
LazyFTL: A Page-level Flash Translation Layer
Optimized for NAND Flash Memory

Dongzhe Ma Jianhua Feng Guoliang Li
Department of Computer Science and Technology
Tsinghua University, Beijing 100084, P.R. China

mdzfirst@yahoo.com.cn, {fengjh, liguoliang}@tsinghua.edu.cn

ABSTRACT
Flash is a type of electronically erasable programmable read-
only memory (EEPROM), which has many advantages over
traditional magnetic disks, such as lower access latency, lower
power consumption, lack of noise, and shock resistance. How-
ever, due to its special characteristics, flash memory can-
not be deployed directly in the place of traditional magnetic
disks. The Flash Translation Layer (FTL) is a software layer
built on raw flash memory that carries out garbage collection
and wear leveling strategies and hides the special character-
istics of flash memory from upper file systems by emulating a
normal block device like magnetic disks. Most existing FTL
schemes are optimized for some specific access patterns or
bring about significant overhead of merge operations under
certain circumstances. In this paper, we propose a novel
FTL scheme named LazyFTL that exhibits low response la-
tency and high scalability, and at the same time, eliminates
the overhead of merge operations completely. Experimen-
tal results show that LazyFTL outperforms all the typical
existing FTL schemes and is very close to the theoretically
optimal solution. We also provide a basic design that assists
LazyFTL to recover from system failures.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; B.7.1 [Integrated Circuits]: Types and
Design Styles—Memory technologies; B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms
Design, Experimentation, Performance, Reliability

∗This work is partly supported by the National Natural
Science Foundation of China under Grant No. 60873065,
the National Grand Fundamental Research 973 Program of
China under Grant No. 2011CB302206, and the National
S&T Major Project of China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof t or commercial advantage and that copies
bear this notice and the full citation on the f rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif c
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Keywords
Flash translation layer, LazyFTL, address translation, garbage
collection

1. INTRODUCTION
Recent years have witnessed a rapid development of flash

technologies. Advantages of flash memory, such as high den-
sity, low access latency, low power consumption, and shock
resistance, greatly benefit database systems and other data-
intensive applications. However, flash memory cannot be
deployed directly in the place of traditional magnetic disks
due to its special characteristics.

Like other EEPROM devices, if a page has been pro-
grammed, an erase operation needs to take place before new
data can be written. To make things worse, the granularity
of flash erase operations is much larger than that of read
and write operations. If an in-place update is to be per-
formed, we need to copy all valid pages in the corresponding
block into the RAM, update the page in the RAM, erase the
block, and write all valid pages back. This update method
will not only degrade performance of the flash memory, but
also reduce the life span of the chip and bring a potential
consistency problem. To solve these problems, out-of-place
updates are adopted. That is, when a page is to be over-
written, we allocate a new free or erased page, put the new
data there, and use a software layer called FTL to indicate
the physical location change of the page.

In addition, after about 10,000 ∼ 100,000 erase/write cy-
cles, some blocks may become unstable and malfunction.
Although a few blocks are reserved to replace broken ones,
these extra blocks will eventually be exhausted. A technol-
ogy named wear leveling is usually employed in the FTL to
prolong the life span of flash memory by distributing erase
cycles across the entire memory.

A lot of work from the database community focuses on de-
signing efficient index structures, such as BFTL [29], µ-Tree [13],
FlashDB [25], LA-Tree [2], and FD-Tree [22]. Some of these
technologies are built upon the FTL while others work di-
rectly on raw flash memories, realizing functionalities of the
FTL themselves, for example, address translation, garbage
collection, and wear leveling. In all cases, the FTL is a cru-
cial factor to all flash-based technologies.

Besides, since flash memories are purely electronic devices
and have no moving parts, they have no seek or rotation
latency like magnetic disks. Therefore, random access of
flash memory can be as fast as sequential access and the la-
tency of flash memory is almost linearly proportional to the
amount of data being accessed, no matter where the data

1

Table 1: Magnetic Disk vs. NAND Flash [19]

Read Write Erase
Magnetic Disk 12.7 ms 13.7 ms N/A

NAND Flash
80 µs
(2 KB)

200 µs
(2 KB)

1.5 ms
(128 KB)

is located. Another feature making flash memories different
is that the write latency of flash memory is usually sev-
eral times larger than the read latency as shown in Table 1
(we adopt the configuration described in [19]) since it takes
longer to physically inject electrons into a storage cell than
sense its status. Therefore, most flash technologies tend to
focus on optimization of write performance, even if increase
read operations sometimes.
Our study makes several contributions as follows.

• In this paper, we propose a novel FTL scheme named
LazyFTL, which is optimized for NAND-type flash mem-
ories. To avoid the heavy overhead of merge operations
in existing block-level and hybrid-mapping FTL schemes,
LazyFTL employs a page-level mapping table. This makes
LazyFTL a high performance FTL scheme compared with
other existing ones. However, a page-level mapping scheme
is hard to deploy on NAND-type flash memories since
they can only be programmed in pages. If any part of
the mapping table is immediately written in flash mem-
ory whenever it is modified, performance will be affected.
If dirty data is kept in the SRAM and only written in flash
memory when it is swapped out, we risk losing critical in-
formation and leaving the system in an inconsistent state.
To solve this problem, LazyFTL keeps two small areas in
flash memory and updates the page-level mapping table
in a lazy manner.

• We implement a trace-driven simulator to help evaluate
the performance of LazyFTL and six other typical FTL
schemes, namely NFTL-1, NFTL-N, BAST, FAST, LAST,
and A-SAST. Our empirical evaluation demonstrates that
LazyFTL outperforms all typical FTL schemes while achiev-
ing consistency and reliability at the same time. Exper-
imental results also show that LazyFTL successfully ap-
proaches the theoretically optimal solution.

• We test and measure the performance of LazyFTL when
the ratio of the capacity of flash memory to that of the
SRAM is increased. We discover that within a certain
scope, LazyFTL can still achieve an excellent performance.
This experiment indicates that the scalability of LazyFTL
is high since it does not require that the capacity of the
SRAM is enlarged as fast as flash memory. We also ana-
lyze the reliability of LazyFTL theoretically and present
an algorithm that assists LazyFTL to recover from system
failures efficiently.

The rest of this paper is organized as follows. In Section 2,
we make a short introduction of flash memory and previous
FTL designs. In Section 3, we provide an overview of the
proposed LazyFTL scheme. A detailed description of the
major functionalities of LazyFTL is given in Section 4 and
Section 5 defines the states of pages and demonstrates the
transition of states using a simple example. Experimental
results are presented and analyzed in Section 6. We also
analyze the scalability and reliability issues in Section 6.
Finally, Section 7 draws some conclusions and directions for
future work.

2. BACKGROUND
2.1 Introduction of Flash Memory

There are two types of flash memories, namely NOR and
NAND. NOR provides independent address and data buses,
allowing random access to any location of the memory, which
makes NOR a perfect replacement of the traditional read-
only memory (ROM), such as the BIOS chip of computers.
On the other hand, address and data share the same I/O
interface in NAND, which means that NAND can only be
accessed in pages, though it has a higher density and lower
cost per bit than NOR. NAND is usually used as a secondary
storage device [1]. In the rest of this paper, we use the
term flash to refer to NAND-type flash memory unless we
explicitly indicate NOR-type flash memory.

Each flash chip consists of a constant number of blocks
that are basic units of erase operations. And each block
consists of a constant number of pages that are basic units
of read and write operations. Most flash memories also pro-
vide a spare area for each page to store out-of-band (OOB)
data, such as the error correction code (ECC), the logical
page number, and the state flag for the page. As technology
advances, different flash memory organizations have been
developed as shown in Table 2.

Table 2: Organization of Flash Chips [23, 28, 13]

Block Size Page Size OOB Size
Small-block SLC 16 KB 512 bytes 16 bytes
Large-block SLC 128 KB 2 KB 64 bytes

Large-block MLC1 512 KB 4 KB 128 bytes

2.2 Overview of FTL
According to the granularity of the mapping unit, existing

FTL schemes can be divided into four categories: page-level,
block-level, hybrid, and variable-length mappings.

Just as the name implies, in page-level FTLs, a logical
page number (LPN) can be directly translated to a physical
page number (PPN). In other words, page-level FTLs need
to maintain a mapping entry for every logical page, which
means that the mapping table of page-level FTLs is much
larger than any other types. In fact, all page-level FTL
schemes store the entire mapping table in flash memory and
load the currently used parts into the SRAM dynamically
using the LRU algorithm or some other strategy. However,
since hot and cold data can be easily separated, page-level
FTLs are quite efficient and flexible.

On the contrary, in block-level FTLs, an LPN is first di-
vided into a logical block number (LBN) and an in-block
offset. Then the LBN is translated to a physical block num-
ber (PBN) and finally some search algorithm is employed to
find the target page. It is obvious that the mapping table of
block-level FTLs is quite small and can be easily stored in
the SRAM. Nevertheless, due to the mixture of hot and cold
data and the overhead of moving valid pages during garbage
collection, the performance of block-level FTL schemes is
limited compared with other mapping methods.

Hybrid mapping schemes try to achieve the flexibility of
page-level FTLs while keeping the mapping table relatively
small and comparable to the block-level methods by divid-
ing the flash memory into a data block area (DBA) and a
log block area (LBA). Block-level mapping is applied to the

1An MLC device is capable of storing more than one bit of
information in a single storage cell.

2

Figure 1: Three Types of Merge Operations

DBA which occupies most of the flash memory while each
valid page in the LBA is traced by another page-level map-
ping. The LBA is very small and generally takes less than 5
percent of the entire flash memory. In hybrid FTLs (except
HFTL [17]), the LBA is used to store overwriting data and
different schemes adopt different strategies to merge data in
the LBA to the DBA to generate new space for the LBA.
There are three types of merge operations as illustrated in
Figure 1. A full merge is a general but expensive operation
in which all up-to-date pages need to be copied to a new
allocated block and then old blocks are erased and put back
into the free block pool. The partial and switch merges are
efficient but can only be done in special cases since they can
only be done when pages in the log block or the replacement
block are all free or valid and each valid page is written in
their own place. Although many hybrid FTL schemes try to
do partial or switch merges whenever possible, full merges
are difficult to avoid with different access patterns. This
makes an insuperable bottleneck for all hybrid FTL schemes.
It is also possible to map variable-length continuous logical

pages to continuous physical pages in flash memory. In this
case, granularity can be adjusted dynamically when access
pattern changes. However, since sizes of different mapping
units are not identical and are changing, mapping entries can
only be stored in some type of search tree, and as a result,
the table look-up overhead of variable-length mappings is
higher than other schemes of which the mapping table is
nothing more than a simple address array.

2.3 Page-level FTL Schemes
The first FTL scheme was patented by Ban in 1995 [3]

and was adopted by the PCMCIA as a standard for NOR-
based flash memories several years later [12]. There is one
issue that NOR-based FTLs should handle in the first place.
When a page is overwritten, the relevant entry in flash mem-
ory needs to be updated to keep the operation atomic and
reliable. (Remember that page-level FTL schemes keep an
entire mirror of the mapping table in flash memory to re-
duce the SRAM overhead.) This presents no difficulty to
the NOR-based FTL since NOR-type flash memories can be
programmed in bytes. By assigning a replacement page list
for the relevant mapping page when necessary, this mapping
page can be updated (written in the first free entry of the
same offset in the replacement page list) several times as
long as the length of the list without rewriting the entire
mapping page [12, 9].
DFTL (Demand-based FTL) [10], another page-level FTL

scheme, makes the first attempt to transfer the former NOR-
based FTL to NAND-type flash memories, omitting the re-
placement page part. This scheme, though efficient, faces a
serious reliability problem since all modified information in

the SRAM will be lost if a system failure occurs. In this case,
spare areas of all data pages need to be scanned until the sys-
tem recovers to a consistent state. Therefore, DFTL is not
suitable, we believe, for circumstances where flash memory
is regarded as a permanent and reliable storage device.

2.4 Block-level FTL Schemes
Ban patented two other FTL schemes in 1999 [4, 8, 9].

These schemes are designed for NAND-type flash memories
and also known as the NFTLs. In this paper, they will be
cited as NFTL-1 and NFTL-N. NFTL-1 is designed for flash
memories that have a spare area for each page and NFTL-N
is for devices without such storage.

When a page is overwritten, NFTL-1 first allocates a re-
placement block for the relevant logical block if there is none
and writes overwriting pages one after another from the be-
ginning of the replacement block. Since pages are written
in an out-of-place manner in replacement blocks, NFTL-1
needs to scan all the spare areas in the replacement block
in reversed order to find the most up-to-date version of a
requested page. Fortunately, the spare areas in NAND-type
flash memory are using a different addressing algorithm that
is optimized for fast reference and the overhead of this search
process is relatively low.

On the other hand, since some models of NAND flash
memories have no spare areas to support fast search, NFTL-N
keeps a replacement block list for some of the logical blocks
when necessary and write requests for each logical page are
first handled by the first block in the list and then the next
one, keeping the in-block offset identical with that of the
logical address. If all pages in the list with the request off-
set have been programmed, a new block is allocated and
appended to the back of the list.

2.5 Hybrid FTL Schemes
BAST (Block-Associative Sector Translation) is the first

hybrid FTL scheme proposed in 2002 [15], which is essen-
tially an altered version of NFTL-1. As mentioned ear-
lier, hybrid FTL schemes build a page-level mapping for the
LBA. To keep this table small enough to reside in the SRAM,
BAST limits the total number of replacement blocks (also
known as log blocks). Obviously, the read performance of
BAST is better than NFTL-1 because the SRAM is several
orders of magnitude faster than flash memories. However,
BAST does not work well with random overwrite patterns
which may result in a block thrashing problem [20]. Since
each replacement block can accommodate pages from only
one logical block, BAST can easily run out of free replace-
ment blocks and be forced to reclaim replacement blocks
that have not been filled. Therefore, the utilization ratio of
replacement blocks in BAST is low both theoretically and
experimentally.

To solve the block thrashing problem, another hybrid FTL
scheme named FAST (Fully Associative Sector Translation)
was put forward [20]. FAST goes to the other extreme by
allowing a log block to hold updates from any data block.
Although FAST successfully delays garbage collections as
much as possible, the system-wide latency for reclaiming
a single log block may turn out to be longer than BAST,
since the associativity of log blocks is only limited by the
number of pages in a block. The associativity of a log block
is defined as the number of different data blocks whose most
up-to-date pages are located in the log block. The higher
the associativity of a log block is, the more expensive it is to

3

reclaim it. To increase the proportion of partial and switch
merges, FAST reserves a sequential log block to perform
sequential updates. This optimization is also limited since
in modern multi-process environments, a sequential write
is often interrupted by random writes and other sequential
writes [18].
In the following years, researchers tried to find some inter-

mediate proposals to balance between the log block utiliza-
tion and the reclamation overhead. There are some typical
representatives such as Superblock FTL [14], SAST (Set-
Associative Sector Translation) [26], LAST (Locality-Aware
Sector Translation) [18], and A-SAST (Adaptive SAST) [16].
Both Superblock FTL and SAST share (at most) K log

blocks among N data blocks. The difference is that Su-
perblock FTL keeps a page-level map in the spare areas
of the superblock while SAST restricts the number of log
blocks and maintains the page-level map in the SRAM. Due
to the size limitation of spare areas, Superblock FTL needs
to search at most three spare areas to find a requested page.
And in SAST, different data block sets may compete for log
blocks as a result of the small LBA. A common problem
with these two schemes is that they both need to be tuned
beforehand, which means that their performance may get
worse if access pattern changes.
Unlike Superblock FTL and SAST, LAST divides the LBA

into several functional segments to fully utilize the log blocks
while keeping the reclamation overhead as low as possible.
Longer requests are written in the sequential log buffer to
perform partial or switch merges. Hot data that might be
overwritten soon is written in the hot partition of the ran-
dom log buffer and other write requests are served by the
cold partition.
A-SAST is an optimized version of SAST which loosens

the restriction of maximum number of log blocks shared
within a data block set and can merge and split data block
sets dynamically.
KAST (K-Associative Sector Translation) [6] is the same

as FAST in essence but requires that the associativity of all
log blocks should never exceed K. The scheme is designed
for real-time systems since its reclamation latency is control-
lable. KAST can be considered as another tradeoff between
the log block utilization and the reclamation overhead.
Unlike other hybrid schemes, HFTL (Hybrid FTL) [17]

does not treat the page-mapping area as a buffer of updates.
Instead, HFTL employs a hash-based hot data identification
technique [11] and traces pages from hot blocks with the
page-level mapping as long as they remain hot. However,
when access pattern changes, some hot pages will need to
be swapped out, which will introduce an extra overhead.

2.6 Other FTL Schemes
It is also possible to implement a variable-length map-

ping. One such scheme was proposed in 2004 [5] and in
2008 another one named µ-FTL, which adopts µ-Tree [13]
as the mapping structure, was published [21]. The main dis-
advantage of these schemes is the address translation cost
since variable-length mappings can only be implemented in
search trees.
JFTL, proposed in 2009, is a technique to effectively de-

ploy journal file systems on flash memory using the out-
of-place characteristic [7], which can be built on any other
FTL schemes. However, JFTL cannot do anything about
the consistency problem of DFTL.

Figure 2: Architecture of LazyFTL

3. LAZYFTL OVERVIEW
3.1 Design Principles

After explaining the merits and demerits of different types
of existing FTL schemes in Section 2, some design principles
and considerations will be presented at the beginning of this
section.

First of all, a storage system should guarantee the relia-
bility of its operations, therefore dirty or altered data should
be flushed into flash memory before an operation can return.
DFTL violates this rule in order to obtain high performance.
Although the system can recover by scanning the spare area
of all pages, the resulting bootup delay is unacceptable along
with the increase of the density and the capacity of flash
memories.

To design a highly efficient FTL scheme, the mapping
granularity should be decided in the first place. Among
all the FTL schemes discussed in Section 2, the block-level
mapping cannot distinguish cold data from hot ones and has
to move cold data unnecessarily during the garbage collec-
tion procedure. The variable-length mapping can adjust its
mapping granularity dynamically but the high complexity
of address translation makes an inherent weakness. The hy-
brid mapping is feasible since costly full merge operations
can be avoid as much as possible by partitioning the LBA or
by sharing log blocks. However, no matter how subtly they
are designed, hybrid mapping schemes can hardly eliminate
full merge operations completely. The page-level mapping
is the most efficient and effective mapping granularity but
can hardly be applied to NAND flash without violating the
first rule. This is not true however. The LazyFTL scheme
proposed in this paper proves that by adopting an update
buffer, like the LBA in hybrid mapping schemes, the page-
level FTL can be transferred to NAND flash while keeping
reliability and consistency at the same time.

3.2 LazyFTL Architecture
The architecture of the proposed LazyFTL scheme is pre-

sented in Figure 2. As illustrated, LazyFTL divides the en-
tire flash memory into four parts: a data block area (DBA),
a mapping block area (MBA), a cold block area (CBA),
and an update block area (UBA). All these parts except the
MBA are used to store user data.

Pages in the DBA are tracked by a page-level mapping
table called the global mapping table (GMT). The GMT is
organized in pages and stored in the MBA. A small cache
adopting the LRU algorithm or similar is reserved in the
SRAM to provide efficient reference of the most frequently

4

accessed parts of the GMT. A secondary table named the
global mapping directory (GMD) is stored in the SRAM
and keeps physical locations of all valid mapping pages of
the GMT. The CBA is used to accommodate cold blocks
and the UBA is used to accommodate update blocks as the
names indicate.
The main difference between LazyFTL and the original

page-level FTL scheme [3, 12] is that LazyFTL reserves two
small partitions, the CBA and the UBA, to delay modifi-
cations of the GMT caused by write requests or valid page
movements. The total size of the CBA and the UBA is rela-
tively small compared with the entire flash memory and, like
the LBAs in hybrid FTL schemes, another page-level map-
ping table which is called the update mapping table (UMT)
is built on these two areas. The UMT can be implemented
as a hash table or a binary search tree to support efficient
insertion, deletion, modification, and reference. The num-
ber of entries in the UMT is quite small, so these operations
will not introduce too much overhead.
A block in the UBA called the current update block (CUB)

is used to handle write operations. When the CUB over-
flows, another free block is allocated and becomes the new
CUB. Similarly, there is a current cold block (CCB) in the
CBA dealing with moved data pages. As a matter of fact,
LazyFTL treats filled cold blocks in the CBA and filled up-
date blocks in the UBA in the same way. In other words,
the relative size of the CBA and the UBA can be adjusted
dynamically. If the proportion of hot data rises, the convert
cost (see 4.1) of blocks in the UBA will decrease more slowly
and the UBA will expand. If space utilization increases, the
CCB will be filled faster than the CUB and the CBA will
be enlarged. In this way, LazyFTL can tune itself automat-
ically for different access patterns.
It is necessary to mention that it is also feasible to divide

the CBA and the UBA into smaller functional segments like
LAST [18]. However, we decide to keep the design as simple
as possible since the current design is quite efficient and
there is no room for performance improvement.
We also maintain two bitmaps in the SRAM, the update

flag and the invalidate flag. These two bitmaps help mark
the states of all pages in the CBA and the UBA. Each bit in
the update flag indicates whether the translation informa-
tion of the corresponding page needs to be updated to the
GMT. And each bit in the invalidate flag indicates whether
the target page that the corresponding GMT entry points
to needs to be invalidated.

4. MAJOR FUNCTIONALITIES
4.1 Convert Operation
Since the UMT is stored in the SRAM to support efficient

reference, the CBA and the UBA cannot be too large and
will eventually overflow, in which case, a convert operation
is carried out. In hybrid FTL schemes, a merge operation
needs to copy valid pages in the victim log block out of the
LBA and reorganize relevant data blocks most of the time
due to the in-place storage pattern in the DBA. However,
LazyFTL only has to convert the victim block to a normal
data block logically since pages in the DBA are also stored
in an out-of-place manner. The only overhead of the con-
vert operation is caused by the GMT updates which will be
proved to be much cheaper than reorganizing data blocks.
A convert operation is achieved in four steps as illustrated

in Algorithm 1. First, a filled block in the CBA or the UBA

Algorithm 1 Convert block B

Input: B: a victim block in the CBA or the UBA
Output: B: a normal data block

1: mapping pages ← ∅
2: update entries ← ∅

/* Gather relevant information */
3: for each valid page P in B do
4: E ← <LPNP, PPNP>

5: remove E from the UMT
6: if the update flag of P is set then
7: P′ ← ⌊LPNP / number of entries per page⌋
8: mapping pages ← mapping pages ∪ {P′}
9: update entries ← update entries ∪ {E}
10: end if
11: end for

/* Gather entries that can also be updated */
12: for each entry E′ in the UMT do
13: if the relevant mapping page ∈ mapping pages and

the update flag of E′ is set then
14: update entries ← update entries ∪ {E′}
15: the update flag of E′ ← 0
16: end if
17: end for

/* Make sure that each page is loaded only once */
18: sort update entries by LPN

/* Update the GMT and invalidate old pages */
19: for each entry E′′ ∈ update entries do
20: load the relevant mapping page P′′ if necessary
21: offset ← LPN

E
′′ mod number of entries per page

22: if the invalidate flag of E′′ is set then
23: invalidate P′′[offset]
24: the invalidate flag of E′′ ← 0
25: end if
26: P′′[offset] ← PPN

E
′′

27: if no more updates to P′′ then
28: write P′′ to the MBA
29: update the GMD
30: invalidate the old page of P′′

31: end if
32: end for

with the lowest convert cost is selected as the victim. The
convert cost of each candidate block is defined as the num-
ber of different mapping pages that valid pages in this block
whose translation information need to be updated to the
GMT belong to. Second, all relevant mapping pages are
found and all mapping entries in the UMT that belong to
these mapping pages are collected, including entries pointing
to other blocks in the CBA and the UBA. Then modifica-
tions of the mapping pages are performed. Finally, mapping
entries in the UMT that point to the victim block are re-
moved and the victim block is converted to a normal data
block logically.

One thing that should take our attention is that for the
sake of efficiency an entry in the UMT is removed only when
the block where the target page is located is converted, no
matter whether this entry is updated in that operation. In
other words, all valid pages in the CBA and the UBA are
tracked by the UMT, even if some of them have already
been updated when other blocks in the CBA or the UBA
are converted.

As mentioned earlier, to help identify pages whose physi-
cal locations have not been updated to the GMT, an update

5

Algorithm 2 Reclaim block B

Input: B: a victim block in the DBA or the MBA
Output: B: a free block

1: if B is a mapping block then
2: for each valid page P in B do
3: move P to the MBA
4: end for
5: else
6: for each valid page P in B do
7: if LPNP can be found in the UMT then
8: the invalidate flag of UMT[LPNP] ← 0
9: else
10: if the CCB is filled up then
11: if the UBA & CBA are filled up then
12: select a victim block and convert it
13: end if
14: allocate a new block for the CCB
15: end if
16: move P to the CBA
17: add <LPNP, PPNP> to the UMT
18: the update flag of P ← 1
19: the invalidate flag of P ← 0
20: end if
21: end for
22: end if
23: erase B
24: put B into the free block pool

flag bitmap is maintained in the SRAM. Each bit in this
bitmap is related to a page in the CBA or the UBA. If the
update flag of a page is 1, we should modify the correspond-
ing entry in the GMT whenever possible and at least before
the block this page belongs to is converted. When a page
is written to the UBA or moved to the CBA, its physical
location changes which means that the initial update flag
of all pages should be 1. And after the relevant GMT en-
try of a page in the CBA or the UBA is updated or if it is
overwritten, its update flag should be cleared.

4.2 Garbage Collection
When the number of free blocks decreases to a predefined

threshold, a victim block from the DBA or the MBA is se-
lected to be erased. The cost to reclaim a certain block B
can be defined as

(Cread + Cwrite) ∗NB + Cerase

where Cread, Cwrite, and Cerase indicate the flash read,
write, and erase operation latencies, respectively and NB

represents the number of valid pages in block B. Obviously,
to reduce the overhead of garbage collection process, the
block with the lowest reclaimation cost should be selected
as the victim most of the time.
After the victim block is chosen, all pages of this block

should be scanned and the valid ones should be moved to
some other block. If the victim block stores mapping pages
of the GMT, valid pages should be moved to a current map-
ping block (CMB) in the MBA that handles mapping page
rewriting and the GMD is modified to track these changes.
If the victim block stores user data, the valid pages should
be moved to the CCB in the CBA. The philosophy is that
these valid pages should be relatively colder than the invalid
ones.
Note that there are two cases indicating a data page is

invalid. If this page has been overwritten and the new ver-

Algorithm 3 Write page P

Input: P: new data to be written

1: if the CUB is filled up then
2: if the UBA & CBA are filled up then
3: select a victim block and convert it
4: end if
5: allocate a new block for the CUB
6: end if
7: write P in the UBA

/* Set the update flag */
8: the update flag of P ← 1

/* Inherit or set the invalidate flag */
9: if LPNP can be found in the UMT then
10: P′ ← UMT[LPNP]
11: the invalidate flag of P ← the invalidate flag of P′

12: invalidate P′

13: the update flag of P′ ← 0
14: the invalidate flag of P′ ← 0
15: else
16: the invalidate flag of P ← 1
17: end if
18: add <LPNP, PPNP> to the UMT

sion is still located in the UBA, the spare area of this page
may have not been marked. However, if the new version
has been converted, the old page in the DBA should have
been invalidated. Therefore, when the state flag in the spare
area indicates that a page is valid, we should further check
whether its LPN can be found in the UMT. If this page has
been overwritten, we should ignore it, and at the same time,
we should clear the invalidate flag of the most up-to-date
page since the target that the corresponding GMT entry
points to has been erased and will be used to accommodate
other data. It is seriously wrong to invalidate an empty page
or an innocent one.

After all the valid pages have been moved, the victim block
is erased and put into the free block pool again. An algorith-
mic description of garbage collection operations is presented
in Algorithm 2.

4.3 Write Operation
The write operation of LazyFTL is much simpler than the

convert operation and the garbage collection operation. We
only need to write the new data in the UBA and do some
bookkeeping. That is to say, we set the update flag, inherit
or set the invalidate flag, invalidate the old page in the CBA
or the UBA if there is one, and clear its two flags. The
pseudo code of the write operation is given in Algorithm 3.

5. STATE TRANSITION
5.1 State Def nition

As described earlier, the update and invalidate flags rep-
resent the state of the corresponding page in the CBA or
the UBA. By taking pointers in the GMT and the UMT
with the same LPN into consideration, we can figure out all
possible states a page may have in LazyFTL.

To help readers understand the different page states and
their transition paths and conditions, a state transition dia-
gram is given in Figure 3. In this diagram, some states have
a two-digit binary number on its upper right corner. The
first digit stands for the update flag and the second one is
the invalidate flag. Invalid pages are represented by a small

6

Figure 3: State Transition of Pages

square with a cross inside, such as in state G and H, and
those that are pointed neither by the GMT nor by the UMT
are omitted. In state F, a pointer in the GMT is pointing
to nothing since its target has been moved to the CBA and
the block has been erased. Transition conditions are labeled
on the path. WRITE means a write operation. GC means
the block this page is located in is reclaimed. CONVERT
means the corresponding block is converted and UPDATE
means that some other block is converted and the entry of
this page in the UMT is updated.
Among the eight states in Figure 3, state C is the up-

dated state since all update paths arrive at C. When a
block is reclaimed, the relevant pages should be in reclaimed
state F. All CONVERT paths except one point to D qual-
ifies state D as the converted state. Between state H and
state G, there is a path labeled as CONVERT which seems
to violate the rule. This is a conversion of another block that
contains a valid page which needs to be updated and shares
the same mapping page with the one in our discussion, and
therefore, this convert operation is different from others.

5.2 An Example of State Transition
In this section, we give an example to help readers under-

stand how the update and invalidate flags are manipulated.
We will start from a page that has never been written and
follow its state transitions as illustrated in Figure 4.

• A→B As demonstrated in Algorithm 3, the update flag
of each new written page is set as 1 and since no previous
written page is found in the UBA or the CBA, the initial
value of the invalidate flag is also set as 1.

• B→D When the corresponding block is selected as the
convert victim, address translation information needs to
be updated to the GMT since the update flag is set. How-
ever, no page needs to be invalidated though the invali-
date flag is set since the relevant entry in the GMT has
not been used.

• D→ E This operation is similar to the first write request.
The only thing we should pay attention to is that we do
not try to alter the GMT entry or invalidate the old page
at this time.

• E→ F In this operation, a data block in the DBA where
the old page is located is reclaimed. To tell whether a
page is valid, we should first check the state flag in its
spare area. If the flag indicates a valid page, we should
further check whether this page has been overwritten in
the UBA. In this case, the same LPN is found in the
UMT, meaning that this page has been overwritten and
thus should be discarded. Meanwhile, the invalidate flag
of the up-to-date page is cleared since the old GMT entry
is currently pointing to an erased page which should not
be invalidated again.

• F→C This time, some other block is converted and the
mapping information of this page is updated in passing.
Do not forget to clear the update flag.

• C→H This page is overwritten again. Unlike the third
operation, the old page is invalidated immediately after
new data is written in. Note that invalidate flag of the
new page is cleared not because the old page has just been
invalidated but because its invalidate flag is not set. This
is so-called the inheritance of invalidate flags in LazyFTL.

• H→G The block that holds the old page is converted
and nothing needs to be done.

• G→ F Another block related to the current page is re-
claimed. This time, the old page is already invalidated
and there is no need to check the UMT. The difference
is in the first state F of Figure 4, the invalidate flag is
cleared by the GC operation, while in the other state F,
the flag is unchanged.

• F→D Finally, the block that holds the up-to-date page
is converted and we need to modified the GMT entry but
do not try to invalidate the page that the old entry points
to just as the two flags indicate.

6. PERFORMANCE EVALUATION
To help evaluate the performance and understand other

characteristics of the proposed LazyFTL scheme, we imple-
ment a trace-driven simulator for LazyFTL. For comparison,
we also implement six other FTL schemes that are com-
parable with LazyFTL, namely NFTL-1, NFTL-N, BAST,
FAST, LAST, and A-SAST.

6.1 Experimental Setup
The simulator is built on a large-block SLC flash (see Ta-

ble 2) which is widely used in enterprise grade flash memo-
ries. The capacity is 1 GB and the access latencies are set
as Table 1.

7

Figure 4: An Example of State Transition

We use the Microsoft Research Cambridge block I/O traces
as described in [24]. These traces are collected from 13 en-
terprise servers for different applications, such as user home
directories, print server, firewall/web proxy, source control,
web/SQL server, and media server, which should cover all
major access patterns. We have tested all the 36 traces in the
package and obtained similar results. The space utilization
of the adjusted traces varies from almost empty to 82.87%.
And the relative standard deviation (RSD) of the numbers
of accesses of all touched addresses ranges from 35.12% to
2526.16%. The larger the RSD value is, the more frequently
hot data in the trace is accessed. It is necessary to point out
that though our experiment touches no more than 82% of
the address space, the relative performance of LazyFTL will
not degrade if the device is filled up. In fact, we believe that
the performance gap between LazyFTL and other existing
schemes will expand because other FTLs do not fully utilize
every page in a block and a higher space utilization means
more frequent garbage collection calls for them.
The results presented in this paper were obtained by using

trace usr 2.csv. The trace is scaled down to fit our 1 GB flash
memory and 75.9% of the entire address space is touched,
with an RSD of 193.60%. The largest request size is 256
pages, which are equivalent to 4 blocks or 0.5 MB. However,
most requests involve less than 32 pages.
We also implement six comparative experiments, namely

NFTL-1, NFTL-N, BAST, FAST, LAST, and A-SAST. All
these schemes are typical block-level or hybrid-mapping FTL
schemes that focus on optimization of average access per-
formance and do not have to be tuned for specific access
patterns. We do not try to compare LazyFTL with DFTL,
another NAND-based page-level FTL scheme. On one hand,
DFTL has a consistent disadvantage, and on the other, the
performance of LazyFTL and DFTL should be similar since
neither of them can overcome the theoretical barrier.
Suppose that 4 bytes are used to store a single page ad-

dress or block address2, then it takes ⌈1 GB ÷ 128 KB × 4
bytes⌉ = 32768 bytes or 16 pages in the SRAM to store the
block-level mapping table in comparative experiments. An-
other 32768 bytes are allocated in the SRAM to accommo-
date the page-level mapping table of hybrid FTL schemes,
which means that ⌊32768 bytes ÷ 4 bytes⌋ = 8192 pages or
128 blocks can be assigned to the LBA. These 128 blocks
take only 1.56% of the entire flash memory. To keep the re-
sults comparable, the total size of the UBA and the CBA of
LazyFTL is also limited to 128 blocks and at most 14 pages
(another 2 pages are used to store the GMD) of the GMT
can be cached in the LRU cache in the SRAM. Other data
structures are either small or employed in all the schemes
and therefore are not considered.
All implemented schemes adopt the greedy strategy to

2The block address is shorter than the page address and may
be stored in less than 4 bytes.

select garbage collection victims. NFTL-1 selects the block
which has the most used pages in its replacement block.
NFTL-N selects the block which has the longest replacement
block list. All hybrid FTL schemes and LazyFTL select the
block that has the least valid pages since these pages need
to be moved and thus are considered as the overhead of
the garbage collection. Some may argue that by taking the
access pattern into consideration, we may figure out which
free page is going to be used or which valid page is going
to be invalidated. Garbage collection strategy is not within
our discussion, however, and we only choose a block that has
the least overhead or the most profit for a single operation
as the victim.

In addition, wear leveling is omitted in all our implements
because the wear leveling mechanism is relatively indepen-
dent from other components. Wear leveling involves many
issues, such as how to identify worn-out blocks, which blocks
to reclaim and where to put valid data. Upper applica-
tions and the system architechture should also be taken into
consideration. If multi-process is supported, garbage collec-
tion and wear leveling can be carried out in the background
without interrupting other operations. However, in embed-
ded environments or real-time systems these functions can
only be done on demand, since the background way is either
impossible or inacceptable, respectively. All in all, wear lev-
eling is another interesting research topic and many existing
works have studied this problem. It is unrealistic to per-
mute all the combinations and difficult to find a representa-
tive strategy. Another reason why wear leveling is omitted
is to provide a clear view of the performance comparison of
different FTLs. For the sake of wear leveling, some data will
need to be moved from cold blocks to worn-out ones on pur-
pose, which will introduce many noise operations. Since our
paper focuses on address translation and data organization,
it is better not to be distracted from other components. We
believe that an identical wear leveling strategy will similarly
influence all the schemes and will not affect our simulation
results.

To help evaluate the possibility of further improvement of
the proposed LazyFTL, we also compare LazyFTL with the
theoretically optimal solution. That is to say, each page read
request causes a single page read operation, each page write
request causes a single page write operation and a block
erase operation is invoked every 64 page write operations.

When implementing NFTL-N, we discover that in the
beginning, the response time for write requests decreases
quickly when the length limit of replacement block lists is
enlarged. However, after a certain point around 7, the write
performance becomes stable and constant. Another issue
that surprised us is that it seems that the search cost of
read requests does not increase much when the limit is re-
laxed. This is probably because when a certain proportion
of flash memory is used, the replacement block list has little

8

Figure 5: Comparison with Existing Schemes

chance to get longer before it is reclaimed, even though the
limit has been enlarged. In our experiment, the maximum
length of the replacement block lists is set to 16.
Tuning for LAST is relatively complex. In our experi-

ments, 8 blocks are assigned to the sequential log block area
and the other 120 blocks in the LBA are random log blocks.
The threshold for the hot partition utility and that of the
cold partition are set to 0.2 and 0.9 respectively.
Other schemes do not need special tuning and will not be

presented in this section.

6.2 Comparison with Other Schemes
The results of our simulation are shown in Figure 5. We

will focus on four parameters, the block utilization which
indicates the average number of pages that have been used
when a block is erased, the total time, the write response
time, and the number of erase operations which will directly
affect the life span of the flash memory.
Among all the implemented schemes, the performance of

NFTL-1 is acceptable compared with NFTL-N and BAST
and its simplicity makes a great selling point. However, the
read performance is inferior to other schemes since it needs
to search in the replacement block to find a certain page. In
our experiment, 17.565 spare areas need to be scanned on
average to serve a one-page read request.
NFTL-N is designed for NAND flash that does not have

a spare area for each page. As a result, the block utilization
ratio of NFTL-N is very low since pages can only be writ-
ten in an in-place manner. This also implies that NFTL-N

needs to perform more erase operations than other schemes
as illustrated in Figure 5(d).

BAST is the first hybrid FTL scheme that tries to avoid
the search overhead when reading a page. Due to the block
thrashing problem, the block utilization ratio of BAST is
also very low compared with other hybrid FTL schemes
and the performance is worse than any other scheme includ-
ing NFTL-N. That is because NFTL-N can always perform
partial or switch merges while BAST needs to perform full
merge almost all the time. In our experiment, we can hardly
find any chance for BAST to perform a much cheaper partial
or switch merge.

The simulation results of the other three hybrid FTLs are
nearly the same. A-SAST is better than LAST, which is in
turn better than FAST. We notice that the performance of
FAST is very close to that of NFTL-1. Although FAST tries
to delay merge operations as much as possible and reserves
a sequential log block to perform partial and switch merges,
the advantages gained are counteracted by the heavy over-
head of full merges. LAST and A-SAST successfully make a
tradeoff between the log block utilization and the reclama-
tion overhead. Experimental results indicate that LAST and
A-SAST achieve a much higher log block utilization than
BAST and a much lower write response time than FAST at
the same time.

As Figure 5 shows, the performance of LazyFTL is much
better than those of other schemes and is very close to the
optimal result. First of all, LazyFTL does not have to re-
claim a block before it is filled. This implies that the block

9

Figure 6: Convert Cost and Scalability of LazyFTL

utilization of LazyFTL always equals the number of pages in
a block, which also means that LazyFTL needs to perform
fewer erase operations than other FTL schemes. If a proper
wear leveling strategy is employed and the erase operations
are distributed through the entire memory, LazyFTL will
also prolong the life span of the flash chip.
One may argue that although LazyFTL successfully avoids

merge operations, it has to convert a victim block in the
UBA or the CBA when these two areas overflow. Never-
theless, Figure 6(a) indicates that in current configuration,
LazyFTL needs to rewrite only a small number of mapping
pages. We can also see from Figure 5(c) that LazyFTL has
a much lower response latency for write requests than other
schemes. This issue will be further discussed later.
The only disadvantage of LazyFTL is that when read-

ing a page, LazyFTL sometimes has to load a mapping
page before it knows the current location of the most up-
to-date data. In hybrid FTL schemes, only one flash ac-
cess is needed to serve a read request and block-level FTL
schemes have to search the spare areas which is also very
fast. However, for the trace we presented, LazyFTL has to
read about 1.000727 pages on average to serve a one-page
read request even though only 14 out of 1024 mapping pages
can be cached in the SRAM.

6.3 Scalability of LazyFTL
When flash memory is organized in a larger array, design-

ers may wish to control the size of the SRAM to reduce cost.
Based on this assumption, we further examine the influence
on the performance of LazyFTL when the size of the SRAM
is reduced.

With other parameters unchanged, we first reduce the size
of the LRU cache. This will increase the GMT access over-
head since only a small part of the GMT is cached in the
SRAM and only this small part can be read or modified.
The GMT access overhead can be quantified by the cache
miss ratio. As Figure 6(b) indicates, the cache hit ratio de-
creases very slowly at first until there are less than 5 pages
cached in the SRAM. This trend means that the LRU cache
can be reduced to save money or to save space for the UMT.

Then we diminish the size limit of the UBA and the CBA.
Smaller UBA and CBA mean that convert operations have
to be performed more frequently and some blocks may have
to be converted before their convert costs have been low-
ered down. Similarly, other configurations are exactly the
same as before. As Figure 6(c) shows, when this threshold
is halved, the maximum convert cost increases slowly unless
the threshold is under a certain level (around 32). There-
fore, if LazyFTL is used in a real-time system which is strict
with a single request latency, the total size of the UBA and
the CBA should be kept above a certain level.

Figure 6(d) illustrates the combined influence on the per-
formance of LazyFTL. One observation is that even though
the SRAM size is greatly reduced, for example, 1 cached
mapping page and at most 4 blocks in the UBA and the
CBA, LazyFTL still outperforms other FTL schemes with
an average latency of 237.613 µs for a write request. We
can also see from Figure 6(d) that the size of the LRU cache
also has a slight influence on the write response time espe-
cially when convert operations are more frequent and more
expensive. This is because when converting a block, some

10

mapping pages will need to be loaded from flash memory
if they are not in the SRAM and if the LRU cache size is
limited, it is more likely that these pages have been swapped
out. A third observation can be made from this figure. In
our original experiment, 32768 bytes in the SRAM is used
to store the UMT and another 32768 bytes is used to store
the cached part of the GMT and the GMD. Therefore, a
tradeoff can be made between the UMT and the LRU cache
of the GMT to further reduce the average write latency.

6.4 Reliability of LazyFTL
Among all the data structures used by LazyFTL, the GMD,

the UMT, the update and invalidate flags are stored in the
SRAM and will be lost when power is off (either due to a
normal shutdown or a system failure). In this section, the
reliability of LazyFTL will be presented and we will discuss
how LazyFTL rebuilds these data structures during initial-
ization.
Before the system is turned off, all blocks in the UBA

and the CBA are converted to normal data blocks and each
entry in the GMT is guaranteed to be correct. In this case,
only the GMD needs to be built up during the next startup
procedure.
When the system is initializing, spare areas of the first

pages of all blocks in the flash memory are scanned and
blocks that are holding mapping pages are found out. Then
the spare areas of all pages in such blocks are scanned and
valid mapping pages are identified. Based on this informa-
tion, the GMD can be easily reconstructed.
After the GMD is ready, the system should be recovered

to a consistent state if there is a failure. To this end, we
should first identify blocks in the UBA or the CBA since
address information of pages in these blocks may have not
been updated to the GMT. Many methods can be adopted
and we will list three of them.

• Researchers have discovered that by combining NOR-type
and NAND-type flash memories together, complementary
advantages can be achieved. If a small NOR-type chip is
integrated in the flash memory, all this bookkeeping infor-
mation can be easily preserved in NOR since NOR-type
flash can be read and programmed in bytes. It is also
possible for DFTL to use this method to keep a modifi-
cation log in NOR to speed up the recover process. How-
ever, each time a page is rewritten, DFTL has to write a
log record in NOR while LazyFTL only needs to write a
record when a block in the UBA or the CBA is converted.

• The above method is not applicable everywhere since not
all flash memories are equipped with a NOR facility. An-
other approach that is easy to implement is to keep the
convert information in the MBA. When a block is con-
verted, some mapping pages of the GMT may need to be
updated. A small area of each mapping page can be re-
served to store these information. If no mapping page is
modified or if a checkpoint process is triggered to assist
recovery procedures, a whole list of PBNs in the UBA
and the CBA is written in the MBA in an independent
page. This approach will slightly increase the overhead
of convert operations but will improve the performance of
recover procedures.

• Most manufacturers have reserved several bytes in the
spare areas of their products. This provides us another
chance. The technique is very simple. We can keep a

counter in the spare area of the first page (or more) of
each block that is wide enough and never overflows during
the life span of flash memory. When a block is allocated
to the UBA or the CBA, this counter is increased by one.
And another age threshold is configured which is larger
than the size limit of the UBA and the CBA. In our ex-
periment, at most 128 blocks can be allocated to the UBA
and the CBA. We may set the age threshold as 512, for
example. This means that the largest difference between
the counter of the newest block in the UBA or the CBA
and the counters of other blocks in the UBA or the CBA
can be 512 at most. When a block is getting too old, it
is forced to be converted no matter how many mapping
pages need to be updated. Following this protocol, we
can assure that all blocks belong to the UBA or the CBA
should be within the 512 most youngest blocks. There-
fore, to find these blocks those have not been converted,
a minimum heap is adopted and the 512 most youngest
blocks are found and tried to be converted. Note that it
should make no harm to convert a block that has been
converted if a proper algorithm is adopted. We will not
present this algorithm here due to space limitations.

When blocks in the UBA and the CBA are found and
the UMT is built, the only remaining task is to recover the
update flag and the invalidate flag for all entries in the UMT.
We scan each entry of the UMT and find the relevant entry
in the GMT since flags of an entry are determined by the
states of the two tracked pages.

• If the relevant entry in the GMT has not been used, the
two flags of the current entry should be ‘10’ or ‘11’ and
this page is in state B as illustrated in Figure 3.

• If these two entries point to the same page, which means
that the address translation information of this page has
been updated to the GMT, the two flags should be set as
‘00’ and the page is in state C.

• If the relevant entry in the GMT points to a free page or
an invalid page or a valid page but has a different LPN,
the two flags should be ‘10’. This scenario includes state
F, G, and H in Figure 3.

• If the relevant entry in the GMT points to another valid
page of this LPN, meaning that this page is in state E, we
could set both flags of the page. We may also invalidate
the old page in the DBA at once and set the two flags as
‘10’ as what we do in state G.

When the GMD, the UMT and the two flag arrays are con-
structed, LazyFTL is ready to receive new requests. Note
that there is no need to locate the two current blocks, the
CUB and the CCB, since blocks that are not filled will make
no difference. If, for some reason such as to save space, these
two blocks are identified, there is also no need to distinguish
them, since the concepts of cold data and hot data are not
accurate themselves and a small quantity of misplacements
will not be harmful.

Under some circumstances, we may find two different valid
pages with the same LPN when scanning the MBA to rebuild
the GMD or when scanning the UBA and the CBA to rebuild
the UMT. This happens if the system fails after the new page
is written and before the old one is invalidated. The solution
has been introduced in [9]. By maintaining a 2-bit counter
in the spare area of each page, we can easily tell the most
up-to-date page from the old one.

11

7. CONCLUSION
Flash memory has emerged for tens of years and many effi-

cient FTL schemes have been proposed. No matter whether
the FTL is built as an independent software layer or it is
built in the system software, technologies such as address
translating, garbage collection, and wear leveling can be
found in all flash-based applications.
To the best of our knowledge, the LazyFTL scheme pro-

posed in this paper is the most efficient and effective FTL
scheme ever invented, which is hard to surpass since we have
successfully approached the theoretically optimal result. To
overcome this theoretical barrier, knowledge of upper ap-
plications is critical. For example, to reduce flash traffic,
IPL [19], BFTL [29], and FlashDB [25] try to pack the
changed parts of a database system into fewer pages and
reconstruct these pages when requested. These schemes are
typical examples of making compromises between the read
latency and the write performance.
Another research direction is presented in [27]. Unlike

coaxial magnetic disks, different planes in a flash chip can
operate in parallel sometimes, without competition for the
flash channel. Therefore, garbage collections and merge op-
erations in hybrid FTLs or convert operations in LazyFTL
can be executed without interrupting current flash accesses
if a proper strategy is adopted. Address translations can
also be optimized to fit the parallel access feature. Some
RAID techniques such as parallelization and load balancing
have been intensively discussed. However, different charac-
teristics of flash memory complicate matters.

8. ACKNOWLEDGEMENTS
We would like to thank all the anonymous reviewers for

their professional dedication and their constructive com-
ments on how to improve this paper.

9. REFERENCES
[1] Wikipedia: Flash memory, Sept. 2010.

http://en.wikipedia.org/wiki/Flash memory.

[2] D. Agrawal, D. Ganesan, R. Sitaraman, et al.
Lazy-Adaptive Tree: An Optimized Index Structure for
Flash Devices. In VLDB’09, Lyon, France, August 2009.

[3] A. Ban. Flash File System, Apr. 1995. United States Patent
No. 5,404,485.

[4] A. Ban and R. Hasharon. Flash File System Optimized for
Page-mode Flash Technologies, Aug. 1999. United States
Patent No. 5,937,425.

[5] L.-P. Chang and T.-W. Kuo. An Efficient Management
Scheme for Large-Scale Flash-Memory Storage Systems. In
SAC’04, Nicosia, Cyprus, March 2004.

[6] H. Cho, D. Shin, and Y. I. Eom. KAST: K-Associative
Sector Translation for NAND Flash Memory in Real-Time
Systems. In DATE’09, April 2009.

[7] H. J. Choi, S.-H. Lim, and K. H. Park. JFTL: A Flash
Translation Layer Based on a Journal Remapping for Flash
Memory. ACM Transactions on Storage, 4(4), Jan. 2009.

[8] S. Choudhuri and T. Givargis. Performance Improvement
of Block Based NAND Flash Translation Layer. In
CODES+ISSS’07, Salzburg, Austria, 2007.

[9] E. Gal and S. Toledo. Algorithms and Data Structures for
Flash Memories. ACM Computing Surveys, 37(2):138–163,
June 2005.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In ASPLOS’09,
Washington, DC, USA, March 2009.

[11] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient
Identification of Hot Data for Flash Memory Storage
Systems. ACM Transactions on Storage, 2(1):22–40, Feb.
2006.

[12] Intel. Understanding the Flash Translation Layer (FTL)
Specification. Technical report, Intel Corporation, Dec.
1998.

[13] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim. µ-Tree: An
Ordered Index Structure for NAND Flash Memory. In
EMSOFT’07, Salzburg, Austria, 2007.

[14] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A
Superblock-based Flash Translation Layer for NAND Flash
Memory. In EMSOFT’06, Seoul, Korea, Oct. 2006.

[15] J. Kim, J. M. Kim, S. H. Noh, et al. A Space-efficient Flash
Translation Layer for CompactFlash Systems. IEEE
Transactions on Consumer Electronics, 48(2), May 2002.

[16] D. Koo and D. Shin. Adaptive Log Block Mapping Scheme
for Log Buffer-based FTL (Flash Translation Layer). In
IWSSPS’09, Grenoble, France, Oct. 2009.

[17] H.-S. Lee, H.-S. Yun, and D.-H. Lee. HFTL: Hybrid Flash
Translation Layer based on Hot Data Identification for
Flash Memory. IEEE Transactions on Consumer
Electronics, 55(4), Nov. 2009.

[18] S. Lee, D. Shin, Y.-J. Kim, et al. LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems. ACM SIGOPS Operating Systems Review, 42(6),
Oct. 2008.

[19] S.-W. Lee and B. Moon. Design of Flash-Based DBMS: An
In-Page Logging Approach. In SIGMOD’07, Beijing, China,
June 2007.

[20] S.-W. Lee, D.-J. Park, T.-S. Chung, et al. A Log Buffer
Based Flash Translation Layer using Fully Associative
Sector Translation. ACM Transactions on Embedded
Computing Systems (TECS), 6(3), July 2007.

[21] Y.-G. Lee, D. Jung, D. Kang, et al. µ-FTL: A
Memory-Efficient Flash Translation Layer Supporting
Multiple Mapping Granularities. In EMSOFT’08, Atlanta,
Georgia, USA, Oct. 2008.

[22] Y. Li, B. He, R. J. Yang, et al. Tree Indexing on Solid State
Drives. In Proceedings of the VLDB Endowment,
Singapore, Sept. 2010.

[23] Micron. Small-Block vs. Large-Block NAND Flash Devices.
Technical report, Micron Technology, Inc., May 2007.

[24] D. Narayanan, A. Donnelly, and A. Rowstron. Write
Off-Loading: Practical Power Management for Enterprise
Storage. In Proc. 6th USENIX Conference on File and
Storage Technologies (FAST’08), 2008.

[25] S. Nath and A. Kansal. FlashDB: Dynamic Self-tuning
Database for NAND Flash. In IPSN’07, Cambridge,
Massachusetts, USA, April 2007.

[26] C. Park, W. Cheon, J. Kang, et al. A Reconfigurable FTL
(Flash Translation Layer) Architecture for NAND
Flash-Based Applications. ACM Transactions on Embedded
Computing Systems, 7(4), July 2008.

[27] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, et al. FTL Design
Exploration in Reconfigurable High-Performance SSD for
Server Applications. In ICS’09, Yorktown Heights, New
York, USA, June 2009.

[28] SuperTalent. SLC vs. MLC: An Analysis of Flash Memory.
Technical report, Super Talent Technology, Inc., San Jose,
CA, USA, 2008.

[29] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An Efficient
B-Tree Layer for Flash-Memory Storage Systems. In
RTCSA’03, Tainan, Taiwan, 2003.

12

