
Efficient, Effective
Interactive Visualizations

eugene wu
Columbia University

This presentation contains some animation.

See the animation in the powerpoint file at:
https://cudbg.github.io/sigmod19tutorial//files/wu.pptx

More Great Tutorials/Workshops!
Evaluating Interactive Data Systems: Workloads, Metrics, &
Guidelines.
SIGMOD18. Jiang, Rahman, Nandi

Overview of Data Exploration Techniques.
SIGMOD15. Idreos, Papaemmanouil, Chaudhuri

HILDA: Human in the Loop Data Analysis
SIGMOD Workshop. http://hilda.io

DSIA: Data Systems for Interactive Analysis
VIS Workshop. https://www.interactive-analysis.org

Connecting Visualization and Data Management Research
Dagstuhl Workshop. Chang, Fekete, Freire, Scheidegger.

Road Map

Background
Mechanisms
A Relational Story

Visualization is Ubiquitous

Image: Visualization is Not Enough - Heer EuroVIS19

Remove computing bottleneck
Tutorial: focus on performance

Data

Human Data Interface

accessibility
performance

usability
expressiveness

...

ECMAScript VM

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event
processing, incremental updates
from databases.
Outputs scene graph
Great for small datasets

network

Database

App Server

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event
processing, incremental updates
from databases.
Outputs scene graph
Great for small datasets

Bigger dataset? Much messier!
Communication overheads
DBs slower
Queries slower

ECMAScript VM

ECMAScript VM

network

Database

App Server

Cache

SVD architecture
SQL,Vis,DB

Client-side vis libraries very robust
Borrows data flow, event
processing, incremental updates
from databases.
Outputs scene graph
Great for small datasets

Bigger dataset? Much messier!
Communication overheads
DBs slower
Queries slower
Caches everywhere
Smart caches (DBs) everywhere

DB

ECMAScript VM

network

Database

App Server

Cache

SVD architecture
SQL,Vis,DB

Latency is cumulative
Separate components/code lines
Manual implementation
Manual optimization

Akin to writing queries
before Rel Alg.

DB

ECMAScript

network

Big Database

Big Server

Vis Memory
Hierarchy

Absolute latency expectations

Complex analysis workloads

Data dense

Analysis (usually) already known

Local Machine

ECMAScript VM

network

Database

App Server

Cache/DB

The Bottom Line

Simple programming API for
interactive applications over

large-scale/in-DB data is

unsolved

à
Massive opportunity

Mechanisms
that leverage vis semantics

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Cubes: Immens

a1 a2 a3 b1 b2 b3 c1 c2 c3 A

B

C

Cross filtering
interact with data in A, filter data in B

Build data cube

data cube

Cubes: Immens

a1 a2 a3 b1 b2 b3 A

B

C

Cross filtering
interact with data in A, filter data in B

Build data cube

c1 c2 c3

data cube

Cubes: Immens

a1 a2 a3 b1 b2 b3 A

B

C

Cross filtering
interact with data in A, filter data in B

Build data cube

c1 c2 c3

data cube

Cubes: Immens

6D CUBE
50 * 21 * 12 * 23 * 9 * 7000 > 18B ints ~ 144GB
Idea: User doesn’t express all combinations

States

Years

Months

Airlines

Day

Departure
Delay

Cubes: Immens
Airlines

Departure
Delay

SELECT delay, COUNT

SELECT airline, COUNT

Cubes: Immens
Airlines

Departure
Delay

SELECT delay, COUNT

SELECT airline, COUNT
WHERE delay = 4

Interaction is 2D:
CUBE on airline, delay
Build cube for pairs of plots

K 1D plots, N values per attr
Naïve: NK ~18,000,000,000
Immens: N2K2 809,765

1D

1D

Cubes

Takeaway
Scale to dimensionality of vis interactions

data is high dim
interactions can be low dim

Refs: nanocubes (Lins. TVCG13); hashedcubes (Pahins. InfoVIS16); Falcon (Moritz. CHI19)

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Network: ForeCache

Dynamic Prefetching of Data Tiles for Interactive Visualization. Battle et al.

NASA World View

Massive
tiled
dataset

Local
viewport

ForeCache
middleware Prefetcher

Middleware
easier to deploy
middleware has more resources

Middleware sees inputs
Client requests (pan/zoom)
Data content

Middleware does actions
make (good) predictions
pre-fetch tiles/requests

Network: ForeCache

Dynamic Prefetching of Data Tiles for Interactive Visualization. Battle et al.

NASA World View

Massive
tiled
dataset

Local
viewport

ForeCache
middleware Prefetcher

Middleware
easier to deploy
middleware has more resources

Middleware sees inputs
Client requests (pan/zoom)
Data content

Middleware does actions
make (good) predictions
pre-fetch tiles/requests

Network: ForeCache

Dynamic Prefetching of Data Tiles for Interactive Visualization. Battle et al.

NASA World View

Massive
tiled
dataset

Local
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Actions:
• Pan ← ↑ → ↓ ↖ ↗ ↘ ↙

• Zoom

Extend State using:
• Behavior features

• Overview, Zoom, Details on Demand
• Map tile content features

Network: Other Examples

NASA World View

Massive
tiled
dataset

Local
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Restrict Actions
Semantic windows, ATLAS, SCOUT

← →

↑ ↓

Network: Other Examples

NASA World View

Massive
tiled
dataset

Local
viewport

ForeCache
middleware Prefetcher

Predict 1 of k actions
P(action | state)

Apply Domain Structure
SCOUT: graph edges instead of arbitrary
3D navigation. Prefetch from disk

DICE, Query Steering: OLAP/Markov
assumptions

Network

Takeaway
Pre-fetch relies on prediction

improve predictor w/
interaction + content

Refs: Falcon (Moritz. CHI19); Momentum/Hotspot (Doshi. Thesis); ATLAS (Chan. VAST08); DICE (Kamat.
ICDE14); Semantic Windows (Kalinin. SIGMOD14); Scout (Tauheed. VLDB12)

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Network: M4

M4: A Visualization-Oriented Time Series Data Aggregation. Jugel et al.

Database

Vis System High
throughput

High
throughput

Low
throughput

N
et

w
or

k

Prefetching trades
bandwidth for latency

What if bandwidth limited?

Prefetch makes things worse

Network: M4

Network is bottleneck
Query results can be massive

Idea
vis resolution << result size

M4: A Visualization-Oriented Time Series Data Aggregation. Jugel et al.

Database

Vis System High
throughput

High
throughput

Low
throughput

N
et

w
or

k

Low
Resolution

res = Q(database) // on DB
vis = render(res) // on client

kills the network

Network: M4

Network is bottleneck
Query results can be massive

Idea
vis resolution ~ M4(results)

M4: A Visualization-Oriented Time Series Data Aggregation. Jugel et al.

Database

Vis System High
throughput

High
throughput

Low
throughput

N
et

w
or

k

Low
Resolution

res’ = M4_Q(database) // on DB
vis = render(res’) // on client

Network: M4

M4: A Visualization-Oriented Time Series Data Aggregation. Jugel et al.

Database

Vis System High
throughput

High
throughput

Low
throughput

N
et

w
or

k

Low
Resolution

vis(data) vis((data))min
max

M4

M4(data)

Each pixel has many data values.
Aggregate by pixel? How?

Account for rasterization & antialiasing

Network

Takeaway
Rendering Push-down

open rendering black-box &
push into database

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Progressive Vis and Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Progressive Visualization

Visualization quality improves over time

Many forms of Progressive, such as...
Queries Data sampling
Rendering Result Encoding
Interaction granularity Interaction Design

time

quality

Progressive Queries

Quality ~ error bounds for Q(D)
Online Aggregation (Hellerstein SIGMOD97)

Wander Join (Li SIGMOD16)

Iterative sampling w/ perceptual models (P-funk Abali15)

Time

Progressive Communication

Quality ~ E[difference from full resolution]
Progressive image encoding (JPEG)

Speak summary, then fill in details (CiceroDB Trummer19)

Incrementally sample at higher resolutions (IncVisage Rahman17)

Time

Progressive Loading

Quality ~ How much of the vis is shown
Number of charts loaded in dashboard
Webpage loading “above the fold” (Polaris netravali16)

Time

Progressive Interactions

Quality ~ Interaction granularity
Request throttling
Higher brushing resolution over time (Falcon Moritz19)

Time

Number of ticks in slider increase over time

Approximate Query Processing

Progressive query processing and AQP are
long-standing problems in databases

Adapting AQP to visualization also depends on
visualization semantics

from https://yongjoopark.com/resources/verdictdb_sigmod18.pdf

Approximate Query Processing

Vis System

lossy

Query time

approx ops
samplers

Jan Feb Mar

Offline

Offline Sampler
(workload)

Jan Feb Mar

lossy

Query Time Approximation

Offline:
Do nothing

When running Q:
Choose sample operators
Draw samples to answer Q

Query time

approx ops
samplers

Jan Feb Mar

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Query Time: WanderJoin

Wander Join: Online Aggregation via Random Walks – Li et al SIGMOD16

A�B�C
WanderJoin: leverage join indexes
edges represent join matches
Sample from A. Then path from A to C (a2-b2-c1) is a join sample
random walk is non-uniform independent sample

a1
a2

id

A

a3
a4
a5

b1
b2

id

B

b3
b4
b5

c1
c2

id

C

c3
c4
c5

Query Time: WanderJoin

Selective Wander Join: Fast Progressive Visualizations for Data Joins – Procopio et al

A�B�C
Vis is dominated by filtering and group-bys (filter by group)
Adapt WJ by biasing random walk via importance sampling for..
• Filters and dynamic selections
• User preferences

a1
a2

id

A

a3
a4
a5

b1
b2

id

B

b3
b4
b5

c1
c2

id

C

c3
c4
c5

Query Time Approximation

Offline:
Do nothing

When running Q:
Choose sample operators
Draw samples to answer Q

Sampling is expensive
WanderJoin uses join indexes.
Could use indexing time to build other data structs?
Can take long time for bounds to be small

Query time

approx ops
samplers

Jan Feb Mar

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Offline

Offline:
Precompute samples given workload W
Typically stratify on columns groups in W

When running Q:
Pick precomputed samples
Use CLT/Hoeffding/bootstrap for err bounds

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Offline

Offline Sampler
(workload)

Jan Feb Mar

Offline: Sample+Seek

Adapts AQP towards visualization needs in 2 ways.
Challenges with confidence intervals (CIs)
• CI ~ std(n samples) / sqrt(n)

• CIs unintuitive

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

data dependent à sensitive to outliers

90th CIs

Useful?
¯_(�)_/¯

Jan Feb Mar

Offline: Sample+Seek

Proposes Distributional Guarantee
• Result modeled as normalized distribution
• Offline pre-computation will bound L2 distance ≤ ɛ
• Closer to understandable semantics

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

|truth - estimated|2 ≤ ɛ

Offline: Sample+Seek

Don’t stratify by column groups
• Column groups may be different later on

Compute measure-biased samples for aggregated attrs
• Need to know aggregated measures up front

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

SELECT a1, a2, ..., SUM(v1), COUNT(v2)
FROM ...

GROUP BY a1, a2, ...

Offline: Sample+Seek
Measure-biased samples for SUM(val): proportional to val
100 rows

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

val
1

..
1

100

pnaive
1/100

..
1/100
1/100

ps+s
1/199

..
1/199

100/199

Addresses err bound’s Data Dependency

100/(1/100)
= 10,000

100/(100/199)
= 199

If we sample 1
val (100), what

is our estimate?

Offline: Sample+Seek
Sample probability based on value

result = Q(in-memory sample)
if enough samples in mem:
return result

if very low selectivity:
lookup rows directly

else:
use measure-augmented index to
draw sample biased by b

Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee

In-mem
Samples

On-disk
Indexes

Q = SELECT a, SUM(b)
WHERE c=1 ...
GROUPBY b

Offline

Offline:
Precompute samples given workload W
Stratify on columns groups in W

When running Q:
Pick precomputed samples
Use CLT/Hoeffding/bootstrap for err bounds

Hard to guarantee bounds are small if Q uses
unseen col group
Measure-biased sampling helps, works if
aggregation function is over sampled attributes!

Approximate	Query	Processing:	No	Silver	Bullet	– Chaudhuri	et	al

Offline

Offline Sampler
(workload)

Jan Feb Mar

What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

Confidence interval per record
Error 0.1 Conf 99%

Stepping back, a bigger
question is what quality should
mean! Tricky even for classic
error specifications in AQP

Wasted WorkWrong

What is Quality?
Pe

rc
ei

ve
d

er
ro

r

true avg

Jan Feb Mar

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

PFunk-H (Alabi HILDA16); At-a-Glance (Ryan InfoVIS18)

A single error for a query may
not be sufficient. Perceptual
research says that the error
bounds DEPENDS on the result
values.

What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

Confidence interval per record
Error 0.1 Conf 99%

Pairwise statistical test
Pairwise CI don’t overlap too much

Distributional guarantee
E[distance from true distribution]

CI isn’t even the only notion of
quality to begin with!

What is Quality?

SELECT avg(sales)
GROUP BY month
ERROR 0.1 CONF 99%

Jan Feb Mar

A: Perception Science

Q: Who decides Quality?

The Human Side (a sample of works)

At a Glance: Approximate Entropy as a Measure of Line Chart
Visualization Complexity
Ryan et al. InfoVIS19

The Human User in Progressive Visual Analytics
Micallef et al. EuroVIS (Dagstuhl report)

What Users Don't Expect about Exploratory Data Analysis on
Approximate Query Processing Systems
Moritz et al. HILDA17

Why Evaluating Uncertainty Visualization is Error Prone
Jessica Hullman BELIV16

Approx + Progressive

Takeaway
Perception Push-down

Model perceptual inaccuracy &
push into database

Dagstuhl report on progressive visualization: http://drops.dagstuhl.de/opus/volltexte/2019/10346/

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19

Kyrix: visualization as map
Layers render rows (map tiles, pins)
User sees through viewport
Interaction = change bounding boxes
àPan viewport to see more data
àZoom/click to switch layers

Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19

Kyrix: visualization as map
Layers render rows (map tiles, pins)
User sees through viewport
Interaction = change bounding boxes
àPan viewport to see more data
àZoom/click to switch layers

xform1()

layers

Tasks: Kyrix

Kyrix: Interactive Pan/Zoom Visualizations at Scale – Tao EuroVis19

BigData

rtree indexs

get(layer,
viewport)

Client

layer data

simplified pseudocode

logos = vis.canvas(w, h)
// xform1 computes logo positions
// be rendered in layer
logos.newlayer(xform1, render1)

Easy Developer API

Tasks

Takeaway
Know the Task

Task-based Programming API
Leverage richer semantics

An End-to-end
Relational Story

DVMS

Overview of Mechanisms

Interaction Network Pre-fetch as prediction

Know the Task
Ensure Vis API provides rich optimization hints

Task

Aggregate results to reduce network cost
Push rendering logic into query processing

Render

Approximation
Push perceptual inaccuracies into query processing

Perception

Scale cube dimensionality to interactionsInteraction

Semantics Idea

Many Disparate Optimizations

How to choose?
• Developer tells the system
• Special case the system

Do they compose?

Need to model application semantics

Limits Flexibility
Hard for dev. API?

How?

Data Visualization
Management System
Want to express visualization, interaction,

tasks, perception all together

Vis and interaction as queries

Apply relational ideas end-to-end
• to interactions
• to consistency
• to design

network

Database

App Server

ECMAScript VM

Cache/DB

Data Visualization
Management System
Want to express visualization, interaction,

tasks, perception all together

Vis and interaction as queries

Apply relational ideas end-to-end
• to interactions
• to consistency
• to design

A Big
“Query”

Roadmap

Overview of Relational Perspective

Optimizations within relational
framework

Interactions as logical expressions
• Single-view interaction
• Multi-view interactions

A Big
“Query”

A Relational Perspective

data

marks

pixels

flights(origin, year, delay,...)

marks(type, x, w, h, color)

pixels(x, y, rgba)

render marks
(projection)

analysis +
transform

queries

A Relational Perspective

data

marks

pixels

Table

Table

Table

Query

Query

Logical model:

pipeline as a big query

input data, marks, pixels
as tables.

A Relational Perspective

data

marks

pixels

Table

Table

Table

Query

Query

network

network

network

Cutting the query plan
using the network already
expresses many app
architectures

Render	on	server	&	send	images

Ship	query	results	to	client

Ship	dataset	to	client

data

marks

pixels

Table

Table

Table

Query

Query

Constraints:
Perceptual
CI bounds
Latency

Constraints:
Rendering (M4)

Several earlier push-down
optimizations can now be
expressed as constraints
on the query output or
intermediate results

Example: Single View Interactions

• Using Kyrix as an example

Q1

SELECT x, y, img
FROM NBA_icons

WHERE x >= ? AND
x < ? AND
y >= ? AND
y < ?

At its core, Kyrix can be
expressed as parameterized
filter queries!

Sufficient to infer RTree
indexes and caching

Q1

viewport(minx, maxx, miny, maxy)

SELECT x, y, img
FROM NBA_icons, viewport vp

WHERE x >= vp.minx AND
x < vp.maxx AND
y >= vp.miny AND
y < vp.maxy

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

user interaction as data

We can remove the “?”s by
“relational-izing” the current
viewport. This gives us freedom
to redefine vp as a view

Q1

SELECT x, y, img
FROM NBA_icons, last_vp vp

WHERE x >= vp.minx AND
x < vp.maxx AND
y >= vp.miny AND
y < vp.maxy

viewport(minx, maxx, miny, maxy, t)

last_vp = SELECT *
FROM viewport

ORDER BY tstamp DESC
LIMIT 1

user interaction as data
DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

Q1

SELECT x, y, img
FROM NBA_icons, last_vp vp

WHERE x >= vp.minx AND
x < vp.maxx AND
y >= vp.miny AND
y < vp.maxy

viewport(minx, maxx, miny, maxy, t)

last_vp = SELECT *
FROM viewport

ORDER BY tstamp DESC
LIMIT 1

user interaction as data
DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

Manipulating viewport view definition
enables historical replay, undo, ...

for free!

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

Another Benefit of Relationalizing

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

But what if
requests take
time?

This slide contains animation. See powerpoint slides to see animation

83

Historical Small Multiples

No CC Serial Order

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

All of these are
sensible choices for a
designer when dealing
with latencies.

This slide contains animation. See powerpoint slides to see animation

84

Historical Small Multiples

No CC Serial Order

DIEL:	Transparent	Scaling	for	Interactive	Visualization	 - Yifan Wu

All of these are
sensible choices for a
designer when dealing
with latencies.

Picking concurrency control
for interaction design is simple by

relationalizing user inputs & responses

Q1 Q2

Q2 = SELECT x, f(y)
GROUP BY x

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Example: Multi-view Interactions

User selects bars in
Q1’s chart...

Q1 Q2

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Q2 = SELECT x, f(y)
WHERE id�
GROUP BY x

Example: Multi-view Interactions

Update Q2’s chart by
adding the WHERE
clause to Q2.

Many apps do this by
manipulating SQL
string literals to
construct the query!

Q1 Q2
Syntactic
manipulation
rather than
logical spec

Can do better?

Q2 = SELECT x, f(y)
WHERE id�
GROUP BY x

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Smoke: Interaction as Lineage

Q1 Q2
Selective

View Refresh
Backward
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Smoke: Interaction as Lineage

Q1 Q2

Builds lineage
indexes while
running Q1 and Q2
w/ low overhead

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Smoke: Interaction as Lineage

Lineage enables <100ms interactivity
Avoids data cube precomputation (mins or hrs)

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

This slide contains animation. See powerpoint slides to see animation

Smoke: Interaction as Lineage

Lineage enables <100ms interactivity
Avoids data cube precomputation (mins or hrs)

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

Benefits
Any visualization expressible as lineage

(most coordinated visualizations)
can be optimized automatically

Q1 Q2

refresh(backward())

Selective
View Refresh

Backward
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

⨝

Q1 Q2

refresh(backward())

Selective
View Refresh

Backward
Lineage

Smoke: Fine-grained Lineage at Interactive Speeds. Psallidas19

⨝Constraints:
Perceptual
CI bounds
Latency

Constraints:
Rendering (M4)

viewport(minx, maxx, miny, maxy)

interaction(vis(database))

Lineage()SQLSQL()

Constraints

Stepping Back

Hacking entire SVD stack is hard
Programming API is important
Users often have existing data, analyses, designs

Wins are from moving up in semantics
Data flow mechanisms for execution
Higher level semantics for optimization

End-to-end relational approach needs to draw from...
Hierarchical models (for layout, subgraphs, etc)
Second order logic (changing group-by attrs)
Ordered relations (most vis is ordered)
...

network

Database

App Server

ECMAScript

Cache/DB

Open Problem

Algebra to compose
data + interaction + design + task

Conclusion

eugenewu.net

DVMS

