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This presentation contains some animation.

See the animation in the powerpoint file at:
https://cudbg.github.io/sigmod19tutorial//files/wu.pptx



More Great Tutorials/Workshops!
Evaluating Interactive Data Systems: Workloads, Metrics, & 
Guidelines.                         
SIGMOD18. Jiang, Rahman, Nandi

Overview of Data Exploration Techniques.  
SIGMOD15. Idreos, Papaemmanouil, Chaudhuri

HILDA: Human in the Loop Data Analysis   
SIGMOD Workshop.  http://hilda.io

DSIA: Data Systems for Interactive Analysis     
VIS Workshop. https://www.interactive-analysis.org

Connecting Visualization and Data Management Research
Dagstuhl Workshop. Chang, Fekete, Freire, Scheidegger.  



Road Map

Background
Mechanisms
A Relational Story



Visualization is Ubiquitous

Image: Visualization is Not Enough - Heer EuroVIS19



Remove computing bottleneck
Tutorial: focus on performance

Data

Human Data Interface

accessibility
performance

usability
expressiveness

...



ECMAScript VM

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event 
processing, incremental updates 
from databases.
Outputs scene graph
Great for small datasets



network

Database

App Server

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event 
processing, incremental updates 
from databases.
Outputs scene graph
Great for small datasets

Bigger dataset?  Much messier!
Communication overheads
DBs slower
Queries slower

ECMAScript VM



ECMAScript VM

network

Database

App Server

Cache

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event 
processing, incremental updates 
from databases.
Outputs scene graph
Great for small datasets

Bigger dataset?  Much messier!
Communication overheads
DBs slower
Queries slower
Caches everywhere
Smart caches (DBs) everywhere

DB



ECMAScript VM

network

Database

App Server

Cache

SVD architecture
SQL,Vis,DB

Latency is cumulative
Separate components/code lines
Manual implementation
Manual optimization

Akin to writing queries 
before Rel Alg.

DB



ECMAScript

network

Big Database

Big Server

Vis Memory 
Hierarchy

Absolute latency expectations

Complex analysis workloads

Data dense

Analysis (usually) already known

Local Machine



ECMAScript VM

network

Database

App Server

Cache/DB

The Bottom Line

Simple programming API for 
interactive applications over

large-scale/in-DB data is

unsolved

à
Massive opportunity



Mechanisms
that leverage vis semantics



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea
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Cubes: Immens

a1 a2 a3 b1 b2 b3 c1 c2 c3 A

B

C

Cross filtering
interact with data in A, filter data in B

Build data cube

data cube
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Cubes: Immens

a1 a2 a3 b1 b2 b3 A

B

C

Cross filtering
interact with data in A, filter data in B

Build data cube

c1 c2 c3

data cube



Cubes: Immens

6D CUBE 
50 * 21 * 12 * 23 * 9 * 7000 > 18B ints ~ 144GB
Idea: User doesn’t express all combinations

States

Years

Months

Airlines

Day

Departure 
Delay



Cubes: Immens
Airlines

Departure 
Delay

SELECT delay, COUNT

SELECT airline, COUNT



Cubes: Immens
Airlines

Departure 
Delay

SELECT delay, COUNT

SELECT airline, COUNT
WHERE delay = 4

Interaction is 2D:
CUBE on airline, delay
Build cube for pairs of plots

K 1D plots, N values per attr
Naïve: NK ~18,000,000,000
Immens: N2K2 809,765

1D

1D



Cubes

Takeaway
Scale to dimensionality of vis interactions

data is high dim
interactions can be low dim

Refs: nanocubes (Lins. TVCG13); hashedcubes (Pahins. InfoVIS16); Falcon (Moritz. CHI19)



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction
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Network: ForeCache

Dynamic Prefetching of Data Tiles for Interactive Visualization.  Battle et al.

NASA World View

Massive 
tiled 
dataset

Local 
viewport

ForeCache
middleware Prefetcher

Middleware
easier to deploy
middleware has more resources

Middleware sees inputs
Client requests (pan/zoom) 
Data content

Middleware does actions
make (good) predictions
pre-fetch tiles/requests
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pre-fetch tiles/requests



Network: ForeCache

Dynamic Prefetching of Data Tiles for Interactive Visualization.  Battle et al.

NASA World View

Massive 
tiled 
dataset

Local 
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Actions:
• Pan ← ↑ → ↓ ↖ ↗ ↘ ↙

• Zoom

Extend State using:
• Behavior features 

• Overview, Zoom, Details on Demand
• Map tile content features



Network: Other Examples

NASA World View

Massive 
tiled 
dataset

Local 
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Restrict Actions
Semantic windows, ATLAS, SCOUT

← →

↑  ↓ 



Network: Other Examples

NASA World View

Massive 
tiled 
dataset

Local 
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Apply Domain Structure
SCOUT: graph edges instead of arbitrary 
3D navigation.  Prefetch from disk

DICE, Query Steering: OLAP/Markov 
assumptions



Network

Takeaway
Pre-fetch relies on prediction

improve predictor w/ 
interaction + content

Refs: Falcon (Moritz. CHI19); Momentum/Hotspot (Doshi. Thesis); ATLAS (Chan. VAST08); DICE (Kamat. 
ICDE14); Semantic Windows (Kalinin. SIGMOD14); Scout (Tauheed. VLDB12)



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception
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Network: M4

M4: A Visualization-Oriented Time Series Data Aggregation.  Jugel et al.

Database

Vis System High 
throughput

High 
throughput

Low 
throughput

N
et

w
or

k

Prefetching trades 
bandwidth for latency

What if bandwidth limited?

Prefetch makes things worse



Network: M4

Network is bottleneck
Query results can be massive

Idea
vis resolution << result size

M4: A Visualization-Oriented Time Series Data Aggregation.  Jugel et al.

Database

Vis System High 
throughput

High 
throughput

Low 
throughput

N
et

w
or

k

Low 
Resolution

res = Q(database) // on DB
vis = render(res) // on client

kills the network



Network: M4

Network is bottleneck
Query results can be massive

Idea
vis resolution ~ M4(results)

M4: A Visualization-Oriented Time Series Data Aggregation.  Jugel et al.

Database

Vis System High 
throughput

High 
throughput

Low 
throughput

N
et

w
or

k

Low 
Resolution

res’ = M4_Q(database)  // on DB
vis = render(res’)    // on client



Network: M4

M4: A Visualization-Oriented Time Series Data Aggregation.  Jugel et al.

Database

Vis System High 
throughput

High 
throughput

Low 
throughput

N
et

w
or

k

Low 
Resolution

vis(data) vis(       (data))min
max

M4

M4(data)

Each pixel has many data values.
Aggregate by pixel?  How?

Account for rasterization & antialiasing



Network

Takeaway
Rendering Push-down

open rendering black-box & 
push into database



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Progressive Vis and Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea



Progressive Visualization

Visualization quality improves over time

Many forms of Progressive, such as... 
Queries Data sampling
Rendering Result Encoding
Interaction granularity Interaction Design

time

quality



Progressive Queries

Quality ~ error bounds for Q(D)
Online Aggregation (Hellerstein SIGMOD97)

Wander Join (Li SIGMOD16)

Iterative sampling w/ perceptual models (P-funk Abali15)

Time



Progressive Communication

Quality ~ E[difference from full resolution]
Progressive image encoding (JPEG)

Speak summary, then fill in details (CiceroDB Trummer19)

Incrementally sample at higher resolutions (IncVisage Rahman17)

Time



Progressive Loading

Quality ~ How much of the vis is shown
Number of charts loaded in dashboard 
Webpage loading “above the fold” (Polaris netravali16)

Time



Progressive Interactions

Quality ~ Interaction granularity
Request throttling 
Higher brushing resolution over time (Falcon Moritz19)

Time

Number of ticks in slider increase over time



Approximate Query Processing

Progressive query processing and AQP are 
long-standing problems in databases

Adapting AQP to visualization also depends on 
visualization semantics

from https://yongjoopark.com/resources/verdictdb_sigmod18.pdf



Approximate Query Processing

Vis System

lossy

Query time

approx ops
samplers

Jan Feb Mar

Offline

Offline Sampler
(workload)

Jan Feb Mar

lossy



Query Time Approximation

Offline:
Do nothing

When running Q:
Choose sample operators
Draw samples to answer Q

Query time

approx ops
samplers

Jan Feb Mar

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al



Query Time: WanderJoin

Wander Join: Online Aggregation via Random Walks – Li et al SIGMOD16

A�B�C
WanderJoin: leverage join indexes
edges represent join matches
Sample from A. Then path from A to C (a2-b2-c1) is a join sample
random walk is non-uniform independent sample

a1
a2

id

A

a3
a4
a5

b1
b2

id

B

b3
b4
b5

c1
c2

id

C

c3
c4
c5



Query Time: WanderJoin

Selective Wander Join: Fast Progressive Visualizations for Data Joins – Procopio et al

A�B�C
Vis is dominated by filtering and group-bys (filter by group)
Adapt WJ by biasing random walk via importance sampling for..
• Filters and dynamic selections
• User preferences

a1
a2

id

A

a3
a4
a5

b1
b2

id

B

b3
b4
b5

c1
c2

id

C

c3
c4
c5



Query Time Approximation

Offline:
Do nothing

When running Q:
Choose sample operators
Draw samples to answer Q

Sampling is expensive
WanderJoin uses join indexes.
Could use indexing time to build other data structs?
Can take long time for bounds to be small

Query time

approx ops
samplers

Jan Feb Mar

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al



Offline

Offline:
Precompute samples given workload W
Typically stratify on columns groups in W

When running Q:
Pick precomputed samples
Use CLT/Hoeffding/bootstrap for err bounds

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Offline

Offline Sampler
(workload)

Jan Feb Mar



Offline: Sample+Seek

Adapts AQP towards visualization needs in 2 ways.
Challenges with confidence intervals (CIs)
• CI ~ std(n samples) / sqrt(n)

• CIs unintuitive

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

data dependent à sensitive to outliers 

90th CIs

Useful?
¯\_(�)_/¯

Jan Feb Mar



Offline: Sample+Seek

Proposes Distributional Guarantee
• Result modeled as normalized distribution
• Offline pre-computation will bound L2 distance ≤ ɛ
• Closer to understandable semantics

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

|truth - estimated|2 ≤ ɛ



Offline: Sample+Seek

Don’t stratify by column groups
• Column groups may be different later on

Compute measure-biased samples for aggregated attrs
• Need to know aggregated measures up front

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

SELECT a1, a2, ..., SUM(v1), COUNT(v2)
FROM ...

GROUP BY a1, a2, ...



Offline: Sample+Seek
Measure-biased samples for SUM(val): proportional to val
100 rows

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

val
1

..
1

100

pnaive
1/100

..
1/100
1/100

ps+s
1/199

..
1/199

100/199

Addresses err bound’s Data Dependency

100/(1/100)
= 10,000

100/(100/199)
= 199

If we sample 1 
val (100), what 

is our estimate?



Offline: Sample+Seek
Sample probability based on value

result = Q(in-memory sample)
if enough samples in mem:  
return result

if very low selectivity:
lookup rows directly

else:
use measure-augmented index to
draw sample biased by b

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

In-mem
Samples

On-disk 
Indexes

Q = SELECT  a, SUM(b)
WHERE   c=1 ...
GROUPBY b



Offline

Offline:
Precompute samples given workload W
Stratify on columns groups in W

When running Q:
Pick precomputed samples
Use CLT/Hoeffding/bootstrap for err bounds

Hard to guarantee bounds are small if Q uses 
unseen col group
Measure-biased sampling helps, works if 
aggregation function is over sampled attributes!

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Offline

Offline Sampler
(workload)

Jan Feb Mar



What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

Confidence interval per record
Error 0.1 Conf 99%

Stepping back, a bigger 
question is what quality should 
mean!  Tricky even for classic 
error specifications in AQP



Wasted WorkWrong

What is Quality?
Pe

rc
ei

ve
d

er
ro

r

true avg

Jan Feb Mar

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

PFunk-H (Alabi HILDA16); At-a-Glance (Ryan InfoVIS18)

A single error for a query may 
not be sufficient.  Perceptual 
research says that the error 
bounds DEPENDS on the result 
values.



What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

Confidence interval per record
Error 0.1 Conf 99%

Pairwise statistical test
Pairwise CI don’t overlap too much

Distributional guarantee
E[distance from true distribution]

CI isn’t even the only notion of 
quality to begin with!



What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

A: Perception Science

Q: Who decides Quality?



The Human Side (a sample of works)

At a Glance: Approximate Entropy as a Measure of Line Chart 
Visualization Complexity
Ryan et al. InfoVIS19

The Human User in Progressive Visual Analytics
Micallef et al.  EuroVIS (Dagstuhl report)

What Users Don't Expect about Exploratory Data Analysis on 
Approximate Query Processing Systems
Moritz et al. HILDA17

Why Evaluating Uncertainty Visualization is Error Prone
Jessica Hullman BELIV16



Approx + Progressive

Takeaway
Perception Push-down

Model perceptual inaccuracy & 
push into database

Dagstuhl report on progressive visualization: http://drops.dagstuhl.de/opus/volltexte/2019/10346/



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea



Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19 

Kyrix: visualization as map
Layers render rows (map tiles, pins)
User sees through viewport
Interaction = change bounding boxes
àPan viewport to see more data
àZoom/click to switch layers



Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19 

Kyrix: visualization as map
Layers render rows (map tiles, pins)
User sees through viewport
Interaction = change bounding boxes
àPan viewport to see more data
àZoom/click to switch layers



xform1()

layers

Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19 

BigData

rtree indexs

get(layer,   
viewport)

Client

layer data

simplified pseudocode

logos = vis.canvas(w, h)
// xform1 computes logo positions
// be rendered in layer
logos.newlayer(xform1, render1)

Easy Developer API



Tasks

Takeaway
Know the Task

Task-based Programming API
Leverage richer semantics



An End-to-end 
Relational Story

DVMS



Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea



Many Disparate Optimizations

How to choose?
• Developer tells the system
• Special case the system

Do they compose?

Need to model application semantics

Limits Flexibility
Hard for dev.  API?

How?



Data Visualization 
Management System
Want to express visualization, interaction, 

tasks, perception all together

Vis and interaction as queries

Apply relational ideas end-to-end
• to interactions
• to consistency
• to design

network

Database

App Server

ECMAScript VM

Cache/DB



Data Visualization 
Management System
Want to express visualization, interaction, 

tasks, perception all together

Vis and interaction as queries

Apply relational ideas end-to-end
• to interactions
• to consistency
• to design

A Big 
“Query”



Roadmap

Overview of Relational Perspective 

Optimizations within relational 
framework

Interactions as logical expressions
• Single-view interaction
• Multi-view interactions

A Big 
“Query”



A Relational Perspective

data

marks

pixels

flights(origin, year, delay,...)

marks(type, x, w, h, color)

pixels(x, y, rgba)

render marks 
(projection)

analysis + 
transform 

queries



A Relational Perspective

data

marks

pixels

Table

Table

Table

Query

Query

Logical model:

pipeline as a big query 

input data, marks, pixels 
as tables.



A Relational Perspective

data

marks

pixels

Table

Table

Table

Query

Query

network

network

network

Cutting the query plan 
using the network already 
expresses many app 
architectures

Render	on	server	&	send	images

Ship	query	results	to	client

Ship	dataset	to	client



data

marks

pixels

Table

Table

Table

Query

Query

Constraints:
Perceptual
CI bounds 
Latency

Constraints:
Rendering (M4)

Several earlier push-down 
optimizations can now be 
expressed as constraints 
on the query output or 
intermediate results



Example: Single View Interactions

• Using Kyrix as an example



Q1

SELECT x, y, img
FROM NBA_icons

WHERE x >= ? AND 
x  < ? AND
y >= ? AND 
y  < ? 

At its core, Kyrix can be 
expressed as parameterized 
filter queries! 

Sufficient to infer RTree
indexes and caching



Q1

viewport(minx, maxx, miny, maxy)

SELECT x, y, img
FROM NBA_icons, viewport vp

WHERE x >= vp.minx AND 
x < vp.maxx AND
y >= vp.miny AND 
y < vp.maxy

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

user interaction as data

We can remove the “?”s by 
“relational-izing” the current 
viewport.  This gives us freedom 
to redefine vp as a view



Q1

SELECT x, y, img
FROM NBA_icons, last_vp vp

WHERE x >= vp.minx AND 
x < vp.maxx AND
y >= vp.miny AND 
y < vp.maxy

viewport(minx, maxx, miny, maxy, t)

last_vp = SELECT * 
FROM viewport

ORDER BY tstamp DESC
LIMIT 1

user interaction as data
DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu



Q1

SELECT x, y, img
FROM NBA_icons, last_vp vp

WHERE x >= vp.minx AND 
x < vp.maxx AND
y >= vp.miny AND 
y < vp.maxy

viewport(minx, maxx, miny, maxy, t)

last_vp = SELECT * 
FROM viewport

ORDER BY tstamp DESC
LIMIT 1

user interaction as data
DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

Manipulating viewport view definition 
enables historical replay, undo, ...

for free!



DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

Another Benefit of Relationalizing



DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

But what if 
requests take 
time?

This slide contains animation.  See powerpoint slides to see animation 



83

Historical Small Multiples

No CC Serial Order

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

All of these are 
sensible choices for a 
designer when dealing 
with latencies.

This slide contains animation.  See powerpoint slides to see animation 



84

Historical Small Multiples

No CC Serial Order

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

All of these are 
sensible choices for a 
designer when dealing 
with latencies.

Picking concurrency control 
for interaction design is simple by

relationalizing user inputs & responses



Q1 Q2

Q2 = SELECT x, f(y)
GROUP BY x 

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

Example: Multi-view Interactions

User selects bars in 
Q1’s chart...



Q1 Q2

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

Q2 = SELECT x, f(y)
WHERE id�
GROUP BY x 

Example: Multi-view Interactions

Update Q2’s chart by 
adding the WHERE 
clause to Q2.

Many apps do this by 
manipulating SQL 
string literals to 
construct the query!



Q1 Q2
Syntactic 
manipulation 
rather than 
logical spec

Can do better?

Q2 = SELECT x, f(y)
WHERE id�
GROUP BY x 

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19



Smoke: Interaction as Lineage

Q1 Q2
Selective 

View Refresh
Backward 
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19



Smoke: Interaction as Lineage

Q1 Q2

Builds lineage 
indexes while 
running Q1 and Q2
w/ low overhead 

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19



Smoke: Interaction as Lineage

Lineage enables <100ms interactivity
Avoids data cube precomputation (mins or hrs)

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

This slide contains animation.  See powerpoint slides to see animation 



Smoke: Interaction as Lineage

Lineage enables <100ms interactivity
Avoids data cube precomputation (mins or hrs)

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

Benefits
Any visualization expressible as lineage 

(most coordinated visualizations) 
can be optimized automatically



Q1 Q2

refresh(backward(                  ))

Selective 
View Refresh

Backward 
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

⨝



Q1 Q2

refresh(backward(                  ))

Selective 
View Refresh

Backward 
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds.  Psallidas19

⨝Constraints:
Perceptual
CI bounds 
Latency

Constraints:
Rendering (M4)

viewport(minx, maxx, miny, maxy)



interaction(vis(database))

Lineage(     )SQLSQL( )

Constraints



Stepping Back

Hacking entire SVD stack is hard
Programming API is important
Users often have existing data, analyses, designs

Wins are from moving up in semantics
Data flow mechanisms for execution
Higher level semantics for optimization

End-to-end relational approach needs to draw from...
Hierarchical models (for layout, subgraphs, etc)
Second order logic (changing group-by attrs)
Ordered relations (most vis is ordered)
...

network

Database

App Server

ECMAScript

Cache/DB



Open Problem

Algebra to compose 
data + interaction + design + task



Conclusion

eugenewu.net

DVMS


