
ARating-RankingMethod for Crowdsourced Top-k Computation
Kaiyu Li, Xiaohang Zhang, Guoliang Li

Department of Computer Science and Technology, Tsinghua University, Beijing, China

liky15@mails.tsinghua.edu.cn,zhangxiaohang12@tsinghua.org.cn,liguoliang@tsinghua.edu.cn

ABSTRACT
Crowdsourced top-k computation aims to utilize the human ability

to identify top-k objects from a given set of objects. Most of existing

studies employ a pairwise comparison based method, which first

asks workers to compare each pair of objects and then infers the

top-k results based on the pairwise comparison results. Obviously,

it is quadratic to compare every object pair and these methods

involve hugemonetary cost, especially for large datasets. To address

this problem, we propose a rating-ranking-based approach, which

contains two types of questions to ask the crowd. The first is a

rating question, which asks the crowd to give a score for an object.

The second is a ranking question, which asks the crowd to rank

several (e.g., 3) objects. Rating questions are coarse grained and can

roughly get a score for each object, which can be used to prune

the objects whose scores are much smaller than those of the top-

k objects. Ranking questions are fine grained and can be used to

refine the scores. We propose a unified model to model the rating

and ranking questions, and seamlessly combine them together to

compute the top-k results. We also study how to judiciously select

appropriate rating or ranking questions and assign them to a coming

worker. Experimental results on real datasets show that our method

significantly outperforms existing approaches.

ACM Reference Format:
Kaiyu Li, Xiaohang Zhang, Guoliang Li. 2018. A Rating-RankingMethod for Crowd-

sourced Top-k Computation. In Proceedings of 2018 International Conference
on Management of Data (SIGMOD/PODS ’18). ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3183713.3183762

1 INTRODUCTION
Given a set of objects, top-k computation aims to find the top-

k objects from the set. Due to its widespread applications, it is

widely used in many real-world systems, such as search engine

and recommendation system. Top-k computation requires to use

comparison operations to compare different objects. However, many

comparison operations are hard to process by computers but can

be easily compared by human, e.g., comparing the clarify of two

photos, comparing the understanding difficulty of two sentences,

and comparing answers’ quality of a question in Yahoo! answers.

Recently some crowdsourcing platforms, e.g., Amazon Mechani-

cal Turk and CrowdFlower have been deployed, and we can harness

the crowd to compute top-k objects. However, the crowd may re-

turn incorrect answers, and traditional top-k algorithms cannot

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183762

tolerate the errors from the crowd. Thus, crowdsourced top-k com-

putation has been widely studied, which asks the crowd to compare

objects and infers the top-k objects based on the crowdsourced

comparison results. There are many real-world applications for

crowdsourced top-k computing. For example, in Q&A systems, like

Yahoo! Answer and Stack Overflow, we need to rank the answers of

a question [18]. In image search, given 1000 photos of a restaurant,

we want to find top-k photos that are most appealing and best

describes the restaurant, for doing advertisements [16].

Existing algorithms[5, 16, 31, 37] utilize pairwise comparison

to compute the top-k results, which asks the crowd to compare

two objects and infers the top-k answers based on the comparison

results. However, it is quadratic to compare every object pair. Since

the crowd is not free, these methods involve huge monetary cost.

For example, given 10 thousand objects, it requires to ask 50 million

pairwise questions. To address this problem, we propose a rating-

ranking based approach, which contains two types of questions.

The first is a rating question, which asks the crowd to give a score

for each object. The second is a ranking question, which asks the

crowd to rank several (e.g., 3) objects. Rating questions are coarse

grained and can roughly get a score for each object, which can be

utilized to prune the objects whose scores are smaller than those of

the top-k objects. Ranking questions are fine grained and can be

used to refine the scores. We seamlessly combine the two types of

questions together to compute the top-k results. Our method can

significantly reduce the monetary cost.

Our approach contains two main steps. The first step infers top-k
results based on the current answers of rating and ranking ques-

tions, called top-k inference. We model the score of each object as

a Gaussian distribution, utilize the rating and ranking results to

estimate the Gaussian distribution, and infer the top-k results based

on the distributions. The second step selects questions for a coming

worker, called question selection. Based on the probability of an

object in the top-k results, we can get two distributions: real top-k
distribution and estimated top-k distribution. Thus we propose an

effective question selection strategy that selects questions to mini-

mize the distance between the real distribution and the estimated

distribution. As it is rather expensive to minimize the difference,

we propose effective heuristics to improve the performance.

To summarize, we make the following contributions.

(1) We propose a rating-ranking based framework for crowdsourced

top-k computation (Section 2). To the best of our knowledge, this

is the first framework that uses the rating and ranking questions to

compute the crowdsourced top-k answers.

(2)We design a unified model to model ranking questions and rating

questions and seamlessly combine rating answers and ranking

answers to infer the top-k results (Section 3).

1
Guoliang Li is the corresponding author.

https://doi.org/10.1145/3183713.3183762
https://doi.org/10.1145/3183713.3183762


SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

(3) We devise an effective question-selection framework to judi-

ciously assign questions to workers (Section 4).

(4) Experimental results on real datasets show that our method

significantly outperforms existing approaches (Section 5).

2 A RATING-RANKING BASED FRAMEWORK
We first formulate the problem and then introduce truth model,

question model and worker model. Next we present our framework.

2.1 Problem Formulation
Definition 2.1 (Crowdsourced top-k Computation). Given an ob-

ject set O = {o1,o2, · · · ,on }, where the objects are comparable

but hard to compare by machines, find a k-size object set K =

{o1,o2, · · · ,ok } where oi is preferred to oj (denoted by oi ≺ oj ) for
oi ∈ K and oj ∈ O − K .

For example, Table 1 shows six objects. Suppose we want to

identify top-3 earliest releasedmovies. o1,o2,o3 are the top-3 results.

If we only have movie titles or movie posters, it is hard to compute

the top-3 results. Instead, we utilize the crowd to find top-3 results.

2.2 Question, Truth, Worker Models
Truth Model. We model each object oi by a Gaussian distribution

N (µi ,σi ). If we have the value µi , we can easily sort the objects

and compute the top-k results [31, 35, 43]. We will discuss how to

compute the two parameters µi and σi based on workers’ answers

and how to utilize them to infer the top-k answers later. Our frame-

work can be extended to support other data distributions of the

object scores. Appendix A gives the details.

Question Model. To ask the crowd, we use two types of questions,
rating questions and ranking questions, formally defined as below.

Definition 2.2 (Rating Question). Rating question asks the crowd

to give a rating for an object oi .

For example, consider object o2=“The Pianist” in Table 2. A rating

question is to ask the crowd to provide the release year of the movie.

Table 2 shows the answers for each rating question, where each

question is assigned to 3 workers. The rating answers for o2 are

(2002, 1997, 2005). The truth of o2 is 2002.

Definition 2.3 (Ranking Question). Ranking question asks the

crowd to rank y objects, e.g., y = 3 objects.

For example, Table 3 shows three ranking questions, where each

question has 3 objects and is assigned to 5 workers. The rank-

ing answers for (o1,o2,o3) are {⟨o2,o1,o3⟩, ⟨o3,o2,o1⟩, ⟨o1,o2,o3⟩,

⟨o1,o2,o3⟩, ⟨o1,o3,o2⟩}. And the truth for (o1,o2,o3) is ⟨o1,o2,o3⟩.

Worker Model.We model worker quality for the rating question

and the ranking question respectively.

(1) Worker Model for Rating Question. Let ri j denote the rating re-
sult of worker w j on object oi , and Ri denote the set of answers
on object oi from all workers. Suppose we compute the average

µi =
1

|Ri |

∑ |Ri |
j=1

ri j and variance σi =
√

1

|Ri |

∑ |Ri |
j=1

(ri j − µi )2. In-

tuitively, if ri j is closer to µi , the workerw j has higher quality. We

use the cumulative distribution function C to evaluate the closeness

between ri j and µi . If ri j ≤ µi , C (ri j ; µi ,σi ) denotes the cumulative

distribution on the left of ri j as shown in Figure 1(a). Obviously

the larger the area on the left of ri j is, the closer ri j and µi are.

Thus,

C (ri j ;µi ,σi )
1/2

can be used to evaluate the closeness. If ri j > µi ,

Table 4: Notations.
O a set of n objects

R all rating answers

P all ranking answers

Ri rating answers for object oi
Pi ranking answers for ranking question pi
ri j rating answer for oi that answered by workerw j
pi j ranking answer for pi that answered by workerw j
Erwi

rating quality estimation for workerwi
E
p
wi ranking quality estimation for workerwi

µi average value for object oi
σi variance value for object oi
Rwi ratings answered by workerwi
Pwi rankings answered by workerwi
Pri overall top-k probability estimation for oi
C cumulative distribution function

λri j confidence for rating answer ri j
λpi j confidence for ranking answer pi j

1−C (ri j ; µi ,σi ) denotes the cumulative distribution on the right of

ri j as shown in Figure 1(b), and

1−C (ri j ;µi ,σi )
1/2

can be used to evalu-

ate the closeness. Then combining the two cases, we can evaluate

the worker quality ofw j on oi .
Let Rw j denote the set of rating answers by worker w j . By

considering all the questions worker w j has answered, we can

compute the rating accuracy for workerw j , denoted by Erw j
.

Erw j
=

∑ |Rwj |
i=1

2η · C (ri j ; µi ,σi ) + 2(1 − η) · (1 − C (ri j ; µi ,σi ))

|Rw j |

(1)

where

η =



1 if ri j ≤ µi

0 if ri j > µi

Based on the rating answers in Table 2, suppose we have com-

puted the distributions foro1,o2,o3:N (2004.7, 0.47),N (2001.3, 3.30),
N (2000.3, 3.77). Consider workerw1 who rates o1,o2,o3.w1 gives

the rating result 2005 for o1, 2002 for o2, and 2003 for o3. For the

first rating result 2005 of o1, as 2005 is on the right of the aver-

age value 2004.7, so η = 0 in this case. We should compute the

right part of cumulative distribution as shown in Figure 1, which

is 1 − C (2005; 2004.7, 0.47) = 0.26. Then the closeness for rating

result 2005 is computed as
1−C (2005;2004.7,0.47)

1/2
= 0.52. For the sec-

ond rating result 2002 for o2, we find that 2002 is still at the right

part of the average value, so the closeness for 2002 is computed

as
1−C (2002;2001.3,3.30)

1/2
= 0.83. For the last rating result 2003 for o3,

the rating result is on the right of the average value, then η is 0, and

the closeness for 2003 is computed as
1−C (2003;2000.3,3.77)

1/2
= 0.47.

So we can compute the average closeness for all the rating results

answered by workerw1 as
0.52+0.83+0.47

3
= 0.61. In the same way,

we can compute the accuracy for workers w2,w3,w4,w5,w6 as

(0.28, 0.30, 0.43, 0.17, 0.59).
(2) Worker Model for Ranking Question. Let pi j denote the answer
for a ranking question pi by workerw j . As pi may have multiple

answers from different workers, we need to aggregate them to gen-

erate a ranking p∗i as the true ranking result for ranking question pi .
Then we can compute a distance between pi j and p

∗
i . The smaller



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

Title Truth

o1 A Beauti f ul Mind 2001

o2 The Pianist 2002

o3 Findinд Nemo 2003

o4 Million Dollar Baby 2004

o5 Batman Beдins 2005

o6 The Departed 2006

Table 1: Objects.

o1 o2 o3 o4 o5 o6
w1 2005 2002 2003 – – –

w2 2004 1997 – 2004 – –

w3 2005 2005 1995 – – –

w4 – – – 2004 2005 2006

w5 – – – 1980 2015 2001

w6 – – 2003 – 2004 2004

Table 2: Rating Results

(o1,o2,o3) (o2,o3,o4) (o1,o2,o4)
w3 – ⟨o3,o2,o4⟩ ⟨o1,o2,o4⟩

w4 ⟨o2,o1,o3⟩ ⟨o2,o3,o4⟩ –

w5 ⟨o3,o2,o1⟩ ⟨o4,o3,o2⟩ ⟨o4,o1,o2⟩

w6 ⟨o1,o2,o3⟩ – ⟨o2,o1,o4⟩

w7 ⟨o1,o2,o3⟩ ⟨o2,o3,o4⟩ ⟨o1,o2,o4⟩

w8 ⟨o1,o3,o2⟩ ⟨o2,o3,o4⟩ ⟨o1,o2,o4⟩

Table 3: Ranking Results

µi µirij rij
(a) (b)

C(rij ; µi, �i)
1 � C(rij ; µi, �i)

Figure 1: Rating Quality Estimation.

the distance is, the better the ranking answer pi j is. Next we com-

pute the average distance for all the ranking results from worker

w j . We use this average distance to represent the ranking quality

for worker w j . There are many functions to model this distance,

and we use the Kendall tau distance [40] in this paper, which is

the number of inverse object pairs between two rankings. Consider

two ranking results pi j and pil for the same ranking question pi by
workerw j andwl . pi j [ou ] is the position of ou in pi j and pil [ov ] is

the position of ov in pil . The Kendall tau distance is defined as:

ktd(pi j ,pil ) =
∑
u<v
I(u,v ) (2)

where

I(u,v ) =



1 if pi j [ou ] < pi j [ov ] & pil [ou ] > pil [ov ]

0 otherwise

For example, the Kendall tau distance for ⟨o1,o2,o3⟩ and ⟨o1,o3,o2⟩

is 1, because the number of inverse pairs for the two rankings is 1.

Given a ranking question pi , we compute an aggregated rank-

ing result p∗i that has the least number of inverse pairs compared

with all the collected ranking results for pi . Let ktd(pit ,p
∗
i ) de-

note the Kendall tau distance between pi j and p
∗
i . The number of

object pairs in ranking question pi is
(
|pi |
2

)
which is the maximal

Kendall tau distance among all ranking results pit to p
∗
i . Obviously,

the larger ktd(pi j ,p
∗
i ) is, the larger the number of inverse pairs

is, and the lower quality pi j is. Then we can use ktd(pi j ,p
∗
i ) to

compute the quality of pi j . We use (

( |pi |
2
)−ktd(pi j ,p∗i )

( |pi |
2
)

) to compute

the quality of ranking answer pi j . Assuming p∗ = ⟨o1,o2,o3⟩, and

pi j = ⟨o2,o1,o3⟩, so we can compute the quality for ranking answer

pi j as
( |pi |

2
)−ktd(pi j ,p∗i )

( |pi |
2
)

=
3−1

3
= 67%.

Given the ranking answer set Pw j of all the ranking results

answered by workerw j , we define the ranking quality of worker

w j as below.

E
p
w j =

∑ |Pwj |
i=1

(
( |pi |

2
)−ktd(pi j ,p∗i )

( |pi |
2
)

)

|Pw j |

(3)

Algorithm 1: Crowdsourced Top-k Framework

Input: Objects O; Budget B; Budget in each round b
Output: top-k highest ranked objects K

P= ϕ; // collected ranking answers1

R = ϕ; // collected rating answers2

E = ϕ; // quality estimation for workers3

while B > 0 do4

Q =Selection(O,b,P,R, E);5

Publish questions Q to the crowdsourcing platform;6

Collect ratings
¯R and rankings

¯P from the crowd;7

R = R + ¯R; P = P + ¯P; B = B − b;8

K =Inference(O,R, P, E);9

Return K ;10

For example, workerw3 has given the ranking results ⟨o3,o2,o4⟩,

⟨o1,o2,o4⟩ for questions (o2,o3,o4) and (o1,o2,o4). For question
(o2,o3,o4), based on current ranking results in Table 3, we find that

⟨o2,o3,o4⟩ is the best aggregated ranking result. The Kendall tau

distance for ⟨o3,o2,o4⟩ and ⟨o2,o3,o4⟩ is 1. The number of object

pairs in a the ranking result (o2,o3,o4) is
(
3

2

)
= 3. So the quality for

ranking result ⟨o3,o2,o4⟩ is computed as
3−1

3
= 0.67. For question

(o1,o2,o4), based on ranking results as shown in Table 3, the best

aggregated ranking result is ⟨o1,o2,o4⟩. And the Kendall tau dis-

tance of the ranking result ⟨o1,o2,o4⟩ answered by workerw3 for

(o1,o2,o4) is 0 compared to the current best aggregated ranking re-

sult. Besides, the maximal Kendall tau distance for ⟨o1,o2,o4⟩ and all

the ranking results is 2. So the quality for ranking result ⟨o1,o2,o4⟩

is computed as 1 − 0

2
= 1.0. Then we can compute an average rank-

ing quality forw3 as
0.67+1.0

2
= 0.83. Similarly, based on Equation 3,

we can compute the ranking accuracy for (w4,w5,w6,w7,w8) as
0.83, 0, 0.75, 1.0, 0.89.

2.3 Algorithm Overview
Algorithm 1 shows the framework of our top-k algorithm. The

algorithm contains two main components: top-k inference and

question selection. When a worker requests questions, the question

selection component selects some ranking or rating questions to ask

(line 5). When a worker submits her answers, the top-k inference

component infers the top-k answers based on the current results

(line 9). Given a budget B, it adopts an iterative strategy. In each

iteration, it selects b rating and ranking questions and publishes all

these questions to the crowdsourcing platform. After collecting the

results of the asked questions, the algorithm will infer the top-k
answers based on the current results. The algorithm terminates

when the budget runs out.



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

2.3.1 Top-k Inference. The top-k inference includes two main

steps. (1) It computes the average rating µi and variance σi based on
the current results. (2) It infers the top-k results based on average

µi and variance σi .
(1) Computing µi and σi . A simple way is to only use the rating

results: µi =
1

|Ri |

∑ |Ri |
j=1

ri j , σi =
√

1

|Ri |

∑ |Ri |
j=1

(ri j − µi )2. However,

this approach has some drawbacks. The first drawback is that it

neglects the fact that the confidence for each rating answer is

different. The second drawback is that this method only considers

rating answers. To overcome these two shortcomings, we propose

an effective way. Firstly, we compute a weight for each rating and

ranking answer to denote the confidence of the answers. Secondly,

we propose a model that combines rating and ranking answers

together. By optimizing this model, we get an estimation for each

Gaussian parameter µi and σi . Section 3 gives the details.

(2) Inferring top-k results. A simple way is to sort the objects

based on µi in an ascending order and identify the first k objects as

top-k results. However, if the estimation of µi is not accurate, this
methodwill have low quality, because some objects should be in top-

k results but their µ values are not accurately estimated. To address

this problem, we first select a pivot value px , and then compute the

probability for oi in the top-k results, which is probability that µi
smaller thanpx and can be computed by the cumulative distribution

function as below

Pri = C (px ; µi ,σi ) (4)

which is the size of the left area of the cumulative distribution for

oi in Figure 2.

Then we will sort all the overall top-k probabilities in descending

order, and select the k objects with the largest probabilities as the

top-k results.

Note that it is rather important to select a good value of px since

different values have different effects on the top-k results. A small

value will lead to that many objects have probability of 0 and a

large value will cause that many objects have probability of 1, and

thus it is hard to differentiate such objects. To address this issue,

we propose an effective method to estimate px .
Once the value of pivot px is determined, based on the current

Gaussian distribution for each object, the overall top-k probability

for each object is determined based on Equation 4. Then we will

sort all the overall top-k probabilities in a descending order, and get

a discrete probability curve DR as shown in Figure 3. Note that in

the ground truth, an object will either belong to top-k set K or not.

So the overall top-k probability for each object in the ground truth

is 1 or 0. If we sort all the ground truth overall top-k probability

in descending order, then we will get a two-stage discrete curve

DG as shown in Figure 3. Thus we want to select px that minimize

the KL distance between DG and DR . To achieve this goal, we can

enumerate every µi and select the one minimizing the KL distance.

Note that actually, we only need to enumerate the objects close to

µk to achieve high performance.

2.3.2 Question Selection. Based on the two distributions in Fig-

ure 3, i.e., top-k probability distribution for ground truth DG and

the estimated probability distribution DR , our goal in question se-

lection is to narrow the distance between DG and DR as soon as

px

oi−1 oi oi+1

Pri+1

Pri

Pri−1

Figure 2: Top-k probability of oi−1,oi ,oi+1.

n0

1

k

DG

DR

DG
Figure 3: Ground truth distribution DG and estimated dis-
tribution DR .

µi
wj1

rij1

wj2

rij2

wj3

rij3 µi
wj1

rij1

λrij1

wj2

rij2

λrij2

wj3

rij3

λrij3

original distribution

(a) (b)
Figure 4: Weighted Rating Distribution.

possible by utilizing both rating and ranking questions. As men-

tioned in Section 2.3.1, the distance is evaluated by the relative

entropy of DG and DR , which is KL(DG | |DR ). For rating questions,
we enumerate every object, and compute the expected improve-

ment for the probability curve respectively. For ranking questions,

assuming the size of the ranking question is y, there are total
(n
y

)
combinations of objects. We calculate the expected improvement

of the probability curve for each combination. Then we select the

question to minimize the distance KL(DG | |DR ) from those n rating

questions and

(n
y

)
ranking questions. If multiple questions should

be selected, we select questions based on the distance in descending

order. However, there are two challenges. The first is how to esti-

mate the answer of a worker if a question is assigned to the worker

and how to estimate the probability distribution. The second is

that the complexity for the enumeration algorithm is high. We will

address these two challenges in Section 4.

3 INFERENCE METHOD
This section focuses on how to effectively compute the average

µi and variance σi . We first compute a confidence for each rating

or ranking result, and then aggregate all the rating and ranking

results together utilizing the calculated confidences to compute the

average and variance.



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

3.1 Computing Confidence For Each Result
The confidence for each rating or ranking result is different. The

larger the confidence, the more reliable of the result. Besides, based

on the value of confidence, we can effectively narrow the variance

for each object. To compute the confidence, we consider two factors,

worker’s accuracy and the distribution of the answers.

3.1.1 Computing Confidence For Rating Result. Wearemore con-

fident for a rating answer given by a worker with higher accuracy.

In example of Figure 4, we can see oi is labeled by three workers

w j1,w j2,w j3, their rating answers are respectively ri j1, ri j2, ri j3.
We assume their rating accuracies in descending order are respec-

tively Erw j2
, Erw j1

, Erw j3
. Thus we believe ri j2 is more reliable than

ri j1, which in turn is more reliable than ri j3.
We expect that the variance of an object is small such that the

distribution overlap of different objects are small, because with a

smaller value of variance, the object can be more distinguishable,

and we can narrow the distance of the current probability curve

and the ground truth probability curve faster. To this end, we want

to assign the rating answers close to the average result with a

large weight, and assign the rating answers having large distance

to the average result with a small weight. Based on this idea, we

compute the distribution weight eri j for rating result ri j based on

the probability density function as below.

eri j = f (ri j ; µi ,σi ) =
1√

2σ 2

i π
exp[−

(ri j − µi )
2

2σ 2

i
]

(5)

Then we can combine the worker accuracy and rating answer

distribution together to compute a confidence for each rating result

as follows

λri j =
√
(Erw j )

2 + (eri j )
2

(6)

Therefore, λri j1 =
√
(Erw j1 )

2 + (eri j1)
2
, λri j2 =

√
(Erw j2 )

2 + (eri j2)
2
,

λri j3 =
√
(Erw j3 )

2 + (eri j3)
2
.

Based on the confidence for each rating answer, we can compute

a weighted average and variance values based on Equation 7 and

Equation 8.

µi =

∑ |Ri |
j=1

λri j ri j∑ |Ri |
j=1

λri j
(7)

σ 2

i =

∑ |Ri |
j=1

λri j (ri j − µi )
2∑ |Ri |

j=1
λri j

(8)

In Equations 7 and 8, λri j is the confidence for this rating result.

After the computation of the weighted Gaussian distribution, we

will obtain a new probability distribution as shown in Figure 4(b).

Based on the new probability distribution, we can update the accu-

racy estimation forw j1,w j2 andw j3 using Equation 1. Moreover,

in the new distribution Figure 4(b), the distribution weight ei j1, ei j2
and ei j3 are also updated. Thus we can iteratively update the confi-

dence λri j for each rating result ri j , and compute a new probability

distribution. This procedure will continue until the confidences λ
are finally converge. By utilizing λ, after the iteratively computation

of Equations 7 and 8, we can narrow the variance for each object.

For example, the rating answers for object o2 are {2002, 1997,

2005}. If we only consider the rating result itself, then the average

value for o2 is 2001.3, and the variance is 3.3. Based on the proba-

bility density function of N (2001.3, 3.3), the probability for 2002 is

0.118, and the probability for 1997 is 0.051, and the probability for

2005 is 0.065. So we think that for object o2, 2002 is more reliable if

only considering the data distribution itself.

Next we discuss how to compute the worker accuracy by taking

o2 as an example, which is labeled by worker {w1,w2,w3}. Based on

all the rating answers, the rating accuracy for them are {0.61, 0.275,

0.301} based on Equation 1. Then the confidences for {(w1, 2002),
(w2, 1997), (w3, 2005)} are {0.61, 0.28, 0.31}. Based on the confi-

dence we can compute a new distribution for o2, and the new aver-

age is 2001.6, and the new variance is 1.63. When the confidences

for rating answers are gradually converged, the confidences for

{(w1, 2002), (w2, 1997), (w3, 2005)} are {0.57, 0.34, 0.23}.

3.1.2 Computing Confidence For Ranking Result. To compute

the confidence for ranking answers, the basic idea is similar to

the confidence computation of rating answers. We still consider

worker’s quality and the distribution of the ranking answers. We

have defined how to compute the worker quality.

Recall that p∗i is the aggregated ranking result based on the

ranking answers. pi j is the answer for question pi by worker w j .

ktd(p∗i ,pi j ) is the Kendall tau distance (i.e., the number of inverse

pairs) between p∗i and pi j .
(
|pi |
2

)
− ktd(pi j ,p

∗
i ) is the number of

pairs with the same order between p∗i and pi j . Thus the larger(
|pi |
2

)
− ktd(pi j ,p

∗
i ) is, the higher the confidence is. Thus we use

e
p
i j to capture the weight for ranking answer pi j according to the

distribution of ranking answers.

e
p
i j =

(
|pi |
2

)
− ktd(pi j ,p

∗
i )(

|pi |
2

) (9)

If we also take the worker’s ranking accuracy into consideration,

then the confidence for each ranking answer can be computed based

on the following equation

λpi j =
√
(E

p
w j )

2 + (e
p
i j )

2
(10)

Based on the confidence for each ranking answer, we can recom-

pute a new aggregated ranking result according to Equation 11.

p∗i = arg max

|Pi |∑
j=1

λpi j

1 + ktd(p∗i ,pi j )
(11)

In Equation 11, λpi j is the confidence for ranking answerpi j . ktd(p
∗
i ,pi j )

is the Kendall tau distance for p∗i and pi j . Pi denotes all the ranking
answer of pi . Usually, the size of the ranking question is smaller

than 10, so we can enumerate all the permutations of the rank-

ing question, and find the permutation with the largest value of

Equation 11 as the aggregated ranking result. According to p∗i , we
can update the distribution weight for each ranking answer based

on Equation 9, and update the ranking accuracy for workers that

answering question pi using Equation 3. At last, we can recalculate

the confidence for each ranking answer via Equation 10. The above

process will continue until the confidences λ of the ranking answers
is finally converge.



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

For example, in Table 3, the ranking results for (o2,o3,o4) are
{⟨o3,o2,o4⟩, ⟨o2,o3,o4⟩, ⟨o4,o3,o2⟩, ⟨o2,o3,o4⟩, ⟨o2,o3,o4⟩}. They are

respectively answered byw3,w4,w5,w7,w8. Based on Equation 9,

the distribution weights for the ranking answers are respectively

0.67, 1.0, 0, 1.0, 1.0. Besides, based on Equation 3, the ranking accura-

cies for workersw3,w4,w5,w7,w8 are 0.83, 0.83, 0, 1.0, 0.89. So the

confidences for (w3, ⟨o3,o2,o4⟩), (w4, ⟨o2,o3,o4⟩), (w5, ⟨o4,o3,o2⟩),
(w7, ⟨o2,o3,o4⟩), (w8, ⟨o2,o3,o4⟩) are 1.07, 1.30, 0, 1.41, 1.34. Based
on the confidence of each ranking answer, the next aggregated

ranking result for (o2,o3,o4) is still ⟨o2,o3,o4⟩. So the distribution

weight and the worker’s ranking accuracy are converged.

3.1.3 Iterative Confidence Estimation. Initiallywe need to equally
initialize the confidence for each rating and ranking result. Then

based on the initialization of the confidences, we can compute a

weighted Gaussian distribution for each object using Equations 7

and 8. Besides, an aggregated ranking result p∗i can also be com-

puted based on Equation 11. Therefore, according to the current

aggregated results, we can update the rating and ranking accuracy

for each worker based on Equations 1 and 3. At last we will recal-

culate the confidences for all the answers. The above process will

continue until all the confidences are finally converge.

3.2 Combing Rating and Ranking
We present how to combine rating and ranking answers to compute

the average µi and variance σi . To achieve this goal, we first use

the Plackett-Luce ranking model which can obtain a score for each

object based on the ranking results and then propose a unified

model to combine the ranking results and rating results.

3.2.1 Top-k Inference Algorithm. The Plackett-Luce model [15,

26] is a widely used ranking model that can be utilized to compute

the probability for a permutation. Consider three objects oi , oj
and ol and a ranking sequence p = ⟨oi ,oj ,ol ⟩. The probability

for permutation p by the general form of Plackett-Luce model is

computed as

Ps (p) =
ϕ (si )

ϕ (si ) + ϕ (sj ) + ϕ (sl )
·

ϕ (sj )

ϕ (sj ) + ϕ (sl )
·
ϕ (sl )

ϕ (sl )
(12)

Ps (p) is the likelihood for permutation p, and ϕ is an increasing and

strictly positive function. And si , sj , sl are the scores for objects oi ,
oj , ol . Obviously C (px ; µi ,σi ) is an increasing and strictly positive

function and we can use it to replace ϕ (si ). Then we can update

the scores si , sj , sl by maximizing Ps (p) as follows.
Supposing we have a set of ranking answers p11 = ⟨oi ,oj ,ol ⟩,

p12 = ⟨oj ,oi ,ol ⟩, p13 = ⟨oi ,ol ,oj ⟩. Then we want to compute

(µi ,σi ), (µ j ,σj ) and (µl ,σl ) by the following maximum likelihood

estimation.

L1 =

3∑
t=1

log(
Cp1t (1)

Cp1t (1) + Cp1t (2) + Cp1t (3)
·

Cp1t (1)

Cp1t (1) + Cp1t (2)
·
Cp1t (3)

Cp1t (3)
)

(13)

where p1t (j ) represents the j-th object in permutation p1t and

Cp1t (j ) is the corresponding cumulative distribution for objectp1t (j ).
For example, the first object in p11 is oi , so p11 (1) = oi . The
second object in p11 is oj , so p11 (2) = oj . Cp11 (1) = C (px ; µi ,σi ),
Cp11 (2) = C (px ; µ j ,σj ). We take the general BFGS(Broyden-Fletcher-

Goldfarb-Shanno) [13] optimizer to optimize L1 in Equation 13.

Then (µi = −1.18,σi = 7.26), (µ j = 4.48,σj = 6.25), (µl =
12.08,σl = 0.07).

Next we also want to add the rating answers into the likelihood

function. Suppose oi ,oj ,ol have three rating answers. And we can

reformulate the likelihood function L1 to L2 as follows

L2 =

3∑
t=1

log(
Cp1t (1)

Cp1t (1) + Cp1t (2) + Cp1t (3)
·

Cp1t (1)

Cp1t (1) + Cp1t (2)
·
Cp1t (3)

Cp1t (3)
)

+

3∑
y=1

log( f (riy ; µi ,σi )) +
3∑

y=1

log( f (r jy ; µ j ,σj )) +
3∑

y=1

log( f (rly ; µl ,σl ))

(14)

In Equation 14, ri∗ represents the rating answer for object oi . f is

the probability density of the normal distribution. After optimizing

the new likelihood function L2 by Maximum likelihood estimation,

we can compute the value by combing both rating and ranking

questions. However the rating and ranking have different weights,

next we formally combine them together based on the following

likelihood function.

L =τ

|P |∑
i=1

∑
pi j ∈Pi

λpi j log[

|pi j |∏
l=1

Cpi j (l )∑ |pi j |
h=l Cpi j (h)

]

+ (1 − τ )

|R |∑
i=1

∑
ri j ∈Ri

λri j log f (ri j ; µi ,σi )

(15)

In Equation 15, P is the set of all the ranking questions, Pi
is a ranking question, pi j is the ranking answer for question Pi
answered by workerw j , pi j (l ) is the lth object in ranking answer

pi j , and Cpi j (l ) is the cumulative distribution C (px ; µpi j (l ) ,σpi j (l ) ).

R is the set of all the rating questions, Ri is a rating question,

ri j denotes rating answer for question Ri answered by worker

w j , and f is the probability density of the normal distribution. In

addition, λpi j is the confidence for ranking answer pi j , and λri j is
the confidence for ranking answer ri j . τ is a tuning factor to control

the weight of rating and ranking results. If the rating result is more

confident, τ is smaller than 0.5; otherwise τ is larger than 0.5. Next

we optimize L by maximum likelihood estimation to compute the

average µ and variance σ for all objects. To optimize Equation 15,

we use gradient descent to update the estimation for µ and σ .
For example, in Figure 1, if we only utilize the rating answers,

then the top-2 objects will be o2 and o3. By introducing rank-

ing answers, after the optimization of Equation 15, we get a new

estimation for the gaussian parameters. µ1 = 1998.5,σ1 = 4.7,

µ2 = 2000,σ2 = 4.5, µ3 = 2003.5,σ3 = 5.5, µ4 = 2009.6,σ4 = 7.8,

µ5 = 2007.6,σ5 = 5.2, µ6 = 2003.5,σ6 = 4.5. After enumerating

all 6 average values from µ1 to µ6, we find that µ2 is most suitable

for px . Then the overall top-k probabilities are Pr1 = 0.63, Pr2 =

0.5, Pr3 = 0.26, Pr4 = 0.11, Pr5 = 0.07, Pr6 = 0.22. Based on the

refined estimation, we find that the top-2 results are o1 and o2.

Remark. In Equation 15 we use a linear combination to combine

rating and ranking, and thus the order of rating and ranking will

not affect the inference result. We can use some golden tasks (i.e.,

mixing some tasks with ground truth) to determine the weight τ .
Based on the golden tasks, we can compute the ranking quality

qrank and rating quality qrate . Then we can compute weight of

rating as τ =
qrate

qrate+qrank
.



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

4 QUESTION SELECTION METHOD
Question selection is a key component in the crowdsourced top-k
framework. Different ways of selecting questions will have different

effects. Previous selection algorithms [5, 31, 43] focus on getting

a total ranking order for all objects. However, we only care about

the top-k results in this paper. To this end, we first formulate the

question selection problem and propose an optimal algorithm in

Section 4.1. As the complexity of the optimal algorithm is too high,

we propose a heuristic algorithm in Section 4.2.

4.1 Optimal Question Selection
Figure 3 shows our motivation in the question selection. The blue

curveDG is the real overall top-k probability, where each element in

the x-axis is an object sorted by the probability in the top-k answers

in descending order and y-axis is the corresponding probability.

DR is the estimated top-k probability. Initially, the overall top-k

probability for each object is
k
n . After we collect some rating and

ranking answers, we have a knowledge of the objects and the overall

top-k probability for each object will be updated as DR . So we

want to select questions to narrow the gap between the estimated

probability curve (e.g. DR ) and the real probability curve (DG ) as

soon as possible. In addition, we assume the current probability

curve is Di . And the distance for Di and DG is computed by KL

distance KL(DG | |Di ).
2

We first discuss the case that assigning one question to a worker

and then extend it to assigning multiple questions. The algorithm

contains the following steps.

(1) Enumeration. 1.1) Enumerate each possible rating question and

possible ranking question. 1.2) Estimate the possible answer for the

rating question and ranking question. 1.3) Update µi and σi based
on the estimated answers using the top-k inference technique. 1.4)

Compute the top-k probability of each object based on Equation 4

and get the updated probability. 1.5) Compute the KL distance.

(2) Selection. Select question with the minimal KL distance.

Next we discuss how to address step 1.2. For each rating question,

e.g., oj , we use the expectation for oj as the estimated answer by the

worker, i.e., µ j . Thus Rj = Rj + {µ j }. Then we bring the new rating

answer Rj and all the related ranking answers that involved object

oj into the inference component in Section 3. Next we recompute

the confidence λ for every rating answer in Rj . And we recalculate

(µ j ,σj ) by Equation 15 considering all rating answers of Rj and

all the related ranking answers that involved oj . Based on the new

values of (µ j ,σj ), we can recalculate the overall top-k probability

Pr j for oj . Suppose the current curve is Di . Then the probability

curve will be changed to D ′i . We then compute the improvement

∆r j of rating question r j as ∆r j = KL(DG | |Di ) − KL(DG | |D
′
i ).

For ranking questions, taking p1 = (o1,o2,o3) as an example, we

enumerate every permutation p11 = ⟨o1,o2,o3⟩, p12 = ⟨o1,o3,o2⟩,

p13 = ⟨o2,o1,o3⟩,p14 = ⟨o2,o3,o1⟩,p15 = ⟨o3,o1,o2⟩,p16 = ⟨o3,o2,o1⟩

of the three objects, and compute the probability for each permuta-

tion. For example, one possible ranking answer is p11 = ⟨o1,o2,o3⟩.

We assume each object is independent. Then the difference of two

independent Gaussian distributions also follows the Gaussian distri-

bution. For example, the difference of o1 − o2 follows the Gaussian

2
For the convenience of computation of KL distance between DG and Di . We use a

small value of 1e − 6 to replace 0 for the values greater than k in DG .

distribution N (µ1 − µ2,
√
σ 2

1
+ σ 2

2
). The probability for o1 smaller

than o2 is C (0; µ1 − µ2,
√
σ 2

1
+ σ 2

2
). So the probability for ranking

answer p11 is computed as

Fp11
=

2∏
i=1

3∏
j=i+1

C (0; µi − µ j ,
√
σ 2

i + σ
2

j ) (16)

Based on this ranking answer p11 = ⟨o1,o2,o3⟩, the ranking answer

set P1 will become to P1 = P1 + {p11}. According to the new value

of P1, we calculate the new confidence λ for each ranking answer

in P1. Then we utilize P1 and other rating and ranking answers

that included at least one of {o1,o2,o3} to re-estimate the value

of (µ1,σ1), (µ2,σ2) and (µ3,σ3) by Equation 15. Then the overall

top-k probability of Pr1, Pr2, Pr3 can be recomputed, and we get a

new probability curve D ′i . So the improvement of p11 is computed

as ∆p11
= KL(DG | |Di ) − KL(DG | |D

′
i ). Similarly, we can compute

the improvement for p12, p13, p14, p15, p16, as ∆p12
, ∆p13

, ∆p14
, ∆p15

,

∆p16
, and the probability for them can be computed as Fp12

, Fp13
,

Fp14
, Fp15

, Fp16
that are similar to Equation 16. So the expected

improvement by asking question p1 is computed as

∑
6

i=1
Fp1i ·∆p1i .

Assuming the size of ranking questions is y. We need to enumer-

ate all the combinations of the objects O and calculate the expected

improvement for

(n
y

)
candidate ranking questions. Afterwards, we

combine all the rating and ranking questions together, and select

questions in descending order of the expected improvement. As

there are total n +
(n
y

)
questions, if we utilize Batch Gradient De-

scent in optimizing Equation 15, the complexity is O (n2(y+1) ). If n
is large, the complexity of the enumerate algorithm is too high to

be utilized in real online question selection scenarios. To address

this issue, we propose a heuristic algorithm in Section 4.2.

4.2 Heuristic Selection Method
We propose a probability-based method to reduce the complexity of

question selection from

(n
y

)
to

(m
y

)
, wherem is a constant number.

Ifm is large, e.g., close ton, the performance improvement is limited

but it keeps as high quality as the optimal method; ifm is small, e.g.,

close to y, the performance improvement is significiant, but it has

low quality as it prunesmany objects. Moreover, as we only consider

m rather than n objects, we can also improve the performance of

Gradient Descent for optimizing Equation 15.

Initially, we publish some rating questions to the crowdsourc-

ing platform and collect the rating results. We sort the objects in

decreasing order according to the µi of each object oi and get the

top-k result A. Then we get two types of objects. The first is the

top-k objects in ground truth but not be selected as top-k inA. The

second is top-k objects in A but not the real top-k in the ground

truth. In the following iterations, we publish rating and ranking

questions for these two types of objects rather than for the n objects.

It is hard to detect these two types of objects. We propose Algo-

rithm 2 to detect these objects and generate new rating and ranking

questions in each iteration (to improve line 5 in Algorithm 1). For

each object oi , we use the rating answer R and workers’ Quality E

to calculate an error probability EPi for oi . In each iteration, if we

selectm objects and the size of ranking question is y, there will be

totallym +
(m
y

)
questions and the budget is b. So we can calculate



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

Algorithm 2: QuestionSelection
Input: Objects O; Budget in each round b; Ranking answer P;

Rating answer R; Worker Quality E

Output: Selected questions Q

EP= ϕ; // Error probability for all of the objects1

for i = 1 to n do2

I = ϕ ;3

for j inWi do4

I = I∪ Interval(Rij ,E
i
j )5

EPi =ErrorProbability(I);6

Computem bym +
(m
y

)
= b;7

Q=Top(EP ,m);8

Return Q;9

m while b is known in the line 7 in Algorithm 2. Then we select

objects with top-m error probability and generate questions.

Next we focus on how to calculate the error probability EPi for
object oi . For an object oi , its rating results follow the Gaussian dis-

tribution. The mean µi of the distribution is the real rating answer

of oi . We assume the variance σ of each of the distribution of oi
is stable which is predefined. However, the results from different

workers may have different bias. As we have the accuracy Eij for

j-th worker who answers oi , the rating answer of oi answered by

this worker is Rij . We have known that:

Pr (Rij |ri = µi ) = Φ(µi ,σ , l ) =

∫ µi+l

µi−l

1

√
2πσ

exp[−
(x − µi )

2

2σ 2
] = Eij

(17)

s .t . µi − l ≤ R
i
j ≤ µi + l .

For j-th worker who answer oi , we have a high confidence that

the value of µi will be in the interval [µ
i, j
lb , µ

i, j
ub ] where µ

i, j
lb is the

lower bound for µi and µ
i, j
ub is an upper bound for µi as shown in

Figure 5. For each workerw j who answers rating answer of oi , we

can calculate such [µ
i, j
lb , µ

i, j
ub ]. Then we get a lower bound µilb by

considering all the minimal values, i.e. µilb = min
|Wi |
j=1

µ
i, j
lb and an

upper bound µiub = max
|Wi |
j=1

µ
i, j
ub according to the results fromWi

whereWi is the set of workers who answer rating question of oi .
In line 6 of Algorithm 2, we calculate an error probability for oi .
In the top-k result R, let µk−th denote the mean of the k-th object.

Then the interval I for oi has two parts. [µ
i
lb , µk−th] is outside the

top-k in R and [µk−th , µ
i
ub ] is inside the top-k in R as shown in

Figure 6. Then we calculate the error probability EPi for oi as:

EPi =




µk−th−µ ilb
µ iub−µ

i
lb

oi is in the top-k result

µ iub−µk−th
µ iub−µ

i
lb

oi is not in the top-k result

(18)

For example, o2 is answered by workersw1,w2 andw3 soW2 =

{w1,w2,w3} and R
2

1
= 2002, R2

2
= 1997, R2

3
= 2005. It is easy to

calculate that µ2=2001.33. The variance is σ = 3.3 as calculated in

Section 2.2. We also know that E2

1
= 0.61, E2

2
= 0.28, E2

3
= 0.30.

We calculate interval for w1 that Interval(R2

1
,E2

1
) = [µ2,1

lb , µ2,1
ub ]

= [1999.16, 2004.83]. We can also calculate [µ2,2
lb , µ2,2

ub ] = [1995.82,

1998.18] and [µ2,3
lb , µ2,3

ub ] = [2003.73, 2006.27]. Then we have [µ2

lb ,

95% 95%

µi,j
lb µi,j

ub

Ri
j

µi,j
lb − l µi,j

lb + l µi,j
ub + l

µi,j
ub − l

Figure 5: Interval for oi of j-th worker.

µi

top-1

top-2

top-3

……

top-k

µk−th

…

µi
lb µi

ub

Figure 6: Error Probability for oi .

µ2

ub ] = [1995.82, 2006.27]. If we sort the 6 objects according to

current rates and select the top-3. The value of the third object is

2003.7. o2 is not in the top-3. However, the possible range for o2 is

[1995.82, 2006.27]. So we may misplace o2 with an error probability

of
2006.27−2003.7
2006.27−1995.82

= 0.246. Suppose we select m = 3 objects to

generate new questions. We calculate error probability from o1 to

o6 and select 3 objects with higher error probability.

Notice that we tune the parameters to get a proper m in our

heuristic algorithm. Whenm = y, it is easy to utilize Algorithm 2

but we may lose many objects who are rated wrongly by workers.

When the m is too big, it will be benefit for calculating the real

answer but it will be expensive. In real application, we can always

find a trade-off to get a properm.

In each iteration, we will use the selection algorithm once. It will

be verified by experiments that our heuristic selection algorithm

has a higher potential to converge in high probability after each

iteration. The summation of the error probabilities in EP for all

the n objects will be smaller and smaller as we iterate to select the

proper objects for generating questions.

Remark. When we consider all the n objects, the complexity of

optimizing Equation 15 is O (n2(y+1) ). However, as we reduce n
to a much smallerm above, the complexity of Equation 15 can be

reduced to O (m2(y+1) ). As batch gradient descent iterates many

times, we propose to use stochastic gradient descent to replace

it which only considers a small sample of the whole dataset and

uses the sample to iteratively compute the parameters. It converges

more quickly than batch gradient descent. Thus, we can reduce the

complexity of Equation 15 to O (m(y+1) ). In most of the case, it is

very small as y is always less than 5 andm is always less than 10.

4.3 Extension to Assign Multiple Questions
Our selection algorithm is easy to adapt to assign multiple (e.g.,

b) questions to a worker. As we infer the top-k probability after

getting the answers of these b assigned questions, the order of these

b questions have no influence to the score µ and variance σ , because
we will use these b questions together to update µ and σ . So we can
see that whatever the order of questions, the likelihood function

is the same. In this way, we still use our selection algorithm to

iteratively select b questions.



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

5 EXPERIMENTS
5.1 Experimental Setting
Datasets. We used three real datasets to evaluate our method.

EventTime3. We collected 115 famous history events in modern

history fromWikipedia and asked crowd to rank them by event time.

Workers were asked to give the specific year for these events. For

example, “Russian Revolution ends the Russian Empire” happened

at 1917 and “Cuban Revolution” happened in 1959.

MovieTime. We collected 235 most famous movies from IMDB and

asked the crowd to rank them by release time. We provided workers

the title and poster of the movie, and workers were asked to give

the release year for the movie. For example, “The Dark Knight” was

released in 2008 and “Braveheart” was released in 1995.

IMDB-RANK. We asked the crowd to rank the above movies and

took the ratings in IMDB as the ground truth. We aimed to check

whether a small number of workers can recover the rankings in

IMDB.We provided workers with the title of movies. In rating tasks,

workers were asked to give a rating from 1 to 10. In ranking tasks,

workers were asked to give a ranking of 5 given movies.

Questions. Each ranking question contained 5 objects. We col-

lected 10 rating answers for each object and 5 ranking answers

for each ranking question. The price of each rating question was

$0.01 and that of each ranking question was $0.05. We conducted

experiments on AMT.

Quality Metrics. We used the same evaluation metrics [44] to

compare different algorithms. Assuming Ak was the top-k results

returned by an algorithm, and T k was the real top-k results. The

first quality metric Recall was defined as
|Ak∩T k |

k . The second

metric wasACCk that also measured the order for the top-k results.

ACCk =




1 k = 1 & Ak = T k

0 k = 1 & Ak , T k∑
oi ,oj ∈Tk ∩Ak

I(i, j )

k (k−1)/2
k ≥ 2

(19)

where ti was the real ranking position for object oi , and ai was

the ranking position returned by an algorithm. I(i, j ) = 1 if Aki <

Akj ∧T
k
i < T

k
j ; otherwise I(i, j ) = 0.

Setting.We implemented all the algorithms on aMacbook pro with

2.5 GHz Intel Core i7 CPU and 16GB RAM.

5.2 Evaluation of Inference Methods
Competitors.We compared with six existing methods.

SPR [18] used statistical tools to improve the quality by confidence

level. Based on the pairwise comparisons, it attempted to minimize

the total monetary cost of the top-k processing within a Select-

Partition-Rank framework.

CrowdGauss [31] used pairwise comparisons as questions. It first

computed a score for each object using maximum likelihood esti-

mation (MLE) and Thurstone model [35]. Then it computed top-k
results based on the scores.

CrowdBT [5] also utilized pairwise questions. It considered worker

quality and computed the score based on BTL model [2].

Combine [43] used both ratings and pairwise comparisons as ques-

tions. Rating answersweremodeled byGaussianmodel, comparison

answers were modeled by Thurstone model, and MLE was utilized

to compute the score for each object.

3
https://en.wikipedia.org/wiki/Timeline_of_modern_history

Hybrid [17] also used ratings and pairwise comparisons. It first

used rating answers to filter objects, and then used pairwise com-

parisons to further compare the objects. Then based on all the

rating and comparison answers, a modified PageRank was utilized

by Hybrid to compute the score.

SpectralMLE [6] contained two stages. The first stage initialized

the score for each object by RankCentrality [27]. The second step

refined the scores by using MLE.

5.2.1 Real Experiments – Varying #Questions. Existing studies
used either rating or comparison questions. To make a fair compar-

ison, we set the rating and comparison question as a unit and the

ranking question took 5 units. For example, given a budget of 5000

questions, we could ask either 5000 rating question, 5000 compar-

ison questions, 1000 ranking questions, or 1000 rating questions

and 800 ranking questions. We varied the question numbers and

Figure 7(a) shows the Recall results.
We had the following observations. Firstly, RateRank signifi-

cantly outperformed other inference algorithms, because RateRank
used rating answers to remove many objects not in the top-k results

and used ranking answers to refine the results around top-k results.

Secondly, CrowdBT [5] was better than other existing competitors

because it considered both the structure of the graph composed

by the pairwise comparisons and the workers’ quality. Thirdly,

Combine [43] and CrowdGauss [31] were machine learning meth-

ods, which used Gaussian model to model the noise in the pairwise

comparisons. The only difference was that Combine also utilized

the rating answers. However, in MovieTime dataset, the average ac-
curacy of rating answers was low, and the rating answers with bad

quality would affect the performance of Combine. So the Recall
of Combine was worse than CrowdGauss in MovieTime dataset.

Fourthly, SpectralMLE [6] also had two stages. The first stage was

an initialization to the score of the objects by RankCentrality [27],

and the second stage refined the initial scores by the maximum

likelihood estimation. However, we found that the performance of

SpectralMLE was worse than the other methods on both datasets.

The reason was that we had a limited pairwise comparisons, so in

the initialization of RankCentrality, the transfer matrix was rather

sparse. In this situation, the initial score for each object was not

accurate. Even with the second stage, the final result was still worse

than the other methods. Fifthly, for Hybrid method, initially, the

performance was worse than other methods. This was because rat-

ing answers had many noises, since Hybrid algorithm completely

depended on the rating answers in the first stage, and it had no any

quality control method for rating answers. So the Recall of Hybrid
was worse than other algorithms. However, with the increase of

budget, we found that Hybrid had a rapid improvement of Recall
in the EventTime dataset. This was because with redundant rating

answers, Hybrid could gradually recover the real value of objects

in EventTime dataset. Then Hybrid could select objects with the

smallest values to participate in the second stage to find top-k
objects.However, this algorithm did not have any quality control

methods, so in MovieTime and IMDB-RANK dataset, even with the

increase of budget, the improvement of Hybrid was slower than

in EventTime dataset. Sixthly, most of methods performed bet-

ter in the IMDB-RANK and EventTime datasets than the MovieTime
dataset, because the MovieTime tasks were harder than EventTime



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, IMDB-RANK)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, IMDB-RANK)

(b) ACCk

Figure 7: Inference Performance by Varying #Questions (k = 10)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (IMDB-RANK)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (IMDB-RANK)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

(b) ACCk

Figure 8: Inference Performance by Varying k (6n Questions).

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

# Question(× n, EventTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

# Question(× n, MovieTime)

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

# Question(× n, IMDB-RANK)

Figure 9: Efficiency for Inference Methods (k = 10)

and IMDB-RANK tasks. For example, the well-known top-k movies

were so popular that workers always gave high ratings and rank-

ing; history event time was closely related with daily life so that

workers could give the ratings and ranking accurately; however

workers might not know the release years of movies exactly.

Figure 7(b) presented the ACCk result for all seven inference

methods. ACCk reflected the order of the top-k results. The results

were consistent with those for Recall and RateRank was much

better than other methods, leading by 20-60%. The reasons were

three-fold. (1) Our framework considered the confidence for each

rating and ranking answers. The computation of confidence for

each answer not only took advantage of worker’s quality, but also

utilized the distribution of the rating and ranking answers. So the

quality was guaranteed for the input answers. Thus we found that

even in MovieTime dataset that the average rating and ranking

accuracy was low, RateRank still had a good performance. (2) Our

model successfully combined rating and ranking answers. Rating

answers were used to get a rough score and ranking answers re-

fined the scores. As RateRank had already had a quality control

for all the rating and ranking answers. And RateRank also had

a model to combine rating and ranking answers. (3) Our method

could effectively compute the overall top-k probability for each

object. Compared with CrowdBT, although CrowdBT and RateRank
had quality control method, RateRank used rating answers and

greatly saved cost in top-k computation. Compared with Hybrid,
RateRank proposed a quality control method to guarantee the accu-

racy of rating and ranking answers, thus avoided the impact of the

wrong answers. Besides, we also found that RateRank performed

better on ACCk in the IMDB-RANK dataset than the EventTime and

MovieTime datasets, because the ratings of the top-k candidates

in IMDB-RANK were not close and we had more opportunity to use

some ranking questions to refine the top-k answers.

5.2.2 Real Experiments – Varying k. We varied k and evaluated

the quality. Figure 8(a) and 8(b) showed the results on Recall and

ACCk respectively. The number of asked questions was 6n units.We

had the following observation. Firstly, RateRank still outperformed

other inference algorithms due to our ranking-rating framework,

which could utilize different questions to identity top-k results

based on different granularities. Besides, we found that even with

a small k , e.g., 4, the Recall for RateRank was higher than 80% in

EventTime dataset, and the Recall for RateRank was higher than
70% in MovieTime dataset. For other inference algorithms, CrowdBT
still had an advantage in the three datasets, because it could esti-

mate the scores more accurately. Secondly, with the increase of

k , the average Recall and ACCk also gradually increased for dif-

ferent algorithms in the EventTime and MovieTime datasets. This
was because with a larger value of k , the top-k problem became

easier. For example it was easier to find top-100 results from 1000

objects than finding top-10 results. Our method increased much

faster than existing algorithms due to our hybrid ranking-rating

model. Thirdly, RateRank could find the exact top-k answers in

many cases in IMDB-RANK, because these movies were very famous

and we could obtain higher ratings from workers. For example,

most of the workers would give a rating more than 9 for “The

Shawshank Redemption” which had significantly larger scores than

other movies. Thus, we could exactly find the top-k movies. Based

on high accuracy of ratings and ranking answers, RateRank had

more than 90% accuracy on Recall . Due to similar reasons, Rat-
eRank performed much better on the IMDB-RANK dataset than the

EventTime and MovieTime datasets in terms of ACCk .
5.2.3 Efficiency For Inference Methods. We evaluated efficiency

of different methods and Figure 9 showed the results. We had the

following observations. Firstly, the machine-learning algorithms

(CrowdGauss, CrowdBT, SpectralMLE, Combine) took more time

than othermethods Hybrid, SPR andRateRank, because themachine-

learning algorithms required to spend much time to learn the pa-

rameters. SpectralMLE took most of the time in finding top-k ob-

jects, because SpectralMLE had two stages and the second stage

took much time in optimizing the scores. Combine was slower than



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

# Question(× n, IMDB-RANK)

RateRank Combine CrowdBT

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

# Question(× n, IMDB-RANK)

RateRank Combine CrowdBT

(b) ACCk

Figure 10: Selection Performance by Varying #Questions (k = 10).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (IMDB-RANK)

RateRank Combine CrowdBT

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (IMDB-RANK)

RateRank Combine CrowdBT

(b) ACCk

Figure 11: Selection Performance by Varying k (6n Questions).

CrowdGauss, because Combine also needed to consider the rating

answers. CrowdBT was better than Combine and CrowdGauss, be-
cause the optimization function of CrowdBT utilized the Bradley-

Terry model [2] instead of the Thurstone model [35] that used by

Combine and CrowdGauss. In the optimization of CrowdBT, Combine
and CrowdGauss, the corresponding target function for them need

to be evaluated many times. The efficiency in computing pairwise

comparison results based on the Bradley-Terry model was faster

than comparison results according to Thurstone model. Secondly,

for RateRank, the time spent in computing the confidence for each

answer was small. The main part of the time spent was in optimiz-

ing Equation 15. So we utilized stochastic gradient descent method

in optimizing Equation 15. Thus the time spent for RateRankwould
be small in expectation. The experiments in Figure 9 validated our

point of view for RateRank algorithm. Thirdly, Hybrid was faster
than RateRank initially, because Hybrid only considered a smaller

number of objects initially. And the time spent on Hybrid increased
rapidly with the increase of the number of questions. Our method

achieved higher efficiency on every datasets and could infer the

results within 0.1 second, thus our method was rather efficient.

Remark. To summarize, our inference algorithms achieved much

higher quality than existing approaches, even by 20-50%. Moreover,

our method could achieve high efficiency and meet the performance

requirement of fast result inference.

5.3 Evaluation on Selection Methods
Only CrowdBT, Combine and CrowdGauss studied the selection prob-
lems. As CrowdGauss involved many matrix computations, it was

too slow. Thus we only compared with CrowdBT and Combine.
CrowdBT [5] selected objects with the largest expected change of

scores. Combine [43] selected questions with largest uncertainty.

5.3.1 Real Datasets – Varying #Questions. We varied the number

of questions to compare the selection algorithms. Similar to the in-

ference experiments in Section 5.2.1, the budget varied from n units

to 10n units. We had the following observations. Firstly, RateRank
had great advantage to CrowdBT and Combine, leading 20-30% on

Recall and 20-50% on ACCk . This was because RateRank could

judiciously select the questions by minimize the difference between

the estimated distribution and real distribution. Secondly, with the

increase of number of questions, the quality increased because they

could utilize more questions to infer the results. Thirdly, the perfor-

mance of RateRank, CrowdBT and Combine in Figure 10(a) and 10(b)
were all had improvements compared to random question selection

in Figure 7(a) and 7(b). For CrowdBT, the selection algorithm in

CrowdBT preferred to select pairwise comparison that would make

the most change to the previous estimation of the object. Although

CrowdBT mainly focused on the permutation of all the objects, the

permutation of the top-k objects would still be refined. So we found

that the Recall and ACCk were all had improvements compared to

randomly selecting questions. The selection algorithm in Combine
preferred to select rating or pairwise comparisons that were most

uncertain. This question selection method was useful in the per-

mutation of all the objects. But it was inefficient to find the top-k
objects. As soon as we had a knowledge of the objects, the objects

that ranked in front usually had an obvious difference compared to

the other objects. In this case, Combine would not select pairwise

comparisons to further refine the permutation of the top-k objects.

There was only a slightly improvement for Combine compared with

randomly selecting questions in Figure 10(a) and 10(b). For our

proposed selection method, we found that the Recall and ACCk

both had improvements on the EventTime and MovieTime datasets
when there were few budgets. For example, when the budget was 2n
or 3n, there was an improvement of Recall about 10% in EventTime

and MovieTime datasets. And an improvement of ACCk about 5%

in both datasets. Compared with randomly selecting questions, our

proposed method preferred to select objects close to top-k results.

Fourthly, RateRank had significant improvements on IMDB-RANK

even there were few budgets for both Recall and ACCk . For exam-

ple, when the budgets was 3n on the IMDB-RANK dataset, the Recall

of RateRank was more than 90% and the ACCk was more than 80%.

The reasons were two-folds. Firstly, the ratings and ranking from

workers had high accuracy. Secondly, our selection techniques im-

proved the performance of RateRank comparing with the inference

only method. RateRank could nearly find the exact answer on the

IMDB-RANK dataset by judiciously selecting the questions to ask.

5.3.2 Real Datasets – Varying k. We varied k from 1 to 10 and

compared different algorithms. In this experiment, the budget was



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

 1  2  3  4  5  6  7  8  9  10

A
v
e

ra
g

e
 T

im
e

(S
e

c
o

n
d

s
)

# Question(× n, EventTime)

RateRank Combine CrowdBT

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

 1  2  3  4  5  6  7  8  9  10

A
v
e

ra
g

e
 T

im
e

(S
e

c
o

n
d

s
)

# Question(× n, MovieTime)

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

 1  2  3  4  5  6  7  8  9  10

A
v
e

ra
g

e
 T

im
e

(S
e

c
o

n
d

s
)

# Question(× n, IMDB-RANK)

Figure 12: Efficiency for Selection (k = 10).

fixed to 6n units. Figures 11(a) and 11(b) showed the results. We

found that RateRank still had great advantage compared to CrowdBT

and Combine. With the increase of k , the Recall and ACCk both

increased. This was because the smaller of k , the harder of the

top-k problem. With the increase of k , CrowdBT and Combine had

a slow increase of the Recall and ACCk . However, our proposed

RateRank had a rapid increase of both Recall andACCk . The Recall
for RateRank was stable when k increased to 4. The ACCk was

stable when k increased to 6. This validated that the performance of

RateRankwas stable evenwith a small value ofk , because RateRank
could judiciously select rating or ranking questions to get high-

quality results by making a full use of the given budget.

5.3.3 Efficiency For Selection Methods. We evaluated the ef-

ficiency by varying #questions. Figure 12 showed the efficiency

for RateRank, CrowdBT and Combine. We evaluated the average

time for selecting one question. We found that CrowdBT took much

more time than Combine and RateRank, because in selecting each

pairwise comparison of CrowdBT, it had to enumerate all

(n
2

)
com-

binations of pairs and select one pair that could make the greatest

change to the previous estimation of the objects. So the efficiency

for CrowdBT selection algorithm was low. Combine had to solve an

integer programming problem in selecting rating and comparison

questions in each time. So the efficiency of Combinewas also worse
than RateRank. Our proposed heuristic selection algorithm was

very efficient, because it could prune many unnecessary objects

that could not be in the top-k results. Thus our method can be easily

extended to support large datasets.

Remark. In all, our selection method outperformed state-of-the-art

approaches by 10-40% in quality, and also was very efficient. Thus

our method could meet the requirement of online task assignment

to improve the quality effectively. We would evaluate the results

by varyingm in Appendix C.

6 RELATEDWORK
Crowdsourcing has been extensively studied by the database com-

munity recently and Li et al. [21, 22] provide a detailed survey in

crowdsourced data management.

Crowdsourced top-k Algorithm.We classify the crowdsourced

top-k algorithms into five categories, local heuristic, global heuristic,

heap-based method, machine-learning method, and hybrid method.

(1) Based on the pairs, they construct a directed graph, where a

vertex is an object and a directed edge is the comparison result,

and utilize local information of this graph to compute a score for

each object. In other words, they only consider the neighbors of

each object. For example, BordaCount [1] count the number of

winnings for each object. Copeland [32] is similar to BordaCount.
The only difference is that Copeland also consider the number of

losing times. So Copeland count the total winning times minus

the total losing times as the final score for each object. BRE [32]

count the number of total losing times minus the total winning

time. URE [32] count the number of total losing times. (2) SSCO [3]

and SSSE [3] gradually select objects with high probability in the

top-k set, and prune objects with large probability not in the top-k
set. PathRank [8] utilize the global information of the graph. It

conduct “reverse" depth first search (DFS) for each object. If there

exists a path longer than k , it means there are at least k objects

better than this object, and thus this object will not belong to the

top-k set. AdaptiveReduce [8] firstly selects a set of informative

objects, and then uses this set of objects to remove objects with

small probability in the top-k set. (3) Heap-based method [7] divides

the objects into many small heaps, and finds the largest object in

each heap to find the final top-k objects[11]. (4) CrowdGauss [31],
CrowdBT [5] and SpectralMLE [6] utilize machine-learning-based

techniques to learn a score for each object. (5) Combine [43] and

Hybrid [17] use hybrid rating and pairwise comparison questions

to find top-k results.

Crowdsourced Sort Algorithm. RankCentrality [27] is designed
to sort all the objects based on random walk. It first constructs the

transfer matrix and then repeatedly computes the distribution for

the objects until converge. CrowdBT [5] and CrowdGauss [31] focus
on sorting but can be used for top-k computation.

CrowdsourcedMaxAlgorithm.Guo et al. [16] propose the maxi-

mal object finding problem in crowdsourcing. This work focuses on

max object inference and selection algorithms. All the algorithms

are based on pairwise comparisons. Both inference and selection

algorithms utilize the structure of the graph. Venetis et al. [37] also

focus on the crowdsourced max problem. It proposes two inference

algorithms, bubble sort and tournament max algorithm. [17] is a

two-stage algorithm to find the maximal object. The first stage is

based on ratings. Objects with high rating results will participate

in the second pairwise comparison stage.

Crowd-Powered SystemandOperators.There are several crowd-
powered database systems, such as CrowdDB [14], Qurk [25], Deco [29],

CrowdOP [10], and CDB [19, 20]. Moreover, there are also tech-

niques that focus on designing individual crowdsourced opera-

tors, including selection [28, 33, 41, 42], join [4, 38, 39, 48], top-

k/sort [7, 24], aggregation [23], and collect [30, 36].

Quality-Control in Crowdsourcing. There are some quality-

control methods to improve the quality [9, 12, 34, 45–47], which

design worker model and task model to improve the result quality.

7 CONCLUSION
We studied the crowdsourced top-k problem. We proposed a rating-

ranking-based framework that used rating questions and ranking

questions to compute top-k results. We devised effective model to

compute confidence for rating questions and ranking questions.

We designed a unified model to combine rating answers and rank-

ing answers to infer the top-k results. We proposed an effective

question selection framework to judiciously assign questions to

workers. Experimental results on real datasets showed that our

method significantly outperform existing approaches.

Acknowledgement. Guoliang Li was supported by the 973 Pro-

gram of China (2015CB358700), NSF of China (61632016,61472198,

61521002,61661166012), and TAL education.



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] R. M. Adelsman and A. B. Whinston. Sophisticated voting with information for

two voting functions. Journal of Economic Theory, 15(1):145–159, 1977.
[2] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the

method of paired comparisons. Biometrika, pages 324–345, 1952.
[3] R. Busa-Fekete, B. Szorenyi, W. Cheng, P. Weng, and E. Hullermeier. Top-k

selection based on adaptive sampling of noisy preferences. In ICML, pages
1094–1102, 2013.

[4] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced entity

resolution: A partial-order approach. In SIGMOD, pages 969–984, 2016.
[5] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz. Pairwise ranking

aggregation in a crowdsourced setting. In WSDM, pages 193–202, 2013.

[6] Y. Chen and C. Suh. Spectral MLE: top-k rank aggregation from pairwise com-

parisons. In ICML, pages 371–380, 2015.
[7] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and

group-by queries. In ICDT, pages 225–236, 2013.
[8] B. Eriksson. Learning to top-k search using pairwise comparisons. In AISTATS,

pages 265–273, 2013.

[9] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive crowdsourcing

framework. In SIGMOD, pages 1015–1030, 2015.
[10] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop: Query optimization for

declarative crowdsourcing systems. IEEE Trans. Knowl. Data Eng., 27(8):2078–
2092, 2015.

[11] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.

pages 1001–1018, 1994.

[12] J. Feng, G. Li, H. Wang, and J. Feng. Incremental quality inference in crowdsourc-

ing. In DASFAA, pages 453–467, 2014.
[13] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[14] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answer-

ing queries with crowdsourcing. In SIGMOD, pages 61–72, 2011.
[15] J. Guiver and E. Snelson. Bayesian inference for plackett-luce ranking models.

In ICML, pages 377–384, 2009.
[16] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?: dynamic max

discovery with the crowd. In SIGMOD, pages 385–396, 2012.
[17] A. R. Khan and H. Garcia-Molina. Hybrid strategies for finding the max with the

crowd: Technical report. Technical report, Stanford University, February 2014.

[18] N. M. Kou, Y. Li, H. Wang, L. H. U, and Z. Gong. Crowdsourced top-k queries by

confidence-aware pairwise judgments. In SIGMOD, pages 1415–1430, 2017.
[19] G. Li. Human-in-the-loop data integration. PVLDB, 10(12):2006–2017, 2017.
[20] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang, and H. Yuan.

CDB: optimizing queries with crowd-based selections and joins. In SIGMOD,
pages 1463–1478, 2017.

[21] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data management: A

survey. IEEE Trans. Knowl. Data Eng., 28(9):2296–2319, 2016.
[22] G. Li, Y. Zheng, J. Fan, J. Wang, and R. Cheng. Crowdsourced data management:

Overview and challenges. In SIGMOD, pages 1711–1716, 2017.
[23] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with the

crowd. PVLDB, 6(2):109–120, 2012.
[24] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-powered

sorts and joins. PVLDB, 5(1):13–24, 2011.
[25] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases: Query

processing with people. In CIDR, pages 211–214, 2011.
[26] J. I. Marden. Analyzing and modeling rank data. CRC Press, 1996.

[27] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-wise comparisons.

In NIPS, pages 2483–2491, 2012.
[28] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and

J. Widom. Crowdscreen: algorithms for filtering data with humans. In SIGMOD,
pages 361–372, 2012.

[29] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis, and

J. Widom. Deco: A system for declarative crowdsourcing. PVLDB, 5(12):1990–
1993, 2012.

[30] H. Park and J. Widom. Crowdfill: collecting structured data from the crowd. In

SIGMOD, pages 577–588, 2014.
[31] T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand. Adaptive polling for

information aggregation. In AAAI, 2012.
[32] J.-C. Pomerol and S. Barba-Romero. Multicriterion decision in management:

principles and practice, volume 25. Springer, 2000.

[33] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and A. Y. Halevy. Crowd-

powered find algorithms. In ICDE, pages 964–975, 2014.
[34] C. Shan, N. Mamoulis, G. Li, R. Cheng, Z. Huang, and Y. Zheng. T-crowd: Effective

crowdsourcing for tabular data. ICDE, abs/1708.02125, 2018.
[35] L. L. Thurstone. The method of paired comparisons for social values. The Journal

of Abnormal and Social Psychology, 21(4):384, 1927.
[36] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced enumer-

ation queries. In ICDE, pages 673–684, 2013.
[37] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algorithms in

crowdsourcing environments. In WWW, pages 989–998, 2012.

(a)Gaussian (b)Skewed Bell (c)Long-tailed

Figure 13: Three Distributions of Ratings.

[38] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: crowdsourcing entity

resolution. PVLDB, 5(11):1483–1494, 2012.
[39] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive

relations for crowdsourced joins. In SIGMOD, 2013.
[40] F. L. Wauthier, M. I. Jordan, and N. Jojic. Efficient ranking from pairwise compar-

isons. In ICML, pages 109–117, 2013.
[41] X. Weng, G. Li, H. Hu, and J. Feng. Crowdsourced selection on multi-attribute

data. In CIKM, pages 307–316, 2017.

[42] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accurate

real-time image search on mobile phones. In MobiSys.
[43] P. Ye, U. EDU, and D. Doermann. Combining preference and absolute judgements

in a crowd-sourced setting. In ICML ’13 Workshop, 2013.
[44] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms: An experimental

evaluation. PVLDB, 9(8):612–623, 2016.
[45] Y. Zheng, G. Li, and R. Cheng. DOCS: domain-aware crowdsourcing system.

PVLDB, 10(4):361–372, 2016.
[46] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in crowdsourcing:

Is the problem solved? PVLDB, 10(5):541–552, 2017.
[47] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A quality-aware task

assignment system for crowdsourcing applications. In SIGMOD, pages 1031–1046,
2015.

[48] Y. Zhuang, G. Li, Z. Zhong, and J. Feng. Hike: A hybrid human-machine method

for entity alignment in large-scale knowledge bases. In CIKM, pages 1917–1926,

2017.

A DISCUSSION ON DATA DISTRIBUTION
The ratings from workers may follow different data distributions

as shown in Figure 13. Besides the Gaussian distribution, we take

the following two distributions as examples to show how our tech-

niques can be extended to support them.

Note that the techniques of computing accuracy for each worker

in Section 2.2, computing confidence for ranking results in Sec-

tion 3.1.2, combing rating and ranking in Section 3.2 and selecting

questions in Section 4 are orthogonal to the data distributions, and

these techniques can be utilized in any data distributions. So we

only need to consider the case of computing confidence for rating

results when the distribution changes, i.e., changing Equations 5, 7

and 8 to support new data distributions.

Skewed Bell Curve. In some crowdsourcing tasks, workers may

have a positive skewness or negative skewness on a specific rating,

so the distribution may follow a skewed Bell Curve. Note that

the Gaussian distribution is also a Bell Curve distribution with no

skewness. For example, in the ratings of a famous movie (e.g., “The

Shawshank Redemption”) in IMDB, most of workers provide higher

scores (e.g., ratings close to 9) while few workers give low ratings.

The ratings of such objects will follow a positive skewed Bell Curve

as shown in Figure 13(b).

There are many typical skewed Bell Curves such as Gamma

distribution and Logarithmic Normal distribution. We can use sta-

tistical tool to estimate parameters of this type of function. We

take Logarithmic Normal distribution as an example. We can use

maximum-likelihood function to estimate the parameters.



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

The probability density function of Logarithmic Normal distri-

bution is defined as

f (x , µ,σ ) =
exp[−

(ln x−µ )2

2σ 2
]

√
2πσx

,

where x > 0. Then the mean and variance in Section 2.3.1 can be

replaced by

µi =
1

|Ri |

|Ri |∑
j=1

ln ri j

and

σi =

√√√√
1

|Ri |

|Ri |∑
j=1

(ln ri j − µi )2.

Then, we replace Equation 5 with

eri j = f (ri j , µi ,σi ) =
exp[−

(ln ri j−µi )2

2σ 2

i
]

√
2πσiri j

, (20)

and replace Equations 7 and 8 with

µi =

∑ |Ri |
j=1

λri j ln ri j∑ |Ri |
j=1

λri j
(21)

σ 2

i =

∑ |Ri |
j=1

λri j (ln ri j − µi )
2∑ |Ri |

j=1
λri j

(22)

Thuswe can easily extend our framework to support Logarithmic

Normal distribution.

Long-tailed Distribution. In some crowdsourcing tasks, most of

the ratings fall into a small interval and few ratings fall into a

extremely large interval. For example, considering the ratings of

popular products (e.g., Apple Macbook Pro) in shopping website

(e.g., Amazon), most people give high ratings while few people give

low ratings. The ratings of such object will follow a long-tailed

distribution as shown in Figure 13(c). There are many long-tailed

distributions such as Zipf distribution and Pareto distribution. We

use a typical Zipf distribution as an example where the probability

density function is defined as below:

y = cix
−bi (i.e., lny = ln ci − bi lnx ).

We can use answers in Ri to compute a proper curve for object

oi . For example, if we simply use “Least squares”, we can find

an approximate answer of ci and bi in linear time. Then we can

compute the two parameters using the following equations




bi = −

∑|Ri |
j=1

ln ri j ln Pr (ri j )− 1

|Ri |
∑|Ri |
j=1

ln ri j
∑|Ri |
j=1

ln Pr (ri j )∑|Ri |
j=1

(ln ri j )2−|Ri |( 1

|Ri |
∑|Ri |
j=1

ln ri j )2

ci = exp[
1

|Ri |

∑ |Ri |
j=1

ln(Pr (ri j )) + bi
1

|Ri |

∑ |Ri |
j=1

ln ri j ]

where Pr (ri j ) is the probability of the occurrence of rating answer

ri j among all rating answers of oi , i.e., Pr (ri j ) =
count (ri j )∑
r ∈Ri count (r )

(where count (ri j ) is the number of occurrences of ri j among all the

rating answers of oi ). Then the rating score of object oi is computed

by exp[
1

|Ri |

∑ |Ri |
j=1

ln ri j ].

Next Equation 5 can be replaced by

eri j = f (ri j ;bi , ci ) = cir
−bi
i j (23)

and Equations 7 and 8 can be replaced by:

bi = −

∑ |Ri |
j=1

λ2

ri j ln ri j ln Pr (ri j ) −
1

|Ri |

∑ |Ri |
j=1

λri j ln ri j
∑ |Ri |
j=1

λri j ln Pr (ri j )∑ |Ri |
j=1

(λri j ln ri j )2 − |Ri |(
1

|Ri |

∑ |Ri |
j=1

λri j ln ri j )2

(24)

ci = exp[

1

|Ri |

|Ri |∑
j=1

ln(Pr (ri j )) + bi
1

|Ri |

|Ri |∑
j=1

ln(ri j )] (25)

In this way, we can easily extend our framework to support

long-tailed distribution.

B EXPERIMENTS ON DATA DISTRIBUTIONS
Data Distribution of Rating Results.We collected the ratings of

objects from our EventTime, MovieTime and IMDB-RANK datasets.
Besides, we found that there were many ratings of products in

shopping website, e.g., Amazon, so we collected the ratings of the

well-known “Apple Macbook Pro” from crowdsourcing platforms.

We showed the distribution of the ratings in Figures 14(a), 14(b),

14(c) and 14(d). We had the following observations. First, the ratings

of EventTime and MovieTime followed Gaussian distribution well

because these tasks are objective and workers have no skewed bias

on the ratings. Second, the distribution of IMDB-RANK followed a

skewed Bell Curve distribution, because most of the workers would

had a positive skewness on the judgement of a good movie. Third,

the distribution of a well-known product on Amazon followed a

long-tailed distribution, because most people would be more likely

to give a high rating for a good product.

In summary, we found that Gaussian distribution was the most

popular distribution of the ratings of objects. The ratings of some

objects with high reputation will follow a Skewed Bell Curve dis-

tribution, and the ratings of some popular products on shopping

websites follow a long-tailed distribution.

Comparison on Data Distribution of Rating Results.We eval-

uated different data distributions and showed whether different

distributions affected the accuracy. We used the three data distribu-

tions on the three datasets and Figure 15 showed the results.

We had the the following observations. First, different distribu-

tions had minor effect on the crowdsourcing top-k results. This

was because we could always compute the approximate ratings

and ranking for the objects whatever the distribution was. In other

words, our framework had robustness when the distribution of ob-

jects changed. Second, on the EventTime and MovieTime datasets,

the Gaussian distribution and skewed Bell Curve distribution achieved

similar results, which were better than long-tailed distribution on

small k values. This was because long-tailed distribution might not

adapt to other distributions. Third, we could use Gaussian distribu-

tion for most of datasets to aggregate the rating results, because it

could adapt to most of data distributions and achieved high quality.

Fourth, with increase of k , the accuracy improved as a larger k
made the problem easier. For example, finding top-100 results was

easier than finding top-10 results from 1000 objects.



A Rating-Ranking Method for Crowdsourced Top-k Computation SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

0

30

60

1996 2004 2012

F
re

q
u

e
n

c
y

Rating(Event)

(a) Event

0

10

20

2007 2012 2017

F
re

q
u

e
n

c
y

Rating(MovieTime)

(b) Movie

0

50

100

6.0 7.0 8.0 9.0  10

F
re

q
u

e
n

c
y

Rating(IMDB-RANK)

(c) IMDB

0

25

50

4.0 6.0 8.0  10

F
re

q
u

e
n

c
y

Rating(Amazon)

(d) Amazon

Figure 14: Distribution of Objects on Real Datasets.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (MovieTime)

Gaussian Skewed Bell Curve Long-tailed

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 R

e
c
a
ll

k (IMDB-RANK)

Gaussian Skewed Bell Curve Long-tailed

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k
k (EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (MovieTime)

Gaussian Skewed Bell Curve Long-tailed

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1  2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 A

C
C

k

k (IMDB-RANK)

Gaussian Skewed Bell Curve Long-tailed

(b) ACCk

Figure 15: Inference Performance by Varying k on Different Distributions(6n Questions).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
v
e
ra

g
e
 R

e
c
a
ll

τ

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
v
e
ra

g
e
 A

C
C

k

τ

EventTime MovieTime IMDB-RANK

Figure 16: Influence of Parameter τ (k = 10)

C ADDITIONAL EXPERIMENTS
C.1 Evalutation Of τ
In this experiment, we evaluated the performance of RateRank
inference method by varying the value of τ . The value of k was

fixed to 10, and the budget was fixed to 6n. We varied the value of

τ from 0.1 to 1. Figure 16 showed the results. We found that the

performance of RateRankwas affected by τ . When τ was small, the

value of µ and σ mainly depended on rating answers. Otherwise,

when τ was large, the value of µ and σ mainly decided by ranking

answers. With the increase of τ , the Recall and ACCk gradually

increased, and then slowly decreased. We found that when τ = 0.5,

RateRank achieved the best performance on both datasets.

In all, our inference method outperformed state-of-the-art ap-

proaches by 20-50% in quality, and also was very efficient.

C.2 Real Experiments – Varying Object
Number

C.2.1 Inference – Varying Object Number. We varied the number

of objects and compared different algorithms. Figures 17(a) and 17(b)

showed the results on Recall andACCk . We still assigned 6n and set

k = 10.We varied the size of the dataset from 10%·n, 20%·n, to 100%·

n. In each scale of the dataset, we randomly sample objects from all

the objects. We had the following observations. Firstly, RateRank
had obvious advantage to other algorithms on each dataset size,

because our framework could utilize ranking and rating questions

to improve the quality. Secondly, with the increase of the data size,

the Recall and ACCk both gradually decreased. This was because

with a larger dataset, the top-k problem became harder, which was

consistent with the results of increasing k while keeping the dataset

size. With the increase of the data size, the speed of decreasing for

RateRank was smaller than the other inference algorithms.

C.2.2 Selection – Varying Object Number. We varied the ob-

ject number and compared the quality of different algorithms. Fig-

ures 18(a) and 18(b) showed the results. In this experiment, the

budget was still fixed as 6n units, and k was fixed to 10. We varied

the number of objects from 10% · n, 20% · n to 100% · n. From the

results, we found that with the increase of the number of objects,

the performance of Recall and ACCk both decreased. It was obvi-

ous that with a larger dataset, the top-k problem naturally became

harder. In addition, the decreased rates of RateRank was smaller

than other two methods due to our effective selection techniques

to consider the objects around the top-k results.

In the IMDB-RANK and EventTime datasets, RateRank could al-

ways perform much better than other methods in terms of both

Recall and ACCk . Besides, the Recall and ACCk of RateRank in

IMDB-RANK converged very quickly. In other words, even with a

small number of judgements from crowdsourcing platform, our

method could recover the ranking by millions of IMDB users, and

thus our algorithm was rather effective.

C.3 Evaluation of Tuning Selection Parameter
In Section 4.2, we proposed to use a small numberm to replace n in

order to improve the performance. In each iteration, we first chose

m objects and then selected questions from thesem objects rather

than n objects. We compared two methods, n-Selection that selected
questions from n objects andm-Selection that selected questions



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Kaiyu Li, Xiaohang Zhang, Guoliang Li

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(IMDB-RANK)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(MovieTime)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(IMDB-RANK)

RateRank Combine CrowdBT CrowdGauss Hybrid SpectralMLE SPR

(b) ACCk

Figure 17: Inference Performance by Varying Dataset Size(6n Questions).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 R

e
c
a
ll

Size(Movie)

RateRank Combine CrowdBT

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(MovieTime)

RateRank Combine CrowdBT

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
e
ra

g
e
 A

C
C

k

Size(Movie)

RateRank Combine CrowdBT

(b) ACCk

Figure 18: Selection Performance by Varying Dataset Size (k = 10, 6n Questions).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 R

e
c
a
ll

m(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 R

e
c
a
ll

m(MovieTime)

n-Selection m-Selection

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 R

e
c
a
ll

m(IMDB-RANK)

n-Selection m-Selection

(a) Recall

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 R

e
c
a
ll

m(EventTime)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20
A

v
e
ra

g
e
 R

e
c
a
ll

m(MovieTime)

n-Selection m-Selection

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 R

e
c
a
ll

m(IMDB-RANK)

n-Selection m-Selection

(b) ACCk

Figure 19: Selection Performance by Tuningm (k = 10).

1e-2

1e-1

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

m(EventTime)

n-Selection m-Selection

1e-2

1e-1

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

m(MovieTime)

n-Selection m-Selection

1e-2

1e-1

2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 T

im
e
(S

e
c
o
n
d
s
)

m(IMDB-RANK)

n-Selection m-Selection

Figure 20: Selection Performance by Tuningm (Time, k = 10).

fromm objects. The results on the Recall ,ACCk and efficiency were

shown in Figures 19(a), 19(b) and Figure 20, where k was set to 10.

We had the following observations. First,m-Selection achieved

similar results with n-Selection whenm ≥ 10. Thus we only needed

to first choose 10 objects and used them to select questions. Second,

m-Selection had much better performance than n-Selection because

m-Selection used less objects to select the questions. Thus our

method could significantly improve the performance while keeping

high quality. Third, the average Recall of n-Selection kept stable as

it selected questions from all objects while that ofm-Selection first

increased as the value ofm increased because we could correct more

misplaced objects by using a largerm. But afterm ≥ 10, the Recall
kept stable, because all the high-quality questions could be selected

from thesem objects (other objects either had large probability in

the top-k results or had small probability in the top-k results).


	Abstract
	1 Introduction
	2 A Rating-Ranking Based Framework
	2.1 Problem Formulation
	2.2 Question, Truth, Worker Models
	2.3 Algorithm Overview

	3 Inference Method
	3.1 Computing Confidence For Each Result
	3.2 Combing Rating and Ranking

	4 Question Selection Method
	4.1 Optimal Question Selection
	4.2 Heuristic Selection Method
	4.3 Extension to Assign Multiple Questions

	5 Experiments
	5.1 Experimental Setting
	5.2 Evaluation of Inference Methods
	5.3 Evaluation on Selection Methods

	6 Related Work
	7 Conclusion
	References
	A Discussion on Data Distribution
	B Experiments on Data Distributions
	C Additional Experiments
	C.1 Evalutation Of  
	C.2 Real Experiments – Varying Object Number
	C.3 Evaluation of Tuning Selection Parameter


