, g7, g5, g2, g3, g4 and g6, we ask 7 questions. The optimal
crowdsourced vertices are g2, g5, g6 and g8 (highlighted by
bold circles), because the colors of these vertices cannot be
deduced based on the colors of other vertices. Next we study
how to identify the optimal vertices. We first introduce a
notation for ease of presentation.

Definition 9 (Boundary Vertex). A vertex is a bound-
ary vertex if its color cannot be deduced based on other ver-
tices’ colors. There are four cases: (1) all of its parents have
different colors with the vertex; (2) all of its children have
different colors with the vertex; (3) it has no child and its
color is Green; or (4) it has no parent and its color is Red.

g8

g2

g3

g4

g5

g6

g7

g1

g2

g3

g4

g5

g6

g7

g1

g8

g9g9

(a) Disjoint Paths

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) 3 Paths, Ask g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) Ask g5

g9

g2

g1

g8

g3 g4

g5

g7

g6

(e) Ask g2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(f) All Colored

Figure 5: Single-Path Method.

g9

g2

g1

g8

g3

g4

g5

g7

g6

(a) Ask g5, g3, g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) Ask g2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) All Colored
Figure 6: Multi-Path Method.

For example, g6 is a boundary vertex as its child g8 has
different color with g6. g4 is not a boundary vertex as its
child g6 has the same color and g4’s color can be deduced
based on g6’s color.

We can prove that all the boundary vertices must be
asked, because their colors cannot be deduced. Thus the
number of asked vertices using any algorithm is not smaller
than the number of boundary vertices. However, as we do
not know the ground truth, we cannot identify the bound-
ary vertices in advance. To address this problem, we propose
effective algorithms to identify the boundary vertices with
theoretical guarantee.

5.2 Serial Algorithm
Comparable Vertices. Given any two vertices pij , pi′j′ ,
if they are comparable, i.e., pij � pi′j′ or pi′j′ � pij , we
may deduce pij ’s color based on pi′j′ ’s color, and vice versa.
Obviously, two comparable vertices must be on a (directed)
path in the graph, and the vertices on a path are totally or-
dered (i.e., any two vertices are comparable). Given a path,
we can use a binary-search method to select the boundary
vertices. Formally given a path, we first ask the mid-vertex
on the path. (1) If the vertex is colored Green, its ancestors’
colors can be deduced but its descendants’ colors cannot be
deduced, and thus we ask the mid-vertex between this ver-
tex and the destination vertex of the path; (2) If the vertex
is colored Red, its descendants’ colors can be deduced but
its ancestors’ colors cannot be deduced, and thus we ask the
mid-vertex between this vertex and the source vertex of the
path. Iteratively, we can find the boundary vertices. For
the path P with |P | vertices, the number of asked vertices
is O(log |P |). This is optimal and cannot be improved in

general. For example, g1 ; g4 ; g6 ; g8 ; g9 is a path.
We first ask the mid-vertex g6. As g6 is Green, we ask the
mid-vertex between g6 and g9, i.e., g8. As g8 is Red, all the
vertices are colored in the path.

Incomparable Vertices. If two vertices are incompara-
ble, we cannot deduce one vertex’s color based on the other
vertex’s color. Suppose there are B incomparable vertices
(any two vertices are incomparable). We can divide the
graph into B disjoint paths (i.e., any two paths have no
common vertices). Then we can ask each path using the
binary search method. As the maximum length of a path
is |V|, the number of asked vertices is O(B log |V|). This is
optimal and cannot be improved in general. This is because
if B = 1, we need to ask log |V| vertices. For example, in
Figure 5, we have 3 disjoint paths g1 ; g4 ; g6 ; g8 ; g9
, g2 ; g5 ; g7, and g3. We need to ask these paths using
the binary-search algorithm.

Finding B Disjoint Paths. We transform the graph G into
a bipartite graph Gb = ((Vb

1 ,Vb
2), Eb), where Vb

1 = Vb
2 = V

and there is an edge between v1 ∈ Vb
1 and v2 ∈ Vb

2 if there
is an edge (v1, v2) ∈ V. We find a maximal matching in
Gb = ((Vb

1 ,Vb
2), Eb), which is a maximal set of edges in Gb =

((Vb
1 ,Vb

2), Eb) where any two edges do not share a common
vertex in Vb

1 and Vb
2 , i.e., for any two edges (v, v′), (u, u′)

in the matching, v 6= u and v′ 6= u′. Obviously any two
edges in the matching sharing the same vertex in V must
be on the same path, i.e., for any two edges (v, v′), (u, u′)
in the matching, if v′ = u, then v ; v′ = u ; u′ must be
on the same path based on the partial order. Note that the
maximal matching can be computed in O(B|V|2)[4]. Based

L
1

L
2

L
3

L
4

g9

g2

g1

g8

g3 g4

g5

g7

g6

L
5

(a) Ask g5, g6

L
1

L
2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) Ask g2

L
1

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) All Colored
Figure 7: Topological-Sorting Based Method.

g9

g2

g1

g8

g3 g4

g5

g7

g6

Figure 8: Error-Tolerant.

Algorithm 3: Question Selection: SinglePath

Input: G = (V, E)
Output: All vertices in V are colored as Green or Red
while there exist uncolored vertices in V do1

Compute disjoint paths using maximal matching;2

Color the longest path using binary search;3

Remove the colored vertices;4

return colored V;5

on this idea, we utilize the maximal matching to find the B
disjoint paths as follows.

Let Y denote the maximal matching, Y1 denote the set of
the first vertices in Y and Y2 denote the set of the second
vertices in Y. Then Vb

2−Y is the set of vertices that have no
in-edges, and we can take them as the first vertex of a path.
For each such vertex v, if it has an edge (v, v′), we take v′ as
the second vertex in the path. Then we check whether v′ has
an edge (v′, v′′). Iteratively, we can find the path starting
at v. The paths computed in our method satisfy: disjoint,
complete and minimal, and the correctness is guaranteed by
the following theorem.

Theorem 2. The set of paths found by the maximal match-
ing of Gb satisfy:
(1) Disjoint: any two paths do not share a vertex;
(2) Complete: the paths contain all the vertices;
(3) Minimal: the size is exactly B and is not larger than the
size of any other set of paths satisfying (1) and (2).

Proof. See Appendix D.2. The proof essentially follows
the Fulkerson’s proof of Dilworth theorem [6].

For example, consider the graph in Figure 3. We construct
a bipartite graph as shown in Figure 5(a). As there is an
edge from g1 to g3 in G, there is an edge from g1 in Vb

1 to g3
in Vb

2 . Thus G and Gb have the same number of edges. Then
we find a maximal matching which is the set of the colored
edges. The vertices g1, g2 and g3 in Vb

2 have no in-edges
in the maximal matching. We compute the disjoint paths
starting from them. From g1 we get path g1 ; g4 ; g6 ;

g8 ; g9; from g2 we get g2 ; g5 ; g7; and g3 itself is a
path. Thus we get 3 disjoint paths.

SinglePath Algorithm. Then we propose a path-based
question-selection algorithm. The pseudo code is shown in
Algorithm 3. It first computes the B disjoint paths. Then it
asks the longest path using the binary-search method, colors
the graphs, and then removes the colored vertices. Next
it recomputes the disjoint paths and asks the next longest
path. Iteratively it can color all vertices. The complexity of
this algorithm is O(B|V|2).

For example, in Figure 5, we first identify the minimal
disjoint paths as shown in Figure 5(a). Then we select the
longest path (Figure 5(b)), ask the path using binary search.
We first ask g6 and color the graph based on the answers
of asked vertices (Figure 5(c)). Next we ask g8 and get
Figure 5(d). Then we recompute the disjoint paths, ask
mid-vertex of the longest path g2 ; g5 ; g7 (Figure 5(d)),
and color the graph (Figure 5(e)). Next as there is only one
vertex left, we ask it and get the final result (Figure 5(f)).
This method totally asks 4 vertices and involves 4 iterations.

5.3 Parallel Algorithm
If users do not care about the latency, the single-path al-

gorithm is a good choice. However if the latency is very cru-
cial, the single-path algorithm is not acceptable as it needs
to post one question at a time on crowdsourcing platforms,
which would result in a long time latency. To address this
issue, we design parallel algorithms, which select multiple
vertices and ask them together in each iteration.

5.3.1 Multi-Path Algorithm
We extend the path-based algorithm to support the par-

allel setting. The pseudo code is illustrated in Appendix B.
We first identify the B disjoint paths and then ask their mid-
vertices in parallel. Based on the answers on these vertices,
we color the graph. Next we remove the colored vertices and
repeat the above step until all the vertices are colored. Fig-
ure 6 shows an example. Note that the parallel algorithm
may generate conflicts. For example, if gi is colored Green
and gj is colored Red, then there is a conflict on g where
g � gi and gj � g, because g is deduced as Green based on
gi and deduced as Red based on gj . To address this issue,
we can use majority voting to vote g’s color.

5.3.2 Topological-Sorting-Based Algorithm
In the multi-path algorithm, the asked vertices may have

ancestor-descendent relationships, and thus it may ask un-
necessary questions. For example, in Figure 6(a), we do not
need to ask g3 and g6 together, as the color of g3 can be
deduced based on the color of g6. To address this issue, we
aim to ask independent vertices in each iteration.

To this end, we perform a topological sorting on the ver-
tices. We first identify the set of vertices with zero in-degree,
denoted by L1. Then we delete them from the graph and find
another set of vertices whose in-degrees are zero, denoted by
L2. We repeat this step until all vertices are deleted. Sup-
pose there are |L| sets, L1,L2, · · · ,L|L|. Obviously vertices
in each Li have no in-edges (as their in-degrees are 0) and
thus can be taken as an independent set. Moreover, the ver-
tices in the sets with small subscripts (e.g., L1,L2) are more

Algorithm 4: Question Selection:TopologicalSorting

Input: G = (V, E)
Output: All vertices in V are colored as Green or Red
while there exist uncolored vertices in V do1

Do a topological sorting on the uncolored vertices in2

G and obtain |L| sets, L1,L2, · · · ,L|L|;
Ask workers to color vertices in L |L|+1

2

;3

return colored V;4

likely to be colored Green and the vertices in the sets with
large subscripts (e.g., L|L|) are more likely to be colored
Red, and thus we cannot deduce the colors of many uncol-
ored vertices based on them. In other words, the boundary
vertices are more likely to be in the middle sets. To this
end, we first ask vertices in L |L|+1

2

.

Next we design a topological-sorting-based algorithm and
Algorithm 4 illustrates the pseudo code. It first computes
topological-sorted sets L1,L2, · · · ,L|L|. Then it asks ver-
tices in L |L|+1

2

in parallel. Based on the results of these

vertices, it colors the graph, removes the colored vertices,
and repeats the above step. Iteratively it colors all vertices.

For example, we construct the topological structure as
shown in Figure 7(a). L1 = {g1},L2 = {g2, g3, g4},L3 =
{g5, g6}, L4 = {g7, g8},L5 = {g9} and |L| = 5. So we se-
lect L3 = {g5, g6} and ask the vertices. After getting their
answers, we obtain Figure 7(b). Then we compute the topo-
logical sorting on the graph of the uncolored vertices. Next,
L1 = {g2},L2 = {g8}. We ask g2. After this iteration, only
g8 is uncolored. We ask it and get the final result (Fig-
ure 7(d)). This method asks 4 vertices and has 3 iterations.

6. TOLERATING ERRORS
There are two types of possible errors in our framework.

The first is caused by workers’ errors and the second is in-
troduced by our coloring strategy. For example, suppose a
vertex pij is actually Red. However the workers wrongly
color it Green. This error is caused by workers. Consider
pij ’s ancestor, pi′j′ , whose color is Red. Our coloring strat-
egy will wrongly color it Green based on partial order. This
error is caused by our coloring strategy. Next we discuss how
to address these errors.

Confidence of Workers’ Answers. To tolerate workers’
errors, we assign each vertex to multiple workers and aggre-
gate their answers. There are many methods to compute
the confidence of workers’ answers, and we take majority
voting as an example and any other techniques can be inte-
grated into our method. Suppose each vertex is assigned to
z workers and y > z

2
workers vote a consensus answer (e.g,

Yes) and z−y workers vote the other answer (e.g., No). The
confidence of the voted answer is c = y

z
.

Error-Tolerant Coloring Strategy. For each crowdsourced
vertex, if the confidence of workers on this vertex is high, e.g,
≥ 0.8, we use our coloring strategy to color its ancestors or
descendants; otherwise, we color it Blue and do not color
its ancestors or descendants. For the Green and Red pairs,
we take them as ground truth as their answers have large
confidences. Next we utilize them to color Blue pairs.

We first need to compute the weights of different attributes
which reflect the importance in determining the colors of
each pair. Let P g denote the set of Green pairs. For every
pij ∈ P g, if skij is large, then attribute Ak plays an impor-
tant role to determine the color of pij , and we should assign
it with a large weight; otherwise it is insignificant to deter-
mine the color of pij . To this end, we assign a weight ωk for

Algorithm 5: Error-Tolerant

Input: G = (V, E)
Output: All vertices in V are colored as Green or Red
while there exist uncolored vertices in V do1

Select a set of uncolored vertices to ask workers;2

for each asked pij with an answer do3

if confidence ≥ 0.8 then4

color pij and its ancestors or descendents;5

else color pij Blue;6

Generate histogram hi and compute Pri;7

for each pi′j′ colored Blue in hi do8

if Pri > 0.5 then color pi′j′ Green;9

else color pi′j′ Red;10

return colored V;11

each attribute Ak as below

ωk =

∑
pij∈Pg s

k
ij∑

pij∈Pg

∑
1≤t≤m stij

. (7)

Then we compute a weighted similarity of pij ,

ŝij =
∑

k∈[1,m]

ωk · skij . (8)

Coloring The Pairs in Low-Confidence Groups. We
use a histogram based method to color pairs in Blue ver-
tices [22, 25]. We first generate equi-depth histograms based
on the weighted similarities of pairs in Green and Red ver-
tices. Each histogram hi contains a set of pairs within a
similarity range. We count the number of Green pairs in
hi and compute the probability Pri that pairs in hi should be
colored Green, i.e., the number of Green pairs to the total
number of pairs in hi. Then we assign the pairs in Blue
vertices into the histograms and color them based on prob-
ability Pri. For example, if a pair falls in a histogram with
high probability of Green, the vertex is colored Green;
otherwise Red. Algorithm 5 shows the pseudo code. It
uses the coloring strategy only for the vertices with high-
confidence answers (line 5) and utilizes the histograms to
color the vertices with low-confidence answers (lines 7-10).

Recall the topological-sorting method in Figure 7(b). The
workers return the answer of g2 with a low confidence, and
we color it Blue and do another topological sorting among
the rest groups, i.e., g8. g8 is colored Blue as workers give
a low confidence answer. We get Figure 8. Then we need to
color pairs in g2 and g8 (i.e., p12, p24, p25) based on the col-
ored pairs. First, we calculate the attribute weight ω based
on the pairs P g ={p12, p67, p45, p23, p46, p56, p47, p57} in
the colored groups. Using Equation 7, we obtain ω ={0.32,
0.28, 0.21, 0.19}. Then we build 5 histograms with width 0.2
(see Appendix C). We compute ŝij of each colored pair by
Equation 8 and assign it into the corresponding histogram.
{p67, p45} are assigned into h5 ([0.8,1]). As all of them are
colored Green, Pr5 = 1. {p23, p13} are assigned into h4

([0.6,0.8)), and Pr4 = 1. {p46, p57, p47, p56, p10,11, p26, p27}
are assigned into h3 ([0.4,0.6)), and Pr3 = 4

7
= 0.57. {p37,

p89, p34, p35} are assigned into h2 ([0.2,0.4)), and Pr2 = 0.
Next we compute ŝij of p12, p24 and p25. For instance,
ŝ12 = 0.32×0.72 + 0.28×0.4 + 0.21×1 + 0.19×0.88 = 0.72,
so we assign it into h4 and color it Green due to Pr4 > 0.5.
Similarly, we color p24 and p25 Red.

7. EXPERIMENT
In this section, we evaluate our methods and report ex-

perimental results. The goals of our experiments include (1)

#Records #Attr #Pairs #Workers/Pair
Restaurant 858 4 5010 5

Cora 997 8 29510 5
ACMPub 66,879 4 204,000 5

Table 3: Three real-world Datasets.
evaluating our proposed techniques and (2) comparing our
method with state-of-the-art approaches.

7.1 Experimental Setting
Datasets. We use three real-world datasets which are widely
adopted by existing works [7, 22, 23, 24]. (1) Restaurant2 is
a restaurant dataset consisting of 858 restaurants with 752
different entities. The dataset has four attributes, Name,
Address, City and Flavor. (2) Cora3 is a dataset of research
papers, which contains 997 records with 191 different enti-
ties. The dataset has 8 attributes: Author, Title, Journal,
Year, Pages, Publisher, Type and Editor. (3) ACMPub4 is a
larger publication dataset consisting of 66,879 records with
5347 different entities. It has four attributes: Author, Title,
Conference and Year. Table 3 shows the details.

Similarity Functions. We use three similarity functions,
Jaccard, edit similarity and bigram Jaccard. For bigram,
we generate bigrams for every attribute and compute Jac-
card on bigram sets as the similarity, where a bigram is a
substring with length 2 and a bigram set contains all the
bigrams in an attribute. We use bigram by default.

Pruning. As ACMPub has 66,879 records, it will generate
66879∗66878

2
= 2, 236, 366, 881 pairs and it is rather expensive

to consider all of them. Following previous work [24, 23],
we compute a similarity score for each pair of records by
Jaccard and prune pairs whose similarity scores are bellow
0.3. After pruning, there are 5010, 29510 and 204000 pairs
left in Restaurant, Cora and ACMPub datasets respectively.

AMT Setting. We use Amazon Mechanical Turk (AMT).
To ensure fair comparison between different algorithms, each
question should be answered by the same workers. To this
end, we crowdsource all pairs in each dataset to AMT and
get their answers. If different algorithms ask the same pair,
they will use the same answer. We assign each question to
five workers and use the weighted majority voting to inte-
grate the answers. We pack every ten pairs in a HIT and
pay 10 cents for each HIT. We vary workers’ accuracy which
can be specified on AMT, where the worker accuracy is com-
puted based on workers’ approval rate in history at AMT.

Comparison. We compare with state-of-the-art methods,
ACD [23], Trans [24] and GCER [25] on the same experimental
setting. We get the source codes of ACD and Trans from the
authors and implement GCER by ourselves.

Evaluation Metrics. For different methods, we compare
the quality, the number of questions, the number of iter-
ations, and the assignment time. For quality, we use F-
measure, which is a combination of precision and recall.
Suppose the set of pairs that refer to the same entity is
ST , and the set of pairs that an algorithm reports as the

same entity is SP . Then the precision is p = |ST∩SP |
|SP |

, the

recall is r = |ST∩SP |
|ST |

, and the F-measure is 2pr
p+r

.

7.2 Evaluating Worker Accuracy
We compare our methods (Power without error-tolerant

techniques and Power+ with error-tolerant techniques) with

2
http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz

3
https://www.cics.umass.edu/smccallum/data/cora-refs.tar.gz

4
http://dbs.uni-leipzig.de/en/research/projects/object matching/

fever/benchmark datasets for entity resolution

state-of-the-art approaches ACD [23], Trans [24] and GCER

[25]. We compare the number of iterations, the number of
questions, and the quality. As GCER requires a parameter to
tune the number of asked pairs, we set this parameter the
same as ACD, i.e., the maximum number of questions among
these algorithms. GCER asks 100 questions in each iteration.
For our two algorithms, we use the split-based grouping algo-
rithm to group the pairs and set the grouping threshold ε as
0.1, utilize the index-based method to construct the graph,
and employ the topological-sorting algorithm to select ques-
tions. We evaluate our graph construction, grouping and
question-selection techniques in Appendix E.

7.2.1 Real Exp: Evaluating Worker Accuracy
Existing studies [24, 22, 7] select the workers with ap-

proval rate above 95% or passing a qualification test to avoid
malicious workers. To evaluate the robustness of the algo-
rithms, we vary the workers’ accuracy. In the real crowd-
sourcing platforms AMT, we can specify the worker accu-
racy by selecting the approval rate. We select three groups
of workers, 70%-80% (70% in the figure), 80%-90% (80% in
the figure) and above 90% (90% in the figure) respectively.
For each group of workers, we ask them to answer our ques-
tions and compare different algorithms. Figures 9-11 show
the results. We make the following observations.
Quality. Firstly, Power+ outperforms Power, because Power+
can tolerate workers’ errors. With the increase of worker
accuracy, the improvement decreases. This is because for
higher worker accuracy, there are fewer errors and Power+

has limited room to further improve the quality. Secondly,
Power+ achieves the same quality as state-of-the-art studies
and even higher. Even for low-quality workers, our methods
still achieve high quality, because (1) Power+ can tolerate
errors by not coloring unconfident vertices (and thus avoid
enlarging the errors by a wrong coloring vertex); and (2)
few pairs invalidate the partial order. Specifically, on the
Restaurant dataset, as the tasks are very easy, most work-
ers can correctly compare each pair, and thus all the meth-
ods achieve high quality. On the Cora dataset, Power+ and
ACD achieve much higher quality than Trans and GCER on
all three groups of workers, because this dataset is harder
and workers may return noisy results. Trans and GCER can-
not tolerate workers’ errors and moreover they may expand
the error propagation due to the transitivity rules. On the
ACMPub dataset, Power+ and ACD still outperform other meth-
ods because both of them consider crowd’s errors. Thirdly,
with the increase of worker accuracy, the quality of all the
algorithms increase, because workers return higher quality
answers. Fourthly, even for workers with different accuracy,
the algorithms achieve similar quality. This is because the
worker accuracy on AMT is computed based on their accu-
racy on history tasks but not on our tasks. A worker will
give higher quality on easy datasets, e.g., Restaurant, and
lower quality on hard datasets, e.g., Cora. To address this
issue, we conduct a simulation experiment in Section 7.2.2.
#Questions. Firstly, our two methods Power and Power+

ask fewer questions than state-of-the-art methods, even by
2 orders of magnitude. This is because we can utilize the
partial order to prune many pairs that do not need to be
asked and use the grouping techniques to reduce the graph
size. The partial order can prune the pairs with larger sim-
ilarities than a Green vertex and the pairs with smaller
similarities than a Red vertex, while the grouping technique
can prune many pairs with similar similarities close to the

0.9

0.92

0.94

0.96

0.98

1

70% 80% 90%

F
-m

e
a
s
u

re

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.6

0.7

0.8

0.9

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0.8

0.84

0.88

0.92

0.96

1

70% 80% 90%

F
-m

e
a
s
u

re

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 9: Quality Comparison by Varying Worker
Accuracy (Real Experiments).

1
10

10
2

10
3

10
4

10
5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

10
5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 10: #Question Comparison by Varying
Worker Accuracy (Real Experiments).

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 11: #Iteration Comparison by Varying
Worker Accuracy (Real Experiments).

asked pairs. Trans can also reduce the number of questions
based on transitivity at the expense of lowering down the
quality. ACD and GCER achieve high quality at the expense
of asking many more questions. For example, on ACMPub,
ACD, GCER, and Trans ask 30,000 questions, and our meth-
ods ask 150 questions. Thus our methods can save 200×
monetary cost than ACD, GCER, and Trans. On Restaurant,
ACD and GCER ask 4100 questions, Trans asks 3900 questions
while Power only asks 51 questions. Thus our methods save
80× monetary cost than ACD, GCER, and Trans. On Cora,
ACD and GCER ask 4800 questions, Trans asks 1020 questions
while our methods only ask 354 questions. Trans saves a
little cost on the Restaurant dataset because only few pairs
satisfy the transitivity rules. Secondly, Power+ asks a few
more questions than Power to tolerate the unconfident ver-
tices and avoid coloring their ancestors and descendants. As
there are few unconfident vertices, the gap between Power+

and Power is trivial. Thirdly, the worker accuracy has little
effect on the number of questions, because (1) our methods
ask few questions and the question number is determined by
the graph structure but not worker accuracy and (2) other
methods do not consider worker accuracy to select questions.
#Iterations. Firstly, our methods involve fewer iterations
than state-of-the-art approaches. This is because (1) our
methods ask smaller number of questions and (2) our meth-
ods can ask many questions in parallel. For example, on the
Restaurant dataset, ACD involves 13 iterations, GCER involves
28 iterations, Trans involves 23 iterations, while Power+ only
involves 5 iterations. On the Cora dataset, ACD involves 18
iterations, Trans involves 10 iterations, GCER involves 19 it-
erations, while Power+ only involves 4 iterations. On the
ACMPub dataset, ACD involves 15 iterations, Trans involves
9 iterations, GCER involves 13 iterations, while Power+ only
involves 5 iterations. Thus our method saves 2-5× latency
cost on the Cora dataset. Secondly, Power and Power+ nearly
have the same number of iterations, because they have lit-
tle difference on the number of asked questions. Thirdly,

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 12: Quality Comparison by Varying Worker
Accuracy (Simulation Experiments).

1
10

10
2

10
3

10
4

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 13: #Question Comparison by Varying
Worker Accuracy (Simulation Experiments).

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 14: #Iteration Comparison by Varying
Worker Accuracy (Simulation Experiments).

the worker accuracy has little impact on the number of it-
erations, because existing studies do not consider worker
accuracy and our methods ask few questions.

7.2.2 Simulation Exp: Evaluating Worker Accuracy
In real experiments, we select workers based on their his-

tory accuracy on AMT. However the approval rates of work-
ers only reflect their history accuracy when they answered
other questions in history but not the accuracy on our ques-
tions. Workers may have different quality on different datasets
and time. For example, on the Restaurant dataset, the
problem is easy, and most workers give a correct answer
even though they have a low history accuracy. On the
Cora dataset, because the dataset is relative dirty and pro-
fessional, many workers return wrong answers even though
they have a high history accuracy. Therefore, the reason
why many previous studies[7, 22, 23, 24] set a high approval
rate is to filter these malicious workers, but this does not
mean that most workers can give right answers under the
high approval rate guarantee. To address this issue, we con-
duct a simulation experiment. We assume the ground truth
is known and generate workers with quality in 70%-80%,
80%-90%, and above 90% respectively. Figures 12-14 show
the results on the simulation experiments.
Quality. Firstly, Power+ significantly outperforms other
methods for low-quality workers, e.g., 70% and 80%. This is
because (1) Power+ can tolerate more errors by postponing
coloring the unconfident vertices, and for low-quality work-
ers, there are many more unconfident vertices. For example,
for those wrongly answered vertices, we do not color them
Green or Red immediately and also do not color their an-
cestors or descendants, which avoid many errors; (2) Power+
can tolerate the malicious answers by first asking middle-
level vertices in the graph and thus has low possibility to
wrongly label some pairs (because a high-level vertex will af-
fect many vertices if it is colored Red and a low-level vertex
will affect many vertices if it is colored Green). ACD out-
performs other baselines, because it tolerates errors based

on the clusters refinement (each cluster contains records re-
ferring to the same entity). However, on the Restaurant

dataset, ACD has lower quality, because there are few records
in each cluster and ACD cannot utilize this limited informa-
tion to infer the answers. Trans and GCER cannot tolerate
errors, and thus they have rather low quality for low worker
accuracy. Secondly, for high worker accuracy, e.g., 90%, all
the algorithms achieve rather high quality as there are few
errors in the workers’ answers. Thirdly, with the increase of
worker accuracy, all the methods achieve higher quality as
they can utilize high quality answers. Power+ outperforms
ACD, which in turns is better than other methods. For ex-
ample, on the Restaurant dataset, in real experiments, all
methods have more than 92% F-measure whatever the work-
ers’ accuracy is, because workers have high quality on this
easy dataset. However, in our simulation experiment, for
70% accuracy, Power+ achieves 92% F-measure while Power,
Trans, ACD, and GCER have 76%, 65%, 77% and 75% F-
measure respectively. For 80% accuracy, Power+ still out-
performs other methods, and all the methods have improve-
ment on quality compared with 70%. For 90% accuracy,
all methods can achieve high quality, e.g., 95%, because the
workers return high-quality answers. On the Cora dataset,
for 70% accuracy, Power+ and ACD have high F-measure and
reach 91% due to tolerating crowd’s errors while Power has
F-measure 86%. Trans and GCER expand the error propa-
gation due to the transitivity rule, whose F-measures are
60% and 65%. For 80% accuracy, Power+ and ACD improve
to 93%. And Power, Trans and GCER are 88%, 80% and
82% respectively. For 90% accuracy, all methods improve
the quality to above 90%. Power+ and ACD still outperform
others. On the ACMPub dataset, similarly to the Restaurant

and Cora datasets, Power+ and ACD outperform other meth-
ods when worker accuracy is low. If worker accuracy is high,
all methods achieve nearly the same quality.
#Questions. Since the worker accuracy has little effect on
the number of questions, there is little difference between
real experiments and simulation experiments. Power+ saves
80×, 10×, 200× monetary cost than ACD, GCER, and Trans

on the Restaurant, Cora, and ACMPub datasets respectively.
#Iterations. Since the worker accuracy has little impact
on the number of iterations, there is little difference between
real experiments and simulation experiments. Our method
still saves 2-5× latency cost on the three datasets.

7.3 Evaluating Similarity Functions
We evaluate the effect of different similarity functions. On

each dataset, we respectively use Jaccard, edit similarity,
and bigram on every attribute to generate the graph and
compare the results for the three similarity functions. Note
that on the Restaurant dataset, Jaccard is not a good sim-
ilarity function for the Name attribute as there are only 1-2
words in the restaurant name; while on the ACMPub dataset,
edit similarity is not a good choice for the Title attribute as
there are many words in the paper title. We want to test
whether our methods and state-of-the-art approaches can
tolerate the noisy results generated by different similarity
functions. We use the worker accuracy of 90%. Figures 15-
17 show the results. We make the following observations.

Firstly, different similarity functions have little impact on
the quality among all the methods, because all of these
methods use a property that the pairs with large similar-
ities have large possibility to refer to the same entity. On
the real datasets, most of the similar functions satisfy this

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a
s
u

re

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a
s
u

re

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a
s
u

re

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 15: Quality Comparison by Varying Similar-
ity Functions (Real Experiments).

1
10

10
2

10
3

10
4

Jaccard Edit-Distance Bigram

#
 o

f
q

u
e

s
ti
o

n
s

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

Jaccard Edit-Distance Bigram

#
 o

f
q

u
e

s
ti
o

n
s

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

Jaccard Edit-Distance Bigram

#
 o

f
q

u
e

s
ti
o

n
s

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 16: #Question Comparison by Varying Sim-
ilarity Functions (Real Experiments).

0

10

20

30

Jaccard Edit-Distance Bigram

#
 o

f
it
e

r
a

ti
o

n
s

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

Jaccard Edit-Distance Bigram

#
 o

f
it
e

r
a

ti
o

n
s

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

Jaccard Edit-Distance Bigram

#
 o

f
it
e

r
a

ti
o

n
s

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Figure 17: #Iteration Comparison by Varying Sim-
ilarity Functions (Real Experiments).
property. For our methods, if the functions do not signifi-
cantly invalidate the partial order, they can be used in our
methods. In addition, existing methods use record-level sim-
ilarity while our methods utilize attribute-level similarity to
evaluate different pairs. Thus our methods can use more in-
formation to determine the partial order. Even if there exist
some noisy functions on some attributes (e.g., Jaccard for
Name and edit similarity for Title), our methods can uti-
lize other similarity functions to obtain a good partial order
and thus can correct the errors caused by the noisy simi-
larity functions. Therefore our methods are robust on real
datasets, even for some noisy functions. Secondly, the simi-
larity functions have little effect on the number of questions,
as the number of questions is determined by the graph struc-
ture and the graphs generated by different functions have no
much difference. Thirdly, the similarity functions have little
impact on the number of iterations, as the number of itera-
tions is determined by the number of questions but not by
the similarity functions.

8. CONCLUSION
We proposed a partial-order based crowdsourced entity

resolution framework. We defined a partial order on record
pairs based on their similarities on every attribute. We pro-
posed a graph-based coloring strategy to deduce the answer
of some pairs based on the answers of asked pairs. We de-
vised two algorithms to construct the graph and proposed
two grouping methods to reduce the graph size. We pro-
posed effective algorithms to judiciously select pairs to ask
in order to minimize the number of asked pairs. We devel-
oped error-tolerant techniques to tolerate the errors. Ex-
perimental results show that our method saves more money
than existing approaches while keeping the same quality.
Acknowledgements.This work was partly supported by the 973

Program of China (2015CB358700), NSF of China (61422205, 61472198),

Huawei, Shenzhou, Tencent, FDCT/116/2013/A3, MYRG105(Y1-L3)-

FST13-GZ, 863 Program(2012AA012600), and Chinese Special Project

of Science & Technology(2013zx01039-002-002).

9. REFERENCES
[1] C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury

selection for decision making tasks on micro-blog services.
PVLDB, 5(11):1495–1506, 2012.

[2] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz.
Pairwise ranking aggregation in a crowdsourced setting. In
WSDM, pages 193–202, 2013.

[3] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An
adaptive crowdsourcing framework. In SIGMOD, pages
1015–1030, 2015.

[4] S. Felsner, V. Raghavan, and J. P. Spinrad. Recognition
algorithms for orders of small width and graphs of small
dilworth number. Order, 20(4):351–364, 2003.

[5] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[6] D. R. Fulkerson. Note on dilworth’s decomposition theorem for
partially ordered sets. American Mathematical Society,
7(4):701–702, 1956.

[7] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing
for entity matching. In SIGMOD, pages 601–612, 2014.

[8] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who
won?: dynamic max discovery with the crowd. In SIGMOD,
pages 385–396, 2012.

[9] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on amazon mechanical turk. In SIGKDD workshop on human
computation, pages 64–67. ACM, 2010.

[10] M. Kreveld, M. Overmars, O. Schwarzkopf, M. d. Berg, and
O. Schwartskopf. Computational geometry: algorithms and
applications, 1997.

[11] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang.
CDAS: A crowdsourcing data analytics system. PVLDB,
5(10):1040–1051, 2012.

[12] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[13] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages
211–214, 2011.

[14] N. Megiddo and K. J. Supowit. On the complexity of some
common geometric location problems. SIAM journal on
computing, 13(1):182–196, 1984.

[15] W. R. Ouyang, L. M. Kaplan, and et al. Debiasing
crowdsourced quantitative characteristics in local businesses
and services. In IPSN, pages 190–201, 2015.

[16] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: declarative crowdsourcing. In CIKM,
pages 1203–1212, 2012.

[17] H. Park and J. Widom. Query optimization over crowdsourced
data. PVLDB, 6(10):781–792, 2013.

[18] T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand.
Adaptive polling for information aggregation. In AAAI, 2012.

[19] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max
algorithms in crowdsourcing environments. In WWW, pages
989–998, 2012.

[20] V. Verroios and H. Garcia-Molina. Entity resolution with crowd
errors. In ICDE, pages 219–230, 2015.

[21] N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing
algorithms for entity resolution. PVLDB, 2014.

[22] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 2012.

[23] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, pages 229–240, 2013.

[24] S. Wang, X. Xiao, and C. Lee. Crowd-based deduplication: An
adaptive approach. In SIGMOD, pages 1263–1277, 2015.

[25] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
selection for crowd entity resolution. PVLDB, 2013.

[26] Y. Zheng, R. Cheng, S. Maniu, and L. Mo. On optimality of
jury selection in crowdsourcing. In EDBT, pages 193–204, 2015.

[27] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A
quality-aware task assignment system for crowdsourcing
applications. In SIGMOD, pages 1031–1046, 2015.

APPENDIX
A. VERTEX GROUPING: GREEDY
Generating Maximal Groups. We first consider the one-
dimensional case, i.e., m = 1. We generate all the maximal

Notation Description
T = {r1, r2, ..., rn} a set or records
A = {A1,A2, ...,Am} a set of attributes

ri[k] value of attribute Ak in record ri
pij (ri, rj)

skij similarity between ri[k] and rj [k]
G = (V, E) a DAG of pairs in T
G′ = (V ′, E ′) a grouped DAG of G = (V, E)

� partial order
C(pij) the child vertex set of pij
P(pij) the parent vertex set of pij
B the number of incomparable vertices

Table 4: Notations Used In This Paper.
groups based on s1ij . We first sort pij based on s1ij in a
descending order, denoted by p1, p2, . . . , pn. For the first
pair p1, we generate a longest group {p1, p2, . . . , pt} where
p1 − pt ≤ ε and p1 − pt+1 > ε. Obviously this longest group
is a maximal group. Next we generate the longest group for
p2. If the longest group of p2 is not contained by that of p1,
it is a maximal group. Iteratively we can generate all the
maximal groups. The complexity is O(|V|2).

For the m-dimensional case, we first generate the maxi-
mal groups Mi on every attribute Ai. Then we join them
to generate the maximal groups, i.e., M1 1 M2 1 · · · 1
Mm = {M1

i1 ∩M
2
i2 ∩ · · · ∩M

m
im} where 1 ≤ ij ≤ |Mj |. We

prove that the generated groups contain all maximal groups.
Then we utilize these groups to run the greedy algorithm.

Theorem 3. M1 1M2 1 · · · 1Mm = {M1
i1 ∩M

2
i2 ∩

· · · ∩Mm
im} contains all maximal groups.

Proof. We prove that for any maximal group, g, there
exist M1

i1 , M2
i2 , · · · , Mm

im , g = M1
i1 ∩M

2
i2 ∩ · · · ∩ M

m
im .

As g is a maximal group, gki .u − gki .l ≤ ε for any attribute
Ak. Let skij = gki .l. We generate the maximal group Mk

ik

on attribute Ak based on skij . Obviously g ⊆ Mk
ik

. Thus

g ⊆ M1
i1 ∩ M

2
i2 ∩ · · · ∩ M

m
im . As g is a maximal group,

g =M1
i1 ∩M

2
i2 ∩ · · · ∩M

m
im .

Algorithm 6 shows the pseudo code. It first generates all
the maximal groups (line 1), and then greedily picks the
largest group (line 3). Finally it updates other groups by
removing the vertices in the largest group (line 5).

B. MULTI-PATH SELECTION ALGORITHM
Algorithm 7 shows the pseudo code. It first finds the min-

imal disjoint paths (line 2) and then asks their mid-vertices
in parallel (lines 4-5). Next it colors the graph based on the
answers and removes the colored vertices (line 6). Finally, it
repeats the above step if there exist uncolored vertices in V.
For example, we first compute the three disjoint paths and
asks their mid-vertices g5, g3 and g6 together in Figure 6. We
get the answers: g5 is Red, and g3 and g6 are Green. We
color the graph based on these three answers(Figure 6(b)).
Next we generate a path: g2 ; g8 and we ask g2. The an-
swer is: g2 is Green, and we color the graph (Figure 6(c)).
Iteratively we color all vertices (Figure 6(d)). This method
asks 5 vertices and involves 3 iterations.

C. EXAMPLE OF ERROR TOLERANT
Recall the example in Figure 8 where g2 and g8 are col-

ored Blue as workers return low-confident answers to them.
We calculate the attribute weight ω based on the pairs P g

={p13, p67, p45, p23, p46, p56, p47, p57} in the colored groups.
Using Equation 7, we obtain ω ={0.32, 0.28, 0.21, 0.19}.

Algorithm 6: Vertex Grouping: Greedy

Input: G = (V, E)
Output: A set of groups g1, g2, ..., gx
Generate maximal groups M;1

while M is not empty do2

Pick the largest group g from M;3

for each gi in M do4

gi = gi − g;5

Algorithm 7: Question Selection: Multi-Path

Input: G = (V, E)
Output: All vertices in V are colored as Green or Red
while there exist uncolored vertices in V do1

Compute B disjoint paths;2

for each path of these disjoint paths do3

N ← mid-vertex of the path;4

Ask N to workers in parallel and color G;5

Removed colored vertices;6

return colored V;7

Then we compute the estimated similarities based on the
weight and Table 18 shows the estimated similarities. Next
we divide the pairs into different histograms and Figure 19
shows the histograms. p12 falls in h4 and is colored Green.
p24 and p25 fall in h2 and are colored Red.

D. PROOF OF THEOREMS
D.1 Proof of Theorem 1

We prove the problem is NP-Hard even m = 2 by a re-
duction from the following rectangle cover problem. In a
rectangle cover instance, we are given a set of points in the
Euclidean plane R2. Our goal is to use the minimum number
of unit squares to cover all points. The problem is known
to be NP-Hard [14]. In our problem, it is easy to see a ver-
tex group can be covered by a square of side length ε. We
can partition the set of vertices into k groups, if and only
if all vertices can be covered by k squares of side length ε.
Therefore, our problem is equivalent to the rectangle cover
problem, thus is NP-Hard as well.

D.2 Proof of Theorem 2
(1) Disjoint: If there exist two paths with common vertices,
this vertex has at least two edges in the maximal matching,
which contradicts with the definition of maximal matching.
(2) Complete: Consider any vertex v. If its in-degree is 0, it
must be covered by a path. If its in-degree is not 0, it has an
in-edge (v′, v). We call v′ the parent of v. If the in-degree
of v′ is 0, v′ and v will be covered by the same path starting
at v′; otherwise we find the parent of v′. Iteratively we find
an ancestor of v whose in-degree is 0, and then v is covered
by the path starting at this ancestor.
(3) Minimal: Let J denote the number of edges in a match-
ing and D denote the number of disjoint paths in the graph.
Fulkerson et al. [6] proved that J +D = |V|. As |V| is fixed,
if we find the maximal matching, then D is minimal.

E. MORE EXPERIMENTAL RESULTS
E.1 Evaluation on Graph Construction
E.1.1 Evaluation on Graph Construction Algorithms

We compare the efficiency of the three graph construc-
tion algorithms (proposed in Section 4.1). (1) Brute-Force:
the brute-force method that compares every two pairs. (2)
QuickSort: the quicksort-based method. (3) Index: the

pij ŝij pij ŝij
p12 0.72 p37 0.21
p13 0.68 p45 0.97
p23 0.60 p46 0.43
p24 0.28 p47 0.42
p25 0.29 p56 0.41
p26 0.40 p57 0.44
p27 0.41 p67 0.98
p34 0.39 p89 0.37
p35 0.39 p10,11 0.44

Figure 18: Estimated
Similarity ŝij.

0 0.2 0.4 0.6 0.8 1

p67

p45

p13

p23

p46

p57

p47

p56

p10,11

p26

p27

p34

p35

p37

p89

Pr
5
=1Pr

4
=1

Pr
2
=0

Pr
3
=0.57

h1 h2 h3 h4 h5

Figure 19: Equi-depth
Histograms.

0

10

20

30

40

50

60

1k 2k 3k 4k 5k

T
im

e
 (

m
s
)

of Pairs

(a) Restaurant

Brute-Force

Quicksort

Index

0

4

8

12

16

20

4k 8k 12k 16k 20k 24k 28k

T
im

e
 (

s
)

of Pairs

(b) Cora

Brute-Force

Quicksort

Index

1

10

100

1000

100k 200k 300k 400k 500k

T
im

e
 (

s
)

of Pairs

(c) ACMPub

Brute-Force

Quicksort

Index

Figure 20: Graph Construction: Efficiency.
index-based method.5 To test the scalability, on ACMPub,
we set the bound τ as 0.18 and generate 500K pairs. Fig-
ure 20 shows the results by varying the number of pairs.
We can see that Index significantly outperforms the other
two methods, even by 1 order of magnitude. For example,
on the Cora dataset with 28k pairs, Brute-Force takes 20
seconds, QuickSort improves it to 10 seconds, while Index

only takes 1 second. On the larger dataset ACMPub, Index
still outperforms other methods and achieves higher perfor-
mance. This is because Index can utilize the range search
tree index to efficiently find the children of a pair and can
prune many unnecessary pairs (e.g., incomparable pairs).
QuickSort outperforms Brute-Force because it can also re-
move some unnecessary pairs based on the partial order.
However the improvement is not signifiant, as many vertices
in the graph are not comparable based on the partial order
and thus many pairs cannot be pruned. For example, in
Restaurant, 70% pairs of records are not comparable. In
Cora, 84% pairs of records are not comparable. In ACMPub,
80% pairs of records are not comparable.

E.1.2 Evaluation on Grouping
We first evaluate our two techniques Greedy and Split

(proposed in Section 4.2). (1) Greedy: it greedily groups the
vertices. (2) Split: it uses the split-based technique. We
first compare the number of groups generated by them. Fig-
ure 21 shows the number of groups and Figure 22 shows the
running time. Note that on the ACMPub dataset, Greedy can-
not report the results within 10 hours and thus we
do not show Greedy in the figure. We have several ob-
servations on the number of groups. Firstly, compared with
the total number of pairs in Restaurant (5,010 pairs), Cora
(29,510 pairs) and ACMPub (204,000 pairs), Split and Greedy

only generate less than 150, 1300 and 700 groups. Thus the
grouping technique can significantly reduce the number of
vertices, and thus can reduce the time latency and the crowd
cost. Secondly, Split generates a few more groups than
Greedy, because Split uses heuristics to generate groups
while Greedy utilizes a greedy strategy to generate high-
quality groups. For example, on the Cora dataset with

5
The three datasets have 4-8 attributes. As it is too complicated

to construct a high dimensional range tree, we use a heuristics:
we choose two important attributes in each dataset to construct 2-
dimensional indexes. When we search the children of a pair, the pairs
reported by the index are a superset as they may not satisfy other
attributes. To addres this issue, we only need to verify them to re-
move the false positives based on other non-indexed attributes. In our
experiment, we choose attributes Name and Address for Restaurant,
Author and Title for Cora, and Author and Title for ACMPub.

0

30

60

90

120

150

180

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(a) Restaurant

Greedy
Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(b) Cora

Greedy
Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(c) ACMPub

Split

Figure 21: Grouping: #Groups.

10
-2

10
-1

1

10

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(a) Restaurant

Greedy Split

10
-2

1

10
2

10
4

10
6

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(b) Cora

Greedy Split

0.5

0.6

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(c) ACMPub

Split

Figure 22: Grouping: Efficiency.

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(a) Restaurant

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) Cora

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) ACMPub

SinglePath-Non-Group
SinglePath-Split

Figure 23: Grouping vs Non-Grouping: Quality.

0

50

100

150

200

250

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0

250

500

750

1000

1250

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath-Non-Group
SinglePath-Split

Figure 24: Grouping vs Non-Grouping:#Questions.

grouping threshold ε = 0.1, Greedy generates 800 groups and
Split generates 1200 groups. Thus if we focus on reducing
the number of groups, we can select the Greedy algorithm.
Thirdly, with the increase of the thresholds, the number
of groups decreases, because groups with larger thresholds
contain more vertices. On the other hand, we can see that
Greedy takes much longer time than Split, even 10000×
slower on larger datasets. For example on the Cora dataset,
Greedy takes more than 10000 seconds while Split only
takes less than 1 second. Thus if we focus on high efficiency,
we recommend the Split algorithm.

We then compare grouping with non-grouping in terms
of quality and the number of questions. We compare three
algorithms. (1) SinglePath-Non-Group, which utilizes Sin-

glePath to ask questions on the original graph without group-
ing. (2) SinglePath-Greedy, which utilizes SinglePath to
ask questions on the grouped graph generated by the Greedy
algorithm. (3) SinglePath-Split, which utilizes SinglePath
to ask questions on the grouped graph generated by the
Split algorithm. Figure 23 shows the quality and Figure 24
shows the number of questions. Note that we do not show
SinglePath-Greedy on the ACMPub dataset as it is too slow.

We have the following observations. (1) The grouping
technique slightly reduces the quality by 2% than the non-
grouping method. The reasons are twofold. Firstly, many
pairs are grouped and we only ask one pair and utilize its
answer to deduce the answer of other pairs in the group.
If the pairs in the same group have different colors, this
method may involve errors. Secondly, there are smaller
number of edges in the grouped graph and we ask fewer
questions. (2) The grouping technique significantly reduces

0.92

0.94

0.96

0.98

1

1k 2k 3k 4k 5k

F
-m

e
a
s
u
re

of pairs

(a) Restaurant

	Random
SinglePath

0.75

0.77

0.79

0.81

0.83

0.85

4k 12k 20k 28k

F
-m

e
a
s
u
re

of pairs

(b) Cora

	Random
SinglePath

0.8

0.85

0.9

0.95

1

50k 100k 150k 200k

F
-m

e
a
s
u
re

of pairs

(c) ACMPub

	Random
SinglePath

Figure 25: Question Selection(Serial): Quality.

50

100

150

200

250

300

1k 2k 3k 4k 5k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(a) Restaurant

Random
SinglePath

0
200
400
600
800

1000
1200
1400

4k 12k 20k 28k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(b) Cora

Random
SinglePath

500

1000

1500

2000

2500

50k 100k 150k 200k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(c) ACMPub

Random
SinglePath

Figure 26: Question Selection(Serial): #Questions.

the number of questions. For example, on the Cora dataset
with ε = 0.1, the non-grouping method asks 800 questions
while the grouping method only asks 80 questions. On the
ACMPub dataset, the non-grouping method asks 1400 ques-
tions while the grouping method asks 163 questions. This
is because the grouping technique can significantly reduce
the graph size. Thus we can utilize grouping techniques to
reduce the cost. (3) The two grouping techniques have no
large difference on the number of question as their graph
sizes are very close. This verifies that we can use Split to
generate the groups. (4) The number of questions is not only
determined by the number of groups, but also the number of
edges. First, fewer groups will lead to fewer questions. Sec-
ond, fewer edges may lead to more questions, because the
answers of many groups cannot be deduced based on the
answers of other groups. With the increase of the group-
ing threshold, the number of groups decreases, and thus the
number of questions should decrease intuitively. However,
with the increase of the grouping threshold, the groups be-
come larger and it is more difficult to add an edge between
two groups. Thus there may be fewer edges in the graph
and the number of questions may decrease.

E.2 Evaluation on Question Selection
E.2.1 Evaluation on Serial Algorithms

We first evaluate the serial question-selection algorithms
and compare two algorithms (proposed in Section 5.2). (1)
Random: which randomly selects a vertex in each iteration.
(2) SinglePath: which selects a vertex from the longest path
in each iteration. We compare the two algorithms on the
non-grouping graphs. Figure 25 shows the quality and Fig-
ure 26 shows the number of questions. We can see that
SinglePath outperforms Random and reduces the number of
questions. For example, on the Restaurant dataset with
5000 pairs, Random asks 250 pairs while SinglePath only
asks 150 pairs. On the ACMPub dataset, Random asks 2500
pairs while SinglePath only asks 1400 pairs. This is because
SinglePath can effectively identify the boundary pairs us-
ing a binary search strategy. On the other hand, SinglePath
achieves similar quality with Random as the question order
does not significantly affect the quality. Thus we can utilize
the SinglePath to select questions.

E.2.2 Evaluation on Parallel Algorithms
We then evaluate the parallel question-selection algorithms

(proposed in Section 5.3). We compare three algorithms: (1)
SinglePath: which selects a vertex from the longest path
in each iteration. (2) Multi-Path: which selects multiple

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Figure 27: Question Selection(Parallel): Quality.

0

20

40

60

80

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

0

100

200

300

400

500

600

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

0

50

100

150

200

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Figure 28: Question Selection(Parallel):#Questions.

1

10

10
2

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

1

10

10
2

10
3

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

1

10

10
2

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Figure 29: Question Selection(Parallel):#Iterations.

10
-1

1

10

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

1

10

10
2

10
3

10
4

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

1

10

10
2

10
3

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Figure 30: Question Selection(Parallel): Time.
vertices from multiple disjoint paths in each iteration. (3)
Power: which selects multiple independent vertices based on
topological sorting in each iteration. We compare the qual-
ity, the number of questions, the number of iterations, and
the assignment time in each iteration to select the questions
for workers. Figures 27-30 show the results.

(1) For quality, we can see that the three methods achieve
similar quality, because different question orders will not
affect the quality based on the partial order. (2) For the
number of questions, we can see that the two parallel al-
gorithms Multi-Path and Power ask a few more questions
than SinglePath. The reason is evident that Multi-Path

may ask pairs with ancestor-descendent relationships and
Power may ask pairs with the same descendants which can
be avoided by serial algorithms based on the partial order.
Power outperforms Multi-Path because Power asks indepen-
dent questions in each iteration while Multi-Path may ask
dependent questions. (3) For the number of iterations, the
two parallel algorithms Multi-Path and Power significantly
outperform SinglePath as they ask questions in parallel.
For example, on the Cora dataset, Power and Multi-Path

only have 4 iterations while SinglePath involves 200 itera-
tions. On the ACMPub dataset, Power and Multi-Path have
5 iterations while SinglePath involves 113 iterations. Thus
Power and Multi-Path can significantly reduce the latency.
In practice, we need to use the parallel algorithms. (4) For
assignment time, all the three algorithms can assign tasks
within 1 second. Multi-Path and SinglePath take longer
time than Power as they are expensive to find multiple inde-
pendent paths using the graph matching algorithm, which
is consistent with the complexity analysis, while Power only
needs to compute the topological sorting which is efficient.

0.9

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-
m

e
a
s
u
r
e

Threshold (ε)

(a) Restaurant

	Power

Power+

0.75

0.77

0.79

0.81

0.83

0.85

0.1 0.15 0.2 0.25 0.3

F
-
m

e
a
s
u
r
e

Threshold (ε)

(b) Cora

	Power

Power+

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-
m

e
a
s
u
r
e

Threshold (ε)

(c) ACMPub

	Power

Power+

Figure 31: Error Tolerant: Quality.

0

20

40

60

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

	Power
Power+

0

100

200

300

400

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

	Power
Power+

0

50

100

150

200

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

	Power
Power+

Figure 32: Error Tolerant: #Questions.

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
r
a
ti
o
n
s

Threshold (ε)

(a) Restaurant

	Power

Power+

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
r
a
ti
o
n
s

Threshold (ε)

(b) Cora

	Power

Power+

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
r
a
ti
o
n
s

Threshold (ε)

(c) ACMPub

	Power

Power+

Figure 33: Error Tolerant: #Iterations.

0

0.2

0.4

0.6

0.8

1

5 6 7 8

F
-m

e
a
s
u
re

of attributes

(a) F-measure

0

2

4

6

5 6 7 8

#
 o

f
it
e
ra

ti
o
n
s

of attributes

(c) # of iterations

0

200

400

600

800

1000

5 6 7 8

#
 o

f
q
u
e
s
ti
o
n
s

of attributes

(b) # of questions

Figure 34: Evaluation by Varying #Attributes(Cora).

E.3 Evaluation on Error-Tolerant Techniques
We evaluate the error-tolerant techniques (proposed in

Section 6) and compare two algorithms. (1) Power: which
does not consider errors. (2) Power+: which extends Power

to tolerate errors. We compare quality, the number of ques-
tions, and the number of iterations. As they have the same
assignment time, we do not compare the assignment time.
We build 20 histograms. Figures 31-33 show the results.
Power+ achieves better quality than Power, especially on

the Cora dataset, because it can tolerate the errors intro-
duced by workers and the partial order. For example, on the
Cora dataset with ε = 0.1, Power only has 79% F-measure
while Power+ improves the quality to 83%. On the ACMPub

dataset, Power has 87% F-measure while Power+ improves
to 90%. On the Restaurant dataset, the improvement is
not signifiant because the dataset is easy and Power already
achieves 96% F-measure. On the other hand, Power+ asks a
little more questions than Power as Power+ does not utilize
the partial order for some pairs and thus reduces the number
of deduced pairs. The two methods have the same number
of iterations, because the only difference is that Power+ does
not deduce the answers for some unconfident pairs. Thus we
can use the error-tolerant technique to improve the quality.

E.4 Evaluation on The Number of Attributes
We vary the number of attributes on the Cora dataset

and Figure 34 shows the results. We can see that with the
increase of attribute numbers, the number of questions in-
creases, because it is harder to add edges between pairs for
more attributes and thus the number of edges decreases.
Similar to the number of questions, the number of itera-
tions slightly increases. The quality is not affected as it is
determined by the partial order and the crowd error.

	Introduction
	Preliminaries
	Problem Definition
	Related Work
	Crowdsourced Entity Resolution
	Other Related Work

	Partial-Order-Based Framework
	Partial Order
	Graph-Based Algorithm

	Graph Construction
	Graph Construction Algorithms
	Vertex Grouping

	Question Selection
	Optimal Vertex Selection
	Serial Algorithm
	Parallel Algorithm
	Multi-Path Algorithm
	Topological-Sorting-Based Algorithm

	Tolerating Errors
	Experiment
	Experimental Setting
	Evaluating Worker Accuracy
	Real Exp: Evaluating Worker Accuracy
	Simulation Exp: Evaluating Worker Accuracy

	Evaluating Similarity Functions

	Conclusion
	References
	Vertex Grouping: Greedy
	Multi-Path Selection Algorithm
	Example of Error Tolerant
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	More Experimental Results
	Evaluation on Graph Construction
	Evaluation on Graph Construction Algorithms
	Evaluation on Grouping

	Evaluation on Question Selection
	Evaluation on Serial Algorithms
	Evaluation on Parallel Algorithms

	Evaluation on Error-Tolerant Techniques
	Evaluation on The Number of Attributes

