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• Nan: Fundamentals and State-of-the-art (25-30 minutes)  

• Eugene: Efficient, Effective and Interactive Visualizations (60-65 minutes)  

• Guoliang: Recommendation (~60 minutes) 

• Nan: Uncertainty, collaborative, and immersive data visualizations (~30 minutes) 
- uncertainty and “cleaning” bad data visualizations 
- collaborative data visualization 
- immersive data visualization
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incomplete data, lack of knowledge, variability …
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• What does uncertainty mean?     - Diversified meanings. 
• How should I visualize it?              - It depends. 
• What can go wrong?                       - Everything.

incomplete data, lack of knowledge, variability …

Doubt Bad Error

Uncertainty
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import 
discover 
collect

integration 
transformation 

cleaning

map data  
to visual variables

STEP 1 
Discovery

STEP 2 
Curation

STEP 3 
VISUAL ENCODINGS

STEP 4 
Rendering

images

Right ? 
Enough ?

Clean? Good?
Understand?  

Trust?

In Pursuit of Error: A Survey of Uncertainty Visualization Evaluation. Jessica Hullman et al., InfoVis 2018. 
Uncertainty. CSE 442 - Data Visualization. https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Uncertainty.pdf

https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Uncertainty.pdf
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why-analysis

(collaborative) cleaning 
(visualization-driven) cleaning
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sensor, light, voltage, 
humidity, temperature

54 sensors
3.2k readings/hour

1

Scorpion: Explaining Away Outliers in Aggregate Queries, Eugene Wu et al., VLDB 2013 
A Demonstration of DBWipes: Clean as You Query, Eugene Wu et al., VLDB demo 2012
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Why-analysis
Influential Predicates Problem 

Given a select-project-group-by query, user 
inputs O, hold-out results H, it is find the 

predicate p that maximizes the influence on O, 
and minimizes the influence on H.
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Why-analysis

2

sensor, light, voltage, 
humidity, temperature

54 sensors
3.2k readings/hour

“sensors with 
low voltage”

“sensors with  
low voltage”
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why-analysis

(collaborative) cleaning 
(visualization-driven) cleaning
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Data errors 
duplicates 
synonyms 

outliers 
missing values
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Distance between visualizations 
Earth Mover Distance (EMD)

Data errors 
duplicates 
synonyms 

outliers 
missing values

Error repair graph (ERG) 
Compile heterogenous errors into one graph

Interactive cleaning for progressive visualization (ICPV) 
Given a bad visualization V , it is to obtain a “cleaned” visualization 
V ′ whose distance is far from V , under a given (small) budget w.r.t. 

human cost. 
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Visualization-driven Cleaning 
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https://github.com/qcri/collaborativedatascience
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 14Where is My Data? Evaluating Visualizations with Missing Data. Hayeong Song et al., InfoVis 2018.

How the methods used to impute and visualize missing data may influence analysts' 
perceptions of data quality and their confidence in their conclusions?

Where's My Data? Evaluating Visualizations with Missing Data
Hayeong Song & Danielle Albers Szafir

Visualizations with High Data Quality

Visualizations with Low Data Quality

Fig. 1: We measured factors influencing response accuracy, data quality, and confidence in interpretation for time series data with
missing values. We found that visualizations that highlight missing values have higher perceived data quality while those that break
visual continuity decrease these perceptions and can bias interpretation.

Abstract—Many real-world datasets are incomplete due to factors such as data collection failures or misalignments between fused
datasets. Visualizations of incomplete datasets should allow analysts to draw conclusions from their data while effectively reasoning
about the quality of the data and resulting conclusions. We conducted a pair of crowdsourced studies to measure how the methods
used to impute and visualize missing data may influence analysts' perceptions of data quality and their confidence in their conclusions.
Our experiments used different design choices for line graphs and bar charts to estimate averages and trends in incomplete time
series datasets. Our results provide preliminary guidance for visualization designers to consider when working with incomplete data in
different domains and scenarios.

Index Terms—Information Visualization, Graphical Perception,Time Series Data, Data Wrangling, Imputation

1 INTRODUCTION

Visualizations allow people to analyze and interpret data to understand
current phenomena and guide informed decision-making. However,
analysts often must make decisions using imperfect datasets. These
datasets may be missing datapoints due to factors such as failures in
the data collection pipeline or fusing data at different granularities. As
part of the data wrangling process, visualizations have several choices
for dealing with missing data, including not encoding missing elements
or imputing new data (calculating substitute values) based on existing
data. Prior studies show that the ways we represent data influence
how accurately people interpret data and change their confidence in
their data and results [16, 20, 37, 47]. We hypothesize that the ways we
impute and visualize missing data may also bias analysts perceptions of
that data. This study aims to provide a deeper empirical understanding
of visualization for missing data.

We measure how imputation and visualization techniques influence
perceived confidence, data quality, and accuracy for visualizing incom-
plete datasets. We explore how four different categories of visualization
designs employed in prior systems might manipulate perceived data

• Hayeong Song is with the University of Colorado Boulder. E-mail:
hayeong.song@colorado.edu.

• Danielle Albers Szafir is with the University of Colorado Boulder. E-mail:
danielle.szafir@colorado.edu.
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xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

quality: highlighting imputed data (e.g., making data more salient, as
in highlighting), downplaying imputed data (e.g., making the data less
salient, as in alpha blending), annotation imputed values (e.g., adding
additional information about the imputation outcomes, such as error
bars), and visually removing information (Fig. 2). We measure effect
of existing techniques corresponding to these four categories of these
visual attributes on perceived data quality, result confidence, and re-
sponse accuracy in two common visualizations: line graphs and bar
charts. While this categorization is not exhaustive, we use this cate-
gorization as a scaffold for exploring a subset of techniques used in
existing visualization systems.

We also explore how methods of imputing missing values might ad-
ditionally shift perceptions of data quality and bias responses. Systems
use imputation to compute values that approximate missing datapoints
to support analysis. As missing data is itself a type of data (it indicates
no values are available), imputation allows systems to indicate where
data is unexpectedly absent and provide principled approximations to
avoid potential misinterpretation of absent data values [7]. Imputing
values also allows systems to indicate potential threats to data quality
by providing visual anchors analysts can use to readily enumerate and
contextualize quality errors [5, 49]. We focus on three common impu-
tation methods encountered in current visualization systems: ad-hoc
zero-filling, local linear interpolation, and marginal means (Fig. 3).

While we commonly expect that missing data should optimally de-
grade perceived quality, there are many cases that run counter to this
assumption. For example, we may not wish to degrade perceived qual-
ity when we can closely approximate missing values or when quality
may interfere with decision speed in low-risk scenarios. We therefore
evaluate how visualizations manipulate confidence relative to other

Bar and Line
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•Is the overall rate of change larger 
in the first or second half-hour?  

•How confident are you in your 
response? 

•How complete is this data?  
•How reliable is this data?

H1– Perceived data quality will degrade as the amount of 
missing data increases. 
H2– Highlighting will achieve higher perceived data quality 
than downplaying and information removal 
H3– Linear interpolation will lead to higher perceived 
confidence and data quality than marginal means or zero-filling 
H4– Imputed values will lead to higher perceived data quality 
than removed values.

Questions
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Measurement error: the difference between a measured value and the true value as it exists
Implicit error: measure error that is inherent to a dataset, assumed to be present and prevalent, but  
not explicitly defined or accounted for 
• exists as tacit knowledge in the minds of experts 
• is rarely quantifiable 
• is accounted for subjectively during expert interpretation of the data
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Survey Data
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Quantify the Uncertainty in Data Exploration  
— False Discovery Rate —
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Collaborative Data Visualization

https://vimeo.com/yalongyang

Enhances the traditional visualization by bringing together many experts so that each can 
contribute toward the common goal of the understanding of the object, phenomenon, or data

AsynchronousSynchronous
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Writing scripts and SQL-like languages 

Collaborative Visual Environment with touch (and pen) interfaces
10 years from now
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 20Northstar: An Interactive Data Science System,  Tim Kraska. VLDB 2018.

Writing scripts and SQL-like languages 

Collaborative Visual Environment with touch (and pen) interfaces
10 years from now

• Vizdom: a visual data exploration environment pen and touch interface 
• IDEA: an intelligent cache and string approximation engine 
• QUDE: warn about common mistakes and problems 
• Alphine Meadow: automatically orchestrate a ML pipeline (i.e., plan)



Democratizing Data Visualization
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Immersion
- exploration 
- inside-feeling

Interaction
- gesture + voice 
- real-time

Intelligence
- reactive 
- proactive

https://www.youtube.com/watch?v=Wx7RCJvoCMc


 22

IATK: Tableau for Virtual Reality

IATK: An Immersive Analytics Toolkit. Maxime Cordeil et al., IEEE Conference on Virtual Reality and 3D User Interfaces (VR),  2019.
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IATK: Tableau for Virtual Reality



Querying Real-World Data using Augmented Reality

 24ARQuery: Hallucinating Analytics over Real-World Data using Augmented Reality, Codi Burley et al., CIDR 2019.



Future Work

1. Visualization-driven data preparation/curation 
2. A generic system to support efficient/approximate/progressive data visualization 
3. (Asynchronous) Collaborative data visualization 
4. Data Visualization Benchmarks 
5. Immersive data analytics for abstract data 
6. Deep learning for data visualization
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