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ABSTRACT
Creating good visualizations for ordinary users is hard, even with
the help of the state-of-the-art interactive data visualization tools,
such as Tableau, Qlik, because they require the users to understand
the data and visualizations very well. DeepEye is an innovative
visualization system that aims at helping everyone create good
visualizations simply like a Google search. Given a dataset and a
keyword query, DeepEye understands the query intent, generates
and ranks good visualizations. The user can pick the one she likes
and do a further faceted navigation to easily navigate the candi-
date visualizations. In this demonstration, the attendees will have
the opportunity to experience the following features: (1) visualiza-
tion recommendation – Our system can automatically recommends
meaningful visualizations by learning from existing known datasets
and good visualizations; (2) keyword search – The attendee can
pose text queries for specifying what visualizations she wants (e.g.,
trends) without specifying how to generate them; (3) faceted navi-
gation – One can further re�ne the results by a click-based faceted
navigation to �nd other relevant and interesting visualizations.

ACM Reference Format:
Yuyu Luo†, Xuedi Qin†, Nan Tang‡, Guoliang Li†, Xinran Wang† . 2018.
DeepEye: Creating Good Data Visualizations by Keyword Search. In SIG-
MOD’18: 2018 International Conference on Management of Data, June 10–
15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3183713.3193545

1 INTRODUCTION
Nowadays, the ability to create good visualizations has shifted from
a nice-to-have skill to a must-have skill for all data analysts. How-
ever, the overwhelming choices of interactive data visualization
tools (e.g., Tableau, Qlik and D3 [2]) only allow experts to create
good visualizations, assuming that the experts know many details:
the meaning and the distribution of the data, the right combination
of attributes, and the right type of charts – these requirements are
apparently not easy, even for experts.

Challenges. Not surprisedly, creating good data visualization is
hard in practice. From the user perspective, there are many possible
ways of visualizations for a given dataset (for example, di�erent
attribute combinations and visualization types), and many ways
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Figure 1: The architecture of DeepEye
of transforming data (for example, grouping, binning, sorting, and
a combination thereof) – these make it infeasible for the user to
enumerate all possible visualizations and select the ones she needs.
From the system perspective, among numerous problems, no con-
sensus has emerged to quantify the “goodness” of a visualization.
What makes it much harder is when the system does not even know
what the user wants.

DeepEye belongs to the line of new research, namely visualiza-
tion recommendation systems [8–10]. Informally speaking, given
a dataset, these systems automatically recommend visualizations
to the user under di�erent criteria, such as relevance, surprise,
non-obviousness, diversity and coverage. However, as pointed out
by [1], despite the many attempts and e�orts, these systems may
still mislead the user, by generating visualizations that might be
worse than nothing, since it is basically impossible to guess a user’s
query intent from nothing.

Our Methodology. DeepEye allows the user to specify her query
intent by keyword (or text) search (Figure 1), which will be con-
verted to our internal visualization language for generating can-
didate visualizations. Note that the user’s text query is typically
underspeci�ed and ambiguous. DeepEye solves the fundamental
cognitive science problem for quantifying and ranking good visual-
izations with a novel idea visualization by examples. More speci�-
cally, based on the plenty of generic priors to showcase great visu-
alizations, DeepEye trains binary classi�ers to determine whether
to visualize a given dataset with a speci�c visualization type (e.g.,
bar charts or line charts) is meaningful, and it uses a supervised
learning-to-rank model to rank good visualizations. It also provides
the explanation of the visualizations with plain text, for easy un-
derstanding. In addition, DeepEye also allows the user to navigate
the other visualizations by faceted navigation. That is, based on
a seed visualization that the user picks, instead of guessing what
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other visualizations she might be interested in, DeepEye lets the
user specify her preference via a click-based faceted navigation.

This demo implements the basic ideas of our vision paper [6],
which extends our work of automatic data visualization [5] to sup-
port keyword search and faceted search. As mentioned above, Deep-
Eye di�ers from other visualization recommendation systems in
three main aspects: (1) instead of guessing a user’s intent, it accepts
an underspeci�ed text search; (2) DeepEye ranks visualizations of
a new dataset by learning from existing known datasets and good
visualizations; and (3) it supports faceted navigation that can help
users easily �nd more good visualizations of interest.

2 SYSTEM OVERVIEW

Overview. The architecture of DeepEye is given in Figure 1. Boot-
strapped with a user posed text query, DeepEye translates this text
query to multiple candidate visualizations, discovers and ranks
good (i.e., candidate) visualizations, and returns the top ranked
ones. When the user selects a visualization and further explores
by clicking a facet navigation, DeepEye discovers more visualiza-
tions and helps the user easily explore her desired visualizations.
The user may iterate over the above processes until she �nds all
visualizations of her interest.

Datasets.We focus on relational tables. For simplicity, we consider
a single table, denoted by D, and our techniques can be easily
extended to support multiple tables by joins (see SeeDB [10]).

Visualization Queries. We focus on the popular visualization
types (e.g., pie/line/bar/scatter charts) for a given dataset D. For
declarative visualization language, we use a high-level grammar that
enables rapid speci�cation of interactive data visualizations. To fa-
cilitate our discussion, we de�ne a simple language that can capture
all possible visualizations. (Note that our system can support any
declarative visualization query language, e.g., Vega-Lite [7].) Fig-
ure 2 shows our language for specifying visualization queries for
two columns (please �nd more details in [5]).

VISUALIZE TYPE (∈ {bar, pie, line, scatter})
SELECT X ′, Y ′ (X ′ ∈ {X , BIN(X ) }, Y ′ ∈ {Y , AGG(Y ) })
FROM D
TRANSFORM X (using an operator ∈ {BIN, GROUP})
ORDER BY X ′, Y ′

WHERE X ′ OP v

Figure 2: Visualization language (two columns)

� VISUALIZE: speci�es the visualization type
� SELECT: extracts the selected columns
• X ′/Y ′ relates to X /Y : X ′ is either X or binning values, e.g.,
binning by hour; Y ′ is either Y or the aggregation values
(e.g., AGG = {SUM, AVG, CNT}) after transforming X

� FROM: the source table
� TRANSFORM: transforms the selected columns
• Binning: Binning X into several buckets, e.g., by month.
• Grouping: GROUP BY X

� ORDER BY: sorts the selected column, i.e., ORDER BY X ′/Y ′

A.
scheduled

B.
carrier

C. destination
city name

D. departure
delay (min)

E. arrival
delay (min)

F.
passengers

· · ·

01-Jan 00:04 AA New York -5 2 173 · · ·

01-Jan 06:43 MQ Atlanta 9 -2 132 · · ·

01-Jan 09:30 EV Minneapolis 13 17 127 · · ·

01-Jan 11:30 AA Boston 22 10 141 · · ·

01-Jan 17:59 MQ New York 19 13 232 · · ·

01-Jan 23:26 UA Los Angeles 0 -2 119 · · ·

· · · · · · · · · · · · · · · · · · · · ·

Table 1: An excerpt of �ight delay statistics
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Q1: VISUALIZE line 
  SELECT A.scheduled, AVG(D.departure delay) 
FROM Table 1 
BIN A.scheduled BY HOUR 
ORDER BY A.scheduled 

(a) Flight delay w.r.t. scheduled time

departure delay (min) ≤ 0
departure delay (min) > 0

Q2: VISUALIZE pie 
SELECT D. departure delay, CNT(D.departure delay) 
FROM Table 1 
BIN D. departure delay BY ZERO

45%
55%

(b) Proportions of departure delays

Figure 3: Examples of query-to-visualization
�WHERE: selects the value satisfying a condition, i.e., > 100.

Considering a sample table in Table 1 about �ight delay statistics,
the queries Q1 and Q2 will produce a line chart and a pie chart
respectively, as shown in Figure 3.

We will use chart and visualization interchangeably in the paper,
which corresponds to a query Q over D, denoted by Q (D).

Visualization Crawler. The DeepEye crawler extracts tables and
their associated visualizations frommultiple sources, where both the
table and the visualization speci�cations (or equivalently, queries)
are explicitly given2. For example, there are hundreds of visualiza-
tion examples in https://www.highcharts.com, with both datasets
and visualization speci�cations.

3 DEMONSTRATION OVERVIEW
A picture is worth a thousand words. A good visualization is worth
a terabyte of data. In this demonstration, we will show how easy it
is to �nd interesting visualizations to tell stories of a dataset.

Datasets.We have prepared hundreds of real-world datasets whose
semantics is easy to understand by general audience. Table 2 shows
three datasets that we will use in our demonstration, together with
their descriptions.
No. Name Description
D1 Flight Delay Statistics Flight delay data with scheduled, carrier

name, destination, departure, departure de-
lay, arrival delay, and number of passengers.

D2 Electricity Consump-
tion Statistics

This dataset re�ects the electricity consump-
tion of Chinese metropolis during 2016.

D3 Foreigners Visit of
China

This dataset describes each visitor’s age, gen-
der, nationality, continent, purpose of entry,
entry methods, dwell time, and etc.

Table 2: Three real-world datasets
Next, we will use an example (see Figure 4) to explain how

DeepEye works, using the Flight Delay Statistics table in Table 1. We
will postpone the discussion for some technical details to Section 4.
2If the queries in the data sources are di�erent from our queries, we can use rule-based
methods to transform their queries to our queries.

https://www.highcharts.com
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Figure 4: A running example

Dataset Speci�cation. The user can upload a new table, or selec-
t/�lter an existing table, which is to be visualized (see Figure 4–¶).
For example, after the user selects the Flight Delay Statistics table,
she can �lter data by the “Filter” panel if necessary, e.g., removing
those CARRIERs that she does not care about, which can signi�-
cantly reduce the search space for the back-end algorithms.

Creating Good Visualizations. A user can create good visualiza-
tions based on the following steps.
(i) Text search. The user can pose a text query and get some rele-
vant visualizations she wants. For example, given a query “Show
me something about departure delay” (see Figure 4–·), DeepEye
will recommend visualizations relevant to departure delay. That is,
DeepEye will �x one attribute departure delay and discovers other
attributes that when being combined with attribute departure delay
using an appropriate type of chart, will produce good visualizations.
(ii) Visualization recommendation. DeepEye will rank the can-
didate (good) visualizations. It also provides the explanations in
plain text for each recommended visualization, which will help the
user to better understand the visualizations (see Figure 4–¸). The
user can click the “Zoom” button for more visualization details.
(iii) Faceted navigation. The user may select one good visualiza-
tion, and conduct a further faceted navigation to �nd other visual-
izations of her interest. Suppose that the user selects the line chart
(Figure 4–¸) by clicking the “Faceted” button, DeepEye will suggest
appropriate facets and return visualizations to the user. We can
see from Figure 4–º that, the suggested facets for this selected
visualization are chart type, x-axis, y-axis, group/bin, similar, and
di�erent. The �rst chart under the facet “By Group/Bin” is a line
chart which bins x-axis into bucket by date. It shows the trend of
average departure delay during Jan 2015. Note that, the user can do

a further faceted navigation iteratively, which may get more mean-
ingful visualizations. Figure 4–¹ keeps track of the visualizations
that the user already selected.
(iv) Interactive Re�nement. DeepEye also supports popular in-
teractions such as zoom in, zoom out, and mark, by leveraging an in-
teractive visualization library ECHARTS (http://echarts.baidu.com).
The user can click the “Show Query” button (Figure 4–¸) to check
the DeepEye visualization query and can also customize her visual-
ization by modifying the DeepEye query, for expert users.

4 TECHNICAL DETAILS
In this section, we will discuss some technical details of di�erent
modules (Figure 1) for the visualization search engine of DeepEye.

Text-to-Visualization. Given a text query K and a dataset D, it
generates all candidate visualizations that are possibly good, which
has two steps: text-to-queries and visualization recognition.
(1) Text-to-Queries. Given a text query, we aim at generating a setQ
of visualization queries that correspond to a set V of visualizations.
As mentioned earlier, this problem is hard because text queries
are always ambiguous and underspeci�ed – there might have a
large number of candidate visualizations due to di�erent attribute
combinations and multiple data transformation operations (e.g.,
grouping, binning, sorting). To address this problem, for each text
query, we �rst identify its matching type - reserved keywords
in our query, table name, attribute name, values in attributes, or
some constant values [4]. We then feed them into the visualization
queries, e.g., feeding attribute name to X or Y , table name to D, and
get all possible visualization queries.
(2) Visualization Recognition. Some visualization queries may be
meaningless, e.g., it’s not suitable for pie chart to visualize temporal
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data. Hence, we want to �nd a set of good visualizations V′ ⊆ V.
This problem is also hard because there is no consensus to quantify
that which visualization is good. Our solution to capture human
perception for visualization recognition is by learning from exam-
ples. The hypothesis about what are learned from generic priors
can be applied to di�erent domains is that the explanatory factors
behind the data for visualization is not domain speci�c, e.g., pie
charts are best used when making part-to-whole comparisons. Typ-
ically, what will decide whether a visualization of a dataset is good
or not depends more on its features (or representations), rather
than its data values. More speci�cally, we consider the following
features of a dataset D: the data type of a column (e.g., categorical,
numerical, and temporal), the number of distinct values of a column,
the number of tuples in a column, the ratio of unique values in a
column, the max() and min() values of a column, and statistical
correlation between two columns (e.g., linear, polynomial, and log).

We have crawled many visualizations as training data, and we
have tested decision trees, Bayes classi�er, and SVM for visualiza-
tion recognition. Our empirical result shows that decision trees
perform well in practice (see [5] for more details.).
Rule-based pruning. The above two-step method is time-consuming
and cannot meet the real-time search requirement of users, because
it will �rst generate many bad visualizations and then remove them.
To address this issue, we propose a rule-based pruning method. The
basic idea is that we �rst learn some visualization decision rules
and then embed the rules into the text-to-visualizations method to
directly prune bad visualizations.

For example, there are observations about good/bad visualiza-
tions, such as pie charts are best to use when comparing parts of
a whole, and they do not show changes over time; and bar charts
are used to compare things between di�erent groups or to track
changes over time, and too many bars (e.g., > 50) are hard for hu-
man to interpret. The traditional wisdom from visualization experts
can be encoded into rules to prune many apparently bad charts
(see e.g., https://www.pinterest.com/pin/20125529565819990/ for a
chart type cheat sheet that can be easily leveraged). Based on these
rules, we can generate some visualization templates, where each
query template represents a good visualization query but without
the where clause. Then for each text query, we �nd the good visu-
alization templates matching the keywords. Then if the text query
contains some �ltering condition, we add the where clause into the
query. In this way, we can directly generate good visualizations V′.

Visualization-to-Text. The visualizations may be hard to under-
stand if the user is not familiar with the data. To address this issue,
we can generate the natural language explanation of each visual-
ization to help users better understand the visualization. We use
a rule-based method to translate each visualization query into a
natural language, e.g., “This chart shows the trend of (chart type)
average (aggregate function) departure delay (y-axis) during Jan 1
(x-axis). The minimum delay occurs at around 0 a.m., the maximum
delay occurs at about 7 p.m, and �ight delays occur mostly in the
peak-hour (from 8 a.m. to 8 p.m.)”. Note that it is rather challenging
to automatically detect “meaningful” results from visualizations,
because for di�erent chart types we have di�erent expectations
(e.g., the trend for the line chart and the max/min value for bar
charts) and we need to learn the features from the crawled data.

Visualization Ranking. Given a set of visualizations V′, the Vi-
sualization Ranking module will rank V′ and return top ones to
the user. We use the learning-to-rank [3] techniques to learn the
features from known good visualizations, which is an ML technique
for training the model in a ranking task, which has been widely em-
ployed in Information Retrieval (IR), Natural Language Processing
(NLP), and Data Mining (DM). Roughly speaking, it is a supervised
learning task that takes the input as lists of feature vectors, and
outputs the grades (ranks) of visualizations. The goal is to learn
a function F (·) from the training examples, such that given two
input vectors x1 and x2, it can determine which one is better, F (x1)
or F (x2). As learning-to-rank is hard for users to understand the
ranking, we also propose a partial-order-based method to rank the
visualizations [5]. We de�ne a partial order between visualizations
based on some rules, e.g., the matching quality between data and
chart, line chart is usually better than bar chart when visualizing
temporal data. Then we build a graph based on the partial order,
where nodes are visualizations and edges are partial orders between
nodes. We then rank the visualizations based on the graph.
Faceted Navigation.When a user picks a visualizationV , she can
further explore other visualizations by facets for �nding more inter-
esting visualizations. The Faceted Navigation module will discover
another set of visualizations based on V , which will also be ranked
and returned to the user. Di�erent from traditional faceted nav-
igation, where the facets can be easily de�ned as the attributes,
the facets are hard to de�ne for visualizations. To address this
issue, we de�ne the facets by visualization type, X attribute, Y
attribute, Group/Bin, similar trend, di�erent trend. For example,
based on a visualization query, we can do a faceted navigation on
Group/Bin to �nd others visualizations by changing Group/Bin
strategies. The user can select her interested visualizations and
iteratively do faceted navigation.
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