
An End-to-End Automatic Cloud Database Tuning
System Using Deep Reinforcement Learning

Ji Zhang§, Yu Liu§, Ke Zhou§�, Guoliang Li‡, Zhili Xiao†, Bin Cheng†, Jiashu Xing†, Yangtao Wang§,
Tianheng Cheng§, Li Liu§, Minwei Ran§, and Zekang Li§

§Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China
‡Tsinghua University, China, †Tencent Inc., China

{jizhang, liu_yu, k.zhou, ytwbruce, vic, lillian_hust, mwran, zekangli}@hust.edu.cn
liguoliang@tsinghua.edu.cn; {tomxiao, bencheng, flacroxing}@tencent.com

ABSTRACT
Configuration tuning is vital to optimize the performance
of database management system (DBMS). It becomes more
tedious and urgent for cloud databases (CDB) due to the di-
verse database instances and query workloads, which make
the database administrator (DBA) incompetent. Although
there are some studies on automatic DBMS configuration
tuning, they have several limitations. Firstly, they adopt a
pipelined learning model but cannot optimize the overall
performance in an end-to-end manner. Secondly, they rely
on large-scale high-quality training samples which are hard
to obtain. Thirdly, there are a large number of knobs that
are in continuous space and have unseen dependencies, and
they cannot recommend reasonable configurations in such
high-dimensional continuous space. Lastly, in cloud environ-
ment, they can hardly cope with the changes of hardware
configurations and workloads, and have poor adaptability.

To address these challenges, we design an end-to-end au-
tomatic CDB tuning system, CDBTune, using deep reinforce-
ment learning (RL). CDBTune utilizes the deep deterministic
policy gradient method to find the optimal configurations
in high-dimensional continuous space. CDBTune adopts a
try-and-error strategy to learn knob settings with a limited
number of samples to accomplish the initial training, which
alleviates the difficulty of collecting massive high-quality
samples. CDBTune adopts the reward-feedback mechanism
in RL instead of traditional regression, which enables end-
to-end learning and accelerates the convergence speed of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3300085

our model and improves efficiency of online tuning. We con-
ducted extensive experiments under 6 different workloads
on real cloud databases to demonstrate the superiority of
CDBTune. Experimental results showed that CDBTune had a
good adaptability and significantly outperformed the state-
of-the-art tuning tools and DBA experts.

1 INTRODUCTION
The performance of database management systems (DBMSs)
relies on hundreds of tunable configuration knobs. Supe-
rior knob settings can improve the performance for DBMSs
(e.g., higher throughput and lower latency). However, only a
few experienced database administrators (DBAs) master the
skills of setting appropriate knob configurations. In cloud
databases (CDB), however, even the most experienced DBAs
cannot solve most of the tuning problems. Consequently,
cloud database service providers are facing a challenge that
they have to tune cloud database systems for a large num-
ber of users with limited and expensive DBA experts. As
a result, developing effective systems to accomplish auto-
matic parameters configuration and optimization becomes
an indispensable way to overcome this challenge.
There are two classes of representative studies in DBMS

configuration tuning: search-basedmethods [55] and learning-
based methods [4, 14, 35]. The search-based methods, e.g.,
BestConfig [55], search the optimal parameters based on
certain given principles. However, they have two limitations.
Firstly, they spend a great amount of time on searching the
optimal configurations. Secondly, they restart the search pro-
cessing whenever a new tuning request comes, and thus fail
to utilize knowledge gained from previous tuning efforts.
The learning-based methods, e.g., OtterTune [4], utilize

machine-learning techniques to collect, process and analyze
knobs and recommend possible settings by learning DBA’s
experiences from historical data. However, they have four
limitations. Firstly, they adopt a pipelined learning model,
which suffers from a severe problem that the optimal solution
of the previous stage cannot guarantee the optimal solution
in the latter stage and different stages of the model may
not work well with each other. Thus they cannot optimize

https://doi.org/10.1145/3299869.3300085

2 4 6 8 10 12
Number of Samples (x1000)

400
600
800

1000
1200
1400
1600
1800

Th
ro
ug

hp
ut
 (t
xn

/s
ec
)

MySQL Default
DBA
OtterTune with deep learning
OtterTune

(a) CDB (TPC-H)

2 4 6 8 10 12 14
Number of Samples (x1000)

250
500
750

1000
1250
1500
1750
2000

Th
ro
ug

hp
ut
 (t
xn

/s
ec

) MySQL Default
DBA
OtterTune with deep learning
OtterTune

(b) CDB (Sysbench)

1.0 2.0 3.0 4.0 5.0 6.0 7.0
CDB Version

200
250
300
350
400
450
500
550

Nu
m
be

r o
f K

no
bs

(c) Knobs Increase

(d) Performance surface
Figure 1: (a) and (b) show the performance of OtterTune [4] and OtterTune with deep learning over number of samples com-
pared with default settings (MySQL v5.6) and configurations generated by experienced DBAs on CDB1(developed by company
Tencent). (c) shows the number of tunable knobs provided by CDB in different versions. (d) shows the performance surface of
CDB (Read-Write workload of Sysbench, physical memory = 8GB, disk = 100GB).

the overall performance in an end-to-end manner. Secondly,
they rely on large-scale high-quality training samples, which
are hard to obtain. For example, the performance of cloud
databases is affected by various factors such as memory size,
disk capacity, workload, CPU model and database type. It
is hard to reproduce all conditions and accumulate high-
quality samples. As shown in Figures 1(a) and 1(b), without
high-quality samples, OtterTune [4] or OtterTune with deep
learning (we reproduce OtterTune and improve its pipelined
model using deep learning) can hardly gain higher perfor-
mance even though provided with an increasing number
of samples. Thirdly, in practice there are a large number of
knobs as shown in Figure 1(c). They cannot optimize the
knob settings in high-dimensional continuous space by just
using regression method like the Gaussian Process (GP) re-
gression OtterTune used, because the DBMS configuration
tuning problem that aims to find the optimal solution in
continuous space is NP-hard [4]. Moreover, the knobs are in
continuous space and have unseen dependencies. As shown
in Figure 1(d), due to nonlinear correlations and dependen-
cies between knobs, the performance will not monotonically
change in any direction. Besides, there exist countless combi-
nations of knobs because of the continuous tunable parame-
ter space, making it tricky to find the optimal solution. Lastly,
in cloud environment, due to the flexibility of cloud, users
often change the hardware configuration, such as adjusting
the memory size and disk capacity. According to statistics
from Tencent, 1,800 users have made 6,700 adjustments in
half a year. In this case, conventional machine learning have
poor adaptability which needs to retrain the model to adapt
to the new environment.
In this paper, we design an end-to-end automatic cloud

database tuning system CDBTune using deep reinforcement
learning (RL). CDBTune uses the reward functions in RL to
provide a feedback for evaluating the performance of cloud
database, and propose an end-to-end learning model based
on the feedbackmechanism. The end-to-end design improves
the efficiency and maintainability of the system. CDBTune
adopts a try-and-error method to enable utilizing a few sam-
ples to tune knobs for achieving higher performance, which

alleviates the burden of collecting too many samples in ini-
tial stage of modeling and is more in line with the DBA’s
judgements and tuning action in real scenarios. CDBTune uti-
lizes deep deterministic policy gradient method to find the
optimal configurations in continuous space, which solves
the problem of quantization loss caused by regression in
existing methods. We conducted extensive experiments un-
der 6 different workloads on four types of databases. Our
experimental results demonstrated that CDBTune can recom-
mend knob settings that greatly improve performance with
higher throughput and lower latency compared with existing
tuning tools and DBA experts. Besides, CDBTune has a good
adaptability so that the performance of CDB deployed on
configurations recommended by CDBTune will not decline
even though the environment (e.g., memory, disk, workloads)
changes. Note that some other ML solutions can be explored
to improve the database tuning performance further.

In this paper, we make the following contributions:
(1) To the best of our knowledge, this is the first end-to-end
automatic database tuning system that uses deep RL to learn
and recommend configurations for databases.
(2) We adopt a try-and-error manner in RL to learn the best
knob settings with a limited number of samples.
(3) We design an effective reward function in RL, which
enables an end-to-end tuning system, accelerates the conver-
gence speed of our model, and improves tuning efficiency.
(4) CDBTune utilizes the deep deterministic policy gradient
method to find the optimal configurations in high-dimensional
continuous space.
(5) Experimental results demonstrate that CDBTune with a
good adaptability could recommend knob settings that greatly
improved performance and compared with the state-of-the-
art tuning tools andDBA experts. Our system is open-sourced
and publicly available on Github2.

2 SYSTEM OVERVIEW
In this section, we present our end-to-end automatic cloud
database tuning system CDBTune using deep RL. We firstly
introduce the working mechanism of CDBTune (Section 2.1)
and then present the architecture of CDBTune (Section 2.2).
1https://intl.cloud.tencent.com
2https://github.com/HustAIsGroup/CDBTune

2

2.1 CDBTuneWorking Mechanism
CDBTune firstly trains a model based on some training data.
Then given an online tuning request, CDBTune utilizes the
model to recommend knob settings. CDBTune also updates
the model by taking the tuning request as training data.

2.1.1 Offline Training. We first briefly introduce the basic
idea of the training model (and more details will be discussed
in Sections 3 and 4) and then present how to collect the
training data.
Training Data. The training data is a set of training quadru-
ples ⟨q,a, s, r ⟩, where q is a set of query workloads (i.e., SQL
queries), a is a set of knobs as well as their values when
processing q, s is the database state (which is a set of 63
metrics) when processing q, r is the performance when pro-
cessing q (including throughput and latency). We use the
SQL command “show status” to get the state s , which is a
common command that DBA uses to understand the state of
database. The state metrics keep the statistic information of
the CDB, which describe the current state of database and
are called internal metrics. There are 63 internal metrics in
CDB, including 14 state values and 49 cumulative values.
Example state metrics include buffer size, page size, etc., and
cumulative values include data reads, lock timeouts, buffer
pool in pages, buffer pool read/write requests, lock time, etc.
All the collected metrics and knobs data will be stored in the
memory pool (see Section 2.2.4).
Training Model. Because the DBMS configuration tuning
problem that aims to find the optimal solution in continuous
space is NP-hard [4], we use deep RL as the training model.
RL adopts a try-and-error strategy to train the model, which
explores more optimal configurations that the DBA never
tried, reducing the possibility of falling in local optimum.
Note the RL model is trained once offline which will be used
to tune the database knobs for each tuning request from
database users. The details of the training model will be
introduced in Section 3.
Training Data Generation. There are two ways to collect
the training data. (1) Cold Start. Because of lacking histori-
cal experience data at the beginning of the offline training
process, we utilize standard workload testing tools (such as
Sysbench) to generate a set of query workloads. Then for
each query workload q, we execute it on CDB and get the ini-
tial quadruple. Then we use the above try-and-error strategy
to train the quadruple and get more training data. (2) Incre-
mental Training.During the later practical use of CDBTune,
for each user tuning request, our system continuously gains
feedback information from the user request according to con-
figurations CDBTune recommends. With adding more real
user behavior data to the training process gradually, CDBTune

Figure 2: System Architecture.

will further strengthen the model and improve the recom-
mendation accuracy of the model.

2.1.2 Online Tuning. If a user wants to tune her database,
she just needs to submit a tuning request to CDBTune which
is in line with existing tuning tools like OtterTune and Best-
Config. Once receiving an online tuning request from a user,
CDBTune collects the query workload q from the user in re-
cent about 150 seconds, gets the current knob configuration
a, and executes the query workload in CDB to generate the
current state s and performance r . Next it uses the model
obtained by offline training to do online tuning. Eventually,
those knobs corresponding to the best performance in on-
line tuning will be recommended to the user. If the tuning
process terminates, we also need to update deep RL model
and the memory pool. The reason why we update the mem-
ory pool is that the samples produced by RL are generally
sequential (such as configuration tuning step by step), which
does not conform to the i.i.d. hypothesis between samples in
deep learning. Based on this, we will randomly extract some
batches of samples each time and update the model in order
to eliminate the correlations between samples. Note that the
user’s workload of the database in online tuning process is
different from the standard workload stored in the database.
Hence, CDBTune needs to fine-tune the pre-training model
in order to adapt to the real workload. There are mainly
two differences between online tuning and offline training.
On one hand, we no longer utilize the simulated data. In-
stead, we replay the user’s current workload (see Section
2.2.1) to conduct stress testing on CDB in order to fine-tune
the model. On the other hand, the tuning terminates if the
user obtains a satisfied performance with the improvements
over the initial configuration or the number of tuning steps
reaches the predefined maximum. In our experiment, we set
the maximum number to 5.

2.2 System Architecture
Figure 2 illustrates the architecture of CDBTune. The dotted
box on the left represents the client, where users send their
own requests to the server through the local interface. The
other dotted box represents our tuning system in cloud, in

3

which the controller under distributed cloud platform inter-
acts information among the client, CDB and CDBTune. When
the user initiates a tuning request or the DBA initiates a
training request via the controller, the workload generator
conducts stress testing on CDB’s instances which remain to
be tuned by simulating workloads or replaying the user’s
workloads. At the same time, the metrics collector collects
and processes related metrics. The processed data will be
stored in the memory pool and fed into the deep RL network
respectively. Finally, the recommender outputs the knob con-
figurations which will be deployed on CDB.

2.2.1 Workload Generator. From the description above,
the workload generator we designed mainly completes two
tasks: generating the standard workload testing and replay-
ing the current user’s real workload. Due to lacking samples
(historical experience data) in initial training, we can uti-
lize standard workload testing tools such as Sysbench3/TPC-
MySQL4 combined with the try-and-error manner of RL to
collect simulated data, avoiding highly relying on real data.
In this way, a standard (pre-training) model is established.
When having accumulated a certain amount of feedback data
from the user and recommending configurations to the user,
we use the replay mechanism of the workload generator to
collect the user’s SQL records in a period of time and then ex-
ecute them under the same environment so as to restore the
user’s real behavior data. By this means, the model can grasp
the real state of the user’s database instances more accurately
and further recommend more superior configurations.

2.2.2 Metrics Collector. When tuning CDB upon a tuning
request, we will collect and process the metrics data which
can capture more aspects of CDB runtime behavior in a cer-
tain time interval. Since the 63 metrics represent the current
state of database and are fed to the deep RL model in the
form of vectors, we need to provide simple instructions when
using them. For example, we take the average value of state
value in a certain time interval and compute the difference
between cumulative value at the same time. As for external
metrics (latency and throughput), we take samples every 5
seconds and then simply calculate the mean value of sampled
results to calculate reward (which represents how the per-
formance of current database will change after performing
corresponding knobs in Section 4.2). Note that the DBA also
collects the average value for these metrics by executing the
“show status” command during the tuning tasks. Although
these values may change over time, the average value can
well describe the database state. This method is intuitive and
simple, and the experiment also validates its effectiveness.

3https://github.com/akopytov/sysbench
4https://github.com/Percona-Lab/tpcc-mysql

We also try other methods. For example, we replace the av-
erage value by taking the peak and trough values of metrics
in a period of time, which just grasp the local state of data-
base. Experimental results show that the peak and trough
values are not as good as the average value due to lack of
accurate grasp of the database state. Last but not least, as we
use the “show status” command to get the database states,
it will not affect the deployment under different workloads,
environments and settings.

2.2.3 Recommender. When the deep RL model outputs
the recommended configurations, the recommender gener-
ates corresponding execution setting parameter commands
and sends the request of modifying configurations to the
controller. After acquiring the DBA’s or user’s license, the
controller deploys above configurations on CDB’s instances.

2.2.4 Memory Pool. As mentioned above, we use the
memory pool to store the training samples. Generally speak-
ing, each experience sample contains four categories of infor-
mation: the state of current database st (vectorized internal
metrics), the reward value rt calculated by reward function
(which will be introduced in Section 4.2) via external metrics,
knobs of the database to be executed at , and the database’s
state vector after executing the configurations st+1. A sample
can be written as (st , rt , at , st+1), which is called a transition.
Like the DBA’s brain, it constantly accumulates data and
replay experience, so we call it experience replay memory.

3 RL IN CDBTUNE
To simulate the try-and-error method that the DBA adopts
and overcome the shortcoming caused by regression, we
introduce RL which originates from the method of try-and-
error in animal learning psychology and is a key technology
to solve NP-hard problems of database tuning in continuous
space. All the notations used are listed in Appendix A.

3.1 Basic Idea
Both the search-based approach and the multistep learning-
based approach suffer from some limitations, so we desire
to design an efficient end-to-end tuning system. At the same
time, we hope that our model can learn well with limited
samples in the initial training and simulate the DBA’s train
of thought as much as possible. Therefore, we tried the
RL method. At the beginning, we tried the most classic Q-
learning and DQN models in RL, but both of these methods
failed to solve the problems of high-dimensional space (data-
base state, knobs combination) and continuous action (con-
tinuous knobs). Eventually, we adopt the policy-based Deep
Deterministic Policy Gradient approach which overcomes
above shortcomings effectively. In addition, as the soul of
RL, the design of reward function (RF) is vital, which directly

4

<Agent>

CDBTune

<Reward>

<Environment>

CDB

<Policy>

<Action>

<State>

Figure 3: The correspondence between RL elements and
CDB configuration tuning.

affects the efficiency and quality of the model. Thus, by sim-
ulating the DBA’s tuning experience, we design a reward
function which is more in line with tuning scenarios and
makes our algorithm perform effectively and efficiently.

3.2 RL for CDBTune
The main challenge of using RL in CDBTune is to map data-
base tuning scenarios to appropriate actions in RL. In Fig-
ure 3, we describe the interaction diagram of the six key
elements in RL and show the correspondence between the
six elements and database configuration tuning.
Agent: Agent can be seen as the tuning system CDBTune
which receives reward (i.e., the performance change) and
state from CDB and updates the policy to guide how to adjust
the knobs for getting higher reward (higher performance).
Environment: Environment is the tuning target, specifi-
cally an instance of CDB.
State: State means the current state of the agent, i.e., the
63 metrics. Specifically, when the CDBTune recommends a
set of knob settings and CDB performs them, the internal
metrics (such as counters for pages read to or written from
disk collected within a period of time) represent the current
state of CDB. In general, we describe the state at time t as st .
Reward: Reward is a scalar described as rt which means
the difference between the performance at time t and that
at t − 1 or the initial settings, i.e., the performance change
after/before CDB performed the new knob configurations
that CDBTune recommended at time t .
Action:Action comes from the space of knob configurations,
which is often described as at . Action here corresponds to a
knob tuning operation. CDB performs the corresponding ac-
tion according to the newest policy under the corresponding
state of CDB. Note that an action is to increase or decrease
all tunable knobs values at a time.
Policy: Policy µ(st) defines the behavior of CDBTune in cer-
tain specific time and environment, which is a mapping from
state to action. In other words, given a CDB state, if an action
(i.e., a knob tuning) is called, the policy keeps the next state

by applying the action on the original state. The policy here
is the deep neural network, which keeps the input (database
state), output (knobs), and transitions among different states.
The goal of RL is to learn the best policy. We will introduce
the details of deep neural network in Section 4.
RLWorking Process. The learning process of DBMS con-
figuration tuning in RL is summarized as follows. CDB is the
target that we need to tune, which can be regarded as the
environment in RL, while the deep RL model in CDBTune is
considered to be the agent in RL, which is mainly composed
of deep neural network (policy) whose input is the database
state and output is the recommended configurations corre-
sponding to the state. When executing the recommended
configurations on CDB, the current state of database will
change, which is reflected in the metrics. Internal metrics
can be used to measure the runtime behavior of database
corresponding to the state in RL, while external metrics can
evaluate the performance of database for calculating the cor-
responding feedback reward value in RL. Agent will update
its network (policy) according to these two feedback infor-
mation to recommend superior knobs. This process iterates
until the model converges. Ultimately, the most appropriate
knob settings will be exposed.

3.3 RL for Tuning
RL makes a policy decision through the interaction process
between agent and environment. Different from supervised
learning and unsupervised learning, RL depends on accu-
mulated reward, rather than labels, to perform training and
learning. The goal of RL is to optimize its own policy based
on the reward of environment through the interaction with
environment and then achieve higher reward by acting on
the updated policy. The agent is able to discover the best
action through try-and-error manner by either exploiting
current knowledge or exploring unknown states. The learn-
ing of our model follows two rules that the action depends
on the policy, and the policy is driven by the expected re-
wards of each state. RL can be divided into two categories:
value-based method and policy-based method. The output
of the value-based method is the value or benefit (generally
referred to as Q-value) of all actions and it chooses the action
corresponding to the highest value. Differently, the output
of the policy-based method is directly a policy instead of a
value and we can immediately output the action according
to the policy. Since we need to use the actions, we adopt the
policy-based method.
Q-Learning. It is worth noting that Q-Learning [30] is one
of the most classic value-based RL methods, whose core is
the calculation of Q-tables, which are defined as Q(s,a). The
rows of Q-table represent Q-value of the state while the
columns of Q-table represent action, which measures how

5

good it will be if the current state takes this action. The
iterative formula of Q(s,a) is defined below:

Q(st ,at) ← Q(st ,at)+α[r+γmaxat+1Q(st+1,at+1)−Q(st ,at)]
(1)

The basis for updating Q-table is the Bellman Equation.
In Eq. (1), α is the learning rate, γ is a discount factor, which
pays more attention to short-term reward if close to zero and
concentrates more on long-term reward when approaching
one, and r is the performance at time t + 1.
Q-Learning is effective in a relatively small state space.

However, it is hard to solve the problem of a large state
space such as AlphaGo which contains as many as 10172
states, because a Q-table can hardly store so many states. In
addition, the states of database in cloud environment are also
complex and diverse. For example, suppose that each inner
metric value ranges from 0 to 100 and its value is discreted
into 100 equal parts. Then 63 metrics will have 10063 states.
As a result, applying Q-Learning to database configuration
tuning is impractical.
DQN. Fortunately, the proposedDeepQNetwork (DQN) [32]
method is able to solve the problem mentioned above ef-
fectively. DQN uses neural networks rather than Q-tables
to evaluate Q-value, which fundamentally differs from Q-
Learning (see Appendix B.3). In DQN, the input are states
while the output are Q-value of all actions. Nevertheless,
DQN still adopts Q-Learning to update Q-value, so we can
describe the relationship between them as follows:

Q(s,a,ω) → Q(s,a)

where ω of Q(s,a,ω) represents the weights of neural net-
work in DQN.

Unfortunately, DQN is a discrete-oriented control algo-
rithm, which means the actions of output are discrete. Taking
the maze game for example, only four directions of output
can be controlled. However, knob combinations in database
are high-dimensional and the values for many of them are
continuous. For instance, if we use 266 continuous knobs
which range from 0 to 100. If each knob range is discretized
into 100 intervals, there will be 100 values for each knob.
Thus there are totally 100266 actions (knob combinations) in
DQN. Further, once the number of knobs increases or the
interval decreases, the scale of outputs will increase exponen-
tially. Thus, neither Q-Learning nor DQN can solve the issue
of database tuning task 5. Thus we introduce a policy-based
RL method DDPG to address this issue in Section 4.

4 DDPG FOR CDBTUNE
Deep deterministic policy gradient (DDPG) [29] algorithm
is a policy-based method. DDPG is the combination of DQN
5It is interesting to study how to wisely discretize the knobs to enable
Q-learning or DQN to support this problem.

and actor-critic algorithm, and can directly learn the policy.
In other words, DDPG is able to immediately acquire the
specific value of the current continuous action according
to the current state instead of computing and storing the
corresponding Q-values for all actions, like DQN. Therefore,
DDPG can learn the policy with high-dimensional states and
actions, specifically, internal metrics and knob configura-
tions. As a result, we choose DDPG in CDBTune to tune the
knob settings. In this section, we first introduce a policy-
based RL method DDPG, then describe our designed reward
function, and finally sum up the advantages of applying RL
to the database tuning problem.

4.1 Deep Deterministic Policy Gradient
We describe DDPG for CDBTune in Figure 4. When utiliz-
ing DDPG in CDBTune, firstly, we regard the CDB’s instance
which remains to be tuned as an environment E, and our
tuning agent can obtain normalized internal metrics st from
E at time t . Then our tuning agent generates the knob set-
tings at and will receive a reward rt after deploying at on
the instance. Similar to most policy gradient methods, DDPG
has a parameterized policy function at = µ(st |θ

µ) (θ µ , map-
ping the state st to the value of action at which is usually
called actor). Critic functionQ(st ,at |θQ) (θQ is learnable pa-
rameters) of the network aims to represent the value (score)
with specific action at and state st , which guides the learn-
ing of actor. Specifically, critic function helps to evaluate the
knob settings generated by the actor according to the current
state of the instance. Inheriting the insights from Bellman
Equation and DQN, the expected Q(s,a) is defined as:

Q µ (s,a) = Ert ,st+1∼E [r (st ,at) + γQ
µ (st+1, µ(st+1))] (2)

where the policy µ(s) is deterministic, st+1 is the next state,
rt = r (st ,at) is the reward function, andγ is a discount factor
which denotes the importance of the future reward relative
to the current reward. When parameterized by θQ , the critic
will be represented as Q µ (s,a |θQ) under the policy µ. After
sampling transitions (st , rt ,at , st+1) from the reply memory,
we apply Q-learning algorithm and minimize the training
objective:

minL(θQ) = E[(Q(s,a |θQ) − y)2] (3)

where
y = r (st ,at) + γQ

µ (st+1, µ(st+1)|θ
Q)

Parameters of critic can be updated with gradient descent.
As for actor, we will apply the chain rule and update it with
policy gradient derived from Q(st ,at |θ

Q):

∇θ µ J ≈ E[∇θ µQ(s,a |θ
Q)|s=st ,a=µ(st)]

= E[∇aQ(s,a |θ
Q)|s=st ,a=µ(st)∇θ µ µ(s |θ

µ)|s=st]

The algorithm contains seven main steps (the pseudo code
is summarized in Appendix B.1).

6

Figure 4: DDPG for CDBTune.

Step 1.We first extract a batch of transition (st , rt ,at , st+1)
from the experience replay memory.
Step 2. We feed st+1 to the actor network and output the
knob settings a′t+1 to be executed at next moment.
Step 3.We get the value (score) Vt+1 after sending st+1 and
a′t+1 to the critic network.
Step 4. According to Q-Learning algorithm, Vt+1 is multi-
plied by discount factor γ and added by the value of reward
at time t , and now we can estimate the value of V ′t of the
current state st .
Step 5. We feed st (obtained at the first step) to the critic
network and further acquire the valueVt of the current state.
Step 6.We compute the square difference betweenV ′t andVt
and optimize parameter θQ of the critic network by gradient
descent.
Step 7.We useQ(s = st , µ(st)|θQ) outputted by the critic net-
work as the loss function, and adopt gradient descent means
to guide the update of the actor network in order that the
critic network gives a higher score for the recommendation
outputted by the actor network each time.
To make it easier to understand and implement our al-

gorithm, we elaborate the network structure and specific
parameters values of DDPG in Table 5 of Appendix B.2. Note
that we also discuss the impact of recommended configura-
tions by different networks on the system’s performance in
Appendix C.2.

Remark. Traditional machine learningmethods rely onmas-
sive training samples to train the model while we adopt the
try-and-error method to make our model generate diversi-
fied samples and learn towards an optimizing direction by
using deep reinforcement learning, which can reasonably
use limited samples to achieve great effects. The main rea-
son why we can achieve great result with limited samples is
summarized as follows. Firstly, for solving traditional game
problems, we cannot evaluate how the environment will
change after taking an action, because the environment of
game is random (for example, in Go, we do not know what

the opponent will do next). However, in our DBMS tuning,
after a configuration is executed, the database (environment)
will not randomly change, owing to the dependencies be-
tween knobs. Because of this, with relatively fewer samples,
it is easier to learn the DBMS tuning model than game prob-
lems. Secondly, when modeling our CDBTune, we adopt few
input (63 dimensions) and knobs output (266 dimensions),
which makes the network efficiently converge without too
many samples. Thirdly, RL essentially requires diverse sam-
ples, not only massive samples. For example, RL solves the
game problem by processing each frame of the game screen
to form initial training samples. Each frame time is very
short, leading to high training images redundancy. Instead,
for DBMS tuning, we will change the parameters of database
and collect the performance data. These data are diverse in
our learning process. RL can constantly update and optimize
the performance with these diverse data. Lastly, coupled
with our efficient reward function, our method performs
effectively with a small number of diverse samples.
In summary, the DDPG algorithm makes it feasible for

deep neural networks to process high-dimensional states and
generate continuous actions. DQN is not able to directly map
states to continuous actions for maximizing the action-value
function. In DDPG, the actor can straightforwardly predict
the values for all tunable knobs at the same time without
considering the Q-value with specific action and state.

4.2 Reward Function
The reward function is vital in RL, which provides impactful
feedback information between the agent and environment.
We desire that the reward can simulate the DBA’s empirical
judgement for real environment in the tuning process.
Next we describe how CDBTune simulates DBA’s tuning

process to design reward functions. First, we introduce DBA’s
tuning process as follows:
(1) Suppose that the initial performance of DBMS is D0 and
the final performance tuned by DBA is Dn .
(2) DBA tunes the knobs and the performance becomes D1
after the first tuning. Then DBA computes the performance
change ∆(D1,D0).
(3) At the i-th tuning iteration, DBA expects that the current
performance is better than that of the previous one (i.e., Di is
better than Di−1 where i < n), because DBA aims to improve
the performance through the tuning. However, DBA cannot
guarantee Di is better than Di−1 at every iteration. To this
end, DBA compares (a) Di and D0 and (b) Di and Di−1. If Di
is better than D0, the tuning trend is correct and the reward
is positive; otherwise the reward is negative. The reward
value is calculated based on ∆(Di ,D0) and ∆(Di ,Di−1).

Based on the above idea, we model the tuning method
of DBAs, which not only considers the change of perfor-
mance at the previous time but also the initial time (when

7

the database needs to be tuned). Formally, let r , T and L de-
note reward, throughput and latency. Especially, T0 and L0
are respectively the throughput and latency before tuning.
We design the reward function as follows.

At time t , we calculate the rate of performance change ∆
from time t − 1 and the initial time to time t respectively.
The detailed formula is shown as follows:

∆T =


∆T t→0 =

Tt −T0
T0

∆T t→t−1 =
Tt −Tt−1
Tt−1

(4)

∆L =


∆Lt→0 =

−Lt + L0
L0

∆Lt→t−1 =
−Lt + Lt−1

Lt−1

(5)

According to Eq. (4) and Eq. (5), we design the reward
function below:

r =

{
((1 + ∆t→0)

2 − 1)|1 + ∆t→t−1 |,∆t→0 > 0

−((1 − ∆t→0)
2 − 1)|1 − ∆t→t−1 |,∆t→0 ⩽ 0

(6)

Considering that the ultimate goal of tuning is to achieve
better performance than the initial settings, we need to re-
duce the impact of the intermediate process of tuning for
designing reward function. Therefore, when the result in
Eq. (6) is positive and ∆t→t−1 is negative, we set the r = 0.
According to the above steps we can calculate the re-

wards of throughput and latency rT and rL . Then wemultiply
these two rewards by different coefficientsCL andCT , where
CL +CT = 1. Note that the coefficients can be set based on
user preferences. We use r to denote the sum of rewards of
throughput and latency:

r = CT ∗ rT +CL ∗ rL (7)

If the goal of optimization is throughput and latency, our
reward function does not need to change, because the reward
function is independent to the hardware environment and
workload changes, and it only depends on the optimization
goal. Thus, the reward function needs to be redesigned only
if the optimization goals are changed.
Note other reward functions can be integrated into our

system. For verifying the superiority of our designed reward
function in the training and tuning process, we compare it
with other three typical reward functions in Appendix C.1.1.
Moreover, we explore how the two coefficients CL and CT
will affect the performance of DBMS in Appendix C.1.2.

4.3 Advantages
The advantages of our method are summarized as follows. (1)
Limited Samples. In the absence of high-quality empirical
data, accumulating experience via try-and-error method re-
duces the difficulty of data acquisition and makes our model

generate diverse samples and learn towards an optimizing
direction by using deep RL which can reasonably use lim-
ited samples to achieve great effects. (2)High-dimensional
ContinuousKnobsRecommendation.TheDDPGmethod
can recommend a better configuration recommendation in
high-dimensional continuous space than simple regression
OtterTune used. (3)End-to-EndApproach. The end-to-end
approach reduces the error caused by multiple segmented
tasks and improves the precision of recommended configu-
ration. Moreover, the importance degree of different knobs
is treated as an abstract feature which can be perceived and
automatically accomplished by deep neural network instead
of using an extra method to rank the importance degree of
different knobs (see Section 5.2.2). (4) Reducing the Possi-
bility of Local Optimum. CDBTunemay not find the global
optimum, but RL adopts the well-known exploration & ex-
ploitation dilemma, which not only gives full play to the
ability of the model, but also explores more optimal configu-
rations that the DBA never tried, reducing the possibility of
trapping in local optimum. (5)GoodAdaptability.Different
from supervised or unsupervised learning, RL has the ability
to simulate the human brain to learn as much as possible in
a reasonable direction from experience rather than a specific
value, which does not depend on labels or training data too
much and adapts to different workloads and hardware con-
figurations in cloud environment with a good adaptability.
Note some other ML solutions can be explored to improve
the database tuning performance further.

5 EXPERIMENTAL STUDY
In this section, we evaluate the performance of CDBTune and
compare with existing approaches. We first show the exe-
cution time of our model, then compare with baselines and
show the performance of varying tuning steps. Then, we
compare the performance of CDBTune with BestConfig [55],
OtterTune [4], and 3 DBA experts who have been engaged
in tuning and optimizing DBMSs for 12 years in Tencent. Fi-
nally, we verify the adaptability of the model under different
conditions. We also provide more experiments in Appen-
dix C, including different reward functions, different neural
networks and other databases.
Workload.Our experiments are conducted using three kinds
of benchmark tools: Sysbench,MySQL-TPCH and TPC-MySQL.
We carry out the experiments with 6 workloads consisting of
read-only, write-only and read-write workloads of Sysbench,
TPC-H6 workloads, TPC-C workloads and YCSB workloads,
which is similar to existing work. Under Sysbench work-
loads, we set up 16 tables of which each contains about 200K
records (about 8.5GB) and the number of threads is set to
1500. For TPC-C (OLTP), we select the database consisting
6http://www.tpc.org/tpch

8

Table 1: Database instances and hardware configuration.

Instance RAM (GB) Disk (GB)

CDB-A 8 100
CDB-B 12 100
CDB-C 12 200
CDB-D 16 200
CDB-E 32 300
CDB-X1 (4, 12, 32, 64, 128) 100
CDB-X2 12 (32, 64, 100, 256, 512)

of 200 warehouses (about 12.8GB) and set the number of
concurrent connections to 32. TPC-H (OLAP) workloads
contain 16 tables (about 16GB). For YCSB (OLTP), we gen-
erate 35GB data using the threads of 50 and operations of
20M. In addition, read-only, write-only and read-write of
Sysbench are abbreviated as RO, WO and RW respectively.
When we conduct online tuning using the model trained on
another condition, the expression is defined as M_{training
condition}→{tuning condition}. For example, we use 8GB
RAM as a training setting and use it for online tuning on
12GB RAM, and then we denote it asM_8G → 12G.
DBA Data. It is hard to collect a large amount of DBA’s
experience tuning data. In order to reproduce and make a
comparison with OtterTune [4], we utilize all the DBA’s ex-
perience data we accumulated as well as the training data
we used on CDBTune to train OtterTune. The proportion of
these two kinds of data is about 1:20. For example, consider-
ing recommending the configuration for 266 knobs, CDBTune
collects 1500 samples, while besides these samples OtterTune
will also use 75 historical experience tuning data of the DBA.
Setting. Our CDBTune is implemented using PyTorch7 and
Python tools including scikit-learn library8. All the experi-
ments are run on Tencent’s cloud server with 12-core 4.0GHz
CPU, 64GB RAM and 200GB Disk. We use seven types of
CDB’s instances in the evaluations and their hardware con-
figurations are shown in Table 1. The difference is mainly
reflected in the memory size and disk capacity. For fair com-
parison, in all experiments, we select the best result of the
recommendations of CDBTune and OtterTune in the first
5 steps. Comprehensively, considering that BestConfig (a
search-based method) needs to restart the search each time
which will take a lot of time, we give 50 steps in the experi-
ment. When the 50 steps are finished, we suspend BestConfig
and use the recommended configuration corresponding to
its best performance. Last but not least, to improve the of-
fline training performance, we add the method of priority
experience replay [38] to accelerate the convergence, which
increases the convergence speed by a factor of two (half the
number of iterations). We also adopt parallel computing (30

7https://pytorch.org
8http://scikit-learn.org/stable

servers) which greatly reduces the offline training time (we
do not use parallel computing for online tuning).

5.1 Efficiency Comparison
We first evaluate the execution time details of our method,
then compare with baselines and show the performance of
varying tuning steps.

5.1.1 Execution TimeDetails of CDBTune. In order to know
how long a step will take in the training and tuning process,
we record the average runtime of each step. The runtime for
each step is 5 minutes, which is mainly divided into 5 parts
(excluding 2 minutes to restart the CDB) as follows:
(1) Stress Testing Time (152.88 sec): Runtime of workload
generator for collecting current metrics of the database.
(2)Metrics Collection Time (0.86 ms): Runtime of obtain-
ing state vectors from internalmetrics and calculating reward
from external metrics.
(3) Model Update Time (28.76 ms): Runtime of forward
computation and back-propagation in the network during
one training process.
(4) Recommendation Time (2.16 ms): Runtime from in-
putting the database state to outputting recommended knobs.
(5)DeploymentTime (16.68 sec):Runtime from outputting
recommended knobs to deploying the configurations accord-
ing to CDB’s API interface.
Offline Training. CDBTune takes about 4.7 hours for 266
knobs and 2.3 hours for 65 knobs in offline training. Note
that the number of knobs affects the offline training time but
will not affect the online tuning time.
Online Tuning. For each tuning request, we run CDBTune
in 5 steps, and the online tuning time is 25 minutes.

5.1.2 Comparison with Baselines. We compare the online
tuning efficiency of CDBTune with OtterTune [4], BestCon-
fig [55] and DBA. Note that only CDBTune requires offline
training. But it trains the model once and uses the model to
do online tuning, while OtterTune requires to train the model
for every online tuning request and BestConfig requires to
do online search. As shown in Table 2, for each tuning re-
quest, OtterTune takes 55 minutes, BestConfig takes about
250 minutes, DBAs take 8.6 hours, while CDBTune takes 25
minutes. Note that we invite 3 DBAs to tune the parame-
ters and select the best performance of their results which
take 8.6 hours for each tuning request. (We have recorded
57 tuning requesters from 3 DBAs, which totally took 491
hours.) It takes DBA about 2 hours to constantly execute
workload replay and detect the factors (e.g., analyzing the
most time-consuming functions in the source code, then lo-
cating the reason, and finding the corresponding knobs to
tune) that affect the performance of DBMS. This process usu-
ally requires rich experience and a lot of time cost. OtterTune
adopts simple GP regression, and the knobs recommended

9

Table 2: Detailed online tuning steps and time of CDBTune
and other tools.
Tuning Tools Total Steps Time of One Step (mins) Total Time (mins)

CDBTune 5 5 25
OtterTune 5 11 55
BestConfig 50 5 250

DBA 1 516 516

5 10 15 20 25 30 35 40 45 50
Steps

1000

2000

3000

4000

5000

6000

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

5 10 15 20 25 30 35 40 45 50
Steps

400

600

800

1000

1200

1400

1600

1800

99
th
 %

-ti
le
 (m

s)

Figure 5: Performance by increasing number of steps

are not accurate. Therefore, it has to trymore trials to achieve
a better performance. BestConfig restarts the entire search
processing whenever a new tuning request comes, and fails
to utilize knowledge gained from previous tuning efforts,
thus it requires a lot of trial time.

5.1.3 Varying Tuning Steps. When recommending config-
urations for the user, we need to replay the current user’s
workload and conduct stress testing on the instance. In this
process, we fine-tune the standard model with limited steps
called accumulated trying steps. Hence, how many steps will
it take to achieve the desired performance? In most cases,
the algorithm will bring better results. However, due to the
exploration & exploitation dilemma in DDPG, such knob
settings that the past experience never tried will be obtained
with a small probability. These outliers may either degrade
or improve performance to an unprecedented level. We set 5
steps as a statistical increment unit to observe the system’s
performance and take the recommended result correspond-
ing to the optimal performance. We carry out experiments
with CDB-A on three kinds of Sysbench’s workloads respec-
tively as shown in Figure 5, where the horizontal coordinate
represents the number of tuning steps before recommend-
ing configurations while the vertical ordinate represents the
value of throughput or latency. It is obvious that the standard

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

350

600

850

1100

1350

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

2800
3200
3600
4000
4400
4800
5200

99
th
 %

-ti
le
 (m

s)

Figure 6: Performance by increasing number of knobs
(knobs sorted by DBA).

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

350

650

1100

1400

1700

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

2650
3050
3450
3850
4250
4650
5050

99
th
 %

-ti
le
 (m

s)

Figure 7: Performance by increasing number of knobs
(knobs sorted by OtterTune).

model gradually adapts to the current workload through fine-
tuning operations as the number of steps increases, which
brings continuous improvement to the performance. Also,
compared with OtterTune and DBA, CDBTune has already
achieved a better result in the first 5 steps in all cases, indi-
cating that our model owns high efficiency, so we believe
our algorithm really draws lessons from past experience
and performs excellently. Certainly, the user will get better
configurations to achieve higher performance if accepting a
longer tuning time. However, OtterTune keeps stable with
the increasing number of iterations, which is caused by the
characteristics of supervised learning and regression.

5.2 Effectiveness Comparison
In this section, we evaluate the effect on different number
of knobs and discuss the performance of CDBTune, DBA,
OtterTune and Bestconfig with different workloads. With
the database instance CDB-B, we record the throughput,
latency, and number of iterations for TPC-C workload when
the model converges. Note that some knobs do not need
to be tuned, e.g., those knobs that do not make sense (e.g.,
path names) to tune or those that are not allowed to tune
(which may lead to hidden or serious problems). Such knobs
are added to the black-list according to the DBA or user’s
demand. We finally sort 266 tunable knobs (the maximum
number of knobs that the DBA uses to tune for CDB).

10

5.2.1 Knobs Selected by DBA and OtterTune. Both DBA
and OtterTune rank the knobs based on their importance
to the database performance. We use their orders to sort
the 266 knobs and select different numbers of knobs fol-
lowing the order to tune and compare different methods.
Figures 6 and 7 show the performance with CDB-B under
TPC-C workload based on the orders of DBA and OtterTune
respectively. We can see from the results that CDBTune can
achieve better performance in all cases. Note that the perfor-
mance of DBA and OtterTune begins to decrease after their
recommended knobs exceed a certain number. The main
reason is that the unseen dependencies between knobs be-
come more complex in a larger knobs space, but DBA and
OtterTune cannot recommend reasonable configurations in
such high-dimensional continuous space. This experiment
demonstrates that CDBTune is able to recommend better con-
figurations than DBA and OtterTune in high-dimensional
continuous space.

5.2.2 Knobs Randomly Selected by CDBTune. CDBTune ran-
domly selects different numbers of knobs (note that the 40
selected knobs must contain the 20 selected knobs from the
previous one) and record the performance of CDB-B under
TPC-C workload after executing these configurations. As
shown in Figure 8, as the number of knobs increases from
20 to 266, the performance of configurations recommended
by CDBTune is continuously improved. The performance is
poor at the beginning, because a small number of selected
knobs have a small impact on performance. Besides, after the
number of knobs reach a certain number, the performance
tends to be stable. This is also because the added knobs later
will not greatly affect the performance. This experiment
demonstrates that DBA and OtterTune separately rank the
importance of knobs, but our CDBTune automatically com-
plete this process (feature extraction) by deep neural network
without additional ranking step (DBA and OtterTune need),
which is also in line with our original intention of designing
end-to-end model.
In addition, the input and output of the network become

larger as the number of knobs increases, resulting that CDBTune
takes more steps in the offline training process. Therefore, we
use the method of priority experience replay and adopt par-
allel computing to accelerate the convergence of our model.
According to the time cost of each step mentioned in sec-
tion 5.1, the average time spent on offline training is about
4.7 hours. This time will be further shortened if GPU is used.

5.2.3 Performance Improvement. We also evaluate our
method on different workloads with CDB-A and the result
is shown in Figure 9. The tuning performance improvement
percentage is shown in Table 3 compared with BestConfig,
DBA and OtterTune. It can been seen that CDBTune achieves
higher performance than OtterTune, which in turn is better

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

700

1000

1300

1600

Th
ro
ug

hp
ut
 (t
xn

/s
ec
)

CDBTune Throughput

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

2800
3100
3400
3700
4000
4300

99
th
 %

-ti
le
 (m

s) CDBTune Latency

0 20 40 60 80 100 120 140 160 180 200 220 240 260 266
Number of Knobs

180
480
780

1080
1380
1680

Nu
m
be

r o
f I
te
ra
tio

n

CDBTune Iteration

Figure 8: Performance by increasing number of knobs
(knobs randomly selected by CDBTune).

Table 3: Higher throughput (T) and lower latency (L) of
CDBTune than BestConfig, DBA and OtterTune.

Workload BestConfig DBA OtterTune

T L T L T L

RW ↑ 68.28% ↓ 51.65% ↑ 4.48% ↓ 8.91% ↑ 29.80% ↓ 35.51%
RO ↑ 42.15% ↓ 43.95% ↑ 4.73% ↓ 11.66% ↑44.46% ↓ 23.63%
WO ↑ 128.66% ↓ 61.35% ↑ 46.57% ↓ 43.33% ↑ 91.25% ↓ 59.27%

than BestConfig. Consequently, the learning-basedmethod is
more effective and our algorithm obtains the state-of-the-art
result. Besides, OtterTune performs inferior to the DBA in
most cases. This is because we use the try-and-error samples
in RL instead of massive high-quality DBA’s experience tun-
ing data. Compared with BestConfig, we find that CDBTune
greatly outperforms it, because in a short time, BestConfig
can hardly find the optimal configurations without any past
experience in a high-dimensional space. This verifies that
the learning-based approach has overwhelming predomi-
nance in achieving better solution quickly than search-based
tuning, and also verifies the superiority of CDBTune.
CDBTune is able to achieve better performance than other

candidates, especially gains a remarkable improvement un-
der the write-only workload. We observe except that the
buffer pool size is enlarged, configurations which CDBTune
recommended also expand the size of log file properly. In
addition, innodb_read_io_threads will increase under the
RO workload while both innodb_write_io_threads and inn-
odb_purge_threads are becoming appropriately larger when
the workload is WO or RW. This shows that our model can
properly tune knobs under different workloads, which im-
prove the CPU utilization as well as the database perfor-
mance. Of course, for those knobs like innodb_file_per_table,
max_binlog_size and skip_name_resolve, we obtain the same
values as the DBA advisors. According to the MySQL official
manual regulations, the product of innodb_log_files_in_group
and innodb_log_file_size is not allowed to be greater than
the value of disk capacity. Also, we find that during the real

11

0
200
400
600
800

1000
1200
1400
1600

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

(a) RW (Throughput)

0
2500
5000
7500
10.0K
12.5K
15.0K
17.5K
20.0K

99
th
 %

-ti
le
 (m

s)

(b) RW (99%-tile Latency)

0

500

1000

1500

2000

2500

3000

Th
ro
ug

hp
ut
 (t

xn
/s
ec

)

(c) RO (Throughput)

0
500

1000
1500
2000
2500
3000
3500
4000

99
th
 %

-ti
le
 (m

s)

(d) RO (99%-tile Latency)

0

1000

2000

3000

4000

5000

6000

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

(e) WO (Throughput)

0

2000

4000

6000

8000

10.0K

99
th
 %

-ti
le
 (m

s)

(f) WO (99%-tile Latency)
Figure 9: Performance comparison for Sysbench RW, RO
andWOworkload among CDBTune, MySQL default, BestCon-
fig, CDB default, DBA and OtterTune.

training process of our model, the CDB’s instance will easily
crash once the product exceeds the threshold, because the
log files take up too much disk space, resulting that more
data cannot be written. An interesting finding is that faced
with this situation, we do not limit the range of these two
parameters but give a large negative reward (e.g., -100) for
punishment. Instead, the practical results verify this method
achieves a good effect with the constant reward feedback in
RL and this situation is becoming less and less, and even dis-
appears as the training process goes on, although the crash
may frequently occur in the initial training. Ultimately, the
product of the two values recommended by our model is
reasonable which will not result in the crash.

5.3 Adaptability
We evaluate the adaptability, e.g., how a method can adapt

to new environment or new workload.
5.3.1 Adaptability on Memory Size and Disk Capacity

Change. Compared with local self-built databases, one of
the biggest advantages for cloud databases is that data mi-
gration or even downtime reloading is hardly required when

M_8G→4G M_8G→12G M_8G→32G M_8G→64G M_8G→128G
2000
4000
6000
8000

10000
12000
14000

Th
ro
ug

hp
ut
 (t
xn

/s
ec
)

M_8G→4G M_8G→12G M_8G→32G M_8G→64G M_8G→128G100
200
300
400
500
600
700
800

99
th
 %

-ti
le
 (m

s)

Figure 10: Performance comparison for Sysbench WO
workload when applying the model trained on 8G memory
to (X)G memory hardware environment.

resources need to be adjusted. Usually, memory size and disk
capacity are the most two properties that users prefer to
adjust. Thus, in the cloud environment, so many different
users own their respective cloud database memory size and
disk capacity that we are not able to build a correspond-
ing model for each one. Therefore, this cloud environment
naturally requires the DBMS tuning models own good adapt-
ability. In order to verify that CDBTune can greatly optimize
the database’s performance with different hardware config-
urations, we use database instance CDB-A (8G RAM, 100G
Disk), CDB-X1 (XG RAM, 100G Disk) where X is selected
from (4, 12, 32, 64, 128), CDB-C (12G RAM, 200G Disk) and
CDB-X2 (12G RAM, XG Disk) where X is selected from (32,
64, 100, 256, 512). Note that there is only a different memory
size between CDB-A and CDB-X1 while just a disk capacity
difference between CDB-C and CDB-X2. For different mem-
ory size, under write-only workloads, we first directly utilize
the model called M_A→X1 trained on CDB-A to recommend
configurations for CDB-X1 (cross testing), then use themodel
called M_X1→X1 trained on CDB-X1 to recommend config-
urations for CDB-X1 (normal testing), and finally compare
the performance after executing these two configurations.
Similarly, for different disk capacity, we utilize the same
way to complete cross testing and normal testing on CDB-
C and CDB-X2. As shown in Figure 10 and Figure 11, the
cross-testingmodel almost achieves the same performance as
normal-testing model. Moreover, both of above two models
achieve better performance than OtterTune, BestConfig and
the DBAs employed by Tencent’s cloud database, indicating
that our CDBTune does not need to establish a new model
and owns a strong adaptability that can completely adapt to
a new hardware environment no matter how memory size,
disk capacity of users change.

12

M_200G→32G M_200G→64G M_200G→100G M_200G→256G M_200G→512G1000
1500
2000
2500
3000
3500
4000

Th
ro
ug

hp
ut
 (t
xn

/s
ec
)

M_200G→32G M_200G→64G M_200G→100G M_200G→256G M_200G→512G400
450
500
550
600
650
700
750
800

99
th
 %

-ti
le
 (m

s)

Figure 11: Performance comparison for SysbenchROwork-
load when applying the model trained on 200G disk to (X)G
disk hardware environment.

0
200
400
600
800

1000
1200
1400
1600

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

0
500

1000
1500
2000
2500
3000
3500

99
th
 %

-ti
le
 (m

s)

Figure 12: Performance comparison when applying the
model trained on Sysbench RW workloads to TPC-C.

5.3.2 Adaptability on Workload Change. As mentioned
above, we adopt some standard testing tools to generate sam-
ples data for training in the absence of enough experience
data. By this means, can the trained CDBTune adapt to other
workloads? With database instance CDB-C, we utilize the
model called M_TPC-C→TPC-C trained on TPC-C work-
load to recommend configurations for TPC-C workload (nor-
mal testing) as well as use the model called M_RW→TPC-C
trained on the read-write workload contained in Sysbench to
recommend configurations for TPC-C workload (cross test-
ing). After deploying these two configurations recommended
by CDBTune on CDB, we record their respective performance
in the last two bars as shown in Figure 12. Also, the tun-
ing performance of cross-testing model is slightly different
from that of normal-testing model. That indicates that our
CDBTune does not need to establish a new model and owns
a good adaptability when the workload changes slightly.
Summary. The results of above three experiments show
that our model with limited training data manifests a strong
adaptability no matter how the environment or data changes.
The fundamental reason is that OtterTune relies highly on
training datasets, and uses simple regression for recommen-
dation like GP regression. Thus the performance of recom-
mended configuration is very limited, and OtterTune and

BestConfig do not search high-dimensional configuration
space when the current workload or hardware configuration
differs from training condition. Especially in cloud environ-
ment, when the external environment changes, lacking rele-
vant data in the training dataset will directly bring a poor
recommendation to OtterTune. Instead, RL makes CDBTune
simulate human brain, learn towards an optimizing direction,
and recommend reasonable knob settings corresponding
to the current workload and hardware environment. Thus,
CDBTune owns a good adaptability in cloud environment. In
addition, we have conducted similar experiments on differ-
ent hardware media, e.g., SSD and NVM, and we get similar
results, which are omitted due to the limited space.

6 RELATED WORK
Database Tuning. DBMS tuning has been an interesting
and active area of research in the last two decades [1, 4, 6,
7, 10, 11, 16, 22, 37, 51, 52, 56, 57]. Existing work can be clas-
sified into two broad categories: tuning the physical design
and tuning the configuration parameters.
(1) Physical Design Tuning. Major database vendors offer
tools for automating database physical design [6, 9, 53, 57],
and they focused on index optimizations, materialized views
and partitions [1–3, 8, 23, 28, 36]. Database cracking is a
technique to create indexes adaptively and incrementally
as a side-product of query processing [19]. Several studies
have proposed different cracking techniques for different as-
pects including tuple reconstruction [20], updates [16], and
convergence [21]. Schuhknecht et al. conducted an experi-
mental study on database cracking to identify the potential,
and proposed promising directions in database cracking [39].
Richter et al. presented a novel indexing approach for HDFS
and Hadoop MapReduce to create different clustered indexes
over terabytes of data with minimal costs [37]. Idreos et
al. presented the Data Calculator to enable interactive and
semi-automated design of data structures and performance
by capturing the first principles of data layout design and
using learned cost models, respectively [22].
(2) Database Configuration Tuning. A parameter configura-
tion tuning selects appropriate values of parameters (knobs)
that can improve DBMS’s performance. Most work in auto-
mated database tuning has either focused on specific parame-
ter tuning (e.g., [41]) or holistic parameter tuning (e.g., [12]).
(i) Specific Parameter Tuning. Techniques for tuning specific
classes of parameters include memory managements and
identifying performance bottlenecks [19, 21, 39]. IBM DB2
released a self-tuning memory manager that uses heuristics
to allocate memory to the DBMS’s internal components [41,
45]. Tran et al. used linear and quadratic regression models
for buffer tuning [46]. A resource monitoring tool has been
used with Microsoft’s SQL Server for the self-predicting

13

DBMS [33]. Oracle also developed an internal monitoring
system to identify bottlenecks due to misconfigurations [13,
25]. The DBSherlock tool helps a DBA diagnose problems
by comparing slow regions with normal regions based on
the DBMS’s time-series performance data [54].
(ii) Holistic Parameter Tuning. There are several works for
holistic tuning of many configuration parameters in modern
database systems. The COMFORT tool uses a technique from
control theory that can adjust a single knob up or down at a
time, but cannot discover the dependencies between multiple
knobs [50]. IBM DB2 released a performance Wizard tool for
automatically selecting the initial values for the configura-
tion parameters [26]. BerkeleyDB uses influence diagrams
to model probabilistic dependencies between configuration
knobs, to infer expected outcomes of a particular DBMS con-
figuration [42]. However, these diagrams must be created
manually by a domain expert. The SARD tool generates a rel-
ative ranking of a DBMS’s knobs using the Plackett-Burman
design [12]. iTuned is a generic tool that continuously makes
minor changes to the DBMS configuration, employing the
GP regression for automatic configuration tuning [14].
Our system is designed for holistic knob tuning. Otter-

Tune [4] is most close to our work. It is a multistep tuning
tool to select the most impactful knobs, map unseen database
workloads to previous workloads and recommend knob set-
tings. However, the dependencies between each step make
the whole process relatively complicated. And OtterTune
requires a lot of high-quality samples which are hard to
collect in cloud environment. BestConfig [55] is the closest
work that is related to our goals but the techniques are com-
pletely different. It divides the high-dimensional parameter
space into subspaces, and exploits the search-based meth-
ods. However, it does not learn experience from previous
tuning efforts (i.e., even if there are two identical cases, it
will search twice). CDBTune is an end-to-end tuning system,
only requiring a few samples to tune cloud database. The
experimental results show that our method achieves much
better performance than OtterTune and BestConfig.
Deep Learning for Database.Deep learning models define
a mapping from an input to an output, and learn how to use
the hidden layers to produce correct output [27]. Although
deep learning has successfully been applied to solving com-
putationally intensive learning tasks in many domains [15,
17, 18, 24, 48], there are few studies that have used deep
learning techniques to solve database tuning problems[49].
Reinforcement learning is able to discover the best action
through the try-and-error method by either exploiting cur-
rent knowledge or exploring unknown states to maximize a
cumulative reward [30, 43, 44].
Recently, several researches utilized deep learning or RL

model to solve the database problems. Tzoumas et al. [47]

transformed the query plans building into an RL problem
where each state represents a tuple along with metadata
about which operators still need to be applied and each ac-
tion represents which operator to run next. Basu et al. [5]
used RL model to adaptive performance tuning of database
applications. Pavlo et al. [35] presented the architecture of
Peloton for workload forecasting and action deployment un-
der the algorithmic advancements in deep learning. Marcus
et al. [31] used deep RL to determine join order. Ortiz et
al. [34] used deep RL to incrementally learn state represen-
tations of subqueries for query optimization. It models each
state as a latent vector that is learned through a neural net-
work and is propagated to other subsequent states. Sharma et
al. [40] used the deep RL model to automatically administer
a DBMS by defining a problem environment.
Our tuning system uses a deep reinforcement learning

model for automatic DBMS tuning. The goal of CDBTune is
to tune the knob settings for improving the performance
of cloud databases. To the best of our knowledge, this is
the first attempt that uses deep RL model for configuration
recommendation in databases.

7 CONCLUSION
In this paper, we proposed an end-to-end automatic DBMS
configuration tuning system CDBTune that can recommend
superior knob settings in the complex cloud environment.
CDBTune used a try-and-error manner in RL to learn the best
settings with limited samples. Besides, our designed reward
function can effectively improve tuning efficiency and the
DDPG algorithm can find the optimal configurations in high-
dimensional continuous space. Extensive experimental re-
sults showed that CDBTune produced superior configurations
for various workloads that greatly improved performance
with higher throughput and lower latency compared with
the state-of-the-art tuning tools and DBA experts. We also
demonstrated CDBTune had a good adaptability whenever
the operating environment changed. Note that some other
ML solutions can be explored to improve the database tuning
performance further.

ACKNOWLEDGMENTS
Thanks for the research fund of the Intelligent Cloud Stor-
age Joint Research center of HUST and Tencent, the Key
Laboratory of Information Storage System, Ministry of Ed-
ucation. This work is supported by the Innovation Group
Project of the National Natural Science Foundation of China,
No.61821003, the National Natural Science Foundation of
ChinaNo.(61632016, 61472198), 973 Program of ChinaNo.201-
5CB358700 and the National Key Research and Development
Program of China under Grant No.2016YF-B0800402.

14

REFERENCES
[1] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek R

Narasayya. 2006. AutoAdmin: Self-Tuning Database SystemsTech-
nology. IEEE Data Eng. Bull. 29, 3 (2006), 7–15.

[2] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. 2005. Database tuning advisor for
microsoft sql server 2005. In ACM SIGMOD. ACM, 930–932.

[3] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating
vertical and horizontal partitioning into automated physical database
design. In ACM SIGMOD. ACM, 359–370.

[4] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
2017. Automatic Database Management System Tuning Through
Large-scale Machine Learning. In ACM SIGMOD. 1009–1024.

[5] Debabrota Basu, Qian Lin, Hoang Tam Vo, Hoang Tam Vo, Zihong
Yuan, and Pierre Senellart. 2016. Regularized Cost-Model Oblivious
Database Tuning with Reinforcement Learning. Springer Berlin Heidel-
berg. 96–132 pages.

[6] Peter Belknap, Benoit Dageville, Karl Dias, and Khaled Yagoub. 2009.
Self-tuning for SQL performance in Oracle database 11g. In ICDE. IEEE,
1694–1700.

[7] Phil Bernstein et al. 1998. The Asilomar report on database research.
ACM Sigmod record 27, 4 (1998), 74–80.

[8] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic physical data-
base tuning: a relaxation-based approach. In ACM SIGMOD. ACM,
227–238.

[9] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin "what-if"
index analysis utility. In ACM SIGMOD. 367–378.

[10] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database
Systems: A Decade of Progress.. In VLDB. 3–14.

[11] Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking Database
System Architecture: Towards a Self-Tuning RISC-Style Database Sys-
tem.. In VLDB. 1–10.

[12] Biplob K Debnath, David J Lilja, and Mohamed F Mokbel. 2008. SARD:
A statistical approach for ranking database tuning parameters. In
ICDEW. IEEE, 11–18.

[13] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,
and Graham Wood. 2005. Automatic Performance Diagnosis and
Tuning in Oracle.. In CIDR. 84–94.

[14] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tun-
ing database configuration parameters with iTuned. VLDB Endowment
2, 1 (2009), 1246–1257.

[15] Yoav Goldberg. 2015. A Primer on Neural Network Models for Natural
Language Processing. Computer Science (2015).

[16] Goetz Graefe and Harumi A. Kuno. 2010. Self-selecting, self-tuning,
incrementally optimized indexes. In EDBT. 371–381.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR. 770–778.

[18] G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimension-
ality of data with neural networks. Science 313, 5786 (2006), 504–507.

[19] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database
Cracking. In CIDR. 68–78.

[20] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-
organizing tuple reconstruction in column-stores. In ACM SIGMOD.
297–308.

[21] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe.
2011. Merging What’s Cracked, Cracking What’s Merged: Adaptive
Indexing inMain-Memory Column-Stores. PVLDB 4, 9 (2011), 585–597.

[22] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S.
Kester, and Demi Guo. 2018. The Data Calculator: Data Structure
Design and Cost Synthesis from First Principles and Learned Cost
Models. In ACM SIGMOD. 535–550.

[23] Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboul-
naga. 2004. CORDS: automatic discovery of correlations and soft
functional dependencies. In ACM SIGMOD. ACM, 647–658.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet classification with deep convolutional neural networks. In NIPS.
1097–1105.

[25] Sushil Kumar. 2003. Oracle database 10g: The self-managing database.
[26] Eva Kwan, Sam Lightstone, Adam Storm, and Leanne Wu. 2002. Auto-

matic configuration for IBM DB2 universal database. In Proc. of IBM
Perf Technical Report.

[27] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
Nature 521, 7553 (2015), 436.

[28] Sam S Lightstone and Bishwaranjan Bhattacharjee. 2004. Automated
design of multidimensional clustering tables for relational databases.
In VLDB. VLDB, 1170–1181.

[29] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Contin-
uous control with deep reinforcement learning. CoRR abs/1509.02971
(2015).

[30] Vasilis Maglogiannis, Dries Naudts, Adnan Shahid, and Ingrid Moer-
man. 2018. A Q-Learning Scheme for Fair Coexistence Between LTE
and Wi-Fi in Unlicensed Spectrum. IEEE Access 6 (2018), 27278–27293.

[31] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement
learning for join order enumeration. arXiv preprint arXiv:1803.00055
(2018).

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Play-
ing Atari with Deep Reinforcement Learning. CoRR abs/1312.5602
(2013).

[33] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. 2005.
Continuous resource monitoring for self-predicting DBMS. In null.
IEEE, 239–248.

[34] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya
Keerthi. 2018. Learning State Representations for Query Optimization
with Deep Reinforcement Learning. arXiv preprint arXiv:1803.08604
(2018).

[35] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah,
et al. 2017. Self-Driving Database Management Systems.. In CIDR.

[36] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Au-
tomating physical database design in a parallel database. In ACM
SIGMOD. ACM, 558–569.

[37] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens
Dittrich. 2014. Towards zero-overhead static and adaptive indexing in
Hadoop. VLDB J. 23, 3 (2014), 469–494.

[38] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015.
Prioritized Experience Replay. Computer Science (2015).

[39] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The
Uncracked Pieces in Database Cracking. PVLDB 7, 2 (2013), 97–108.

[40] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The
Case for Automatic Database Administration using Deep Reinforce-
ment Learning. (2018).

[41] Adam J Storm, Christian Garcia-Arellano, Sam S Lightstone, Yixin
Diao, and Maheswaran Surendra. 2006. Adaptive self-tuning memory
in DB2. In VLDB. VLDB, 1081–1092.

[42] David G Sullivan, Margo I Seltzer, and Avi Pfeffer. 2004. Using proba-
bilistic reasoning to automate software tuning. Vol. 32. ACM.

[43] R S Sutton and A G Barto. 2005. Reinforcement Learning: An Intro-
duction, Bradford Book. IEEE Transactions on Neural Networks 16, 1
(2005), 285–286.

[44] Richard S Sutton and Andrew G Barto. 2011. Reinforcement learning:
An introduction. (2011).

15

[45] Wenhu Tian, Pat Martin, and Wendy Powley. 2003. Techniques for
automatically sizing multiple buffer pools in DB2. In Proceedings of
the 2003 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 294–302.

[46] DinhNguyen Tran, Phung ChinhHuynh, Yong C Tay, andAnthony KH
Tung. 2008. A new approach to dynamic self-tuning of database buffers.
TOS 4, 1 (2008), 3.

[47] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A rein-
forcement learning approach for adaptive query processing. History
(2008).

[48] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. SuperNeurons:
Dynamic GPU Memory Management for Training Deep Neural Net-
works. (2018).

[49] Wei Wang, Meihui Zhang, Gang Chen, HV Jagadish, Beng Chin Ooi,
and Kian-Lee Tan. 2016. Database meets deep learning: Challenges
and opportunities. ACM SIGMOD Record 45, 2 (2016), 17–22.

[50] GerhardWeikum, Christof Hasse, Axel Mönkeberg, and Peter Zabback.
1994. The COMFORT automatic tuning project. Information systems
19, 5 (1994), 381–432.

[51] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zab-
back. 2002. Self-tuning database technology and information services:
from wishful thinking to viable engineering. In VLDB. Elsevier, 20–31.

[52] David Wiese, Gennadi Rabinovitch, Michael Reichert, and Stephan
Arenswald. 2008. Autonomic tuning expert: a framework for best-
practice oriented autonomic database tuning. In 2008 conference of the
center for advanced studies on collaborative research: meeting of minds.
ACM, 3.

[53] Khaled Yagoub, Peter Belknap, Benoit Dageville, Karl Dias, Shantanu
Joshi, and Hailing Yu. 2008. Oracle’s SQL Performance Analyzer. IEEE
Data Eng. Bull. 31, 1 (2008), 51–58.

[54] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. Dbsherlock:
A performance diagnostic tool for transactional databases. In ACM
SIGMOD. ACM, 1599–1614.

[55] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig:
tapping the performance potential of systems via automatic configu-
ration tuning. In SoCC. ACM, 338–350.

[56] Daniel C Zilio. 1998. Physical Database Design Decision Algorithms
and Concurrent Reorganization for Parallel Database Systems.

[57] Daniel C Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm,
Christian Garcia-Arellano, and Scott Fadden. 2004. DB2 design advisor:
integrated automatic physical database design. In VLDB. VLDB, 1087–
1097.

APPENDIX
A NOTATIONS
All the notations used in the paper are listed in Table 4.

B DETAILS OF RL IN CDBTUNE

B.1 Algorithm of DDPG
The Algorithm of DDPG is shown in Algorithm 1.

B.2 Specific parameters of DDPG
In order to make it easier for readers to understand clearly
and implement our algorithm, we elaborate the network
structure and specific parameters values of DDPG in Table 5.

Table 4: Notations

Variables Descriptions Mapping to CDBTune
s State Internal metrics of DBMS
a Action Tunable knobs of DBMS
r Reward The performance of DBMS
α Learning rate Set to 0.001
γ Discount factor Set to 0.99

ω
The weights of neural
network

Initialized
toUni f orm(−0.1, 0.1)

E
Environment,
the tuning target

An instance of CDB

µ Policy deep neural network

θQ
Learnable
parameters

Initialized
to Normal(0, 0.01)

θ µ
Actor, mapping state st
to action at

-

Q µ Critic, the policy µ -
L Loss function -

y
Q value label through
Q-learning algorithm

-

Algorithm 1 Deep deterministic policy gradient (DDPG)
1: Sample a transition (st , rt ,at , st+1) from Experience Re-

play Memory.
2: Calculate the action for state st+1: a′t+1 = µ(st+1).
3: Calculate the value for state st+1 and a′t+1: Vt+1 =

Q(st+1,a
′
t+1 |θ

Q).
4: Apply Q-learning and obtain the estimated value for

state st : V ′t = γVt+1 + rt .
5: Calculate the value for state st directly: Vt =

Q(st ,at |θ
Q).

6: Update the critic network by gradient descent and define
the loss as:

Lt = (Vt −V
′
t)

2

7: Update the actor network by policy gradient:

∇aQ(st ,a |θ
Q)|a=µ(st)∇θ µ µ(st |θ

µ)

Table 5: DetailedActor-Critic network andparameters
of DDPG.

Step Actor Critic

Layer Param Layer Param

1 Input 63 Input #Knobs + 63
2 Full Connection 128 Parallel Full Connection 128 + 128
3 ReLU 0.2 Full Connection 256
4 BatchNorm 16 ReLU 0.2
5 Full Connection 128 BatchNorm 16
6 Tanh - Full Connection 256
7 Dropout 0.3 Full Connection 64
8 Full Connection 128 Tanh -
9 Tanh - Dropout 0.3
10 Full Connection 64 BatchNorm 16
11 Output #Knobs Output 1

16

B.3 Difference between Q-Learning and
DQN

The difference between Q-Learning and DQN is shown in
Figure 13.

C MORE EXPERIMENTS
C.1 Evaluation on Reward Functions
C.1.1 Different Reward Functions. For verifying the su-

periority of our designed reward function in the training
and tuning process, we compare it with other three typical
reward functions including (1) RF-A: the performance of cur-
rent time is compared only with that of the previous time,
(2) RF-B: the performance of current time is compared only
with that of the initial settings, and (3) RF-C: if the current
performance is lower compared with that of the previous
time, the corresponding reward part will keep the original
method of calculation (for example, its reward remains un-
changed even if ∆t→t−1 is negative in Eq. (6)). We make a
comparison between the three reward functions and our de-
signed RF-CDBTune in Section 4.2 in terms of the number of
iterations when the model converged in the training process.
After multiple steps, if the performance change between two
steps does not exceed 0.5% in five consecutive steps, we de-
cide that the model has converged. It is a tradeoff to select
an appropriate threshold between training time and model
quality. For example, a smaller threshold may achieve a bet-
ter result but it will spend more time on model training. We
have conducted extensive experiments, and found if we set
the convergence threshold to 0.5%, our model can converge
fast and achieve good results. Due to the limitation of the
length of the paper, we do not provide detailed discussion
and the performance deployed on the recommended config-
urations. Specially, compared with the performance of the
previous time and initial settings, the reward (corresponding
to throughput or latency) calculate by RF-CDBTune will be
set to 0 if the current performance is lower than that of the
previous time but higher than the initial performance.
As shown in Figure 14, we adopt three different work-

loads as well as instances CDB-A (8G RAM, 100G Disk) and
CDB-C (12G RAM, 200G Disk). As a whole, RF-A takes the
longest convergence time. What causes this phenomenon
is that RF-A just considers the performance of the previous
time, neglecting the final goal that we expect to achieve
higher performance than the initial settings as much as pos-
sible. Therefore, there is a high chance that a positive reward
will be given when the current performance is worse than
the initial settings but better than that of the previous time,
bringing long convergence time and low performance to the
model. RF-B only achieves a sample target which obtains a
better result than the initial settings regardless of the previ-
ous performance although it takes the shortest convergence

Figure 13: Difference between Q-Learning and DQN.

time. Instead, RF-B gets the worst performance because it
pays no attention to improving the intermediate process.
RF-C achieves almost the same performance as RF-A, but
spends much more convergence time than RF-A. If the cur-
rent performance is lower than that of the previous time, the
absolute value part of its reward function is always positive
but generally a small number, which will produce a small
impact on the system’s performance. However, such reward
misleads the learning of the intermediate process, leading to
a longer convergence time than RF-A. In conclusion, com-
pared with others, our proposed RF-CDBTune takes above
factors into consideration comprehensively and achieves the
fast convergence speed and best performance.

C.1.2 Varying CT and CL . In this section, we describe
our thought about designing reward function in detail. In
Eq. 7, we present two coefficients (CT and CL) to separately
optimize throughput and latency, where CT +CL =1. For ex-
ploring how these coefficients will affect the performance
of DBMS, we take this performance as a benchmark when
setting CT =CL=0.5. We change the size of CT and observe
the ratio of throughput to latency compared with that of pre-
defined benchmark. As shown in Figure 15, the throughput
increases gradually with a larger CT . Besides, observing the
slope of curve, whenCT exceeds 0.5, we find the change rate
of throughput is larger than that of a smaller CT (less than
0.5). And so is the latency. This is because the change of CT
andCL will affect the contribution of throughput and latency
to reward. For example, a largerCT can reduce the sensitivity
of CDBTune to latency. In general, we setCT =CL=0.5. But we
also allow different weights on latency and throughput (we
set CL = 0.6 and CT = 0.4 in our experiments), the user can
set the weights and obtain different results according to his
own requirement (latency or throughput sensitivity).

C.2 Evaluation by Varying Neural Network
In this section, we discuss the impact of recommended config-
urations by different networks on the system’s performance
when tuning 266 knobs. We mainly change the number of
hidden layers and neurons in each layer of both Actor and
Critic network. The detailed parameters are displayed in Ta-
ble 6. The number of iterations multiply increases with an
increasing number of hidden layers, and the performance
will even decrease when the number of layers increases to

17

0

500

1000

1500

2000

2500

3000

Th
ro
ug

hp
ut
 (t
xn

/s
ec
)

0

1000

2000

3000

4000

5000

99
th
 %

-ti
le
 (m

s)

TPC-C Sysbench (RW) Sysbench (RO)
0

1000

2000

3000

Nu
m
be

r o
f i
te
ra
tio

ns

Figure 14: Number of iterations and performance of
CDBTune for TPC-C (with CDB-C), Sysbench RW and RO
workloads (with CDB-A) respectively using different reward
functions. The corresponding number of iterations and per-
formance are collected under the same knob settings.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CT

0.6

1.0

1.4

1.8

Ch
an

ge
 R
at
e Throughput

Latency

Figure 15: The coefficient CT to optimize throughput and
latency. Note that CT + CL = 1.

5. This may result from the high complexity of our model
due to the increasing number of layers, which leads to over-
fitting. Moreover, when the number of hidden layers (of both
two networks) is fixed, increasing the number of neurons
in each layer seems to produce little effect on the perfor-
mance, but the number of iterations increases a lot due to
the higher complexity of the network. Therefore, it is also
vital to choose a reasonable and efficient network after fix-
ing the number of knobs, which is why we use the network
structure of Figure 4 in Section 4.1.

C.3 Evaluation on Other Databases
We evaluate our method on Local MySQL, MongoDB and
Postgres where we tune 232 knobs for MongoDB and 169
knobs for Postgres. Figures 16-17 and Figures 18 show the
results. Our method can also work well on Local MySQL,
MongoDB and Postgre. For example, our method can adapt

Table 6: Tuning performance varying neural network struc-
ture. AHL and CHL are short for the hidden layer in Ac-
tor and Critic respectively. The unit of Thr(Throughput) is
txn/sec and Lat(Latency) is ms.

AHL Neurons CHL Neurons Thr Lat Iteration

3 128-128-64 3 256-256-64 ↓1169.37 ↑3042.75 ↓682
3 256-256-128 3 512-512-128 ↓1195.19 ↑3087.58 ↓1034
4 128-128-128-64 4 256-256-256-64 1416.71 2840.41 1530
4 256-256-256-128 4 512-512-512-128 ↓1394.65 ↓2836.27 ↑2436
5 128-128-128-128-64 5 256-256-256-256-64 ↓1389.47 ↑2795.87 ↑1946
5 256-256-256-256-128 5 512-512-512-512-128 ↓1402.55 ↑2801.12 ↑3175
6 128-128-128-128-128-64 6 256-256-256-256-256-64 ↓1255.78 ↑2932.42 ↑2564
6 256-256-256-256-256-128 6 512-512-512-512-512-128 ↓1305.96 ↑2976.53 ↑3866

0

2000

4000

6000

8000

10000

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

0

10

20

30

40

50

99
th
 %

-ti
le
 (m

s)

Figure 16: Performance comparison for YCSB workload us-
ing instance CDB-E among CDBTune, MongoDB default, CDB
default, BestConfig, DBA and OtterTune (on MongoDB).

0

200

400

600

800

1000

1200

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

0

100

200

300

400

500

600

99
th
 %

-ti
le
 (m

s)

Figure 17: Performance comparison for TPC-C workload
using instance CDB-D among CDBTune, Postgres default,
CDB default, BestConfig, DBA and OtterTune (on Postgres).

0
200
400
600
800

1000
1200
1400

Th
ro
ug

hp
ut
 (t
xn

/s
ec

)

(a) TCP-C (Throughput)

0
250
500
750

1000
1250
1500
1750

99
th
 %

-ti
le
 (m

s)

(b) TCP-C (99%-tile Latency)

Figure 18: Performance on TPC-C for local MySQL.

to YCSB workloads using the trained model on the CDB-E
database instance on MongoDB, TPC-C workloads using the
trained model on the CDB-D database instance on Postgres
and CDB-C database instance on Local MySQL. CDBTune still
achieves the best results and outperforms the state-of-the-art
tuning tools and DBA experts significantly. This illustrates
that our model is designed with strong scalability in database
tuning.

18

	Abstract
	1 Introduction
	2 System Overview
	2.1 CDBTune Working Mechanism
	2.2 System Architecture

	3 RL in CDBTune
	3.1 Basic Idea
	3.2 RL for CDBTune
	3.3 RL for Tuning

	4 DDPG for CDBTune
	4.1 Deep Deterministic Policy Gradient
	4.2 Reward Function
	4.3 Advantages

	5 Experimental Study
	5.1 Efficiency Comparison
	5.2 Effectiveness Comparison
	5.3 Adaptability

	6 Related Work
	7 Conclusion
	References
	A Notations
	B Details of RL in CDBTune
	B.1 Algorithm of DDPG
	B.2 Specific parameters of DDPG
	B.3 Difference between Q-Learning and DQN

	C More Experiments
	C.1 Evaluation on Reward Functions
	C.2 Evaluation by Varying Neural Network
	C.3 Evaluation on Other Databases

