
DITA: Distributed In-Memory Trajectory Analytics
Zeyuan Shang

Tsinghua Univ., Brown Univ.

zeyuanxy@gmail.com

Guoliang Li

Tsinghua University

liguoliang@tsinghua.edu.cn

Zhifeng Bao

RMIT University

zhifeng.bao@rmit.edu.au

ABSTRACT
Trajectory analytics can benefit many real-world applications, e.g.,

frequent trajectory based navigation systems, road planning, car

pooling, and transportation optimizations. Existing algorithms fo-

cus on optimizing this problem in a single machine. However, the

amount of trajectories exceeds the storage and processing capability

of a single machine, and it calls for large-scale trajectory analytics

in distributed environments. The distributed trajectory analytics

faces challenges of data locality aware partitioning, load balance,

easy-to-use interface, and versatility to support various trajectory

similarity functions. To address these challenges, we propose a dis-

tributed in-memory trajectory analytics system DITA. We propose

an effective partitioning method, global index and local index, to

address the data locality problem. We devise cost-based techniques

to balance the workload. We develop a filter-verification framework

to improve the performance. Moreover, DITA can support most of

existing similarity functions to quantify the similarity between tra-

jectories. We integrate our framework seamlessly into Spark SQL,

and make it support SQL and DataFrame API interfaces. We have

conducted extensive experiments on real world datasets, and ex-

perimental results show that DITA outperforms existing distributed

trajectory similarity search and join approaches significantly.

ACM Reference Format:
Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed In-

Memory Trajectory Analytics. In SIGMOD/PODS ’18: 2018 International
Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3183713.3183743

1 INTRODUCTION
With the development of mobile devices and positioning technol-

ogy, trajectory data can be captured more accurately, where each

trajectory is a sequence of geo-locations of a moving object. For

example, a Uber car drives a passenger from a source location to a

destination location. In every 10 seconds, the GPS embedded in the

car reports a geo-location of the car, and the sequence of these loca-

tions forms a trajectory.With the increased popularization of online

ride-hailing service, the ride-hailing companies collect more and

more trajectory data. For instance, there have been 2 billion Uber

trips taken up to July 2016 and 62 million Uber trips in July 2016
1
.

Most importantly, trajectory analytics can benefit many real-world

1
http://expandedramblings.com/index.php/uber-statistics/

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183743

applications, e.g., frequent trajectory based navigation systems,

road planning, car pooling, and transportation optimizations.

Existing algorithms focus on optimizing this problem in a single

machine [7–10, 12, 18, 41]. However, the amount of trajectories ex-

ceeds the storage and processing capability of a single machine, and

existing algorithms cannot be easily extended to efficiently support

large-scale trajectory data analytics in distributed environments,

because (1) data locality problem: since trajectories are distributed,

it is challenging to design data partitioning and indexing techniques

to reduce heavy data transmission cost; (2) load balance: it is chal-
lenging to balance the workload to make full use of the computation

power of the entire cluster; (3) easy-to-use interface: it is challeng-
ing to provide full-fledged SQL-like trajectory analytics system; (4)

versatility to support various trajectory similarity functions: there
are various widely adopted similarity functions, classified as the

non-metric ones like DTW [48], LCSS[41] and EDR[10], and the met-

ric ones like Fréchet [4]. We observe that existing studies either

support one or two of them, or define its own similarity function,

while it is critical to support all these similarity functions in one

system for various analytics purposes and scenarios.

To bridge the gap between the limited availability of large-scale

trajectory analytics techniques and the urgent need for efficient and

scalable trajectory analytics in real world, we develop a distributed

in-memory system DITA with easy-to-use SQL and DataFrame API

interfaces. First, for a trajectory T we propose to select some “rep-

resentative points” as pivots, and use the pivots to compute a lower

bound of the distance between the trajectory represented by those

pivots and another trajectory Q . If such a lower bound is already

larger than a threshold, thenT andQ cannot be similar. We propose

a trie-like indexing structure to index the pivots and design effective

global index and local index, where the global index finds relevant

data partitions that contain possible answers and the local index

computes answers in each partition. We propose effective filter-

verification algorithms to compute the answers, where the filter

step uses a light-weight filter to prune a large number of dissimilar

pairs and get a set of candidates and the verification step utilizes ef-

fective techniques to verify the candidates. We propose a weighted

bi-graph cost model, employ graph orientation mechanism to coor-

dinate the distributed join, and utilize load balancing mechanism

to prevent from stragglers. All techniques can also support most of

existing trajectory similarity functions.

In summary, we make the following contributions.

(1) We propose a full-fledge distributed in-memory trajectory an-

alytics system DITA, which extends Spark SQL with non-trivial

efforts, enables creating index over RDDs, and provides SQL and

DataFrame API for trajectory analysis (Section 3).

(2) We judiciously select representative points as pivots for effi-

cient result computation, design a trie-like structure to index the

2
Guoliang Li is the corresponding author.

https://doi.org/10.1145/3183713.3183743
https://doi.org/10.1145/3183713.3183743

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

pivot points and develop global and local index to effectively prune

dissimilar trajectories. We support most of the widely adopted tra-

jectory similarity functions in our system (Section 4).

(3) We propose a filter-verification framework. In the filter step, we

use pivot points to estimate the similarity between two trajectories

to prune dissimilar pairs efficiently. In the verification step, we

devise effective verification techniques (Section 5).

(4) We devise cost-based optimization techniques to reduce the

inter-worker transmission and balance the workload (Section 6).

(5) We conduct a comprehensive evaluation on real world datasets.

The results show that DITA outperforms existing distributed trajec-

toriy search and join approaches significantly (Section 7).

2 PRELIMINARIES
2.1 Problem Formulation
Trajectory. A trajectory is a sequence of points generated from a

moving object, defined as below.

Definition 2.1. A trajectoryT is a sequence of points (t1, · · · , tm),
where each point is a d-dimensional tuple.

We use Ti to denote a trajectory whose id is i , and we use T and

Ti interchangeably if no ambiguity. We simply useT j
to denote the

prefix of T up to the j-th point, and tj to denote the j-th point of T .
For simplicitywe assume each point is represented as a 2-dimensional

tuple (latitude, longitude). Our method can be easily extended to

support multi-dimensional data (e.g., d ≥ 3).

Distance Function. According to many experimental evaluations

on different similarity functions for trajectory and time series

data [13, 43, 45], Dynamic Time Warping (DTW) [31] is recog-

nized as the most robust and widely adopted one. Thus, in this

paper we use DTW as the default distance function, and we will

show how to support other distance functions in Appendix A.

Definition 2.2. Given two trajectories T = (t1, · · · , tm) and Q =
(q1, · · · ,qn), DTW is computed as below

DTW(T ,Q) =




∑m
i=1

dist(ti ,q1) if n = 1∑n
j=1

dist(t1,qj) ifm = 1

dist(tm ,qn) +min

(
DTW(Tm−1,Qn−1),

DTW(Tm−1,Q), DTW(T ,Qn−1)
)

otherwise

whereTm−1
is the prefix trajectory ofT by removing the last point,

and dist(tm ,qn) is the point-to-point distance between tm and qn
(we use Euclidean distance in this paper).

Given two trajectoriesT andQ , we can utilize dynamic program-

ming to compute DTW (T ,Q) with the time complexity O (mn). We

use a matrix (w) to store distance values, where wi, j represents

dist (ti ,qj). Considering T = T1 and Q = T3 in Figure 1, the dis-

tance matrix is shown in Table 1. According to the definition of

DTW, we construct a matrix (v) to store DTW values, where vi, j
representsDTW (T i ,Q j). From the DTWmatrix in Table 1, we have

DTW (T1,T3) = w1,1+w2,1+w3,2+w4,3+w5,4+w5,5+w6,6 = 5.41.

Trajectory Similarity Search/Join. In this paper, we aim to solve

trajectory similarity search and join problems.

Definition 2.3 (Trajectory Similarity). Given two trajectories T
and Q , a trajectory-based distance function f (e.g., DTW) and a

threshold τ , if f (T ,Q) ≤ τ , we say that T and Q are similar.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7T1
T2
T3
T4
T5

Notation Trajectory Pivot Points(K = 2)

T1 (1, 1), (1, 2), (3, 2), (4, 4), (4, 5), (5, 5) (3, 2), (4, 4)
T2 (0, 1), (0, 2), (4, 2), (4, 4), (4, 5), (5, 5) (4, 2), (4, 4)
T3 (1, 1), (4, 1), (4, 3), (4, 5), (4, 6), (5, 6) (4, 1), (4, 3)
T4 (0, 4), (0, 5), (3, 3), (3, 7), (7, 5) (3, 3), (3, 7)
T5 (0, 4), (0, 5), (3, 7), (3, 3), (7, 5) (3, 7), (3, 3)

Figure 1: Example Trajectories
(1) Point-to-point Distance (2) DTW

t3

1
t3

2
t3

3
t3

4
t3

5
t3

6

t1

1
0 3 3.61 5 5.83 6.40

t1

2
1 3.16 3.16 4.24 5 5.66

t1

3
2.24 1.41 1.41 3.16 4.12 4.47

t1

4
4.24 3 1 1 2 2.24

t1

5
5 4 2 0 1 1.41

t1

6
5.66 4.12 2.24 1 1.41 1

t3

1
t3

2
t3

3
t3

4
t3

5
t3

6

t1

1
0 3 6.61 11.61 17.44 23.84

t1

2
1 3.16 6.16 10.40 15.40 21.06

t1

3
3.24 2.41 3.83 6.99 11.11 15.59

t1

4
7.48 5.41 3.41 4.41 6.41 8.65

t1

5
12.48 9.41 5.41 3.41 4.41 5.83

t1

6
18.14 13.54 7.65 4.41 4.83 5.41

Table 1: Distance and DTWMatirx for T1 and T3

Definition 2.4 (Trajectory Similarity Search). Given a query tra-

jectory Q , a collection of trajectories T =
{
T1,T2, · · · ,T |T |

}
, a

trajectory-based distance function f (e.g., DTW) and a threshold τ ,
the trajectory similarity search problem finds all trajectoriesT ∈ T ,

such that f (T ,Q) ≤ τ .

Definition 2.5 (Trajectory Similarity Join). Given two collections

of trajectoriesT =
{
T1,T2, · · · ,T |T |

}
andQ =

{
Q1,Q2, · · · ,Q |Q |

}
,

a trajectory distance function f (e.g., DTW) and a threshold τ , the
trajectory similarity join problem finds all similar pairs (T ,Q) ∈
T × Q, such that f (T ,Q) ≤ τ .

Example 2.6. Consider T = {T1,T2, · · · ,T5} in Figure 1. We take

T1 as the query trajectory Q and use DTW as the distance function
with τ = 3, then the trajectories similar to Q are {T1,T2}.

2.2 Spark SQL Overview
Spark SQL [5] is a module in Apache Spark that enables rela-

tional processing (e.g., declarative queries) using Spark’s func-

tional programming API [15]. Spark SQL also provides a declarative

DataFrame API to bridge between relational and procedural pro-

cessing. It supports both external data sources (e.g., JSON, Parquet

[2] and Avro [1]) and internal data collections (i.e., RDDs). Besides,

it uses a highly extensible optimizer Catalyst, making it easy to add

complex rules, control code generation, and define extension points.

However, Spark SQL does not support trajectory analysis. In this

paper, we integrate trajectory similarity search and join into Spark

SQL, thus making it able to process trajectory queries efficiently

with user-friendly front-end (e.g., SQL and DataFrame API).

2.3 Related Work
Trajectory Similarity Measures. Here we only highlight those

widely adopted similarity functions for trajectory (or time-series)

data, including dynamic time warping (DTW) [48], longest common

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

subsequence distance (LCSS) [41], edit distance on real sequence (EDR)
[10], edit distance with real penalty (ERP) [9], DISSIM [18], and

Fréchet distances [4]. According to several experimental evaluations

on most of these functions [13, 43, 45], DTW is more systematically

robust than other distance measures in general and widely adopted.

Trajectory Similarity Search/Join. Existing studies on trajectory
similarity search focus on either the threshold based query [7, 8, 48]

or the k nearest neighbor (kNN) query [9, 10, 12, 18, 41].

Xie et al. [46] develop a distributed in-memory system to answer

KNN queries over trjaectories and support twometric distance func-

tions, Hausdorff and Fréchet. They build global and local indexes

based on segments of trajectories, and use bitmap and dual indexing

to boost the search performance. Our work is different from [46] in

four main aspects. (1) The similarity join studied in our work is not

supported in [46]. (2) The performance of the indexing scheme of

[46] heavily depends on the choice of distance functions, i.e., it does

not support efficient search for non-metric distances such as DTW

and LCSS, while our work supports both metric and non-metric

distances in an efficient way (as validated in Section 7.2). (3) Our

work studies the load balancing mechanism and the optimization of

the result verification process, and constructs a cost model for dis-

tributed computing, which is ignored in [46]; instead, they simply

partition the data evenly. (4) The authors in [46] build indexes on

top of segments of trajectories, which require combining segments

to calculate the actual distance between trajectories (similar to a

non-clustered index). To address this, they utilize roaring bitmap

and dual indexing, which increase the space overhead greatly be-

cause they have to store dissimilar trajectory IDs in the roaring

bitmap and store the second copy of data with dual indexing, thus

making it consume much more memory and takes more time to be

replicated to every worker node. More importantly, the isolation

of index and data reduces the parallelism because the master node

has to wait for all the returned bitmaps from local indexes on all

workers, merge them together and replicate the merged one to all

workers for verification. In contrast, we build a clustered index

where trajectories are directly stored and aligned with the index,

thus we can validate the similarity on-the-fly.

[17] provides a distributed solution to KNN joins onMap-Reduce.

[17] differs from our work in three aspects. (1) Their methods are

not in-memory and they useMap-Reduce. (2) The distance functions

are different: the distance between two trajectories is defined as the

minimal distance between all pairs of points (p1,p2), where p1 ∈ T1,

p2 ∈ T2, and p1 and p2 are in the same time interval. (3) [17] does

not use any index to speed up the performance, and only utilizes a

hash function to achieve load balancing.

In centralized settings, depending on the choice of distance

functions, various pruning techniques are proposed to boost the

search/join performance. Ding et al. [12] propose an R-tree based in-

dex for a distance function adapted from the classic Fréchet distance.
Bakalov et al. [7, 8] utilize symbolic representations to achieve ef-

ficient join with an EDR-like similarity. Vlachos et al. [42] split

the trajectories in multidimensional MBRs and store them in an

R-tree, then propose the upper and lower bound to prune dissimilar

results for two non-metric distances, LCSS and DTW. In [19, 40, 49]

vantage point trees are proposed to answer trajectory similarity

search/join for metric distance functions (e.g., Fréchet). Ranu et

al. [33] utilize a universe set of vantage points as a fast estimation

to their self-proposed non-metric EDwP distance function. Our

work differs from them in three aspects. (1) Most previous prun-

ing methods are devised for a specific similarity function, which

are hard to extend to support other functions, while our work can

handle DTW, LCSS, EDR and Fréchet. (2) The indexing method is

different. Most of them use a single-level spatial index (e.g., R-tree)

to index the trajectories [16, 21, 42]; while we propose a trie-like

multi-level index, which accumulates the trajectory distance level

by level, thus achieving high pruning power. (3) They are designed

for a single machine and it is non-trivial to extend their methods

to work in a distributed environment.

Trajectory Analytics. There are some studies on trajectory ana-

lytics, including trajectory clustering [20, 24, 26, 32, 36, 37], outlier

detection [22, 27], classification [23, 35], simplification [28–30], tra-

jectory storage[11, 44]. Zheng et al. [53] provide a complete review

of related works on trajectory analytics.

Distributed/Parallel Spatial/TemporalAnalytics. There are some

distributed systems for spatial and temporal analytics. Spatial-

Hadoop [14] and Hadoop GIS [3] are two distributed spatial data

analytics systems over MapReduce. Clost [38] is a Hadoop-based

storage system for spatio-temporal analytics. Some studies focus

on distributed spatial join [50, 52]. GeoSpark [51] extends Spark

for processing spatial data but only supports two-dimensional data

without in-kernel indexing support and programming interface

such as SQL or the DataFrame API. Simba [47] extends Spark SQL

to support rich spatial queries and analytics through both SQL and

the DataFrame API. However, these studies do not support trajec-

tory analytics. Ray et al. [34] implement a parallel multi-core single

machine method to join trajectories with spatial objects (e.g., poly-

lines,polygons), rather than trajectory join studied in this paper.

3 OVERVIEW OF THE DITA SYSTEM
Extended SQL. We extend Spark SQL to support trajectory simi-

larity search and join.

(1) Trajectory Similarity Search. Users can utilize the following query
to find trajectories in table T that are similar to the query trajectory

Q w.r.t. a function f and a threshold τ .

SELECT * FROM T WHERE f (T ,Q) ≤ τ

(2) Trajectory Similarity Join. Users can utilize the following query

to find trajectory pairs (T ,Q) in tables T and Q where T ∈ T is

similar to Q ∈ Q w.r.t. a function f and a threshold τ .

SELECT * FROM T TRA-JOIN Q ON f (T ,Q) ≤ τ

DataFrame. In addition to the extended SQL syntaxes, users can

perform these operations over DataFrame objects using a domain-

specific language similar to R. We also extend Spark’s DataFrame

API to support trajectory similarity search and join.

Index. We extend Spark SQL to support index construction for

trajectory similarity search and join. Users can utilize the following

query to create a trie-like index (including both global and local

index) on table T , which will be introduced in Section 4.

CREATE INDEX TrieIndex ON T USE TRIE.

Query Processing. Given a SQL query or DataFrame API request,

the system firstly transforms it into a logical plan, and then opti-

mizes it with rule-based optimizations (e.g., predicate pushdown,

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

constant folding). Afterwards, the framework generates the most

effective physical plan by applying both our cost-based optimiza-

tions and Spark SQL internal optimizations. The physical plan is

executed on Spark to generate the results.

Query Optimization. We extend the Catalyst optimizer of Spark

SQL and introduce a cost-based optimization (CBO) module to

optimize trajectory similarity queries. The CBO module leverages

the global and local index to optimize complex SQL queries, which

will be discussed in Section 6.

4 INDEXING
We first present a method to select several pivot points from a

trajectory T to approximately represent it. Then the DTW distance
between a trajectory query Q and those pivot points of T is essen-

tially a lower bound of the distance between Q and T . If the lower
bound is already larger than a given threshold τ , then T cannot

be similar to Q and thus T can be pruned. Next, we devise a trie-

like structure to index the pivot points. Finally, we discuss how

to implement a distributed index with our methods and propose a

two-level (global and local) indexing scheme to reduce the global

transmission cost and local computation cost.

4.1 Pivot Point Based DTW Estimation
4.1.1 Accumulative Distance Estimation. Based on Definition 2.2,

to compute the DTW of T and Q based on the matrix v , we have
to go from (1, 1) to (m,n) with a stride of 1. That is for each point

ti ∈ T corresponding to the i-th row in the DTW matrix, we have

to compute its distance with some points inQ and add it to the final

DTW value when crossing the i-th row in the DTW matrix. Thus

in the i-th row, we need to add a value dist(ti ,qj) into DTW. If we

use the smallest value min1≤j≤n dist(ti ,qj), we can get a lower

bound of DTW. In addition, in the first row and last row, DTW

must include dist(t1,q1) and dist(tm ,qn). Thus based on these

two observations, we can get an accumulated minimum distance

AMD(T ,Q) = dist(t1,q1) + dist(tm ,qn) +
m−1∑
i=2

min

1≤j≤n
dist(ti ,qj).

Since DTW(T ,Q) ≥ AMD(T ,Q), if AMD(T ,Q) > τ , then DTW (T ,Q) >
τ , thusT andQ are not similar. The correctness is proved in Lemma 4.1.

Lemma 4.1. For two trajectories T of lengthm and Q of length n,
if AMD(T ,Q) > τ , then T and Q cannot be similar.

However, it is still time-consuming to calculate the AMDdistance

since it shares the same time complexity O (mn) with DTW. To

speed up the estimation, we select several points as pivot points

from T and compute the distance using these pivot points.

Definition 4.2 (Pivot Points). We defineTP as the set of pivot points
of Q where TP ⊂ T \{t1, tm }. We compute the pivot accumulated
minimum distance as

PAMD(T ,Q) = dist(t1,q1)+dist(tm ,qn)+
∑
p∈TP

min

1≤j≤n
dist(p,qj).

If the PAMD distance between T and Q is larger than τ , i.e.,
PAMD(T ,Q) > τ , T and Q cannot be similar based on Lemma 4.3.

Lemma 4.3. For two trajectories T of lengthm and Q of length n,
if PAMD (T ,Q) > τ , then T and Q cannot be similar.

ROOT

…

… … … …

first point

last point

Figure 2: An Example of Partitioning
ROOT

…

MBR1,NG

fMBR1,NG

f
… … … …MBR1,1

fMBR1,1
f MBR2,1

fMBR2,1
f MBR2,NG

fMBR2,NG

f MBRNG,1
fMBRNG,1
f MBRNG,NG

fMBRNG,NG

f

ROOT

…

MBR1,NG

lMBR1,NG

l
… … … …MBR1,1

lMBR1,1
l MBR2,1

lMBR2,1
l MBR2,NG

lMBR2,NG

l MBRNG,1
lMBRNG,1
l MBRNG,NG

lMBRNG,NG

l

Figure 3: Global Index
Using the first point, last point and the pivot points, we reduce

the time complexity from O (mn) to O (nK), where K=|TP | and is

much smaller thanm.

Example 4.4. Given two trajectories T1 and T3 in Figure 1 with

the number of pivot points K = 2 and τ = 3, we have

PAMD (T1,T3) = dist(t1

1
, t3

1
)+dist(t1

6
, t3

6
)+ min

1≤j≤6

dist(t1

3
, t3

j)+

min

1≤j≤6

dist(t1

4
, t3

j) = dist(t1

1
, t3

1
) + dist(t1

6
, t3

6
) + dist(t1

3
, t3

2
)

+ dist(t1

4
, t3

3
) = 0 + 1 + 1.41 + 1 = 3.41 > τ

thus T1 and T3 cannot be similar.

4.1.2 Pivot Points Selection. Without loss of generality each

point is assigned a weight, and our goal is to selectK points with the

largest weights as pivot pointsTP . We fix the number of pivot points

for all trajectories asK to make it more convenient for indexing and

query processing. Next we propose three strategies for calculating

a weight for each point in a trajectoryT from different perspectives.

Note our index and query processing methods are orthogonal to

the choice of pivot selection strategies.

Inflection Point Strategy: for three consecutive points a, b and c
in the trajectory, we use π − ∠abc as the weight for point b. A large

weight denotes that b is an inflection point and should be selected.

Neighbor Distance Strategy: for two consecutive points a, b in

the trajectory, we use dist(a,b) as the weight for the point b. A
large weight denotes that b is far from a and should be selected.

First/Last Distance Strategy: for a point b in the trajectory T
of length m, we use max(dist(b, t1), dist(b, tm)) as the weight

for the point b. A large weight denotes that b is far from the two

endpoints and should be selected.

Consider trajectoryT1 in Figure 1 and the number of pivot points

K = 2. For Inflection Point Strategy, its pivot points are [(1, 2), (4, 5)];
for Neighbor Distance Strategy, its pivot points are [(3, 2), (4, 4)];
for First/Last Distance Strategy, its pivot points are [(1, 2), (4, 5)].

4.1.3 Pivot Points Based Pruning. Given a query Q , for each
trajectory T , we enumerate each pivot point of T , find its nearest

point in Q and compute PAMD(T ,Q). If PAMD(T ,Q) > τ , we can

prune T . This method still needs to enumerate every trajectory. To

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

MBR1
fMBR1
f

ROOT

…
MBRNL

fMBRNL

f

MBR1,1
lMBR1,1
l MBR1,NL

lMBR1,NL

l… …

MBR1,1,1
p,1MBR1,1,1
p,1

MBR1,1,NL

p,1MBR1,1,NL

p,1…

……

MBR1,1,1,1
p,2MBR1,1,1,1
p,2 MBR1,1,1,NL

p,2MBR1,1,1,NL

p,2…

…

MBR1,··· ,1
p,KMBR1,··· ,1
p,K MBR1,··· ,1,NL

p,KMBR1,··· ,1,NL

p,K…

……

……

……

first point

last point

first pivot point

second pivot point

last pivot point

……

Figure 4: Local Index
Root

T1, T2, · · · , T5T1, T2, · · · , T5

1

[(0,1), (0,4)]
T2, T4, T5T2, T4, T5

2

[(1,1), (1,1)]
T1, T3T1, T3

3

[(5,5), (5,5)]
T2T2

4

[(7,5), (7,5)]
T4, T5T4, T5

7

[(4,2), (4,2)]
T2T2

12

[(4,4), (4,4)]
T2T2

8

[(3,3), (3,3)]
T4T4

13

[(3,7), (3,7)]
T4T4

9

[(3,7), (3,7)]
T5T5

14

[(3,3), (3,3)]
T5T5

5

[(5,5), (5,5)]
T1T1

6

[(5,6), (5,6)]
T3T3

10

[(3, 2), (3, 2)]
T1T1

15

[(4, 4), (4, 4)]
T1T1

11

[(4, 1), (4, 1)]
T3T3

16

[(4, 3), (4, 3)]
T3T3

first point

last point

first pivot point

second pivot point

Figure 5: Example Trie-like Index with K = 2 pivot points

address this issue, we can group the trajectories based on the pivots.

Then we can prune a group if all the trajectories in the group are not

similar to the query. We will discuss how to group the trajectories

and how to build index for trajectories later.

4.2 Distributed Indexing
When building an index on a huge dataset of trajectories, at first

we divide them into multiple partitions on different machines for

distributed computation. Then DITA employs two levels of indexes:

(1) the global index which helps the query trajectory Q find rele-

vant partitions that may contain trajectories similar to Q ; (2) the
local index that helps Q find candidate trajectories in each relevant

partition locally. Algorithm 1 presents the detailed steps.

4.2.1 Partitioning. As shown in Figure 2, we first group all tra-

jectories by their first point into NG disjoint buckets. Then we

further group the trajectories in each bucket by the last point of

these trajectories into NG sub-buckets. Each sub-bucket is taken

as a partition and thus there are NG ∗ NG partitions. In this way,

similar trajectories are more likely to be in the same partition and

each partition has roughly the same number of trajectories. We

adopt the Sort-Tile-Recursive (STR) partitioning method [25] to par-

tition the points of trajectories, where such a partitioning method

can guarantee that each partition has roughly the same number of

points, even for highly skewed data.

4.2.2 Global Index. For each partition, we get two minimum

bounding rectangle (MBRs),MBRf andMBRl .MBRf (MBRl) is the
MBR covering the first (last) point of all trajectories in that partition.

Then we build an R-tree for allMBRf and an R-tree for allMBRl
across all partitions, as shown in Figure 3.

Let MinDist(q,MBR) denote the minimal distance from a pointq
to anMBR (four corners and four sides). Given a queryQ of lengthn,
we use an R-tree to findMBRif for each i , where MinDist(q1,MBRif) ≤

τ , and get the set of corresponding partitions Cf . Similarly, we uti-

lize the other R-tree to findMBRil for each i , where MinDist(qn ,MBRil)

Algorithm 1: Partition&Index(T)

Input: Trajectories T : T1,T2, · · · ,T |T | ;
Output: Partitions, Global Index, Local Index
// Partitioning

1 Group trajectories into NG buckets based on the first points;

2 for each bucket do
3 Group trajectories into NG sub-buckets based on the last

points; The points in each sub-bucket form a partition;

// Global Index

4 Build an R-tree RTf for NG ∗ NG MBRf ;

5 Build an R-tree RTl for NG ∗ NG MBRl ;

// Local Index

6 for each partition(sub-bucket) Ti do
7 LocalIndex(Ti , root);

Function LocalIndex(T , TrieNode)

Input: Trajectories T : T1,T2, · · · ,T |T | ; TrieNode;
Output: Local Index

1 if TrieNode is the root then
2 Group T into NL buckets based on the first points;

3 for each bucket Ti do
4 Build a node node for Ti with itsMBRf ;

5 Add node as a child of TrieNode;

6 LocalIndex(Ti , node);

7 else if TrieNode is in the first level then
8 Group T into NL buckets based on the last points;

9 for each bucket Ti do
10 Build a node node for Ti with itsMBRl ;

11 Add node as a child of TrieNode;

12 LocalIndex(Ti , node);

13 else if TrieNode is in x-th level, x < K + 2 then
14 Group T into NL buckets based on (x−1)-th pivot point;

15 for each bucket Ti do
16 Build a node node for Ti with itsMBRx−1;

17 Add node as a child of TrieNode;

18 LocalIndex(Ti , node);

19 return LocalIndex;

≤ τ , and get the set of corresponding partitions Cl . For each parti-

tion p ∈ Cf ∩Cl , if MinDist(q1,MBRf) + MinDist(qn ,MBRl) ≤ τ ,
this is a relevant partition, where MBRf and MBRl are the corre-
sponding first-point MBR and last-point MBR.

Space Complexity. The space complexity is O (N 2

G).

4.2.3 Local Index. For each partition, we build a trie-like index

for trajectories based on the pivot points, as shown in Figure 4.

For each trajectory T of length m in a partition, according to

Lemma 4.3, we transform it into a sequence TI of indexing points:

(t1, tm , tP1
, tP2
, · · · , tPK)

where 1 < P1 < P2 < · · · < PK < m and (tP1
, tP2
, · · · , tPK) are

pre-selected pivot points TP . We define this sequence of points as

the indexing points TI of T .
Then we build a trie-like indexing structure based on the index-

ing points. We first initialize a dummy root node. Then we group

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

the trajectories in each partition into NL groups based on the first

indexing point. For each group, we compute its MBR; as a result

theseNL MBRs are the children of the root. Next, for the trajectories

in each MBR, we further group them into NL sub-groups based on

the second indexing point, compute their MBRs and take them as

the children. Iteratively we can build a (K + 2)-level tree structure.
For the leaf node, we also keep all the trajectories in the leaf MBR.

Thus in the local index, there are two types of trie nodes: (1)

the internal node which stores its level, corresponding MBR, child

nodes; (2) the leaf node which stores its level, corresponding MBR

and trajectory data. Our trie index is similar to a B+-tree in that

only leaf nodes store the real data, and keys (MBRs in our scenario)

are stored in internal nodes. We call the MBRs at the first two levels

as align MBRs, because they store the first and last point which

must be aligned to the first and last point of the query. We call the

MBRs at the bottom K levels as pivot MBRs.
In Figure 5, we build a trie index using trajectoriesT1,T2, · · · ,T5

in Figure 1, with NL = 2, K = 2 and neighbor distance strategy
to select pivot points. Each node contains an MBR except for the

root. For node1, it contains an MBR [(0, 1), (0, 4)], while (0, 1) is the
bottom-left point and (0, 4) is the top-right point for an MBR.

Space Complexity. The space complexity of the local index is

O (NK+2

L + |T |), where |T | is the number of trajectories, as we

store trajectory IDs in leaf nodes. NL and K are usually small. For

example, on a dataset with 10 million trajectories, NL is 32 and K is

4. As the first two levels are align MBRs, we usually set a larger NL
because (1) in the upper level there are many trajectories and (2)

we can get a tighter estimation using the align MBRs. As there are
fewer trajectories at bottom levels, we set a smaller NL in them.

5 TRAJECTORY SIMILARITY SEARCH
5.1 Framework

5.1.1 Basic Idea. In DITA, the trajectory similarity search queries

are processed in three steps: (1) the master (called the driver in
Spark) uses the global index to compute relevant partitions that

contain trajectories similar to query Q , and sends Q to the corre-

sponding workers (called the executors in Spark) of these partitions;

(2) in each partition, workers first use the local index to generate

candidate trajectories of queryQ and then generate the local results

by verifying whether they are actually similar to Q ; (3) the master

collects results and returns them to the user.

5.2 Global Pruning
Given a query Q with its first point q1 and last point qn , we find
relevant partitions using the global index. We first use the R-tree for

MBRs of the first point to find the MBRsCf = {MBRf |MinDist(q1,

MBRf) ≤ τ }. Then we use the R-tree for MBRs of the last point

to compute the MBRsCl = {MBRl |MinDist(qn ,MBRl) ≤ τ }. Then
for eachMBR inCf ∩Cl , if MinDist(q1,MBRf)+MinDist(qn ,MBRl)
≤ τ , we send the query to the corresponding partition of this MBR,

while other partitions can be pruned.

5.3 Local Search
5.3.1 Algorithm Overview. Given a query Q and a relevant par-

tition, we use the trie index to find answers of Q in the partition.

For ease of presentation, we first introduce some notations.

Minimal distance from a point to an MBR MinDist (q,MBR).
The minimal distance from q to an MBR is the minimal distance

fromq to four corners and four sides of MBR (MinDist(q,MBR) = 0

if q ∈ MBR). We have MinDist(q,MBR) ≤ MinDist(q,p ∈ MBR).

Minimal distance froma trajectory to anMBR MinDist (Q,MBR).
The minimal distance from Q to an MBR is the minimal distance of

MinDist (Q,MBR) among all points q ∈ Q , i.e.,

MinDist(Q,MBR) = min

q∈Q
MinDist(q,MBR).

Aligned Point Matching. Recall Definition 2.2, since we start

from (1, 1), the first points of two trajectories must be aligned.

Therefore, the first point ofQ ,q1, must be aligned to theMBRs in the

first level. Thus we aim to find the MBRs from the first level whose

minimal distance to q1 is within τ , i.e., MinDist(q1,MBRf) ≤ τ .
Similarly, since we end at (m,n), and the last point of Q , qn , must

be aligned to the MBRs in the second level. Thus we aim to find

the MBRs from the second level whose minimal distance to qn is

within τ , i.e., MinDist(qn ,MBRl) ≤ τ .

Pivot Point Matching. It is possible that the MBRs from the third

level to the (K + 2)-th level can match any point of Q . Therefore,
we aim to find the MBRs from the x-th level (x ∈ [3,K + 2])

of the Trie-like index whose minimal distance to Q is within τ ,
i.e., MinDist(Q,MBRx−2) ≤ τ , whereMBRx−2 corresponds to the

(x−2)-th pivot point.

MBR-basedAccumulatedMinimumDistance.Consider a node
MBRx−2 at the x-th level. Suppose its ancestor at i-th level is

MBRi−2. We consider the following cases to check whether we

can prune the node.

If x = 1, we prune it if MinDist(q1,MBRf) > τ
If x = 2, we prune it if MinDist(q1,MBRf)+MinDist(qn ,MBRl)>τ
If x ≥ 3, we prune it if MinDist(q1,MBRf)+MinDist(qn ,MBRl)+∑x−2

i=1
MinDist(Q,MBRi) > τ

In other words, if MBRx−2 (corresponding to level x) is not

pruned, we find its childrenMBRx−1 such that MinDist(Q,MBRx−1) ≤
τ−MinDist(q1,MBRf)−MinDist(qn ,MBRl)−

∑x−2

i=1
MinDist(Q,MBRi)

Based on the above analysis, we design an index-based search

method in Algorithm 2. We traverse the MBR-trie from the root. We

first find its childrenMBRf such thatdf = MinDist(q1,MBRf) ≤ τ .
Then for each MBRf , we find its children MBRl such that dl =
MinDist(qn ,MBRl) ≤ τ −df . Next for eachMBRl , we find its chil-
drenMBR1 such that MinDist(Q,MBR1) ≤ τ − df − dl . Iteratively
we reach the leaf nodes. For each unpruned leaf node, the trajecto-

ries in the node are candidates. Then we verify the candidates.

Discussion. Our method can achieve high efficiency due to the fol-

lowing reasons. First, we build a multi-level trie-like indexmaking it

easy to calculate the accumulated distance. As along as the distance

is gradually accumulated level by level, the threshold keeps decreas-

ing and the pruning power of our method becomes stronger. Second,

it is usually time consuming to compute trajectory distance (e.g.,

DTW) because we have to compute point-to-point distance numerous

times (e.g., for DTW it isO (mn)). However, with our indexwe in fact
compute the point-to-rectangle distance (i.e., MinDist(q,MBR)) be-
tween a point and anMBR that covers a lot of points. In other words,

we transform a large number of point-to-point distance computa-

tion to a one-time point-to-rectangle distance computation, thus

reducing the computation workload greatly. Third, our trie index

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

Algorithm 2: DITA-Search(Q , TrieIndex, τ)
Input: Query Q , TrieIndex, Threshold τ ;
Output: Answers A

1 Candidates C = DITA-Search-Filter(Q, root, τ);

2 for T ∈ C do
3 if DITA-Search-Verify(Q, T)=true then
4 Answers A ← T ;

Function DITA-Search-Filter

Input: Query Q , TrieNodeMBR, Threshold τ ;
Output: Candidates C

1 if node is LeafNode then return trajectories in the node ;
2 if the node is the root then
3 for each of its childMBRf in the first level do
4 if dist(q1,MBRf) ≤ τ then
5 DITA-Search-Filter(Q,MBRf ,τ − dist(q1,MBRf));

6 else if the node is in the first level then
7 for each of its childMBRl in the second level do
8 if dist(qn ,MBRl) ≤ τ then
9 DITA-Search-Filter(Q,MBRl ,τ − dist(qn ,MBRl));

10 else
11 for each of its child cMBR in the x ≥ 3 level do
12 if dist(Q, cMBR) ≤ τ then
13 DITA-Search-Filter(Q, cMBR, τ − dist(Q,MBR));

Function DITA-Search-Verify

Input: Query Q , Trajectory T , Threshold τ ;
Output: True or False

1 if MBRT not covered by EMBRQ,τ orMBRQ not covered by
EMBRT ,τ then return false; ;

2 if CELL(T ,Q) > τ or CELL(Q,T) > τ then return false ;
3 Compute DTW(T,Q,τ);

4 if DTW (T ,Q,τ) ≤ τ then return true;

5 else return f alse;

has a small size as justified in Appendix B, making it accessible to

be replicated and fully kept in memory.

5.3.2 Optimizing Filtering. We propose effective techniques to

optimize the filtering step. Considering an MBR of a pivot point, we

compute MinDist(Q,MBR) by enumerating all points in Q . Note
that we only need to check a suffix of Q , because DTW has an order-

ing constraint. That is, in the cost matrix, starting from (i, j), we
may only increase i or j or both by 1 in each step until reaching

(m,n). Assuming that the first s points q1,q2, · · · ,qs are not within
distance of τ1 = τ −dist(q1,MBRf)−dist(qn ,MBRl) to the MBR

of the first pivot point tP1
, thus based on the above property tP1

cannot be aligned with the first s points. In other words, tP1
will

be aligned with some points after the first s points, then the first s
points must be aligned with some points ti ∈ T and i < P1 due to

the ordering constraint of DTW. Therefore we can discard the first

s points because they cannot be aligned with tP2
, tP3
, · · · , tPK as

well. Based on these observations, we propose to identify a suffix

of Q to compute MinDist(Q,MBR).

Q

q4

ττ

τ

τ

τ

τ
ττ

τ

MBRQ

EMBRT5,τ

MBRT5

T5

(a) Basic Idea for Lemma 5.4

Q

t1(q1)

q2

q3

q5

q4

t2
t3

t4(q6)

t5 t6

q8

cellt1(cellq1)

cellq2

(cellq6)

cellq7

cellt3

cellt4

T1

(b) Basic Idea for Lemma 5.6

Figure 6: Optimizing Verification
Consider the MBR for the first pivot point. We need to consider

the entireQ and the suffix isQ1 = Q . Thenwe find the longest prefix

ofQ , q1,q2, · · · ,qs , such that dist(qi ,MBR) > τ for 1 ≤ i ≤ s and
dist(qs+1,MBR) ≤ τ . Then Q2 = qs+1, · · · ,qn is the suffix of

Q1 by removing the prefix of first s points. Iteratively, for Qi , we

compute the longest prefix ofQi−1 where the distance of each point

in the prefix to the (i − 1)-th MBR is larger than τ , and Qi is the

suffix of Qi−1 by removing the found prefix.

In this way, we only need to compute MinDist(Qi ,MBR) instead
of MinDist(Q,MBR), and the correctness is proved in Lemma 5.1.

Lemma 5.1. For trajectories T and Q with lengths ofm and n, if
dist(q1,MBRf) + dist(qn ,MBRl) +

∑K
i=1

dist(Qi ,MBRi) > τ ,T
and Q cannot be similar. We designate the left part of this inequality
as ordered pivot accumulated minimum distance (OPAMD).

Example 5.2. Given a query trajectory Q = T4 in Figure 1, we

show how to query the trie index in Figure 5 with threshold τ = 3.

Firstly, we compute the distances between T4’s first point (0, 4)
and the root’s child MBRs node1 (dist = 0) and node2 (dist =

3.16), then the new threshold is 3 for node1 and node2 is pruned.

Secondly, we compute the distances between T4’s last point (7, 5)
and node1’s child MBRs node3 (dist = 2) and node4 (dist = 0), then

the new thresholds are respectively 1, 3. Thirdly, for node3’s child

MBRnode7, we compute its minimum distance with all pointsq ∈ Q ,

which is 1.41. Since the threshold fornode3 is 1, we prunenode7 now.

Then for node4’s child MBR node8, the minimum distance is 0, and

we further query node8’s child MBR node13, the minimum distance

is still 0, thusT4 is a candidate. Fornode4’s another child MBRnode9,

according to Lemma 5.1, as τ = 3 and dist(qi ,node9) > τ for 1 ≤

i ≤ 3, we drop the first three points of Q and dist(q4,node9) = 0,

and the threshold remains as 3. Further, for node9’s child MBR

node14, the minimum distance is dist(q4,node14) = 4 > τ , thus
node14 is pruned. Finally, we get T4 as the final candidate.

5.3.3 Optimizing Verification. Given a candidate T of query Q ,
we verify whether T is similar to Q . It is expensive to directly

compute the similarity between T and Q , and we propose efficient

verification techniques.

(1)MBRCoverage Filtering. We define theMBR of a trajectoryQ ,

denoted byMBRQ , as the minimum bounded rectangle that covers

the whole trajectory. For each point t ∈ T , if dist(t ,MBRQ) > τ ,
T cannot be similar to Q , as formalized in Lemma 5.3.

Lemma 5.3. Given two trajectories T and Q with lengths ofm and
n which are similar, then for any t ∈ T , dist(t ,MBRQ) ≤ τ .

Note that in Lemma 5.3, if we swap T and Q , it is still correct.
For each point t ∈ T , we compute dist(t ,MBRQ) and prune can-

didate pair (T ,Q) if it exceeds τ . However, this may introduce

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

heavy computation if T and Q contain many points, as the time

complexity is O (m)(or O (n) if we swap T and Q). To solve this,

we extendMBRQ ’s borders by τ and denote the new rectangle as

EMBRQ,τ . Then according to Lemma 5.4, if EMBRQ,τ cannot fully

coverMBRT or EMBRT ,τ cannot fully coverMBRQ , we can prune

(T ,Q). This technique reduces the time complexity from O (n) to
O (1) and avoids expensive distance computation, as we only need to

check rectangle coverage now. As shown in Figure 6(a), EMBRT5,τ
cannot coverMBRQ because q4 ∈ Q is not covered, from which we

have dist(q4,T5) > τ and DTW(T5,Q) ≥ dist(q4,T5) > τ .

Lemma 5.4. For two trajectories T and Q , if T and Q are similar,
EMBRT ,τ fully coversMBRQ and EMBRQ,τ fully coversMBRT .

Example 5.5. Let trajectoryQ = [(0, 4), (0, 5), (3, 7), (3, 9), (3, 11), (3,

3), (7, 5)], whose pivot points are [(3, 7), (3, 3)], given a trajectoryT5

in Figure 1 and τ = 3, we prove that OPAMD (T5,Q) ≤ τ . However,
EMBRT5,τ cannot fully coverMBRQ , thus we prune (T5,Q).

(2) Cell-based Compression. Although the MBR coverage filter-

ing can prune candidate trajectory pairs with non-overlap MBRs, it

does not work well on trajectories with overlap MBRs. To address

this issue, we define a cell with a pre-defined side length D. For two
trajectoriesT andQ , we compress each trajectory into a list of cells

and compute a lower bound for DTW (T ,Q) using the two lists of cells

with much less computation, thus avoiding the time-consuming

DTW computation if the lower bound is beyond τ .
Formally, for each trajectory, we enumerate the points in the

trajectory T . For the first point t1, we create a cell with t1 as its

center with a fixed side length D. Then for each point t ∈ T , if
it falls into some cell c , we will increase c’s count (the number

of covered points) by 1; otherwise we will create a new cell with

t as its center. Finally, we will get a list of cells, which can be

regarded as a compressed representation of the trajectory, and we

denote T ’s cells as Cell(T). Considering Definition 2.2, we find

an easy-to-compute minimum distance for each point in T , sum
them up and use the final summation as an estimation for DTW.
After we have compressed T into CellT and Q into CellQ , for
each cell cT in CellT , we compute mincQ ∈CellQ dist(cT , cQ) as
the minimum distance for all points t ∈ cT , where dist(cT , cQ) is
the minimum distance between cT and cQ (if they are overlapped,

it will be zero). As shown in Figure 6(b), for the second point in Q ,

we get a cell Cellq2
and four points falling in this cell. Thus we can

compute 4 × (mini dist(Cellq2
, Cellti)) as an estimate instead of

computing dist(q, ti) for q ∈ {q2,q3,q4,q5}. By computing this for

each cell of Q and summing them up, we can get a lower bound

estimate for DTW(T ,Q) in a much faster way as stated in Lemma 5.6.

Lemma 5.6. For two given trajectories T and Q , let

Cell(T ,Q) =
∑

cT ∈CellT

(min

cQ ∈CellQ
dist(cT , cQ)) ∗ |cT |,

Cell(Q,T) =
∑

cQ ∈CellQ

(min

cT ∈CellT
dist(cT , cQ)) ∗ |cQ |,

where |cT | is the number of points falling into cT . Then we have
DTW (T ,Q) ≥ Cell(T ,Q) and DTW (T ,Q) ≥ Cell(Q,T).

Example 5.7. Let a trajectory Q = [(1, 1), (1, 5), (1, 4), (2, 4),

(2, 5), (4, 4), (5, 6), (5, 5)], whose pivot points are [(1, 5), (5, 6)],

given a trajectory T1 in Figure 1 and τ = 3, we could prove that

OPAMD (T1,Q) ≤ τ . With pre-defined cell size D = 2, we could

compress T1 to [t1, 2; t3, 1; t4, 3], where t1, 2 represents a cell cen-

tered at t1 containing 2 points, i.e., t1 and t2. We could compress Q
to [q1, 1; q2, 4; q6, 2; q7, 1]. According to Lemma 5.6, DTW(T1,Q) ≥
Cell(Q,T1) = dist(Cellq1

, Cellt1
)∗1+dist(Cellq2

, Cellt3
)∗4+

dist(Cellq6
, Cellt4

)∗2+dist(Cellq7
, Cellt4

)∗1 = 0+1∗4+0+0 =

4 > τ , thus we prune (T1,Q).

(3) Double-Direction Verification. As DTW requires that the

first points and the last points must be aligned, we can also start

calculating from the last point, opposite to the first point. Thus we

can compute from the first point and the last point simultaneously

and add the values together to get the final DTW value. If the

current sum is beyond τ , we can stop and conclude that they cannot

be similar. This method will decrease the search space just as the

double-direction search in the breadth-first search.

Overall Verification Algorithm. Computing MBRs and cells is

pre-processed during creating the index. Since the MBR coverage

filtering is most light-weight, we apply it first; then we apply cell-

based pruning because they are easy to compute comparing with

DTW. Note that we use a function DTW (T ,Q,τ), which is an op-

timized version of DTW considering the threshold constraint and

employing the double-direction verification.

6 TRAJECTORY SIMILARITY JOIN
6.1 Framework
Partitioning. When joining two tables T and Q, DITA first builds

indexes for them because it does not take too much cost as shown

in Appendix B and it can also be reused for future computation.

Therefore, in this section, we assume that both T and Q have

already been indexed. While partitioning, DITA will ensure that the
partition size cannot exceed half of the worker’s memory such that

any two partitions could be kept in memory at the same time.

Global Join. Given partitions of table T and Q, DITA finds all

partition pairs (i, j) such that there may exist trajectory T ∈ Ti
and Q ∈ Qj such that DTW(T ,Q) ≤ τ , where Ti denotes the i-th
partition of T . Afterwards, DITA computes the join results between

Ti and Qj by either sending Ti to Qj or sending Qj to Ti .

Local Join. For each pair Ti and Qj , without loss of generality, Qj
is sent to Ti . For each trajectory Q ∈ Qj , DITA finds all trajectories

T ∈ Ti such that DTW(T ,Q) ≤ τ by querying the index of Ti .

6.2 Cost Model
Partition-Partition Bi-graph. For each pair Ti and Qj , we send

them to some workers for local joins; however, it definitely trans-

mits redundant data over the network because not all trajectories in

Ti have candidates in Qj . To this end, for each trajectoryT ∈ Ti , we
check whetherT has candidates in Qj by querying the global index

of Q, then we only send the trajectory T ∈ Ti that has candidates
in Qj rather than the full partition Ti to Qj , denoted as Ti → Qj .

Similarly, we only send the trajectory Q ∈ Qj that has candidates
in Ti rather than the full partition Qj to Ti , denoted as Qj → Ti .

Then, we construct a directed bi-graph G between partitions of

T and Q. For Ti → Qj , we add an edge from Ti to Qj , or vice versa.

For Ti → Qj , some trajectories will be sent from Ti to Qj , and we

denote the amount of data transmitted as transTi→Qj . After these

trajectories have been sent to Qj , DITA will invoke the local join,

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

and we could use the total number of candidate pairs to estimate

the computation workload for this, denoted as compTi→Qj . DITA

samples T and Q to estimate both transTi→Qj and compTi→Qj .

Therefore, we create a directed bi-graph G, in which each edge has

two weights: trans and comp.
By constructing such a bi-graph, DITA may orientate the direc-

tions of edges to achieve the best performance for distributed joins.

Since a partition is the basic execution unit in Spark, wewill propose

a cost model for each partition in the following sections.

Network Cost. For each partition Ti , we define the transmission

cost of Ti as the amount of data in Ti sent to relevant partitions in Q,

i.e., the summation of transTi→Qj if the edge is orientated as from

Ti to Qj (out-degree edges for Ti). Thus, we know the transmission

cost for partition Ti , NCTi =
∑
Ti→Qj transTi→Qj and for partition

Qj , NCQj =
∑
Qj→Ti transQj→Ti .

Computation Cost. For each partition Ti , we define the com-

putation cost of Ti as the total number of candidate pairs dur-

ing local join between trajectories sent from Q and partition Ti ,

i.e., the summation of compQj→Ti if the edge goes from Qj to

Ti (in-degree edges for Ti). Thus, we know the computation cost

for partition Ti CCTi =
∑
Qj→Ti compQj→Ti and for partition Qj ,

CCQj =
∑
Ti→Qj compTi→Qj .

Total Cost. We define the total cost for partition Ti as TCTi =
λ · NCTi +CCTi , where λ is a parameter to tune the transmission

and computation speed. Assume the average computation time for

a candidate pair is ∆ and the network transmission bandwidth is

B. Then λ = 1

∆ ·B .

Goal. Since partitions are executed in parallel, our goal is to re-

duce the maximum total cost among all partitions for balancing

the workload. Thus we aim to select the direction of the edge

for each pair (Ti ,Qj) in the bi-graph G to minimize TCдlobal =
max(maxi TCTi ,maxj TCQj).

Problem Complexity. This problem is NP-hard. When λ = 0

in the aforementioned cost model, it becomes a so-called graph

balancing or graph orientation problem, which has been proven as

NP-Hard [6]. Therefore, we propose an approximation algorithm.

Greedy Algorithm. We employ a greedy algorithm to reduce

TCдlobal iteratively. Initially, we decide the direction of edge (Ti ,Qj)
by comparing λ · transTi→Qj + compTi→Qj with λ · transQj→Ti +

compQj→Ti , if the former one is no larger than the latter, we choose

Ti → Qj , or vice versa. Then in the rest iterations, we find the

graph node (i.e., partition) with the maximum TC , enumerate its

edges to find the edge that can reduce TCдlobal at most by chang-

ing direction, then change this edge’s direction. We repeat this

process until TCдlobal cannot be decreased. Finally, we will get an
orientation plan Λ for the whole graph, from which DITA knows
how to perform a join between Ti and Qj .

6.3 Division-based Load Balancing
While graph orientation could improve partition-level balancing,

it does not work well in all cases since we only utilize an approx-

imation algorithm. Further, even the optimal orientation cannot

handle some cases. For example, if some partitions are inherently

with huge total cost no matter how we change the directions of

edges, orientation does not help. Therefore, we devise a dynamic

Algorithm 3: DITA-Join(T , Q, τ)

Input: Table T , Table Q, Threshold τ ;
Output: Answers A
// Global Join

1 Construct the graph G by sampling T and Q;

2 Apply approximation algorithms to select edges;

3 Apply division algorithm to replicate nodes in the graph G;

4 for each edge (Ti → Qj) ∈ G do
5 Send all trajectories T ∈ Ti to Qj if T has candidates in Qj ;

6 for each edge (Qj → Ti) ∈ G do
7 Send all trajectories Q ∈ Qj to Ti if Q has candidates in Ti ;

// Local Join

8 for each trajectory T ∈ T do
9 Answers A ← DITA-Search(T , TrieIndex, τ);

load balancing mechanism by dividing the workloads of partitions

among workers to take full advantage of parallel computing.

Assume that after graph orientation, we sort partitions of both

T and Q together in ascending order by their total cost, P1, ... PN ,

where N equals the sum of the number of partitions in T and Q.

We divide the workloads of partitions with huge total cost into
multiple pieces. For example, given a partition Pi , we replicate it to

multiple copies, then trajectories supposed to be sent to Pi can be

sent to different replicas, and trajectories sent from Pi can be sent

from different replicas. In other words, we duplicate the node in G

and assign its edges to different duplicates to reduce TCдlobal .
To implement this mechanism in DITA, it is essential to decide

what partitions are to-be-divided partitions. In practice, since we

sort partitions with its total cost, we choose up to 98% cost as the

threshold for number of divisions for a partition, denoted asTC0.98.

If any partition with TCPi exceeding TC0.98, DITA will replicate it

to

TCPi
TC0.98

copies to improve the parallelism.

6.4 Overall Algorithm
Algorithm 3 illustrates our global and local join methods. DITA
creates the graph model by sampling T and Q to compute the

weight of edge, then employs two aforementioned load balancing

methods to modify the graph to achieve load balancing. Then DITA
creates local join tasks according to the modified graph, from which

each partition sends trajectories to other partitions if there exists an

edge in the graph. For local join, for each trajectory sent to current

partition, DITA utilizes the local trie index to search candidates.

7 EXPERIMENTS
7.1 Experimental Setup
Dataset. Table 2 showed the statistics of datasets we used: Beijing,
Chengdu, OSM(search), OSM(join). Beijing and Chengdu were

collected from the GPS device on taxis in Beijing and Chengdu
3
.

As there were no huge public trajectory datasets, OSM were synthe-

sized from publicly available GPS traces (of various objects) from

OpenStreeMap
4
, which contained 8.7 million trajectories with 2.7

billion points (110 GB).We generated OSM(search) by dividing long
trajectories (length > 3000) into several shorter ones; and (2) gen-

erating some trajectories by following the same distributions with

3
http://more.datatang.com/en

4
https://www.openstreetmap.org/

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

 1

 10

 100

 1000

 10000

 100000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

Naive
Simba

DFT
DITA

(a) Varying τ : Beijing

 1

 10

 100

 1000

 10000

 100000

 0.25 0.5 0.75 1

T
im

e
(m

ill
is

e
c
o

n
d

)

Sample rate

Naive
Simba

DFT
DITA

(b) Scalability: Beijing

 1

 10

 100

 1000

 10000

 100000

 64 128 192 256

T
im

e
(m

ill
is

e
c
o

n
d

)

of cores

Naive
Simba

DFT
DITA

(c) Scale-up: Beijing

 1

 10

 100

 1000

 10000

 100000

0.25,64c 0.5,128c 0.75,192c 1.0,256c

T
im

e
(m

ill
is

e
c
o

n
d

)

Scale

Naive
Simba

DFT
DITA

(d) Scale-out: Beijing

Figure 7: Comparison with Baselines on Beijing (Search) with the DTW Distance

 1

 10

 100

 1000

 10000

 100000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

Naive
Simba

DFT
DITA

(a) Varying τ : Chengdu

 1

 10

 100

 1000

 10000

 100000

 0.25 0.5 0.75 1

T
im

e
(m

ill
is

e
c
o

n
d

)

Sample rate

Naive
Simba

DFT
DITA

(b) Scalability: Chengdu

 1

 10

 100

 1000

 10000

 100000

 64 128 192 256

T
im

e
(m

ill
is

e
c
o

n
d

)

of cores

Naive
Simba

DFT
DITA

(c) Scale-up: Chengdu

 1

 10

 100

 1000

 10000

 100000

0.25,64c 0.5,128c 0.75,192c 1.0,256c

T
im

e
(m

ill
is

e
c
o

n
d

)

Scale

Naive
Simba

DFT
DITA

(d) Scale-out: Chengdu

Figure 8: Comparison with Baselines on Chengdu (Search) with the DTW Distance
Table 2: Datasets

Datasets Cardinality AvgLen MinLen MaxLen Size

Beijing 11,114,613 22.2 7 112 10.4GB

Chengdu 15,316,372 37.4 10 209 28GB

OSM(search) 141,236,563 113.9 9 3000 703 GB

OSM(join) 65,764,358 119.5 9 3000 312 GB

Table 3: Parameters (Default value is highlighted)
Parameter Value

Threshold τ 0.001, 0.002, 0.003, 0.004, 0.005
NG 32, 64(Beijing), 128(Chengdu), 256 (OSM)
NL 16, 32, 64
Pivot Selection InflectionPoint,Neighbor, First/LastDistance
Pivot Size K 2, 3, 4(Beijing), 5(Chengdu, OSM), 6
of Cores 64, 128, 192, 256
Dataset Size 0.25, 0.5, 0.75, 1.0

the real ones. Since distributed join required much more memory

than search, we generated OSM(join) by sampling OSM(search).
Baseline Methods. We compared with three baselines, including

the naive method Naive without index, Simba which was extended

from the in-memory spatial analytics system [47], and DFT which
was extended from the most recent work on distributed in-memory

trajectory search [46]. Simba supported range and kNN search

on spatial points using R-tree on Spark. To make Simba support

trajectory-based similarity search and join, we first indexed the

first points of trajectories using Simba, and then used Simba to find
trajectories whose first point was within a distance of τ from the

query trajectory’s first point as the candidates. Finally we verified

the candidates to get the final answers. We extended DFT to support
threshold-based search on DTW as stated in [46]. All the source

codes were gotten from the authors.

Parameters. Table 3 showed the parameters used in our method.

When we varied a parameter, other parameters were set to default

values (highlighted in bold). After a deep user study of trajectory

similarity thresholds onGoogle Earth, we select 0.001, 0.002, · · · , 0.005

as thresholds, where 0.001 is roughly 111 meters.

Machines. All experiments were conducted on a cluster consisting

of 64 nodes with a 8-core Intel Xeon E5-2670 v3 2.30GHz and 24GB

RAM. Each node was connected to a Gigabit Ethernet switch and

ran Ubuntu 14.04.2 LTS with Hadoop 2.6.0 and Spark 1.6.0.

7.2 Comparison with Baselines
7.2.1 Trajectory Similarity Search. We first compared different

methods for trajectory similarity search. For each dataset, we ran-

domly sampled 1,000 queries from the dataset and reported the

average running time in Figures 7 and 8.

Varying the Threshold. Figures 7(a) and 8(a) showed the perfor-

mance of all methods when varying the threshold. We made the

following observations. (1) With the increase of threshold, it took

more time for all methods as a larger threshold led to more results.

(2) Our method significantly outperformed baseline methods, even

by one or two orders of magnitude. For example, when τ = 0.005 on

Chengdu, Naive took 418 milliseconds, Simba took 24 milliseconds,

DFT took 289 milliseconds while DITA took 6 milliseconds. The

reasons were four-fold: i) Simba, DFT and DITA employed a two-

level (global and local) indexing scheme to reduce the transmission

cost and filtered out dissimilar pairs while Naive did not; ii) DITA
adopted an efficient trie-like index which was much better than

R-tree used in Simba and DFT, because DITA was specially designed
for trajectories and could compute accumulative distance level by

level; iii) for DFT, it queried the index to get the bitmap for filtered

trajectories, collected the bitmap at the master node, then searched

the data with the collected bitmap to verify the similarity, thus

making a barrier between indexing and verification, while both

Simba and DITA queried the index and verified the similarity in

the same iteration. Thus, DFT had less parallelism than Simba and
DITA. Besides, DFT did not optimize the verification process, while

Simba and DFT did. iv) DITA optimized the verification process

with the MBR coverage filtering, cell-based pruning and double-

direction verification (which are proposed in Section 5.3.3), while

Naive and Simba only utilized the double-direction verification. (3)

Naive, Simba and DFT were much more sensitive to the threshold

as compared with DITA, as only DITA used accumulative distance

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

 10

 100

 1000

 10000

 100000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

Simba
DITA

(a) Varying τ : Beijing

 10

 100

 1000

 10000

 100000

 0.25 0.5 0.75 1

T
im

e
(s

e
c
o

n
d

)

Sample rate

Simba
DITA

(b) Scalability: Beijing

 100

 1000

 10000

 100000

 1x10
6

 64 128 192 256

T
im

e
(s

e
c
o

n
d

)

of cores

Simba
DITA

(c) Scale-up: Beijing

 100

 1000

 10000

 100000

0.25,64c 0.5,128c 0.75,192c 1.0,256c

T
im

e
(s

e
c
o

n
d

)

Scale

Simba
DITA

(d) Scale-out: Beijing

Figure 9: Comparison with Baselines on Beijing (Join) with the DTW Distance

 100

 1000

 10000

 100000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

Simba
DITA

(a) Varying τ : Chengdu

 100

 1000

 10000

 0.25 0.5 0.75 1

T
im

e
(s

e
c
o

n
d

)

Sample rate

DITA

(b) Scalability: Chengdu

 1000

 10000

 64 128 192 256

T
im

e
(s

e
c
o

n
d

)

of cores

DITA

(c) Scale-up: Chengdu

 1000

 10000

0.25,64c 0.5,128c 0.75,192c 1.0,256c

T
im

e
(s

e
c
o

n
d

)

Scale

DITA

(d) Scale-out: Chengdu

Figure 10: Comparison with Baselines on Chengdu (Join) with the DTW Distance

estimation and efficient verification process. For example, when

τ = 0.003 on Beijing, Naive, Simba, DFT, DITA took 88, 3, 68, 1.5

milliseconds respectively; when τ was 0.005, they took 105, 7, 93

and 2 milliseconds respectively.

Scalability. We evaluated the scalability of all methods as shown in

Figures 7(b) and 8(b) with varying dataset size. With the increase of

data size, the gap between DITA and DFT, Simba, Naive tended to be
bigger, since large dataset sizes introduced much more computation

workloads and transmission costs. DITA achieved a better scalability
with its efficient partitioning scheme, well-devised indexing, and

optimized verification. For instance, if we increased the dataset size

from 0.5 to 1.0 on Beijing, Naive spent from 42 to 105 milliseconds,

Simba spent from 3 to 7 milliseconds, DFT spent from 47 to 93

milliseconds, while DITA only spent from 1 to 2 milliseconds.

Scale-up. We varied the number of cores and had the following

observations from Figures 7(c) and 8(c). (1) With the increase of

the number of cores, all methods gained performance improve-

ment since there were more workers running in parallel. (2) DITA
achieved the biggest performance gain, because DITA partitioned
data by their first and last points such that similar trajectories

tended to reside together and the size of each partition was nearly

equal; then with more workers, there would not be severe data skew

or imbalance problem. Simba only partitioned data by the first or

last point, which may cause unbalanced workloads of partitions.

Although DFT partitioned segments of trajectories, it had less paral-

lelism due to the barrier between the process of index probing and

verification. For example, when there were 128 cores on Chengdu,
Naive took 739 milliseconds, Simba took 28 milliseconds, DFT took

518 milliseconds, while DITA took 11 milliseconds; if we increased it

to 256 cores, they spent 418, 24, 289 and 6 milliseconds respectively.

Scale-out. We varied both the data size and the number of cores

as shown in Figures 7(d) and 8(d)), where “0.25,64c” denoted that

the dataset ratio was 0.25 and the number of cores was 64. We

could observe that: (1) DITA scaled-out nearly linearly on both

datasets while Naive, Simba, DFT could not handle bigger dataset

well even with more workers. The reasons were in two folds: (i)
DITA adopted efficient partition scheme to achieve data locality

and load balancing; (ii) similarity search did not need to transmit

much data between workers while similarity join required sending

candidate trajectories through the network, thus the performance of

search was directly related with local computation performance. (2)

On the Beijing dataset, the latency decreased when we increased

from “0.25,64c” to “0.5,128c”, because on a small dataset, the query

latency was tiny and the overheads (e.g., sending answers from

workers to master) were relatively more severe.

7.2.2 Trajectory Similarity Join. As Naive was too slow to com-

plete for similarity join, we would omit it. Note that DFT [46] only

presented how to support trajectory search but did not discuss how

to support join. We extended its search algorithm to support trajec-

tory similarity join; however, it consumed too much memory on big

datasets. The reason was as below. For each query, [46] constructed

a bitmap to store the ids of dissimilar trajectories, although they

used compressed roaring bitmap to reduce the space usage. On our

smallest dataset Beijing (a 11-million dataset), for each (trajectory

search) query, it took 0.2 MB on average. For trajectory join, there

were 11-million queries, thus it took roughly 2.2 TBmemory to store

all the bitmaps for all queries. Thus DFT cannot support trajectory

join for large datasets. We also tried the MapReduce-based dis-

tributed join [17] on Beijing, but it was not completed in 24 hours

([17] only conducted experiments on a dataset with one-million

trajectories while our datasets were 1-2 orders of magnitude larger

than it). Also note that their distance function was self-defined,

and it was hard to extend their techniques to support those widely

adopted trajectory distance functions. Thus, we compared Simba
and DITA for join, as shown in Figures 9 and 10. As Simba was not

completed in 24 hours on Chengdu when the threshold was larger

than 0.002, we only showed partial results for Simba.

Varying the Threshold. Figures 9(a) and 10(a) evaluated the per-

formance of two methods when varying threshold. We made the

following observations. (1) DITA significantly outperformed Simba
by one or two orders of magnitude especially when τ was big. For

example, when τ = 0.005 on Beijing, Simba took 31594 seconds

and DITA only spent 252 seconds. This was because that: i) DITA
employed efficient trie indexing scheme which generated much

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

Naive
Simba

DFT
DITA

(a) Search Time on OSM(search) (DTW)

 500

 1000

 1500

 2000

 2500

 3000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

DITA

(b) Join Time on OSM(join) (DTW)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

Naive
Simba

DFT
DITA

(c) Search Time on OSM (Fréchet)

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

DITA

(d) Join Time on OSM(join) (Fréchet)
Figure 11: Evaluation on Large Datasets OSM(search) and OSM(join) with the DTW and Fréchet Distances

less candidates than Simba; ii) DITA optimized time-consuming

verification step while Simba did not; iii) DITA adopted graph ori-

entation mechanism to reduce the transmission and computation

cost globally, and the load balancing mechanism to prevent from

stragglers while Simba did not. iv) during execution, Simba sent

each partition to its relevant partitions while DITA sent each tra-

jectory to its relevant partitions, thus DITA sent much less data. (2)

Both methods took more time on Chengdu than Beijing, because
Chengdu had more trajectories and thereby many more answers.

Scalability. We evaluated the scalability of the two methods in

Figures 9(b) and 10(b) with varying the dataset size. As these two

figures suggested, DITA achieved nearly linear scalability, and the

performance gap between DITA and Simba tended to be bigger

when the dataset size was increasing. This was because DITA em-

ployed more efficient indexing scheme, adopted graph orientation

mechanism to reduce transmission and computation cost, and uti-

lized load balancing mechanism to prevent from stragglers. For

example, when we increased the dataset size from 0.5 to 1.0 on

Beijing, Simba took from 7761 seconds to 31594 seconds, while

DITA took from 117 seconds to 252 seconds.

Scale-up. We varied the number of cores and had the following

observations from Figures 9(c) and 10(c). (1) With the increase of

the number of cores, both methods gained performance improve-

ment since there were more workers, but not as much as similarity

search, because for search, all workers were running in parallel

with little inter-worker communication, while for join, workers

were supposed to send candidate trajectories to each other. (2) DITA
achieved higher performance gain with the increasing number of

workers, because DITA employed graph orientation mechanism to

reduce cost and balancing mechanism to distribute workloads more

evenly. For example, when we had 128 cores on Beijing, Simba
spent 41453 seconds and DITA spent 416 seconds; if we increased it

to 256 cores, Simba took 31594 seconds and DITA took 252 seconds.

Scale-out. We varied the dataset size and number of cores as shown

in Figures 9(d) and 10(d). We observed that DITA scaled-out well on
both datasets while Simba could not handle bigger dataset evenwith
more workers. The reasons were four-folds. (1) with more cores

and bigger data size, there would be more network transmission

between workers, thus requiring efficient global indexing methods

to prune irrelevant partitions, and in this case DITA achieved better
performance; besides, DITA employed graph orientationmechanism

to further reduce network transmission cost; (2) DITA generated

much less candidates than that of Simba, leading to that the lo-

cal computation workload for DITA was also smaller than Simba;
(3) with more cores (workers), the imbalance between workers

would be more intense, and DITA was optimized with load balanc-

ing mechanism while Simba did not; (4) Simba processed join by

matching partition to partition, while DITAmatched each trajectory

to a partition, thus DITA sent much less data.

7.3 Evaluation on Large Datasets
We evaluated the performance of all methods for trajectory sim-

ilarity search and join on the large datasets OSM by varying the

threshold, and the result is shown in Figure 11. Since all methods ex-

cept DITA were too slow to complete in 24 hours on the OSM(join)
dataset, we only reported the results of DITA for distributed trajec-

tory join. We had five observations. (1) DITA significantly outper-

formed other methods for distributed search. For example, existing

works took more than 10 seconds on search while DITA only took

0.1 second. (2) The join performance of DITA was more sensitive to

the threshold value, as more overheads were incurred for join than

search. (3) Join on OSM(join)was only three times slower than join

on Chengdu, even though OSM(join) was one order of magnitude

larger than Chengdu. This was because OSM(join) was a dataset

of worldwide trajectories and had smaller numbers of candidates

and results, while Chengdu only contained citywide trajectories.

(4) For both search and join, the efficiency on Fréchet distance

function was slower than that of DTW because DTW was tighter than

Fréchet with the same threshold. (5) Our method was able to scale

well on huge datasets while existing approaches cannot support

huge datasets. This was attributed to our effective global and local

indexes, effective filtering algorithms and verification techniques.

8 CONCLUSION
In this paper we proposed DITA, a distributed in-memory trajectory

analytics system on Spark. DITA provided the trajectory similarity

search and join operations with a user-friendly SQL and DataFrame

API, and can work with most trajectory similarity functions such

as non-metric ones (DTW, EDR, LCSS) and non-metric ones (Fréchet
distance). DITA built effective global index and local index to prune

irrelevant partitions and trajectories. Furthermore, DITA optimized

the verification step to reduce the computation cost, and adopted

load balancing mechanisms to balance the workload. Extensive

experiments showed that DITA outperformed state-of-the-art dis-

tributed approaches significantly. In future, we plan to support

KNN-based search and join in DITA, and implement an extension

of DITA by considering road networks.

Acknowledgement. Guoliang Li was supported by the 973 Pro-

gram of China (2015CB358700), NSF of China (61632016,61472198,

61521002,61661166012), and TAL education. Zhifeng Bao was sup-

ported byARC (DP170102726, DP180102050), NSF of China (61728204,

91646204), and Google Faculty Award.

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Apache avro. https://avro.apache.org/.

[2] Apache parquet. https://parquet.apache.org/.

[3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop gis: a

high performance spatial data warehousing system over mapreduce. PVLDB,
6:1009–1020, 2013.

[4] H. Alt and M. Godau. Computing the fréchet distance between two polygonal

curves. Int. J. Comput. Geometry Appl., 5:75–91, 1995.
[5] M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark sql: relational data processing

in spark. In SIGMOD, pages 1383–1394, 2015.
[6] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph orientation algorithms to

minimize the maximum outdegree. Int. J. Found. Comput. Sci., 18:197–215, 2006.
[7] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient trajectory

joins using symbolic representations. In Mobile Data Management, pages 86–93,
2005.

[8] P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed spatiotemporal

trajectory joins. In GIS, pages 182–191, 2005.
[9] L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance. In VLDB,

pages 792–803, 2004.

[10] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving

object trajectories. In SIGMOD, pages 491–502, 2005.
[11] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive storage system

for very large trajectory data sets. In ICDE, pages 109–120, 2010.
[12] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of large sets

of moving object trajectories. In TIME, pages 79–87, 2008.
[13] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. Querying

and mining of time series data: experimental comparison of representations and

distance measures. PVLDB, 1:1542–1552, 2008.
[14] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial

data. In ICDE, pages 1352–1363, 2015.
[15] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.

Shark: fast data analysis using coarse-grained distributed memory. In SIGMOD,
pages 689–692, 2012.

[16] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases. In SIGMOD, 1994.
[17] Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang. Scalable algorithms for

nearest-neighbor joins on big trajectory data. ICDE, pages 1528–1529, 2016.
[18] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory

search. In ICDE, pages 816–825, 2007.
[19] A. W.-C. Fu, P. M. shuen Chan, Y.-L. Cheung, and Y. S. Moon. Dynamic vp-

tree indexing for n-nearest neighbor search given pair-wise distances. VLDBJ,
9:154–173, 2000.

[20] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression

models. In KDD, pages 63–72, 1999.
[21] E. J. Keogh. Exact indexing of dynamic time warping. In VLDB, 2002.
[22] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect

framework. In ICDE, pages 140–149, 2008.
[23] J.-G. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification using

hierarchical region-based and trajectory-based clustering. PVLDB, 1:1081–1094,
2008.

[24] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group

framework. In SIGMOD, pages 593–604, 2007.
[25] S. T. Leutenegger, J. M. Edgington, and M. A. López. Str: A simple and efficient

algorithm for r-tree packing. In ICDE, pages 497–506, 1997.
[26] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving

object clusters. PVLDB, 3:723–734, 2010.
[27] Z. Li, M. Ji, J.-G. Lee, L. A. Tang, Y. Yu, J. Han, and R. Kays. Movemine: mining

moving object databases. In SIGMOD, pages 1203–1206, 2010.
[28] X. Lin, S. Ma, H. Zhang, T. Wo, and J. Huai. One-pass error bounded trajectory

simplification. PVLDB, 10:841–852, 2017.
[29] C. Long, R. C.-W. Wong, and H. V. Jagadish. Direction-preserving trajectory

simplification. PVLDB, 6:949–960, 2013.
[30] C. Long, R. C.-W. Wong, and H. V. Jagadish. Trajectory simplification: On mini-

mizing the direction-based error. PVLDB, 8:49–60, 2014.
[31] C. S. Myers and L. R. Rabiner. A comparative study of several dynamic time-

warping algorithms for connected-word recognition. Bell System Technical Jour-
nal, 60:1389–1409, 1981.

[32] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos, and Y. Theodoridis. Cluster-

ing trajectories of moving objects in an uncertain world. In ICDM, pages 417–427,

2009.

[33] S. Ranu, D. P, A. Telang, P. Deshpande, and S. Raghavan. Indexing and matching

trajectories under inconsistent sampling rates. ICDE, pages 999–1010, 2015.
[34] S. Ray, A. D. Brown, N. Koudas, R. Blanco, and A. K. Goel. Parallel in-memory

trajectory-based spatiotemporal topological join. Big Data, pages 361–370, 2015.
[35] L. K. Sharma, O. P. Vyas, S. Scheider, and A. K. Akasapu. Nearest neighbour

classification for trajectory data. In ICT, pages 180–185, 2010.

[36] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng:. Signature-based trajectory similarity

join. IEEE Trans. Knowl. Data Eng., 29(4):870–883, 2017.
[37] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong. An efficient ride-sharing

framework for maximizing shared route. IEEE Trans. Knowl. Data Eng., 30(2):219–
233, 2018.

[38] H. Tan, W. Luo, and L. M. Ni. Clost: a hadoop-based storage system for big

spatio-temporal data analytics. In CIKM, pages 2139–2143, 2012.

[39] K. Toohey and M. Duckham. Trajectory similarity measures. SIGSPATIAL Special,
7:43–50, 2015.

[40] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.

Inf. Process. Lett., 40:175–179, 1991.
[41] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional

trajectories. In ICDE, pages 673–684, 2002.
[42] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. J. Keogh. Indexing multi-

dimensional time-series with support for multiple distance measures. In KDD,
pages 216–225, 2003.

[43] H. Wang, H. Su, K. Zheng, S. W. Sadiq, and X. Zhou. An effectiveness study on

trajectory similarity measures. In ADC, pages 13–22, 2013.
[44] H. Wang, K. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An in-memory storage

system for massive trajectory data. In SIGMOD, pages 1099–1104, 2015.
[45] X. Wang, H. Ding, G. Trajcevski, P. Scheuermann, and E. J. Keogh. Experimental

comparison of representation methods and distance measures for time series

data. Data Mining and Knowledge Discovery, 26:275–309, 2012.
[46] D. Xie, F. Li, and J. Phillips. Distributed trajectory similarity search. PVLDB,

10:1478–1489, 2017.

[47] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: efficient in-memory

spatial analytics. In SIGMOD, pages 1071–1085, 2016.
[48] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time

sequences under time warping. In ICDE, pages 201–208, 1998.
[49] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA, 1993.
[50] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query processing in

cloud. In ICDE Workshops, pages 34–41, 2015.
[51] J. Yu, J. Wu, and M. Sarwat. Geospark: A cluster computing framework for

processing large-scale spatial data. In SIGSPATIAL/GIS, page 70, 2015.
[52] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr: Parallelizing spatial join with

mapreduce on clusters. In CLUSTER, pages 1–8, 2009.
[53] Y. Zheng and X. Zhou. Computing with spatial trajectories. Springer Science &

Business Media, 2011.

A OTHER DISTANCE FUNCTIONS
(1) Fréchet distance [4] .

Definition A.1. Given two trajectories T = (t1, · · · , tm) and Q =
(q1, · · · ,qn), Fréchet distance is computed as below

F (T ,Q) =




max
m
i=1

dist(ti ,q1) if n = 1

max
n
j=1

dist(t1,qj) ifm = 1

max (dist(tm ,qn),min

(
F (Tm−1,Qn−1),

F (Tm−1,Q), F (T ,Qn−1)
)
) otherwise

whereTm−1
is the prefix trajectory ofT by removing the last point.

Given two trajectories T1 and T3 in Figure 1, Fréchet (T1,T3) =
1.41. To support Fréchet, DITA doesn’t need to update τ by subtract-

ing distance from it when querying the index. Similarly, we can

still apply MBR coverage filtering, and cell-based estimation.

(2) Edit distance based function. It counts the minimum number

of edits required to make two trajectories equivalent. We take edit

distance on real sequence (EDR) [10] as an example.

Definition A.2 (EDR). Given two trajectoriesT andQ with lengths

m and n, and a matching threshold ϵ ≥ 0, EDRϵ [39] is:

EDRϵ (T ,Q) =




n ifm = 0

m if n = 0

min

(
EDRϵ (T

2,m ,Q2,n) + subcost (t1,q1),

EDRϵ (T
2,m ,Q) + 1,EDRϵ (T ,Q

2,n) + 1

)
otherwise

whereT 2,m
stands for trajectoryT with its first point removed, and

subcost (t ,q) = 0 if dist(t ,q) ≤ ϵ ; 1 otherwise.

https://avro.apache.org/
https://parquet.apache.org/

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

 50

 100

 150

 200

 250

 300

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

Inflection
Neighbor
First/Last

(a) Pivot Selection: Beijing

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

Inflection
Neighbor
First/Last

(b) Pivot Selection: Chengdu

 50

 100

 150

 200

 250

 300

 350

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

2
3
4
5

(c) Pivot Size: Beijing

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

3
4
5
6

(d) Pivot Size: Chengdu

Figure 12: Evaluation on Pivot Selection Methods(DTW)

Table 4: Varying # of Partitions with DTW Distance

NG
Time (Beijing) Time(Chengdu)

Search (ms) Join (s) Search (ms) Join (s)

32 4 604 10 5943

64 2 252 6 2834

128 12 334 13 1671

256 35 697 25 3035

Given two trajectories T1 and T3 in Figure 1, let ϵ = 1, we have

EDRϵ (T1,T3) = 2. To support EDR, for each MBR in the trie, we

compute the distance. If it is beyond ϵ , we subtract threshold by 1.

If current threshold is below zero, we prune this trie node. Secondly,

we employ other filtering techniques in the leaf node. For example,

we build a global grid map, map each point to a grid on the map, and

use an inverted list whose key is the grid and value are trajectories

in the leaf node that contain points in this grid. For each point

q ∈ Q , we find all grids that are within distance of ϵ from q, and
use the inverted list to find trajectories that contain points in those

grids as candidates. Thirdly, we utilize length filtering: given two

trajectories T and Q of length m and n, we have EDRϵ (T ,Q) ≥
|m − n |. If |m − n | > τ , T and Q cannot be similar.

(3) Longest common subsequence distance (LCSS). It measures

the maximum number of equivalent points with traversing the two

trajectories monotonically from start to end [39].

Definition A.3 (LCSS). Given two trajectoriesT andQ with lengths

m and n, an integer δ ≥ 0 and a matching threshold ϵ ≥ 0, the

LCSSδ,ϵ is defined as below [41]:

LCSSδ,ϵ (T ,Q) =




n ifm = 0

m if n = 0

LCSSδ,ϵ (T
m−1,Qn−1) if |m − n | ≤ δ &

1 +min(LCSSδ,ϵ (T
m−1,Q), dist(tm ,qn) ≤ ϵ

LCSSδ,ϵ (T ,Q
n−1)) otherwise

whereTm−1
is the prefix trajectory ofT with the last point removed.

Given two trajectories T1 and T3 in Figure 1, let δ = 1 and ϵ = 1,

we have LCSSδ,ϵ (T1,T3) = 2. To support LCSS, we adopt the above-

mentioned three modifications for EDR since they still work for

LCSS. One thing to note here that for the first modification, whenwe

partition the points into MBRs, we partition by both its coordinates

and its index in the trajectory. For each MBR, we compute the

minimum distance between it and the part of the query trajectory

which fulfills the index constraint (as |m − n | in Definition A.3), if

it is beyond ϵ , we would subtract current threshold by 1.

B ADDITIONAL EXPERIMENTS
Varying # of Partitions. As discussed in Section 4, the total num-

ber of partitions was NG × NG . Table 4 showed the performance

 10

 100

 1000

 10000

 100000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

DITA
Random

(a) Partitioning Scheme: Beijing

 100

 1000

 10000

 100000

 1x10
6

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

DITA
Random

(b) Partitioning Scheme: Chengdu

Figure 13: Evaluation on Partitioning Schemes(DTW)

of our method by varying NG , and we can observe that both the

performance of search and join first increased and then decreased

with increasing NG . This was because that although increasing

the number of partitions improved parallelism, it required trans-

mitting more data (i.e., candidate trajectories) between workers

and introduced more overhead (e.g., querying the local index). We

could obtain a best parameter value NG = 64 for search. Further,

by comparing between search and join on the same dataset, we

found that the optimal number of partitions for join was a little

larger than that of search, since the join computation typically con-

sisted of larger workloads, and more number of partitions would

allow for more parallelism and help balancing the loads between

workers. Therefore, we believed that the expected workload of a

particular partition was supposed to be medium, not too large for

incurring un-balancing loads and not too small for introducing

much overhead. Moreover, for join, the optimal number of parti-

tions on Chengdu was larger than the optimal number of partitions

on Beijing, because Chengdu had much more candidates and an-

swers than Beijing (even more than one order of magnitude). As

mentioned above, increasing the number of partitions on Chengdu
would help keep the expected workload at a medium level to im-

prove the overall performance. Based on these observations, we

could utilize a binary search to find the best number of partitions

when building indexes on a new dataset.

Pivot Selection Strategy. We evaluated our three pivot selec-

tion strategies. Figures 12(a) and 12(b) showed the performance of

DITA with different pivot selection strategies by varying threshold.

Neighbor achieved the best performance among all three strate-

gies, and First/Last was the worst. For example, when τ = 0.005

on Beijing, Neighbor took 252 seconds, Inflection took 269

seconds, and First/Last took 287 seconds. This was because: (1)

First/Last found points with maximum distance from first/last

points, which could have bad performance when there are many

points closed to each other but far fromfirst/last points; (2) Inflection
took direction into account but it neglected points in the same di-

rection with long distances; (3) Neighbor tried to find pivot points

DITA: Distributed In-Memory Trajectory Analytics SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

 10

 100

 1000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

16
32
64

(a) NL : Beijing

 100

 1000

 10000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(S

e
c
o

n
d

)

Threshold τ

16
32
64

(b) NL : Chengdu
Figure 14: Evaluation on Varying NL(DTW)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

DTW(Beijing)
DTW(Chengdu)
Fréchet(Beijing)

Fréchet(Chengdu)

(a) Varying τ : DTW and Fréchet

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5

T
im

e
(s

e
c
o

n
d

)

Threshold τ

EDR(Beijing)
EDR(Chengdu)

LCSS(Beijing)
LCSS(Chengdu)

(b) Varying τ : EDR and LCSS

Figure 15: Other Distance Functions

as far as possible between each other, thus forming a representative

set of points for a particular trajectory.

Varying Pivot Size. Figures 12(c) and 12(d) showed the perfor-

mance of DITA with different pivot size K by varying the threshold.

We had the following observations. Firstly, K = 4 achieved the best

performance on Beijing. This was because that: (1) K = 3 could

not filter dissimilar pairs efficiently compared with others since it

utilized the least number of points; (2) K = 5 took more time query-

ing the index but did not improve the pruning power greatly; (3)

Since it took much more time for verification than indexing, K = 5

was better than K = 3. Secondly, K = 4 achieved the best perfor-

mance on Beijing, while K = 5 achieved the best performance on

Chengdu, because trajectories in Chengdu had longer length than

those in Beijing on average, thus more pivot points would increase

performance along with increasing average length. Thus, the selec-

tion of pivot size was obviously a trade-off between querying index

time and pruning power which should be fine-tuned.

Partitioning Scheme. Figures 13(a) and 13(b) compared the per-

formance for similarity join of two different partitioning schemes:

Random (random partitioning for all trajectories) and DITA (our

method). We could find that DITA outperformed Random even by

several orders of magnitude, which lied in two folds: (1) DITA par-
titioned trajectories according to their first and last points, which

made similar trajectories tend to reside together, thus for each tra-

jectory, DITA only sent it to a few relevant partitions while Random
sent it to all partitions. Therefore, the global transmission cost was

greatly reduced by adopting DITA. (2) Locally, since similar trajec-

tories tended to reside together, and their points would also tend

to be well clustered, the clustered MBRs will be more compact (or

smaller) than those in random-partitioned partitions, making it

more efficient to find candidates for DITA than Random. Therefore,
the local computation cost was greatly reduced by employing DITA.

Varying NL . Figures 14(a) and 14(b) showed the performance of

DITA with different NL by varying threshold. We found that NL =

32 achieved the best performance, while NL = 16 was the worst. For

example, when τ = 0.005 on Chengdu, NL = 32 took 1671 seconds,

NL = 64 took 1760 seconds, and NL = 16 took 2022 seconds. This

was because that: (1) NL = 16 did not separate points well and

Table 5: Indexing Time (Seconds) and Size (MB)
Methods Sample Rate Time Global Size Local Size

DITA (Beijing)

0.25 43 14 307

0.5 94 14 659

0.75 150 14 1014

1.0 197 14 1446

DITA (Chengdu)

0.25 97 65 820

0.5 189 65 1395

0.75 270 65 1852

1.0 345 65 2224

DFT (Beijing) 1.0 108 48 12843

DFT (Chengdu) 1.0 265 78 34251

clustered MBRs were a little big, making it not efficient enough

for filtering dissimilar pairs; (2) NL = 64 created too many child

trie nodes, and it took a lot of time to access the index but did not

improve the pruning power greatly; (3) Since it took much more

time for verification than indexing, NL = 64 was better than NL =

16. Thus, the selection of NL was obviously a trade-off between

querying index time and pruning power which should be fine-tuned.

Indexing Size and Time. Table 5 varied dataset size and showed

the time for building indexes and indexes’ space usage, where

dataset size 0.5 meant that we sampled 50% data to conduct the

experiments. We made the following observations. Firstly, it took

not much time to build indexes (within 6 minutes). Secondly, the

indexing time increased nearly linearly with dataset size, because

when there were too few trajectories (by default 16) in a trie node,

DITA would stop creating child trie nodes for this node. Thus, with

more data given, there would be more trie nodes proportional to the

number of trajectories, and the time for building trie indexes would

also increase in the same way. Thirdly, the size of the global index

was less than 100MB for both Beijing and Chengdu (14MB and

65MB respectively), making it accessible for replicating to every

worker. The size of global index did not change with varying dataset

sizes because it was decided by the number of partitions. Moreover,

the size of the local indexes increased linearly with dataset size, be-

cause we need to index more trajectories in the local index. Further,

Chengdu had larger local indexes size than Beijing as Chengdu
had more partitions and more trajectories. Finally, although the

indexing time for DITA was a little longer than that of DFT, DITA
had a smaller global index size and much smaller (even by one order

of magnitude) local index size than DFT.

Supporting other distance functions. We evaluated DITA’s per-
formance with different distance functions, including DTW, Fréchet,
EDR and LCSS (ϵ = 0.0001,δ = 3), in Figure 15. We could observe

that: (1) Fréchet was slower than DTW with the same threshold,

because DTW sums the values up through the whole path from (1, 1)
to (m,n) while Fréchet chooses the maximum value; (2) LCSS was

faster than EDRwith the same threshold, because LCSS has an index

constraint while EDR does not.

Evaluation on Load Balancing. To justify that our balancing

mechanism in fact works, we collected total execution time for

each worker, and calculated the ratio of the longest to the shortest

as the un-balanced ratio.We compared twomethods, Naivewithout
any balancing mechanism, and DITA with our balancing mecha-

nism on the un-balanced ratio and total execution time for join. The

results were shown in Figure 16. We made the following observa-

tions: (1) the ratios for two methods decreased w.r.t. an increasing

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Zeyuan Shang, Guoliang Li, and Zhifeng Bao

 0

 2

 4

 6

 8

 10

 12

 0.001 0.002 0.003 0.004 0.005

L
o

a
d

 R
a

ti
o

Threshold τ

DITA

Naive

(a) Load Ratio: Beijing

 1

 1.5

 2

 2.5

 3

 3.5

 0.001 0.002 0.003 0.004 0.005

L
o

a
d

 R
a

ti
o

Threshold τ

DITA

Naive

(b) Load Ratio: Chengdu

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

DITA
Naive

(c) Total Time: Beijing

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0.001 0.002 0.003 0.004 0.005

T
im

e
(s

e
c
o

n
d

)

Threshold τ

DITA
Naive

(d) Total Time: Chengdu
Figure 16: Evaluation on Load Balancing (DTW)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.001 0.002 0.003 0.004 0.005

#
 o

f
C

a
n

d
id

a
te

s

Threshold τ

MBE

DITA

(a) # of Candidates (DTW)

 1

 10

 100

 1000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

MBE
DITA

(b) Time (DTW)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.001 0.002 0.003 0.004 0.005

#
 o

f
C

a
n

d
id

a
te

s

Threshold τ

MBE

VP-Tree

DITA

(c) # of Candidates (Fréchet)

 1

 10

 100

 1000

 10000

 0.001 0.002 0.003 0.004 0.005

T
im

e
(m

ill
is

e
c
o

n
d

)

Threshold τ

MBE
VP-Tree

DITA

(d) Time (Fréchet)
Figure 17: Comparison with Centralized Baselines (Search)

Table 6: Datasets (Centralized)

Datasets Cardinality AvgLen MinLen MaxLen Size

Chengdu(tiny) 1000,000 38.5 6 205 1.88GB

Table 7: Indexing Time and Size (Centralized)

Methods Index Time (seconds) Index Size (MB)

DITA 57 219

MBE 834 1257

VP-Tree 3507 3021

threshold, because that although a larger threshold increased the

largest workload among all partitions, it also made the number

of partitions with “large” workloads much more and these parti-

tions would probably be executed on different workers, thus the

un-balancing issue was kind of mitigated; (2) the un-balancing issue

was more severe on Beijing than Chengdu, it was mainly because

that Chengdu had more partitions and more answers thus making

the number of partitions with “large” workloads much more; (3)

our balancing mechanism worked well with little overhead.

C COMPARISONWITH CENTRALIZED
BASELINES

Centralized Baseline Methods. We made a centralized imple-

mentation of DITA and compared with two existing centralized

methods: VP-Tree (vantage point tree) [19], and theMinimal Bound-

ing Envelop MBE [42]. VP-Tree utilized the triangle inequality prop-
erty and thus it could only support Fréchet which was a metric

distance function. MBE can support both DTW and Fréchet. We

compared the number of candidates survived after pruning as well

as the total runtime.

Dataset.We compared all methods on a single machine in our clus-

ter using a small dataset sampled from Chengdu (Chengdu(tiny),
see Table 6), because VP-Tree and MBE failed to build index in 12

hours on the whole Chengdu dataset.

Indexing. As shown in Table 7, DITA built the index with much

shorter time and smaller space usage. As shown below, our method

achieved a higher pruning power and higher query performance.

Experiment Results for Trajectory Search. We randomly sam-

pled 1000 queries from Chengdu(tiny) and compared the number

of candidates per query and the average query latency of each

method when varying the threshold on the Chengdu(tiny) dataset.
Figure 17 showed the results. We made the following observations.

(1) With the increase of threshold, the three methods took more

time and generated more candidates, because a larger threshold

led to more answers. (2) In term of the number of candidates, DITA
was better than VP-Tree and MBE, since (i) DITA designed a more

efficient indexing scheme with accumulating distance computation

than VP-Tree and MBE, and (ii) our proposed cell-based pruning had
a more accurate bound than MBE using a multi-level trie index which

accumulated distance level by level, and to our best knowledge,

there has not been such an indexing scheme that can support such

an accumulation of distance, and (iii) we employed the ordering con-

straint in distance functions (e.g., DTW, Fréchet) to further improve

the performance. Moreover, we partitioned pivot points into sev-

eral MBRs and indexed them, while most existing methods indexed

MBRs of trajectories. In other words, we employed a finer-grained

indexing scheme than previous studies. (3) In term of running time,

DITA significantly outperformed the two baselines, even by one

order of magnitude, because DITA incurred smaller overhead in

index probing with higher pruning power, and employed an effi-

cient verification process to further boost the performance. (4) The

performance gap between DITA and the two baselines was much

larger on DTW than Fréchet, because DITA’s indexing scheme could

accumulate the distance level by level for DTW.
Experiment Results for Trajectory Join. We also compared our

method with centralized approaches for trajectory joins. However,

VP-Tree and MBE were extremely slow in processing the trajectory

join operation even on this small Chengdu(tiny) dataset, because

trajectory join was more expensive than trajectory search. DITA
outperformed them by around 40 times in efficiency, due to our

effective index and pruning techniques. For example, under the

choice of the Fréchet distance, when τ = 0.005, DITA took 4.7

hours to join on Chengdu(tiny), while MBE took 157 hours and

VP-Tree took 183 hours respectively.

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 Spark SQL Overview
	2.3 Related Work

	3 Overview of the DITA System
	4 INDEXING
	4.1 Pivot Point Based DTW Estimation
	4.2 Distributed Indexing

	5 Trajectory Similarity Search
	5.1 Framework
	5.2 Global Pruning
	5.3 Local Search

	6 Trajectory Similarity Join
	6.1 Framework
	6.2 Cost Model
	6.3 Division-based Load Balancing
	6.4 Overall Algorithm

	7 Experiments
	7.1 Experimental Setup
	7.2 Comparison with Baselines
	7.3 Evaluation on Large Datasets

	8 Conclusion
	References
	A Other Distance Functions
	B Additional Experiments
	C Comparison with Centralized Baselines

