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ABSTRACT

We study interactive graph search (IGS), with the conceptual
objective of departing from the conventional “top-down”
strategy in searching a poly-hierarchy, a.k.a. a decision graph.
In IGS, a machine assists a human in looking for a target
node z in an acyclic directed graph G , by repetitively asking
questions. In each question, the machine picks a node u in
G, asks a human “is there a path from u to z?”, and takes
a boolean answer from the human. The efficiency goal is
to locate z with as few questions as possible. We describe
algorithms that solve the problem by asking a provably small
number of questions, and establish lower bounds indicating
that the algorithms are optimal up to a small additive factor.
An experimental evaluation is presented to demonstrate the
usefulness of our solutions in real-world scenarios.
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1 INTRODUCTION

This paper considers a problem that we refer to as interactive
graph search (IGS). It is concerned with the scenario where a
human needs to explore a potentially massive poly-hierarchy
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— a.k.a. an acyclic directed graph (DAG) where each edge rep-
resents specialization — in order to locate the deepest node
that best describes a certain concept. The DAG, typically, is
stored at a remote server, and must be communicated to the
human, with a unit cost charged on every node communi-
cated. The algorithmic challenge is to devise a strategy to
minimize the amount of interaction.
In Section 2, we will elaborate on the common patterns

behind a class of applications that can be modeled as IGS, but
for an immediate illustration here, let us examine a scenario
from [15] where a machine summons a human’s help to tag a
picture according to a certain hierarchy. Figure 1a shows part
of such a hierarchy, which is stored at the machine and is not
known to the human. Interaction is initiated by the machine,
which asks questions for the human to answer. Each question
has the form: “is this (picture) an x”, where x is the name of a
node. Here are some examples along a path in the hierarchy:
“is this a car?”, “is this a nissan?”, and “is this a sentra?”.
Upon receiving a yes-answer to all of them, the machine can
now place the tag sentra on the picture confidently.
The efficiency goal in the above scenario is to minimize

the number of questions asked. More formally, one can think
of the problem as a game between two players Alice and
Bob. Initially, Bob secretly chooses a target node z in the
hierarchy. Alice’s job is to figure out which node is z. There
is an oracle that Alice can inquire repeatedly. Each time, she
picks (at her will) a query node q, and asks the oracle: is there
a (directed) path in the hierarchy from q to the node chosen

by Bob? Oracle reveals the answer (i.e., yes or no). So, what
should be Alice’s strategy in order to locate z with as few
questions as possible?

For our example, one sees that the machine plays the role
of Alice. The target node z is the final tag sentra that the
machine should place on the picture. The human plays the
role of oracle. Indeed, even though a human is not aware
of the underlying hierarchy (let alone z), s/he can still cor-
rectly answer a question like “is this a car?” using her/his
own knowledge and cognition power. A path exists in the
hierarchy from q = car to (the unknown) z if and only if the
human answers yes.
While the above hierarchy is a tree, it can be a DAG in

general. Figure 1b complements Figure 1a by showing an-
other part of the hierarchy. When presented with the picture
of a whale, a human will answer yes to both questions: “is
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animal

mammal amphibiousoviparous

tiger whale

terrestrialaquatic

vehicle

car

nissan honda mercedes

maxima sentra

(a) A tree hierarchy (reconstructed from [15]) (b) A DAG hierarchy

Figure 1: Example hierarchies for human-assisted graph search

this a mammal?” and “is this an aquatic (animal)?” This
is consistent with the fact that both mammal and aquatic

have paths leading to the node whale in the hierarchy. In-
deed, to tag the picture correctly, the machine can reach the
node whale by asking questions along either path.

Technical Challenges. The technical objectives of this
work are two-fold:

• (Upper bound)Design an algorithm for Alice (i.e., the
machine) to solve the problem with a small number of
questions, regardless of Bob’s choice of z.
• (Lower bound)Where is the limit of all algorithms?
That is, how many questions must Alice ask in the
worst case, no matter how smart she is?

Our problem is online in nature, namely, the next question
Alice asks depends on the previous answers of the oracle.
Such interaction with the oracle is essential for keeping the
total number of questions small. Opposite to this is the offline

version, as was studied by Parameswaran et al. in [15] under
the name human-assisted graph search, where no interactions
are permitted. Instead, Alice must ask all her questions in one
go. Once the answers are returned, she must then do her best
to figure out where is z. Suppose that Alice is constrained
to ask no more than t questions for some small t ≥ 1. In
this case, she cannot guarantee finding z even with all the t
answers collected; instead, all she can do is to narrow things
down to a candidate set that must contain z. The objective
(of the offline version) is to choose the t questions wisely to
minimize the size of the candidate set.
To illustrate, consider Figure 1a with t = 3; and assume

that Alice asks the oracle: “is this an x?”, where x = nissan,
honda, andmercedes, respectively. If the first question gets
a yes answer, she is sure that z must be in {nissan, maxima,
sentra}. This candidate set is her final knowledge because no
more interaction with the oracle is allowed.

However, in the unlucky case where none of the questions
returns yes, Alice has little information as to where is z.
To see this, just imagine an overall hierarchy combining
Figures 1a and 1b. Alice does not even have a clue whether z
is a vehicle or an animal. Indeed, as shown in [15], the value
of t must be rather large — often at the same order as the
size of the hierarchy — to guarantee a small candidate set.

This issue goes away in IGS. As explained next, typically
only a small number of questions suffices to locate z, even
in the worst case.

Our Contributions. Let us now return to IGS. If the hierar-
chy has n nodes, the problem can be trivially solved with n
questions: simply ask a question on every node. A bit less
trivial is to do so with at most d · h questions — we will
explain how in Section 2.2 — where d is the maximum out-
degree of a node, and h is the length of the longest path in
the hierarchy. Note that h is at least ⌈logd n⌉, but can be as
large as n when the hierarchy is a single path.
We show that the problem admits an algorithm with an

alternative bound on the number of questions, and prove
that the algorithm is nearly optimal:

• (Upper bound) We can find z in a DAG with at most
⌈log2 h⌉ (1 + ⌊log2 n⌋) + (d − 1) · ⌈logd n⌉ questions.
• (Lower bound) Any algorithm must ask at least
(d − 1) · ⌊logd n⌋ questions in the worst case. In other
words, the proposed algorithm is optimal up to a small
additive factor.

Our algorithm carefully decomposes the nodes of the input
DAG hierarchy into disjoint subsets, where the nodes in
each subset are connected by a path in the hierarchy. The
decomposition allows us to navigate in the hierarchy through
a series of binary searches on individual paths. This new
technique is interesting in its own right, and is an outcome
from the marriage of the white-path theorem and heavy-path

decomposition (both will be explained in Section 3). In fact,
the technique is — as we will show — powerful enough to
settle near-optimally a more general variant of IGS where a
human may need to answer multiple questions at a time.

Paper Organization. The rest of the paper is organized as
follows. Section 2 will formally define the IGS problem, give
a baseline solution, and present a class of applications that
are adequately modeled by IGS. Section 3 reviews some pre-
liminary techniques needed in our discussion. Sections 4
and 5 will present our algorithms and prove their theoretical
guarantees, focusing on tree and DAG hierarchies, respec-
tively. Section 6 will describe how to extend our algorithms
to solve a more general variant of the problem. Section 7 will
experimentally evaluate the performance of the proposed
solutions using real data. Section 8 will survey the previous

Research 14: Graphs 2  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1394



work related to ours. Finally, Section 9 concludes the paper
with a summary of findings.

2 INTERACTIVE GRAPH SEARCH

2.1 Problem Formulation

Next, we will formally define the interactive graph search

(IGS) problem studied in this paper. Some of the notions
that already appeared in Section 1 will be repeated for the
reader’s convenience.

We have a hierarchy, which is a connected DAGG = (V ,E).
Define a node v ∈ V as a root if it has an in-degree 0 (i.e.,
no incoming edges). We consider thatG has only one root —
if this is not true, simply add a dummy vertex toG with an
outgoing edge to every original root. This dummy vertex has
an out-degree equal to the number of roots in the originalG ,
and now serves as the only root of G.
An adversary chooses arbitrarily a target node z ∈ V . An

algorithm’s goal is to identify which node is z. There is an
oracle that can answer questions. Formally, in each question,
the algorithm specifies a query node q ∈ V ; and then the
oracle returns a boolean answer denoted as reach(q):

• yes, if there is a (directed) path from q to z;
• no, otherwise.

In other words, the answer reveals the reachability from q to
z, that is, reach(q) = yes, if and only if z is reachable from q,
or equivalently, q can reach z. The algorithm is free to choose
any query node in a question; and indeed, its choice in each
question constitutes the core of the algorithm design.

The algorithm stops when it has figured out with no ambi-
guity where is z. Its cost is defined as the number of questions
it has asked.
Throughout the paper, we set n = |V |, denote by d the

maximum out-degree of the nodes inG, and by h the length
of the longest path in G. For instance, if G is the DAG in
Figure 2, then n = 14, d = 3 and h = 5 (the path from node 1
to node 14 is the longest in G).

2.2 A Baseline Top-Down Solution

IGS has the following simple out-neighbor property:

Proposition 1 (Out-Neighbor Property). Suppose that

we already know reach(u) = yes for some node u ∈ V . Then:

• u = z if and only if every out-neighbor v of u satisfies

reach(v ) = no;

• u , z if and only if u has an out-neighbor v satisfying

reach(v ) = yes.

Example. To illustrate, suppose that the input DAGG is the
graph in Figure 2. Assume that the target node z is node 8.
Set u to z; the first bullet says that no out-neighbors of u can
reach z (that is rather trivial). Set instead u to node 2; it is

2

1

4

6 7 8

10

3

9

5

11 12

14

13

Figure 2: A DAG hierarchy

clear that reach(node 2) = yes. The second bullet says that
node 2 must have an out-neighbor that can reach z. Indeed,
in this case, both nodes 3 and 4 can be this out-neighbor. �

The property motivates a straightforward top-down al-
gorithm for IGS. At the beginning, set u to the root of G.
At each step, query the oracle on every out-neighbor of u,
until finding an out-neighbor v with reach(v ) = yes. If no
suchv exists, we terminate by returning u as the target node.
Otherwise, we set u to v , and repeat.

Clearly, top-down asks at most d questions at every u. By
moving from u to v , it walks a step along a path inG . Hence,
the algorithm asks at most d · h questions in total.

2.3 Applications

The IGS problem offers an algorithmic framework for study-
ing how to minimize interaction in applications where the
objective is to locate the most specific node in a decision tree

— or its extension decision graph [13] — that best fulfills an
information need. Figure 1a illustrates a decision tree, while
Figure 1b exemplifies a decision graph, which can be re-
garded as a decision tree but with identical subtrees merged.
Conventionally, the top-down strategy in Section 2.2 has
been the norm for exploring a decision tree/graph. Philo-
sophically, the goal of IGS is to seek a way to beat that
conventional wisdom.

The concrete scenarios for such applications are versatile.
What is described in Section 1 is known as image categoriza-

tion in [15]. Next, we will describe several other applications.
Our selection strives to achieve diversity: each application
below is representative with distinct features.

Manual Curation. In the example with Figures 1a and 1b,
the input hierarchy is fixed, with the goal being to find a node
to fit a certain object (i.e., a picture). In manual curation, on
the other hand, we want to extend a hierarchy by inserting a
new nodex , e.g., a new brand ofnissan. This is effectively an
instance of IGS, whose output is the node that should parent
x . In reality, many hierarchies (better known as taxonomies
or categories) require this kind of periodic extensions; some
examples are Wikipedia, web of concepts, ACM computing
classification system, and so on.
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Relational Databases. Often times a user may need to
search a database without being aware of the table schemata,
ruling out the possibility to write an accurate SQL query
to fetch the information targeted. This motivated faceted

search [17, 20], where the system interacts with the user by
asking increasingly refined questions that eventually lead to
the data to be retrieved. These questions are selected during
preprocessing, and are organized into a decision tree/graph,
after which faceted search can be performed online by de-
scending an appropriate path in the tree/graph. Our IGS
algorithms nicely complement faceted search, which is ex-
actly an instance of IGS.

ACommercial Site. Zingtree.com is the portal site of a com-
pany that specializes in helping organizations build a sophis-
ticated decision tree/graph designed to facilitate one of the
following services: technical support, call centers, customer

care, retail, and medical and health. To provide, for example,
technical support, an organization would rely on the decision
tree/graph to interact with a customer, in order to diagnose
the problem encountered by the customer and to suggest the
corresponding remedy. This is a typical scenario of IGS. The
algorithms in this paper can be integrated with any of those
decision trees/graphs to reduce the amount of interaction
demanded (which is crucial for the services aforementioned).

3 PRELIMINARIES

3.1 Heavy-Path Decomposition

In this subsection, we give a self-contained tutorial to the
heavy-path decomposition technique [18]. Let T be a tree of
n nodes which may not be balanced, i.e., its height can be
arbitrarily close to n. The goal of heavy-path decomposition
is to produce a balanced representation of T .
We need to be first familiar with the notions of “heavy

edges” and “light edges”. Consideru to be an internal node in
T . Let v be the child node of u whose subtree has the largest
size1 (ties broken arbitrarily). The edge between u and v is
said to be heavy, while the other out-going edges of u are
said to be light.

Example. Suppose thatT is the tree in Figure 3a (all the edges
are pointing downwards). The subtree of node 4 has a size 6,
while that of node 5 has a size 5. Set u to node 2. Among its
three out-going edges, the one pointing to node 4 is heavy,
while the other two are light — because node 4 is the child of
u with the largest subtree. In the figure, all the heavy edges
are represented using white arrows, whereas the light ones
have black arrows. �

Now, concatenate heavy edges into maximal paths, i.e.,
no path can be extended with yet another heavy edge. Every
resulting path is called a heavy path.

1The size of a subtree is the number of nodes therein.
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Figure 3: Heavy-path decomposition
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(a) A DFS-tree (b) Colors when node 3
on the DAG of Figure 2 is discovered

Figure 4: White-path theorem

Example (cont.). In Figure 3a, path “nodes 2 → 4 → 8”,
which we abbreviate as (2, 4, 8) henceforth, is not a heavy
path, because it can be extended with a white edge either in
front or at the end. On the other hand, path (1, 2, 4, 8, 10) is
a heavy path, and so is (5, 9, 12, 14). Do not forget there are
five more heavy paths: (3), (6), (7), (11), and (13); they are
heavy paths of length 0. �

Every node appears in one and exactly one heavy path
(observe this property from Figure 3a.) By viewing each
heavy path as a whole, we can define a path tree Π as follows:

• Treat each heavy path as a “super-node”, and make it
a vertex in Π.
• Given two heavy paths π̂ and π , add an edge in Π from
π̂ to π if and only if a node of π̂ parents the first node
of π in T .

Example (cont.). Figure 3b shows the path tree Π for theT in
Figure 3a. Π has 7 vertices π1,π2, ...,π7, corresponding to 7
heavy paths in T , respectively. There is an edge from π1 to
π6 because node 2 of π1 parents node 5 — the first node of π6
— in T . Likewise, an edge exists from π6 to π7 because node
9 parents node 13 in T . �

The path tree Π in Figure 3b has 3 levels. It can be proved
that Π cannot be too tall in general:

Lemma 1 ([18]). Π has at most 1 + ⌊log2 n⌋ levels.
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3.2 DFS and White-Path Theorem

We devote this subsection to depth-first search (DFS), which
will play an essential role in our IGS solutions. The DFS algo-
rithm is “deceptively simple”, and is endowed with numerous
interesting properties. Our main goal is to review the white-
path theorem: the famous theorem that explains why DFS
is the key to solving a long list of non-trivial problems, e.g.,
cycle detection, topological sort, finding strongly-connected
components, etc. The IGS problem will be a new member on
the list, as we will show in this paper.

DFS. We will only be concerned with a connected DAGG =

(V ,E) that has a single root r . DFS traversesG by resorting
to a stack and a vertex coloring scheme:

• White: a vertex has never been pushed into the stack.
• Gray: a vertex is currently in the stack.
• Black: a vertex has been popped out of the stack.

In the outset, the stack contains only r (we always start DFS
from the root in this work). Accordingly, all the vertices are
colored white, except r , which is colored gray. The algorithm
then proceeds as follows:

1. while stack not empty
2. u ← the vertex at the top of the stack
3. if u has any white out-neighbor v
4. push v into the stack, and color it gray

else

5. pop u out of the stack, and color it black

At the moment right before v turns gray at Line 4 — namely,
after it is found at Line 3 as a white out-neighbor of u — we
say that v is discovered, and u is its finder. Every node other
than r is discovered once and exactly once in the algorithm.

Example. LetG be the DAG in Figure 2. Suppose that, at Line
3, we adopt the policy that the out-neighbors of u be picked
in ascending order of node id. At the beginning, the stack
has only node 1. Node 2 is discovered next, with node 1 as
the finder. In turn, node 2 is the finder for node 3, which is
the finder for node 8, which is the finder of node 10. At this
moment, the stack has (from bottom to top): nodes 1, 2, 3, 8,
10; these five nodes are in gray, while the other nodes are still
white. Node 10 is then popped out, and turns black. Node 8
currently tops the stack, with only one white out-neighbor:
node 11. Hence, node 11 is discovered next, making the stack:
nodes 1, 2, 3, 8, 11. We omit the rest of the execution. �

DFS-Tree. The traversal order of DFS defines a DFS-tree T
as follows:

• The set of vertices of T is just V .
• T is rooted at r .
• If a node u is the finder of a node v , u parents v in T .

Example (cont.). Figure 4a gives the DFS-tree for the execu-
tion of DFS illustrated earlier. It is worth mentioning that

every path emanating from the root represents the content
of the stack at some point of the algorithm. For example, the
path (1, 2, 3, 8, 11) is the content of the stack right after node
11 was discovered (as shown earlier). �

Based on the DFS-tree T , every edge (u,v ) ∈ E can be
classified into one of the three categories below:

• Tree edge: u is the parent of v in T .
• Forward edge: u is a proper ancestor of v in T .
• Cross edge: neitheru norv is an ancestor of the other.

Example (cont.). In Figure 2 (which is reproduced in Fig-
ure 4b), edge (1, 3) is a forward edge with respect to the
DFS-tree of Figure 4a, (4, 8), (9, 13) are cross edges, while the
other edges are tree edges. �

White-Path Theorem. The theorem points out a crucial
property of DFS. Consider the moment when a node u is just
discovered (it is about to be pushed into the stack). Suppose
that there is a white path — namely a path where all the
vertices are white — starting from u and ending at another
vertex v . In other words, the vertices on this path have not
been discovered yet. It is guaranteed that the algorithm must
be able to discover v while u is still in the stack.

Example (cont.). Figure 4b shows the color state when node 3
is discovered in our earlier execution of DFS. At this moment,
node 3 has white paths to nodes 8, 10, 11, 13. Then, for
sure, before node 13 turns black (i.e., while it still remains
in the stack), DFS will definitely have discovered all those 4
nodes. �

The white-path theorem states the above property for-
mally by resorting to the DFS-tree.

Theorem 1 (White-Path Theorem [1]). In the DFS-tree,

a node u is a proper ancestor of a node v if and only if the

following is true: when u is discovered, there is a white path

from u to v .

Example (cont.). Indeed, nodes 8, 10, 11, 13 are the only proper
descendants of node 3 in the DFS-tree of Figure 4a. �

4 ALGORITHMS FOR TREES

Let us “warm up” by dealing with a special version of IGS. Re-
call that the underlying hierarchy is a DAGG . In this section,
we will focus on the case whereG is a tree. This allows us to
present some of our techniques (particularly, those related to
heavy-path decomposition) without the other details needed
to cope with DAGs. Since we will be concerned only with
a tree hierarchy, we will denote the hierarchy as T (rather
than G). Let r be the root of T . Every edge in T is directed
away from r . As defined in Section 2.1, we denote by d the
maximum out-degree of a node in T , and by h the length of
the longest (directed) path.
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4.1 The First Algorithm

In the extreme case where T is a single path of length h,
it is trivial to find the target node z by binary search in at
most ⌈log2 h⌉ questions. What makes binary search work is
monotonicity. In general, on any directed path π , we always
have two monotone properties:

• If reach(u) = yes for a nodeu on π , then reach(v ) must
also be yes for any node v before u on π .
• If reach(u) = no for a node u on π , then reach(v ) must
also be no for any node v after u on π .

How to exploit the monotonicity on a general tree hierar-
chy T ? This is where heavy-tree path decomposition comes
in. First, perform such a decomposition on T , and obtain a
path tree Π, in the way introduced in Section 3.1. Then, we
can carry out the search by interleaving between T and Π.
The algorithm, named interleave, is formally described as
follows:

algorithm interleave

1. π ← the root (super-node) of Π /* π is a path in T */
2. repeat

3. /* navigate in Π */
binary search π to find the last node u
with reach(u) = yes

4. /* navigate in T */
find a child v of u in T with reach(v ) = yes

(note that v cannot be in π )
5. if v does not exist then return u

else

6. π ← the (only) super-node in Π containing v
/* π is a path in T , and v must be the first node
in this path */

Example. To illustrate the algorithm, assume that T is the
tree in Figure 3a, whose decomposition tree Π is in Figure 3b.
Suppose that the adversary has secretly decided the target
node z to be node 9.

Interleave starts by looking at the root π1 of Π. At Line
3, it performs binary search on π1 to find node 2, which is the
last node on π1 that can reach z. Then, the algorithm jumps to
node 2 inT , and examines its child nodes 3 and 5 (child node
4 can be left out because it is in π1, and hence, has already
been considered in the binary search on π1). After issuing
a question on each node, we find that reach(node 5) = yes;
thus, v = node 5 at Line 4. At Line 6, Interleave switches
back to Π, and identifies the path π6, i.e., the super-node in
Π covering node 5.
Continuing, Interleave (at Line 3) performs binary

search on π6, which finds node 9 as the last node in π6 that
can reach z (note: at this moment, the algorithm still does
not know that z is just node 9). At Line 4, it turns back to T
to inspect the child node 13 of node 9 (child node 12 can be

left out). As reach(node 13) = no, now we can conclude that
z is node 9. The algorithm finishes here. �

Next, we analyze the number of questions asked by
interleave in the worst case. Call Lines 3-7 an iteration.
Since π has a length of at most h, the binary search at Line 3
requires at most ⌈log2 h⌉ questions. Line 4 obviously requires
no more than d questions because u can have at most d child
nodes. This caps the number of questions per each iteration
at d + ⌈log2 h⌉.

How many iterations are needed? The crucial observation
is that, every time we come to Line 4, we have descended
one level of Π. By Lemma 1, Π has at most 1+ ⌊log2 n⌋ levels.
Hence, the number of questions isO (logn · logh + d · logn).
We do not need to be bothered by the hidden constants here
because the result will be improved very shortly.

4.2 Improving the Cost

Next, we reduce the number of questions of interleave by
making a small modification to the algorithm.

At Line 4, interleave finds a child node v of u in T with
reach(v ) = yes. We did so with d questions by querying the
children ofu in an arbitrary order. Now, we apply a particular
ordering:

query the child nodes v of u — but ignoring
the child node in π — in non-ascending order
of the subtree size of v .

As soon as a child node returns reach(v ) = yes, we stop and
proceed to Line 5. We refer to the modified algorithm as
ordered-interleave.

Example. For an illustration, consider again the execution of
interleave traced out earlier. Recall the moment after node
2 is found in π1 through binary search. As explained before,
it suffices to consider child nodes 3 and 5 of node 2 (because
node 4 is in π1). While interleave inspects the child nodes
in an arbitrary order, ordered-interleave processes node
5 first, because it has a larger subtree than node 3. �

The modification provably reduces the worst-case cost:

Lemma 2. Ordered-interleave asks at most ⌈log2 h⌉ ·
(1 + ⌊log2 n⌋) + (d − 1) · ⌈logd n⌉ questions.

Proof. See Appendix A. �

4.3 A Lower Bound

We finish the section by proving a lower bound on the num-
ber of questions needed to perform IGS on a tree hierarchy.

Lemma 3. Given a tree hierarchy, any algorithm must ask

at least (d − 1) · ⌊logd n⌋ questions in the worst case.

Proof. See Appendix B. �

The lower bound matches the upper bound in Lemma 2
up to a small additive factor.
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5 ALGORITHMS FOR DAGS

We are now ready to attack the IGS problem in its general
form: the input hierarchy is a DAG G = (V ,E). Our algo-
rithm, in essence, reduces the problem to that on a special
DFS-tree of G — which we name the heavy-path DFS-tree

— that integrates features of both DFS-tree and heavy-path
decomposition.

5.1 The Heavy-Path DFS-Tree

Consider performing DFS onG starting from the root. Recall
that, at each step, the algorithm takes the top node u of
the stack, and looks for a white out-neighbor v of u to visit
next (as shown at Line 3 of the pseudocode in Section 3.2).
Normally, any out-neighbor v would suffice. We, however,
will insist on choosing the most “out-reaching” v .

Formally, let S be the set of white out-neighbors ofu at this
moment. For each v ∈ S , we count the number — denoted
as count (v ) — of nodes that v can reach via white paths.
Then, the node v to visit next is the one in S with the largest
count (v ), breaking ties arbitrarily.

Example. To illustrate this, let us consider Figure 4b again.
Remember that, at this moment, the stack contains (from
bottom to top): nodes 1 and 2. These two nodes are gray,
while the other nodes are still white. Since node 2 tops the
stack, we need to decide which of its white out-neighbors
should be visited next. From Figure 4b, one can see that node
3 can reach five nodes via white paths at this moment: nodes
3, 8, 10, 11, 13; hence, count (node 3) = 5. On the other hand,
count (node 4) = 6 because node 4 can reach six nodes via
white paths: nodes 4, 6, 7, 8, 10, 11. Finally, count (node 5) is
also 5. Therefore, the node to visit next is node 4.
As another illustration, Figure 5a shows the color state

when node 4 is popped out of the stack. At this moment,
the stack once again contains (bottom to top): nodes 1 and
2, which are in gray. Nodes 4, 6, 7, 8, 10, and 11 are cur-
rently black (they have been pushed and then popped from
the stack). Which out-neighbor of node 2 to pick this time?
Now, node 2 has only two white out-neighbors: nodes 3
and 5. Notice that count (node 3) has decreased to 2: node
3 can reach only itself and node 13 via white paths. Since
count (node 5) = 4, next DFS visits node 5. �

Define T as the DFS-tree corresponding to running DFS
in the way explained above. We “regulate” T by arranging
its nodes as follows:

At each internal node u of T , arrange its child nodes
from left to right in the order that those child nodes
are discovered.

The resulting T has a nice property: a pre-order traversal
of T enumerates the nodes in the same order as they were
discovered in DFS.

1
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6 7
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6 78

10 11

(a) Colors when DFS (b) The heavy-path DFS-tree
pops out node 4

Figure 5: Computing the heavy-path DFS-tree

Example (cont.). Using the ordering strategy introduced ear-
lier, DFS discovers the nodes in this sequence: 1, 2, 4, 8, 10,
11, 6, 7, 5, 9, 12, 14, 13, 3. Figure 5b shows the corresponding
DFS-tree. Note that a pre-order traversal of the tree gives
precisely the same node sequence. �

The lemma below explains why we refer to this T as the
heavy-path DFS-tree:

Lemma 4. Consider any internal node u. Let v1,v2 be child

nodes of u such that v1 is on the left of v2. Then, the subtree of

v1 in T is at least as large as that of v2.

Proof. See Appendix C. �

Example (cont.). Observe that, in Figure 5b, the child nodes
of each internal node have been automatically ordered from
left to right in non-ascending order of subtree size. �

5.2 The Algorithm

Our algorithm for performing IGS on a DAG — named
DFS-interleave — can be formally described as:

algorithm DFS-interleave

/* T is the heavy-path DFS-tree */
1. û ← the root r
2. repeat

/* invariant: z is reachable from û */
3. π ← the leftmost û-to-leaf path of T
4. binary search π to find the last node u

with reach(u) = yes

5. find the leftmost child v of u in T with
reach(v ) = yes

/* note that v cannot be in π */
6. if v does not exist then return u

7. else û ← v

Example. We illustrate the algorithm by setting G to the
graph in Figure 5a, whose heavy-path DFS-tree T is shown
in Figure 5b. Suppose that the adversary has secretly chosen
the target node z to be node 9.
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DFS-interleave first identifies at Line 3 the leftmost root-
to-leaf path of T : π = (1, 2, 4, 8, 10). The algorithm performs
binary search on π to find node 2, which is the last node
on π that can reach z. At Line 4, we find node 5, which is
the leftmost child of node 2 that can reach z — this requires
only one question: since node 5 is on the left of node 3, we
test reach(node 5) first, which turns out to be yes, and thus,
removes the need to test node 3 (note: node 4 does not need
to be considered because it is on π ).
Now the execution goes back to Line 3, where we set

π = (5, 9, 12, 14). The binary search at Line 4 finds node 9.
Then, we test reach(node 13), which is no. The algorithm
terminates here by returning node 9. �

The correctness proof of DFS-interleave is somewhat
technical, and can be found in Appendix D.

5.3 Analysis

Interestingly, the cost analysis of DFS-interleave is com-
pletely the same as that of ordered-interleave. To see
why, let us first observe:

Corollary 1. Consider any internal node u of T , and a

child node v of u in T . The edge (u,v ) is heavy if and only if

v is the leftmost child of u.

Proof. Immediately from Lemma 4. �

The next lemma may come as a pleasant surprise:

Corollary 2. The path π identified at Line 3 (in any itera-

tion) must be a heavy path in T .

Proof. Immediately from Corollary 1 and the definition
of heavy path. �

Imagine that we perform a path-decomposition of T to
obtain its corresponding path tree Π. Equipped with Corol-
lary 2, it is easy to verify that DFS-interleave asks exactly
the same questions as running ordered-interleave on Π.
Therefore, the upper bound in Lemma 2 holds directly on
DFS-interleave.

Example (cont.). Let us look at the example shown in Figure 5
one more time. One can verify that a heavy-path decompo-
sition of the tree in Figure 5b gives precisely the path tree
in Figure 3b. Indeed, the running of DFS-interleave fol-
lows the same steps as running ordered-interleave on
Figure 3b. �

Finally, the lower bound in Lemma 3 still holds on general
DAG hierarchies because a tree is a DAG. With this, we have
arrived at the first main result of this paper.

Theorem 2. Both the following statements are true about

the IGS problem:

• DFS-interleave asks at most ⌈log2 h⌉ · (1+ ⌊log2 n⌋)+
(d − 1) · ⌈logd n⌉ questions.

• Any algorithm must ask at least (d − 1) · ⌊logd n⌋ ques-
tions in the worst case.

6 EXTENSIONS

In our IGS problem so far, in each question, we can ask
the oracle to resolve the reachability of only one node. In
practice, an algorithm may invite a human to resolve the
reachability of multiple nodes at a time. Next, we show that
our algorithms can be extended easily to these scenarios.

The k-IGS Problem. Let us start by extending the problem
definition. As before, we have a DAG hierarchy G = (V ,E)

with a single root; and an adversary secretly chooses a target
node z. An algorithm’s goal is still to find z by resorting to
an oracle.
The oracle, however, is k-times more powerful, where

k ≥ 1 is an integer. Formally, in ak-question, a query specifies
a query set Q of nodes q1,q2, ...,qk in V . The oracle returns
k boolean values b1,b2, ...,bk , where bi = 1 (i ∈ [1,k]) if
z is reachable from qi (i.e., reach(qi ) = yes), and bi = 0,
otherwise. Accordingly, the cost of the algorithm is defined
as the number of k-questions issued. We refer to this problem
as k-IGS, which captures IGS as a special case with k = 1.

Top-Down. The out-neighbor property in Proposition 1 still
holds. Recall that the top-down algorithm works by repeat-
ing the following step: given a node u with reach(u) = yes,
find an out-neighbor v of u with reach(v ) = yes (if v exists).
In IGS, this step required cost d , where d is the largest num-
ber of out-neighbors that u may have. In k-IGS, the step can
be implemented using ⌈d/k⌉ k-questions, where each ques-
tion includes k out-neighbors ofu in the query set. Therefore,
top-down entails a cost of ⌈d/k⌉ · h, where h is the length of
the longest path in G.

Ordered-Interleave. Next, we will show how the pro-
posed algorithms can be adapted to k-IGS, starting with
ordered-interleave designed for tree hierarchies.

The algorithm still runs in the way described by the pseu-
docode in Section 4.1, with Line 4 implemented using the
ordering idea of Section 4.2. There are only two differences:

• At Line 3, the binary search is replaced by k-ary
search (which works in a fashion similar to search-
ing for a key in a B-tree). Specifically, suppose that
the path π is the sequence of nodes u1,u2, ...,ux ; the
objective is to find the largest y ∈ [1,x] such that
reach(uy ) = yes. We inquire the oracle with a query
set Q = {ux/k ,u2x/k , ...,ux }. If i is the largest integer
satisfying reach(ui ·x/k ) = yes, we know thaty must be
[i ·x/k, (i + 1)x/k ), which is then searched recursively.
For simplicity, we have assumed x to be a multiple of k ,
because it is trivial to extend the strategy to arbitrary
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x , so that y can be determined in ⌈logk x⌉ ≤ ⌈logk h⌉
k-questions.
• At Line 4, we query k child nodes of u in one k-
question.

Lemma 5. Ordered-interleave with the above adapta-

tion makes at most (1+ ⌈logk h⌉) (1+ ⌊log2 n⌋) +
d−1
k
⌈logd n⌉

k-questions to solve k-IGS on a tree hierarchy.

Proof. See Appendix E. �

DFS-Interleave. Consider now k-IGS on a general DAG
hierarchy G. Section 5 proved that DFS-interleave can be
regarded as running ordered-interleave on the heavy-
path DFS-tree of G. The same proof holds here. In other
words, DFS-interleave settles k-IGS with at most the cost
given in Lemma 5.
In general, any lower bound L on the worst-case cost of

IGS immediately implies a lower bound L/k on k-IGS. This
is because any k-IGS algorithmAwith costU implies an IGS
algorithm with costU · k , by implementing each k-question
issued by A with k questions to the oracle of IGS. The above
discussion brings us to our general result:

Theorem 3. Both the following statements are true about

the k-IGS problem:

• DFS-interleave asks at most (1 + ⌈logk h⌉) (1 +

⌊log2 n⌋) +
d−1
k
· ⌈logd n⌉ k-questions.

• Any algorithm must ask at least d−1
k
· ⌊logd n⌋ k-

questions in the worst case.

7 EXPERIMENTS

7.1 IGS under Reliable Oracles

The experiments of this subsection were designed to study
the characteristics of IGS algorithms under the algorithmic
framework proposed in Section 2.1. In particular, the oracle
is reliable, i.e., it does not make mistakes. Applications with
such oracles are the primary beneficiaries of our solutions.

Data.We deployed two datasets:

• Amazon: this is a tree that represents the prod-
uct hierarchy at Amazon. The tree was obtained
from the file metadata.json.gz downloadable at jm-

cauley.ucsd.edu/data/amazon/links.html [7]. The file
contains a record for each product sold at Amazon.
The record has a field named categories, which speci-
fies the nodes on the path from the root to the product’s
category. For example, here is what the path for a book
on US history looks like: [∗, Books, History, Americas,
United States] (where ∗ means the root). We recon-
structed the product hierarchy as the trie on all these
paths. The resulting tree has 29,240 nodes.

depth average out-degree
0 84
1 11
2 4.6
3 2.4
4 0.97
5 0.33
6 0.17
7 0.13
8 0.11
9 0

depth average out-degree
0 8
1 83
2 3.4
3 2.2
4 1.4
5 0.87
6 0.71
7 0.59
8 0.54
9 0.48
10 0.69
11 0.44
12 0

(a) Amazon (b) ImageNet

Table 1: Out-degree statistics

• ImageNet: this is a DAG that represents the or-
ganization of a collection of images according to
WordNet. The DAG was obtained from www.image-

net.org/api/xml/structure_released.xml. Each synset tag
in the XML document represents a node, whose id
is given in the wnid attribute of the tag. The out-
neighbors of the node are explicitly given inside the
tag. We retained all the nodes, except the one with
wnid = “fa11misc” because this node contains miscel-
laneous images that do not conform to WordNet. The
DAG has 27,714 nodes.

For each dataset, Table 1 shows the average out-degree of
the nodes at each depth. Recall that, in general, the depth of a
node in a DAG (with a single root) is the length of the shortest
path from the root to the node (this definition applies to a
tree as well). It is clear from the table that, for both datasets,
nodes closer to the root tend to have more out-neighbors.
Note that an average out-degree can be less than 1 at a depth
where there are many leaves (a leaf in a DAG is a node with
out-degree 0).

Competing Algorithms. Our objective is to evaluate the
usefulness of the proposed DFS-interleave algorithm, us-
ing the top-down algorithm (see Section 3) as a benchmark.
As explained in Section 5.3, on a tree, DFS-interleave de-
generates into the ordered-interleave algorithm in Sec-
tion 4.2. So one can think conveniently that the compe-
tition was between ordered-interleave and top-down

on Amazon, but between DFS-interleave and top-down

on ImageNet. We left out the interleave algorithm in
Section 4.1 because it served as a stepping stone towards
ordered-interleave.
A remark about top-down is in order. Recall that at each

node u, the algorithm examines its out-neighbors v in turn,
until finding the first one with reach(v ) = 1. This, however,
means that the algorithm’s performance is highly sensitive
to how the out-neighbors are ordered. To avoid “pinning”
the algorithm to any particular ordering, we adopted the
implementation that the out-neighbors of u were examined
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based on a random permutation. As such, top-down became
a randomized algorithm. Every measurement reported in our
experiments was averaged from 10 runs of this algorithm.

Workload. Recall that, in IGS or k-IGS, an adversary spec-
ifies a target node. Different target nodes define different
instances of the problem. We considered all the possible in-
stances defined by every single leaf in the underlying hierar-
chy. All these instances together constituted a workload. The
workloads on Amazon and ImageNet had 24,329 and 21,427
instances, respectively (these are the number of leaves in
each dataset).

Metrics. The primary metric for assessing an algorithm was
its cost, i.e., number of questions or k-questions issued.
We also used another metric — candidate set size (CSS)

— to measure an algorithm’s progressiveness. Specifically,
at any moment during an algorithm’s execution, the CSS is
the number of leaf nodes that the algorithm still cannot rule
out (i.e., every such a leaf could still be the target node). For
sure, the CSS monotonically decreases as the algorithm runs;
and the algorithm cannot stop until the CSS has dropped
to 1. Ideally, we would like the algorithm to reduce CSS
substantially with just a few questions/k-questions. Indeed,
in practice, one may even choose to terminate an algorithm
manually once the CSS has become sufficiently small.

Machine and Coding. In all the experiments, CPU compu-
tation was carried out on a machine equipped with an Intel
Core i7-4870HQ CPU at 2.5GHz, and 16 GB of memory. All
our implementations were programed in Python.

Results on IGS. Let us start with Amazon. The first experi-
ment aims to evaluate the efficiency of ordered-interleave
and top-down when the target node was placed at various
depths. For this purpose, we used each algorithm to run a
workload. For each depth value d , we calculated the aver-
age cost of the algorithm on all the instances defined by the
leaves of depth d . The results are presented in Figure 6a.

When d = 1 (namely the target node is directly below the
root), top-down was better because in this case the binary
searches performed by ordered-interleave offer little help,
and thus, do not pay off. However, ordered-interleave
started to outperform top-down as soon as d increased to 2;
and the gap between the two algorithmswas fairly significant
for all the other depth values. In general, the binary searches
of ordered-interleave are more effective when the target
node lies deeper in the tree — because a single binary search
can skip multiple levels, which would need to be “plowed
through” by top-down.

It is worth pointing out that the cost of top-down does not
need to grow with the depth — note the “surge” in its cost
at d = 3 and the “dip” at d = 4. In general, this algorithm
is sensitive to how many children are owned by the nodes

on the path from the root to the target leaf (we will delve
into this issue later in Figure 6c). Indeed, in Amazon, many
depth-3 leaves gather under large-fanout ancestors that do
not have leaves of depth 4 or more. This is the reason behind
the aforementioned surge and dip.

To demonstrate the progressiveness of each algorithm, we
designed an experiment as follows. For each instance in a
workload, we generated an arrayCSS that had (conceptually)
an infinite length, such thatCSS[i] (i ≥ 1) was set to the CSS
at the moment right after the algorithm had entailed a cost
of i . After the algorithm had terminated at some cost — say c
— we set CSS[i] = 1 for every i ≥ c . In this way, CSS[i] bore
an intuitive meaning: a cost budget of i ≥ 1 guaranteed a CSS
equal toCSS[i]. For theworkload as awhole, we calculated an

array CSS to average out the CSS-arrays of all the instances;

that is, for each i ≥ 1, CSS[i] was the average CSS[i] of all
the instances in the workload.
Figure 6b plots the CSS array for ordered-interleave

and top-down. Note that the y-axis is in log scale. It is evi-
dent that ordered-interleave was significantly faster in
reducing CSS. In particular, the average CSS was below 10 in
less than 40 questions, while at this cost top-down still had
an average CSS close to 10,000.

The next experiment aims to provide a “zoom-in” into the
cost of an algorithm on individual instances in a workload.
Towards the purpose, let us define the sum of out-degrees of

ancestors (SODA) of a node u as the total out-degree of all
the proper ancestors of u. For Amazon, the SODA values of
all the leaves fell in the range [84, 399]. We cut the range
into 20 intervals of the same length. For each algorithm, we
measured 20 costs, one for each interval I . Specifically, the
measurement on I was the algorithm’s average cost on all the
instances that were defined by the leaves with SODA values
in I . By putting these 20 averages together, we acquired a
cost distribution of the algorithm over the SODA spectrum.
Figure 6c compares the obtained cost distributions of

ordered-interleave and of top-down. The former algo-
rithm consistently outperformed the latter in all intervals,
often by large factors. Note that there were no results for
the SODA range from 212 to 308, because no leaves have
SODA values in that range. Also, observe that the cost of
top-down exhibited a clear ascending trend as the SODA
value increased.

We repeated the same experiment on ImageNet, using
DFS-interleave and top-down as the competitors. Figure 7
presents the results, which were obtained in the same man-
ner as those of Figure 6. A bit extra explanation is needed
regarding the SODA of a node u in a DAG. Let us define a
proper ancestor of u as a node v that has a path reaching u.
With this notion, SODA becomes well defined also for a DAG,
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Figure 6: IGS on Amazon (i.e., k = 1)
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Figure 7: IGS on ImageNet (i.e., k = 1)

thus allowing us to generate Figure 7c in the way Figure 6c
was produced.

Two comments are worth noting. First, in Figure 7a, there
were no results at depth 1, because ImageNet has no leaves at
this depth. Second, the cost of top-down initially increased
with SODA, but the trend of increasing disappeared after
SODA had become large enough. This can be explained by
the fact that, in a DAG, there can be multiple paths from the
root to the target leaf; and a large SODA can be caused by

an abundance of such paths, which actually makes it more
likely for top-down to find a relatively short way to get to
the target. Other than the above, the overall observations
are similar to those on Amazon. Notice that the performance
advantages of our solution were even more prominent on
ImageNet.
A final remark concerns the CPU efficiency. The most

computation-intensive step is the preparation of the heavy-
path DFS-tree in Section 5.1. But even this step took no more

Research 14: Graphs 2  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1403



than 10 seconds on both datasets. The CPU delays in the
other steps were all unnoticeable. The same was true in all
the other experiments to be reported in this paper.

Results on k-IGS. The experiment results on k-IGS were in
general similar to those of the experiments presented earlier
(for k = 1), and can be found in Appendix F.

7.2 IGS on Crowdsourcing

The results in Section 7.1 are representative of what one
would expect in applications (such as those in Section 2.3)
where the oracle is reliable. In this subsection, we will in-
spect the usefulness of DFS-interleave in crowdsourcing
scenarios, where questions are answered by human work-
ers that could err, thus generating “noise” that may pre-
vent an algorithm from returning a correct answer. As our
algorithmic framework in Section 2.1 does not explicitly
take mistakes into account, DFS-interleave is not tailored
for crowdsourcing. Nevertheless, the subsequent evaluation
aims to make three points. First, DFS-interleave was re-
silient to random noise (i.e., mistakes due to carelessness)
such that it achieved good accuracy even in its current form.
Second, the main difficulty in crowdsourcing seemed to stem
from the system noise caused by humans’ lack of knowledge
about the objects of concern. Third, top-down was much
more susceptible to noise simply because it needed to issue
more questions.

Data. We again took the Amazon dataset, but in its DAG
form. Recall the tree hierarchy generated in Section 7.1, i.e.,
the product category tree at Amazon. We observed that, to
some products p, the source file metadata.json.gz attached
multiple categories cat , each corresponding to a leaf node
in the category tree. By inserting p as a new leaf and adding
an edge from node cat to p, we converted the tree hierarchy
into a DAG.

Two issues, however, arose. First, some products had miss-
ing values in the “title” field, and therefore, could not be
posted as informative queries on a crowdsourcing platform
(this will be further clarified later). Second, the file contained
over 9 million products, such that some nodes in the DAG
ended upwith unrealistically huge out-degrees.We remedied
the issues as follows. We cleansed the dataset by discarding
the products with empty title fields. This still left over five
million products such that the second issue still existed. We
sorted those products by id, and then picked 25,000 products
evenly from the sorted list (i.e., picking the i · ⌊x/25000⌋-th
for each i ∈ [1, 25000], where x was the number of prod-
ucts after cleansing). Then, we created a DAG in the way
described earlier, by ranging p over the 25,000 products, and
removed “dead” category nodes with no product descendants.
This yielded a DAG hierarchy with 33,573 nodes in total.

Crowd. The DAG thus generated allowed us to evaluate the
two competing IGS algorithms (i.e., DFS-interleave and
top-down) on the commercial crowdsourcing platform of
figure-eight.com, in a scenario where one would like to lever-
age the crowd to automatically assign pictures to products.
Specifically, given a product z (e.g., a US history book), we
defined its metainfo as the combination of (i) a picture2 of z,
(ii) the title of z, and (iii) the detailed description of z (if such
description existed in the source file). In a question posted on
figure-eight.com, we provided the metainfo of z, and asked:
“does this product belong to the following category?” Each cat-
egory in the question is a node in the DAG (e.g., [*, Books,
Comics], in which case the correct answer for “z = a history
book” should be no). Interestingly, z itself offered the ground
truth such that we could directly compare z to the output of
the algorithm to see if it was correct.

Two standard measures were taken to ensure good quality
for the answers collected. First, every human worker had to
pass a so-called gold standard test where s/he was given a list
of questions and must correctly resolve 85% to be qualified.
Second, for the same question, confidence-guided repeats and
majority-taking were applied: more answers were solicited
until either a maximum of 9 answers had been returned or a
confidence at least 0.7 had been reached from the majority
of at least 5 answers3.

Workload. As in Section 7.1, each leaf (a.k.a. product) in the
DAG defines an instance of IGS. We generated a workload of
50 instances scattered evenly in the spectrum of SODA values
defined in Section 7.1. Specifically, the leaves of the DAG
had SODA values in the range [40, 2255]. We partitioned
the range into 10 equi-length intervals. For each interval,
we sorted the the leaves covered in that interval by SODA
value, and picked 5 leaves evenly from the sorted list. This
gave 50 leaves, a.k.a. instances, in total, which constituted
the workload.

Metrics. For each instance in the workload, we com-
pared top-down and DFS-interleave using two metrics:
(i) whether the algorithm correctly solved the instance, and
(ii) if so, what was the crowd cost, defined as the total number
of answers collected throughout the algorithm (if the same
question received x answers, the crowd cost increased by
x ). For fairness, both algorithms were executed on the same
DAG, where the out-neighbors of each node were ordered
randomly.

Results. Table 2 details the performance of top-down and
DFS-interleave on each of the 50 instances in the work-
load. Recall that five instances were created from each of
the 10 intervals that partition the SODA spectrum. Those 10

2The source file included a picture URL for each of the 25,000 products.
3Such a functionality was directly available at figure-eight.com.
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id SODA range top-down DFS-interleave

crowd cost success rate avg crowd cost on crowd cost success rate avg crowd cost on

successful instances successful instances

1 − −
2 − −
3 [40, 261] − 40% 707 188 40% 131
4 390 −
5 1023 74
6 509 90
7 1061 185
8 [262, 483] − 60% 991 − 80% 410
9 1403 1276
10 − 90
11 − 457
12 − 885
13 [484, 705] − 0% − 480 80% 477
14 − 85
15 − −
16 − 830
17 − 69
18 [706, 927] − 20% 674 − 60% 374
19 − 225
20 674 −
21 − 4248
22 − 1484
23 [928, 1149] − 0% − 4606 100% 2410
24 − 1350
25 − 362
26 − 346
27 − 545
28 [1150, 1371] − 0% − 806 100% 762
29 − 1769
30 − 344
31 729 −
32 514 165
33 [1372, 1593] − 80% 701 − 60% 161
34 1021 128
35 537 189
36 1296 409
37 − 520
38 [1594, 1815] − 40% 864 680 80% 425
39 432 90
40 − −
41 1122 187
42 1712 790
43 [1816, 2037] − 60% 1527 − 80% 520
44 − 258
45 1748 845
46 2002 1095
47 − 1355
48 [2038, 2259] − 60% 1649 745 80% 915
49 1566 −
50 1378 465

Table 2: Results of the workload on crowdsourcing

intervals are listed in the second column of the table. The
instances from the same interval form a group. Columns
3-5 concern only top-down. Specifically, for each instance,
Column 3 gives the crowd cost of top-down, but only if the
algorithm managed to resolve the instance; an incorrect out-
put of the algorithm is indicated by the sign “−”. For each
group, (i) the percentage in Column 4 is calculated as x/5,
where x is the number of instances in the group that were
correctly resolved by top-down, while (ii) the number in Col-
umn 5 is the average crowd cost of the algorithm on those x
instances. Columns 6-8 depict DFS-interleave in the same
manner.

DFS-interleave successfully resolved 38 instances, strik-
ing an overall success rate of 76%. In contrast, top-down
managed with only 18 instances, settling with an overall
success rate of only 36%. To explain such a vast difference,
first note that since every question has a chance of triggering
a fatal mistake, the overall failure probability increases with
the number of questions. The gain in accuracy achieved by
DFS-interleave, therefore, can be attributed to the fact that
it necessitated much fewer questions than top-down, as can
be clearly seen from the table. It is worth pointing out that
the crowd-cost comparison between the two algorithms is
reminiscent of the patterns observed earlier in Section 7.1.
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We delved into each of the 12 instances that
DFS-interleave failed to resolve. It turned out that
none of those cases were due to “careless” mistakes by the
human workers. Indeed, even though such kind of mistakes
did happen, their influence was essentially eliminated
by the quality control measures adopted. In other words,
random noise hardly played any roles in the outcome of the
algorithm. This, at least in retrospect, was not surprising,
and essentially confirmed the effectiveness of quality control
at a modern crowdsourcing site such as figure-eight.com.
So, what was the cause behind the mistakes made by

DFS-interleave? Next, we gave three most representative
causes. Interestingly, none of these causes was really the fault
of the human workers. Phrased differently, those causes cor-
respond to system noise that is difficult to deal with, and
therefore would be persistent regardless of the IGS algorithm
applied.

Cause 1: incomplete ground truth. One mistaken instance
of DFS-interleave is on a product with the title “Crocs
Women’s Nadia Boot”.4 The product is a type of footwear that
extends almost to laps. The ground truth places it under the
category [*, Clothing, Shoes & Jewelry, Women, Shoes, Fash-
ion Sneakers]. However, all the workers classified the prod-
uct into the category [*, Clothing, Shoes & Jewelry, Women,
Shoes, Boots], which also appears reasonable, and could have
been added to the ground truth.

Cause 2: questionable ground truth. Another instance mis-
taken by DFS-interleave is on a product with the title “Nat-
uralizer Women’s Lennox Pump”.5 The product is a pair of
high-heels suitable even for business meetings. The ground
truth, however, dictates that it should be under the cate-
gory [*, Clothing, Shoes & Jewelry’, Women, Shoes, Sandals],
which no workers were able to discern.

Cause 3: subjective judgments. Our last example is on a
product titled “Kenneth Cole New York ‘Modern Ombre’
Blue Green Ombre Resin Linear Earrings”.6 By the ground
truth, it is under the category [*, Clothing, Shoes & Jewelry,
Women, Jewelry, Fashion]. In contrast, many workers chose
[*, Clothing, Shoes & Jewelry, Women, Jewelry, Fine]. Note
that the subtle difference is about whether the jewelry piece
is “fine” or “fashion”. This appears to be a rather subjective
as one can see from the image at the URL provided earlier in
the footnote.

8 RELATEDWORK

Most relevant to our paper is the work of [15], which as
mentioned in Section 1 introduced the offline counterpart
of IGS (under the name human-assisted graph search). The

4Image at ecx.images-amazon.com/images/I/41z0zj%2BVhzL._SY395_.jpg.
5Image at ecx.images-amazon.com/images/I/41lVbFn%2B2lL._SX395_.jpg
6Image at ecx.images-amazon.com/images/I/31S4Sgi-HoL._SY300_.jpg.

solutions in [15] were designed for the scenario where the
algorithm must ask all the questions altogether. The number
of questions generated by those solutions is huge: often at
the same magnitude as the number of nodes in the input
hierarchy. As explained in Section 1, the main advantage
of IGS (owing to the possibility of interaction) is that the
number of questions can be reduced dramatically.

At a higher level, our work is somewhat related to human-

based computation (HBC). The fundamental rationale behind
this area is that some tasks are inherently easy for humans, as
opposed to the old computing philosophy that “computation
is a job of machines”. HBC algorithms aim at engaging both
humans and machines so that they can work collaboratively
to solve a problem effectively and/or efficiently. In recent
years, considerable attention has been devoted to crowdsourc-
ing, which is a large-scaled form of HBC that involves a huge
number of human workers. A significant amount of work
has been carried out on studying crowdsourcing algorithms
(see representative works [2–4, 6, 8, 10, 11, 14, 19]) and on de-
veloping crowdsourcing systems (see representative works
[5, 9, 12, 16]).
Two remarks are in order about interpreting our work

as a form of HBC. First, there is not much “computation”
by the traditional yardstick of HBC: all an IGS algorithm
does is to figure out the node that a human has in mind.
The challenge lies in how to utilize reachability to identify
that node as quickly as possible. Second, our algorithms are
designed for an authoritative oracle that never errs. This
implies opportunities for improving those algorithms in
terms of effectiveness on a crowdsourcing platform. In fact,
some crowdsourcing-specific issues have been experimen-
tally identified in Section 7.2. Integrating our algorithmswith
remedies to those issues would make a promising direction
for future work.

9 CONCLUSIONS

Conventionally, people are used to searching a decision
tree/graph in the straightforward top-down fashion. This
paper aims to show that there can be alternative strategies
achieving better efficiency than that traditional wisdom. To
allow for a rigorous algorithmic study, we introduced the the
interactive graph search problem. Here, the input is a directed

acyclic graphG . Given an initially unknown vertex z inG , the

objective is to eventually locate z by asking reachability ques-
tions: each question specifies a query node q and obtains a
boolean answer as to whether z is reachable from q. We have
described algorithms which solve variants of the problem
using a provably small number of questions, and established
a nearly matching lower bound. We have also presented an
experimental evaluation to demonstrate the efficiency and
usefulness of the proposed solutions in real world scenarios.
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A PROOF OF LEMMA 2

Let x be the number of iterations performed by
ordered-interleave. For each i ∈ [1,x], we denote
by di ≤ d − 1 the number of questions issued at Line 4 in the
i-th iteration. Equivalently, di is the number of child nodes
of u that are queried at Line 4.
As in interleave, the binary search at Line 3 asks at

most ⌈log2 h⌉ questions for each iteration. It thus follows
that ordered-interleave entails a cost at most

⌈log2 h⌉ · x +

x∑

i=1

di .

Since Π has at most 1 + ⌊log2 n⌋ levels (Lemma 1), obviously
x ≤ 1 + ⌊log2 n⌋. It suffices to prove an upper bound for∑x

i=1 di .
For each i ∈ [1,x], let vi be the “child v” identified at Line

4 in the i-th iteration. Denote by ni the subtree size of vi .
Specially, define v0 as the root r of T , and n0 = n.

Lemma 6. ni ≤ ni−1/(di + 1).

Proof. In executing the i-th iteration, Line 3 binary
searches a path π to identify a node u in π . Since vi−1 is
the first node on π , we know that u must be in the subtree
of vi−1. Hence, the subtree size of u is at most ni−1.
At Line 4 (applying the modification in Section 4.2 that

searches the child nodes of u in non-ascending order of sub-
tree size), since di child nodes of u were queried until vi is
found, u has at least di child nodes whose subtrees are as
large as that of vi (counting also the child node of u in π ).
The lemma then follows. �

Lemma 7. (d1 + 1) (d2 + 1)...(dx + 1) ≤ n.

Proof. By Lemma 6, we know that

nx ≤
n

(d1 + 1) (d2 + 1)...(dx + 1)
.

The lemma then follows from nx ≥ 1. �

Now it remains to upper bound
∑x

i=1 di subject to the
above condition. The lemma below provides such an upper
bound, which will complete the proof.

Lemma 8.
∑x

i=1 di ≤ (d − 1) · ⌈logd n⌉.

Proof. We prove that the lemma holds even if d1, ...,dx
are non-negative real values. Without loss of generality, as-
sume d1 ≥ d2 ≥ ... ≥ dx .
Claim: Fix the value of x . To maximize

∑x
i=1 di subject to

Lemma 7, the best strategy is to set
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• variables d1, ...,di to d − 1 for some i;
• optionally di+1 to a value greater than 0 but less than
d − 1;
• and the remaining variables all to 0.

Proof of the claim: Suppose that
∑x

i=1 di is maximized
when di−1 and di are both greater than 0 but less than d − 1,
for some i ≥ 2. Let s = (di−1 + 1) (di + 1). Clearly, 1 < s < d2.

• If d < s < d2, we set di−1 to d − 1, and di to
s
d
− 1.

The new values still satisfy Lemma 7, but increase∑x
i=1 di , contradicting the fact that

∑x
i=1 di is already

maximized.
• If s ≤ d , we set di−1 to s − 1, and di to 0. The new
values still satisfy Lemma 7, but increase

∑x
i=1 di , i.e.,

contradiction. QED

Now we vary x . When x ≤ ⌈logd n⌉, by the above claim∑x
i=1 di ≤ (d − 1)x ≤ (d − 1) · ⌈logd n⌉.
When x ≥ ⌈logd n⌉ + 1, by the above claim

∑x
i=1 di is

maximized by setting

• di to d − 1 for 1 ≤ i ≤ ⌊logd n⌋;
• (only if n is not a power of d) d1+ ⌊log

d
n ⌋ to a value

larger than 0 and less than d − 1;
• and the remaining variables to 0.

It thus follows that
∑x

i=1 di ≤ (d−1)x ≤ (d−1) · ⌈logd n⌉. �

B PROOF OF LEMMA 3

The hard hierarchy is simply a perfect d-ary treeT with h+1
levels, where h = ⌊logd n⌋.
We let the adversary — Bob — play the role of oracle. He

does not choose the target node z at the beginning. Instead,
he observes how to algorithm runs, and gradually shrinks the
set of nodes where he could place z, without violating any
of the answers he (as the oracle) has given to the algorithm’s
questions so far. Hewill execute a strategy ofh rounds, where
in each round he forces the algorithm to ask at least d − 1
questions.
Bob’s strategy adheres to the following invariant: at the

beginning of a round, he has chosen a node u, and made up
his mind to place z in the subtree of u eventually (for round
1, u is simply the root of T ). At the end of the round, he will
descend into a child node of u, and set u to that child node
for the next round.
Now we explain the details of Bob’s actions in a round.

Let S be the set of d child nodes of u. Suppose that Alice asks
a question with query node q. Bob answers the question as
follows:

• If q is not in the subtree of u, he returns reach(q) = no.
• If q = u, he returns reach(q) = yes.
• If q is in the subtree of a child node v of u, he returns
reach(q) = no. Furthermore, ifv is still in S , he removes
v from S .

...v1 vx

u

π

upre

û ...

Figure 8: Proof of Lemma 9

The round finishes when |S | has decreased to 1. In this case,
he sets u to the only node left in S . With this u, the next
round starts.
After h rounds, u is a leaf node in T . Bob then chooses u

as the target node z.
In each round, Alice needs to ask at least d − 1 questions

in order to shrink |S | from d to 1. Therefore, in the whole
process, Alice must ask at least (d − 1) ·h = (d − 1) · ⌊logd n⌋
questions.

C PROOF OF LEMMA 4

Consider the moment whenv1 was discovered. By our order-
ing strategy, count (v1) ≥ count (v2) at that moment. By the
white-path theorem (Theorem 1), we know that the subtree
of v1 of T has a size equal to precisely count (v1).

What is the subtree size ofv2? By the white-path theorem,
it is exactly the value of count (v2) at the moment when
v2 was discovered, which is after the discovery of v1. As
count (v2) cannot increase during the algorithm, we conclude
that the subtree size of v1 is at least that of v2.

D CORRECTNESS OF DFS-INTERLEAVE

As before, let G be the input DAG hierarchy, V the set of
vertices in G, and T the heavy-path DFS-tree decided in
Section 5.1. Given a node u ∈ V , define P (u) as the set of
nodes u ′ ∈ V satisfying:

• u ′ was discovered earlier than u in the DFS described
in Section 5.1, and
• u ′ is not an ancestor of u in T .

Example. Consider again the example shown in Figure 5.
P (node 7), for instance, consists of nodes 8, 10, 11, 6. As
another example, P (node 13) = {4, 8, 10, 11, 6, 7, 12, 14}. �

Lemma 9. Consider any node u obtained at Line 4 of

DFS-interleave. None of the nodes in P (u) can reach the

target node z.

Proof. Call node u a pivot node. Also, let us refer to Lines
3-7 as an iteration. We will prove the lemma by induction on
the number of iterations.
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Figure 9: k-IGS on Amazon with k = 5
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Figure 10: k-IGS on ImageNet with k = 5

First Iteration. In this case P (u) = ∅ noticing that π is the
leftmost root-to-leaf path of T . The claim obviously holds.
Inductive Step: Iteration i ≥ 2. Let upre be the pivot

node obtained in Iteration i − 1. The node û at Line 3 of the
i-th iteration (which is also the node v at Line 5 of Iteration
i − 1) is a child node of upre . The pivot node of this iteration
is on the leftmost û-to-leaf path π of T . See Figure 8 for an
illustration, where v1, ...,vx (x ≥ 0) are the child nodes of
upre to the left of û.

What are the nodes in P (u) \ P (upre )? Remember that a
pre-order traversal of T enumerates the nodes exactly in the
order they were discovered in DFS. Therefore, P (u) \ P (upre )
is exactly the set of nodes that are in the subtrees ofv1, ...,vx
as shown in the figure.
By the way our algorithm runs, we know that û is the

leftmost child v of upre with reach(v ) = yes. It thus follows
that none of the nodes v1, ...,vx can reach the target node z;
and therefore, neither can any of their descendants.
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Figure 11: k-IGS: Cost vs. k

By the inductive assumption, none of the nodes in P (upre )

can reach z. We thus conclude that no nodes in P (u) can
reach z, completing the proof. �

We now return to the correctness of DFS-interleave.
It suffices to show that when Line 4 finds no child v of u
satisfying reach(v ) = yes, u must be the target node (and
hence, is correctly returned at Line 5).
Assume that this is not true, i.e., u is not the target node

z. Then, since reach(u) = yes, the out-neighbor property
(Proposition 1) tells us that u must have an out-neighbor u ′

that can reach z. Consider the edge (u,u ′). As discussed in
Section 3.2, every edge inG can be classified as a tree edge, a
forward edge, or a cross edge. We know that (u,u ′) is not a
tree edge; otherwise, the algorithm would have found u ′ as
a child of u in T . It cannot be a forward edge either, because
in that case, still the algorithm would have found a childv of
u with reach(v ) = yes. Hence, (u,u ′) must be a cross edge.

Since u ′ is not a descendant of u in T , the white-path
theorem (Theorem 1) tells us that u ′ was discovered before u.
Furthermore,u ′ cannot be an ancestor ofu inT (there can be
no cycles). Therefore, u ′ ∈ P (u). However, Lemma 9 asserts
that the target node z cannot be reachable from u ′, giving a
contradiction.

E PROOF OF LEMMA 5

Similar to Appendix A, define

• x as the number of iterations performed by
ordered-interleave;
• for each i ∈ [1,x], di ≤ d − 1 as the number of child
nodes of u that are queried at Line 4 in the i-th itera-
tion.

It thus follows that ordered-interleave entails a cost at
most

⌈logk h⌉ · x +

x∑

i=1

⌈di/k⌉

≤ ⌈logk h⌉ · x +

x∑

i=1

(1 + di/k )

≤ (1 + ⌈logk h⌉) · x +
1

k

x∑

i=1

di

By x ≤ 1 + ⌊log2 n⌋ (Lemma 1) and Lemma 8, we complete
the proof.

F EXPERIMENTS ON k-IGS

We now proceed to the k-IGS problem in Section 6. Remem-
ber that an oracle in this problem is more powerful, in the
sense that each time it can reveal the reachability of k nodes
to the target node.
Repeating the experiments of Figures 6 and 7 but setting

k = 5, we obtained the results in Figures 9 and 10 for Amazon
and ImageNet, respectively. The behavior of all algorithms
and their relative superiority were very similar to what was
observed in Section 7.1.
The last experiment inspected the influence of k on the

algorithms’ cost. Focusing on ImageNet, Figure 11a plots the
average (per-instance) cost of ordered-interleave in pro-
cessing a workload as k grew from 1 to 10, and also the same
for top-down. Turning to ImageNet, Figure 11b presents the
corresponding results with respect to DFS-interleave and
top-down. As expected, all algorithms had their costs im-
proved continuously as k got higher, confirming our theo-
retical analysis.
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