
Efficient Location-Aware Influence Maximization

Guoliang Li† Shuo Chen† Jianhua Feng† Kian-lee Tan‡ Wen-Syan Li∗
†Department of Computer Science, Tsinghua University, Beijing, China

‡Department of Computer Science, National University of Singapore, Singapore
∗SAP Lab, Shanghai, China

{liguoliang,fengjh,s-chen13}@tsinghua.edu.cn; tankl@comp.nus.edu.sg; wen-syan.li@sap.com

ABSTRACT

Although influence maximization, which selects a set of users
in a social network to maximize the expected number of
users influenced by the selected users (called influence spread),
has been extensively studied, existing works neglected the
fact that the location information can play an important
role in influence maximization. Many real-world applica-
tions such as location-aware word-of-mouth marketing have
location-aware requirement. In this paper we study the
location-aware influence maximization problem. One big
challenge in location-aware influence maximization is to de-
velop an efficient scheme that offers wide influence spread.
To address this challenge, we propose two greedy algorithms
with 1 − 1/e approximation ratio. To meet the instant-
speed requirement, we propose two efficient algorithms with
ǫ · (1 − 1/e) approximation ratio for any ǫ ∈ (0, 1]. Exper-
imental results on real datasets show our method achieves
high performance while keeping large influence spread and
significantly outperforms state-of-the-art algorithms.

Categories and Subject Descriptors
H.2 [Database Management]: Database applications;
H.2.8 [Database applications]: Spatial databases and GIS

1. INTRODUCTION
In influence maximization, the goal is to select a set of

users in a social network to maximize the expected num-
ber of influenced users (called influence spread). The preva-
lence of social networks, e.g., Twitter and Facebook, has
prompted both industrial and academic communities [2,10]
to pay close attention to the influence maximization prob-
lem. However, existing studies neglected the fact that lo-
cation information can play an important role in influence
maximization. Many real-world applications such as location-
aware word-of-mouth marketing have location-aware require-
ment in influence maximization. For example, a social net-
work system (e.g., Twitter) wants to provide new compa-
nies (e.g., restaurants) with marketing services by locating
their potential customers in a spatial region (e.g., Snowbird,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2588561.

Utah) to promote their businesses. When a company has a
limited budget to target only k such initial users, it becomes
critical to be able to select those users (who may not be in
the region) who can influence their friends, their friends’
friends and so on, who are in the region. Through the word-
of-mouth effect (or viral marketing), a large number of users
close to the company would know the company. Existing
studies show that people are more likely to trust the infor-
mation obtained from their friends than that from general
advertisement channels, e.g., TV and newspaper [17,18].

Given a location-aware social network, where each user
has a geographical location, and a query with a geographical
region and an integer k, the location-aware influence maxi-
mization problem selects k initial users as seeds to maximize
the influence spread, i.e., the expected number of users in
the query region that are influenced by these selected seeds.
There are two main issues in location-aware influence max-
imization. The first is to obtain the users’ locations. Fortu-
nately, there are many location-aware social networks such
as Foursquare (foursquare.com) and Jiepang (jiepang.com),
which inherently capture the location for each user. In ad-
dition, there are many studies on obtaining users’ locations
from social networks [14–16], which also provide location-
aware opportunities in influence maximization. The second
is to meet the high-performance requirement because many
applications aim to support online queries. In the above ex-
ample, a large number of companies want to promote their
business, and the system should support online location-
aware influence maximization queries efficiently. Although
there are many influence maximization algorithms [2,10],
they cannot meet the high-performance requirement because
they have to enumerate large number of users and cannot
prune insignificant users that have small influences. As the
location-aware influence maximization problem is NP-hard
(see Section 2.1), it calls for effective methods to achieve high
performance while not sacrificing much influence spread.

To address the challenge, we propose two efficient algo-
rithms with 1 − 1/e approximation ratio. The first is an
expansion-based method, which first checks the users in the
query region and then progressively expands to their friends.
It is worth noting that it is rather expensive to compute
multiple users’ influence because a user may have multiple
ways to influence another user and selecting a user will af-
fect other users’ influences. To address this issue, we adopt
a best-first search framework, which efficiently estimates the
upper bounds of users’ influences and preferentially accesses
the user with large upper bounds so as to prune insignificant
users. The second is to use spatial-based indexes to improve

search performance. We divide the whole space into small
regions. For each small region, we precompute and maintain
the users that have influences to users in the region, with the
corresponding influences. Given a query, we assemble those
small regions that have intersections with the query region
and utilize the precomputed users and their influences to
facilitate identifying top-k seeds.

However for large k, these two algorithms are still ex-
pensive. To meet the instant-speed requirement for online
queries, we propose two efficient algorithms with ǫ · (1 −
1/e) approximation ratio for any ǫ ∈ (0, 1]. The first is
a bound-based method which utilizes the expansion-based
or assembly-based algorithms to estimate the upper bound
and lower bound of the top-k seeds’ influences. If the lower
bound is not smaller than ǫ times the upper bound, the
bound-based algorithm can terminate prematurely. The sec-
ond is a hint-based method that avoids computing too many
bounds in the bound-based method. It first precomputes
the top-k seeds (called hints) for each small region. Then
for each query, it uses these hints to estimate these upper
and lower bounds more accurately and efficiently.

We make the following contributions. (1) We formulate
the location-aware influence maximization problem. We de-
vise two greedy algorithms with 1−1/e approximation ratio.
The first is an expansion-based algorithm which estimates
the upper bound of users’ influences and adopts a best-first
method to eliminate the insignificant users. The second is
an assembly-based algorithm which assembles the precom-
puted information on small regions to answer a query. (2)
We propose two efficient algorithms with ǫ ·(1−1/e) approx-
imation ratio for any ǫ ∈ (0, 1]. The first is a bound-based
algorithm that uses the estimated upper bounds and lower
bounds to select top-k seeds. The second is a hint-based
algorithm that utilizes precomputed hints to identify top-k
seeds. (3) Experimental results on real datasets show our
method achieves high performance while keeping large in-
fluence spread and significantly outperforms state-of-the-art
algorithms by 2-3 orders of magnitude.

The rest of this paper is structured as follows. We formu-
late our problem in Section 2. An expansion-based method
is presented in Section 3 and an assembly-based method is
proposed in Section 4. We develop efficient algorithms with
ǫ · (1 − 1/e) approximation ratio in Section 5. We analyze
the complexity and discuss the update issues in Section 6.
Experimental results are reported in Section 7. We review
related works in Section 8 and conclude in Section 9.

2. PRELIMINARY

2.1 Problem Formulation
We model a location-based social network as a directed

graph G = (V, E), where vertices in V are users and edges in
E are follower/followee relationships. Each vertex v ∈ V has
a geographical location (x, y) with longitude x and latitude
y. Initially, each vertex is inactive. If a vertex u is selected
as a seed, u becomes active and it will also activate its out-
neighbors. If u’s out-neighbor v becomes active, v will in
turns activate v’s out-neighbors. There are many methods
to model this process and a widely-adopted method is the in-
dependent cascade (IC) model [2,10]. Consider an activated
vertex u. For each of u’s inactive out-neighbor v, u has an
independent probability P(u, v) to activate vertex v through
edge (u, v). The newly activated vertices will attempt to ac-

8

14

13

7

5

6

10

12

15

19

9

1

3

2

0

4

11

1617

18

20

21
22

23

A B

C D

1.0

1.0

0.33

0.33

0.33
0.25

0.25

0.25

0.5
0.5

1.0

0.33

0.33

0.33

1.0

0.25

0.250.25

0.25

1.0 0.5

0.5

0.33

0.33

0.33

1.0

0.33
0.33

0.33

1.0 1.0

1.0

1.0
0.25

Q

CB

BC

DA DB

Figure 1: A Running Example.

tive their inactive out-neighbours independently. It is worth
noting that a vertex has only one chance to activate its out-
neighbors and after activating all of its out-neibours, it will
stay active and will not activate other vertices again. This
process terminates when there is no newly activated vertex.

Formally, given a query Q = (R, k) with a geographical
region R and an integer k, let VR denote the set of vertices
in R. We want to find a set of k seeds S from the graph
(i.e., a subset of V with k vertices) to activate the maximum
number of vertices in VR. The number of activated vertices
in VR is called influence spread, denoted by σ(S ,VR).
As each vertex has a probability to be activated through
multiple vertices, it requires to compute the expected number
of activated vertices. Next we formulate the location-aware
influence maximization problem.

Definition 1. (Location-Aware Influence Maximization)
Given a location-aware social network G and a query Q =
(R, k), find a k-vertex set S ∈ G, such that for any other k-
vertex set K ∈ G, σ(S ,VR) ≥ σ(K,VR). S is called a seed

set and each vertex in S is called a seed.

Example 1. Figure 1 shows a location-aware social net-
work with 24 vertices. The numbers on each directed edges
are probabilities and in this paper we use the weighted cas-
cade model as an example which sets P(u, v) = 1

Nv
, where

Nv is the number of v’s in-neighbor. For example, P(14, 2) =
0.25 since vertex 2 has four in-neighbors, i.e., vertices 0, 4,
12, 14. Given the query Q with the dotted rectangle as the
query region and k = 5, the top-k seed set of the query is S =
{14, 3, 16, 10, 8}. Notice that S contains vertex 16 which is
not located in the query region. Thus we cannot simply use
vertices located in the query region to identify top-k seeds.
In addition, although vertex 8 is influenced by vertex 10, it
has additional influence to itself and vertex 11.

Different from existing influence maximization algorithms [2]
which compute top-k vertices to maximize the influence spread
on all vertices, we focus on maximizing the influence spread
on vertices within a given query region. We aim to support
online queries. The location-aware influence maximization
problem can be proved to be NP-hard by a reduction from
the influence maximization problem [10] and computing the
exact location-aware influence spread can be proved to be

#P-hard by a reduction from the influence spread prob-
lem [2], by setting VR = V. To meet instant-speed require-
ment (e.g., within 1 second) for online queries, in this paper
we propose efficient algorithms to achieve high performance
while not sacrificing much influence spread.

2.2 Tree-based Approximation Model
We extend state-of-the-art tree-based approximation model

for influence maximization [2] to approximate our problem.
We use this model as an example, and our method can be
easily extended to support other approximation models.

Under the IC model, when a vertex u activates its inactive
out-neighbors such as v, u also has a probability to activate
v’s out-neighbors such as w, even though u has no direct edge
to w. This prompted us to introduce the concept of influence
and influenced-by. Given a directed graph G = (V, E) with
propagation probability P(u, v) on edge (u, v) ∈ E . Let
p = 〈u = w1, w2, . . ., wm = v〉 denote a path from u to v.
Using the IC model, the probability that v is influenced by u
(or u influences v) through this path equals to the product of
propagation probabilities on edges along this path, denoted
as P(p) =

∏m−1
i=1 P(wi, wi+1). Since each vertex has only

one chance to influence its neighbors, the best chance that
vertex v is influenced by u is through the path from u to v
with the maximum probability. Let P(u ❀ v) denote the
influence of u to v, which is the maximum probability that
u influences v, i.e.,

P(u ❀ v) = max{P(p)|p is any path from u to v}. (1)

It is worth noting that given a set S , the influence of
S to v, denoted as P(S , v), cannot be simply computed as
∑

u∈S P(u ❀ v), because different vertices in S may have
correlations when they influence v. To address this issue, we
use a tree-based model to compute the influence. Formally,
given a vertex v, for each u ∈ S , we find a path with the
maximum probability, denoted by u ❀ v. We construct a
tree by combining these paths from each vertex in S to v,
taking v as the root and use the tree to compute P(S , v).

Obviously if v ∈ S , P(S , v) = 1; otherwise v must be
influenced by the children of v. The probability that v is
influenced by its child c which is in turns influenced by S is
P(S , c) · P(c, v). We can combine these probabilities for all
of v’s children to compute the influence of S on v,

P(S , v) = 1−
∏

c∈Child(v)

1− P(S , c) · P(c, v),

where Child(v) is the set of children of v in the tree.
In summary, we can compute P(S , v) as follows.

P(S , v) =

{

1 v ∈ S
1−

∏

c∈Child(v)

1− P(S , c) · P(c, v) v 6∈ S (2)

Example 2. Suppose we already select vertices 4 and 12
as our seeds. We show how to calculate their co-influence to
vertex 1, i.e., P({12, 4}, 1). Since the maximum influence
paths of vertices 4 and 12 to vertex 1 must go through ver-
tex 2, we have P({12, 4}, 1) = 1−

(

1−P({12, 4}, 2)·P(2, 1)
)

.

As P({12, 4}, 2) = 1−
(

1− P(12, 2)
)

·
(

1− P(4, 2)
)

= 0.4375
and P(2, 1) = 0.33, P({12, 4}, 1) = 0.4375 ∗ 0.33 ≈ 0.144.

We propose an influence spread function σ̂ to approximate
the influence spread function σ as below.

σ̂(S ,VR) =
∑

v∈VR

P(S , v). (3)

Using the approximate influence spread function in Equa-
tion 3, we can extend existing greedy algorithms to sup-
port our problem. We first select the vertex s with max-
imum σ̂({s},VR), then select vertex u with the maximum
σ̂({s, u},VR) based on Equation 3, and terminate after k
vertices are selected. Since the function P(S , v) is submod-
ular and monotone, this greedy algorithm has 1 − 1/e ap-
proximation ratio based on the submodular theory [10].

Example 3. Given the query Q in Figure 1, the algo-
rithm first computes the initial influence of each vertex. For
example, the influence of vertex 14 is P({14}, VR) = P(14 ❀

14) + P(14 ❀ 15) + P(14 ❀ 12) + P(14 ❀ 9) + P(14 ❀

13) + P(14 ❀ 2) + P(14 ❀ 1) = 1 + 1 + 1 + 1 + 0.333 +
0.25+0.25∗0.33 = 4.667. It selects the vertex with the max-
imum influence as the first seed and here the first seed is
vertex 14. Then for each vertex u, it computes the influence
P({14}∪{u}, VR) based on Equation 3. Iteratively it selects
the following seeds 3, 16, 10, and 8.

3. EXPANSION-BASED METHOD
Existing algorithms have two main limitations. First, they

treat all vertices equally and consider all vertices to select
the seeds. To alleviate this problem, our approach (Sec-
tion 3.1) first selects a set of vertices (called candidate seeds)
which have the potential to be selected as seeds and then
utilizes these candidate seeds to identify the real results.
Second, to select the next seed u with the maximum in-
fluence given the current seed set S (i.e., P(S ∪ {u},VR)),
they update the influences of those candidates that are in-
fluenced by the selected seeds and enumerate all candidates
to select the one with the maximum influence as the next
seed. However for many vertices, we do not need to compute
P(S∪{u},VR) and we want to avoid these unnecessary com-
putations, especially for insignificant vertices. To this end,
we propose a best-first based method (Section 3.2), which
estimates an upper bound of P(S ∪ {u},VR), accesses the
vertices with large upper bounds, and utilizes the bound to
eliminate insignificant vertices. To achieve these goals, we
devise an expansion-based algorithm (Section 3.3).

3.1 Candidate Seeds Selection
We want to identify a set of vertices (denoted as C) which

include all possible seeds. In other words, vertices not in
candidate set C cannot be selected as seeds. Thus we only
need to consider the candidate seeds in C to identify the seed
set S . Existing algorithms take V as the candidate set C and
our goal is to reduce the set as much as possible.

Obviously, vertices in VR will be candidate seeds. In addi-
tion, many vertices have influences to (vertices in) VR, and
some of them have large influences and some have small in-
fluences. To differentiate them, we want to eliminate those
insignificant vertices with small influences. For example, if
vertex u’s influence to v ∈ VR is smaller than a threshold
θ, i.e., P(u ❀ v) < θ, u is an insignificant vertex to v. If u
is an insignificant vertex to every vertex in VR, it is an in-
significant vertex to VR. And in this case, we will not take
it as a candidate seed. (Existing algorithms also use θ to
remove insignificant vertices [2].) Next we formally define
the candidate seeds.

Definition 2 (Influencer and Influencee). Given
two vertices u and v, v is called an influencee of u if
P(u ❀ v) ≥ θ and u is called an influencer of v.

QQuadTree

A C DB

BC BD CDCB DDDCDBDA

0

1

2

16

17

3

4

5

6

7

9

12

13

14

15

20 23 8

10

11

18

19

21 22

Figure 2: QuadTree Index.

Definition 3 (Candidate Seed). Given a query Q =
(R, k), u is a candidate seed if it has an influencee in VR.

Let Irv = {u|P(u ❀ v) ≥ θ} denote the influencer set

of vertex v and Iev = {u|P(v ❀ u) ≥ θ} denote the in-

fluencee set of vertex v. To support online query effi-
ciently, we precompute these lists for each vertex (which is
also adopted in our comparison method extended from exist-
ing algorithms in Section 2.2). Obviously, C = ∪v∈VR

Irv is
a candidate seed set. To efficiently identify candidate seeds,
we build a QuadTree for vertices in V based on their loca-
tions and utilize the QuadTree to compute the set of vertices
in the query region, i.e., VR. Then for each vertex v ∈ VR,
we enumerate v’s in-neighbors, e.g., u. If P(u ❀ v) ≥ θ, we
add u into C and continue traversing u’s in-neighbors. Iter-
atively we get C. For example, Figure 2 shows the QuadTree
of vertices in Figure 1. Suppose θ = 0.05. For query Q, ver-
tices in the query region are candidate seeds. Vertices 16, 17,
18, 19, 21, 23 are candidate seeds as they have influencees
to the query region. Vertices 20 and 22 are not candidate
seeds as they have no influencees to the query region.

3.2 The Best-first Method to Identify a Seed
Existing algorithms require to update the influences of all

vertices that have co-influence with selected seeds. Alterna-
tively, we propose a best-first method which estimates upper
bounds of influences and utilizes the bounds to select seeds.

In the first iteration to select the first seed, we calculate
the influence P({u},VR) =

∑

v∈VR
P(u ❀ v) for each ver-

tex u ∈ C. The vertex with the maximum influence is the
first seed. To facilitate selecting seeds, we maintain a max-
heap for each vertex u ∈ C with initial influence P({u},VR).
Obviously the top vertex on the max-heap is the first seed,
denoted by s. We pop s, add s into S , and adjust the heap.

In the second iteration, we check the top vertex u in the
max-heap. If Ieu ∩ I

e
s = φ, u and s have no co-influence,

and P({u, s}, v) − P({s}, v) = P(u ❀ v) for any vertex v;
otherwise u and s will co-influence vertices in Ieu ∩ I

e
s and

we need to compute P({u, s},VR). As it is expensive to
compute P({u, s},VR), we estimate an upper bound. First,
if u and s have independent influences to v,

P({u, s}, v) = P(u ❀ v)+P(s ❀ v)−P(u ❀ v) ·P(s ❀ v);

otherwise

P({u, s}, v) ≤ P(u ❀ v)+P(s ❀ v)−P(u ❀ v) ·P(s ❀ v).

Second, for any child c of v, P({s}, c) ≤ 1. Based on Equa-
tion 2, we have

P({u, s}, v) ≤ 1−
∏

c∈Child(v)

(1− P(c, v)).

Accordingly, we have an upper bound of P({u, s}, v):

P̂({u, s}, v) = min

P(u ❀ v) + P(s ❀ v)− P(u ❀ v)P(s ❀ v).

1−
∏

c∈Child(v)(1−P(c, v))

Similarly we can estimate P({u, s},VR) by

P̂({u, s},VR) =
∑

v∈VR

P̂({u, s}, v). (4)

Let P({u}|{s}, VR) denote u’s incremental influence given
a seed set {s}. We have P({u}|{s},VR) = P({u, s},VR) −
P({s},VR). Obviously we can estimate P({u}|{s}, VR) by,

P̂({u}|{s}, VR) = P̂({u, s},VR)−P({s},VR). (5)

Example 4. Recall computing P({12, 4}, 1) = 0.144 in

Example 2. We show how to estimate its bound P̂({12, 4}, 1) =
1−

(

1−P(12 ❀ 1)
)

·
(

1−P(4 ❀ 1)
)

= 1− (1− 0.25 ∗ 0.33) ·
(1 − 0.25 ∗ 0.33) ≈ 0.158. Since P(12 ❀ 1) and P(4 ❀

1) have correlations on vertex 2, the estimated influence is
slightly larger than the real influence. If the tree is large, the
estimation-based method is much more efficient than com-
puting the real influence. In our example, the expansion-
based method estimates the bounds 20 times and computes
influences 5 times.

Generally, suppose we get a seed set Si = {s1, s2, · · · , si}.
We estimate vertex u’s incremental influence given Si by

P̂({u}|Si,VR) = P̂(Si ∪ {u}, VR)−P(Si,VR), (6)

where

P̂(Si ∪ {u},VR) =
∑

v∈VR

P̂(Si ∪ {u}, v),

P̂(Si∪{u}, v) = min

P(u ❀ v) + P(Si, v)− P(u ❀ v)P(Si, v)

1−
∏

c∈Child(v)(1−P(c, v))

Using the bounds, we discuss how to find the seeds. Let
IeSi

denote the set of influencees for seeds in Si, i.e., I
e
Si

=
∪sj∈Si

Iesj . For the top vertex u in the heap, if u has no co-
influence with Si, i.e., I

e
u ∩ I

e
Si

= φ, u is the next seed. We
terminate this iteration. If u has co-influence with Si, (1)
if its influence is still the initial influence (called outdated),

we estimate bound P̂({u}|Si,VR) based on Equation 6, add

〈u, P̂({u}|Si,VR)〉 into max-heap H, and set it estimated;
(2) if the influence of u is already estimated, we compute
P({u}|Si,VR) based on Equation 2, add 〈u,P({u}|Si,VR)〉
into heap H, and set it computed; (3) if the influence of u is
computed, u is the next seed. We terminate this iteration.
We use a hash map M to maintain whether a vertex is
outdated, estimated or computed. As the top vertex always
has the largest (outdated/estimated/computed) influence,
we can employ the best-first method to select the next seed.

3.3 Expansion-based Algorithm
We devise an expansion-based algorithm and the pseudo-

code is illustrated in Algorithm 1. It first precomputes the
influencee sets and influencer sets (line 1). Given a query,
it first computes the candidate set C (line 2) and builds a
max-heap for each candidate u ∈ C with the correspond-
ing initial influence P({u},VR) (line 3). It also maintains a
set of selected seeds S (line 4) and the influencee set Ie of

Algorithm 1: Expansion-based Algorithm

Input: G = (V, E): A graph; Q = (R, k): A query.
Output: S : k-vertex set
// Offline - Indexing

1 Precompute Irv and Iev ;
// Online - Search

2 Compute the candidate set C for vertices in VR;
3 Build max-heap H for u ∈ C with influence P({u},VR) ;
4 Initialize a seed set S = ∅ ;
5 Initialize an influencee set Ie = ∅ ;
6 for i← 1 to k do
7 Initialize a hash mapM = ∅ ;
8 while H 6= ∅ do
9 u = H.pop() ;

10 if Ieu ∩ I
e = φ then

11 S = S ∪ {u}; Ie = Ie ∪ Ieu; break;

12 else
13 if u 6∈ M(i.e., outdated) then

14 Estimate P̂({u}|S ,VR) ;

15 Add 〈u, P̂({u}|S ,VR)〉 into H;
16 Add 〈u, estimated〉 intoM;

17 if u ∈ M & estimated then
18 Compute P({u}|S ,VR) ;
19 Add 〈u,P({u}|S ,VR)〉 into H;
20 Use 〈u, computed〉 to updateM;

21 else if u ∈ M & computed then
22 S = S ∪ {u}; Ie = Ie ∪ Ieu; break;

M

14 Computed

M

3 Estimated

M

15 Estimated

4.344

(1) S={14} (2) S={14, 3} (3) S={14!"3}

Computed

0.22

14

4.667

3

4.375

16

2.250

15

2.333

5

1.667

4

1.667

8

1.333

!"!"!"!"!"!"!"!"

3

4.375

16

2.225

0

2.000

15

2.333

5

1.667

4

1.667

8

1.333

!"!"!"!"!"!"!"!"

15

2.333

16

2.225

0

2.000

4

1.667

5

1.667

10

1.583

8

1.333

!"!"!"!"!"!"!"!"

Figure 3: An Example for Expansion-based Method.

seeds in S (line 5). Then it iteratively selects a seed with
the maximum incremental influence from the heap (lines 6-
22). For each top vertex u in the max-heap, it pops u from
the heap. If u has no co-influence with selected seeds in S ,
i.e., Ieu ∩ I

e = φ, u is a seed. It adds u into S and up-
dates Ie = Ie ∪ Ieu (line 11). If u 6∈ M, i.e., its influence
is outdated, it estimates its influence based on Equation 7
and adds 〈u, P̂({u}|S ,VR)〉 into heap H and 〈u, estimated〉
into map M (lines 13-16). If u ∈ M and its influence is
estimated, it computes u’s real influence based on Equa-
tion 2, adds 〈u,P({u}|S ,VR)〉 into heap H, and utilizes 〈u,
computed〉 to update M (lines 17-20). If u ∈ M and its
influence is computed, u is a seed. It adds u into S and
updates Ie = Ie ∪ Ieu (line 22).

Example 5. For query Q in Figure 1, we first identify
the candidate seeds and build a max-heap (Figure 3). In
the heap, the top four vertices are 14, 3, 15, 16 with initial
influences of 4.667, 4.375, 2.333, and 2.25 respectively. In
the first iteration, vertex 14 has the largest initial influence
4.667 and it is the first seed. Then the next top vertex is

vertex 3. Since it has co-influence with vertex 14, we es-
timate its incremental influence P̂({3}|{14}, VR) = 4.344
using Equation 5. Then we add 〈3, 4.344〉 into the heap.
As vertex 3 is still the top vertex, we calculate vertex 3’s
accurate incremental influence using Equation 3. Since ver-
tex 3’s incremental influence is larger than vertex 15’s ini-
tial influence, vertex 3 is the next seed. Next the top vertex
in the heap is vertex 15. We estimate its incremental in-
fluence. Since vertex 15 only influences vertices 15, 9, 13,
P̂({15}|{14, 3},VR) = P̂({15}|{14, 3}, 15)+P̂({15}|{14, 3}, 9)+

P̂({15}|{14, 3}, 13) = 0+ 0+
(

(1− (1− 0.33) ∗ (1− 0.33))−

0.33
)

= 0.22. Then the next top vertex in the heap is 16. Af-
ter estimating its incremental influence, it will be the next
seed. Similarly, we select the following seeds 10 and 8.

4. ASSEMBLY-BASED METHOD
The expansion-based method has two limitations. First,

it requires to calculate the candidates set C and initial influ-
ence P({u},VR) for every vertex u ∈ C. If the query region is
large, there will be large number of candidate seeds in C. To
address these problems, we propose an index-based method
to efficiently compute the candidate set and initial influences
(Section 4.1). Second, the candidate set C contains many in-
significant candidates which will not be selected as seeds and
thus we do not want to compute their influences. In other
words, we want to examine superior vertices with large influ-
ences earlier to prune inferior vertices with small influences.
To achieve this goal, we propose an assembly-based frame-
work (Section 4.2) and devise an efficient assembly-based
algorithm (Section 4.3).

4.1 Indexes
Node-Influencer Index L. Wemaintain a node-to-influencer
index L. For each QuadTree node Ri, we precompute the in-
fluencer set for vertices in node Ri, denoted by IrRi

, which
is the union of influencer sets of vertices in node Ri, i.e.,
IrRi

= ∪v∈Ri
Irv . In addition, for each vertex u ∈ IrRi

, we
also precompute its influence to vertices in Ri, denoted by
P({u},VRi

) =
∑

v∈Ri
P(u ❀ v). We use a list LRi

to main-
tain all the vertices in IrRi

with their influences to Ri, sorted
by a decreasing order, i.e., LRi

= {〈u,P(u,VRi
)〉|u ∈ IrRi

}.
We use a bottom-up method to efficiently compute the lists.
First, for each leaf node, we compute IrRi

and P({u},VRi
)

by traversing vertices in the leaf node. Then for each non-
leaf node Rc, its candidate set is the union of the candi-
date sets of its children, i.e., IrRc

= ∪Ri∈Child(Rc)I
r
Ri

where
Child(Rc) is the child set of Rc. For u ∈ Rc, its influence
to Rc is P({u},VRc) =

∑

Ri∈Child(Rc)
P({u},VRi

).

Influencer-Node Index F. We maintain an influencer-
to-node index F . For each vertex u, we keep a list of tree
nodes whose influencer set contains u, with the correspond-
ing influences, i.e., Fu = {〈Ri,P({u},VRi

)〉|u ∈ IrRi
}.

For example, Figure 4 shows the node-influencer index on
QuadTree nodes. Consider node BC with vertices 3, 4, 5, 6,
7. Its node-influencer list includes {〈3, 3.833〉, 〈5, 1.333, 〉, · · · }.
That is vertex 3 will influence node BC with influence 3.833.
Table 1 illustrates the influencer-node index. The list of
vertex 3 is {〈A, 0.125〉, 〈BC, 3.833〉, 〈DA, 0.417〉}. That is
vertex 3 has influences on nodes A, BC, and DA.

4.2 Assembly-based Framework
Initialization. Given a query Q, we identify QuadTree

nodes that are fully covered by R, denoted by RQ = {R1,

Table 1: Influencer-Node Index.
Vertex Nodes and Influences

3 〈A, 0.125〉, 〈BC, 3.833〉, 〈DA, 0.417〉
14 〈A, 0.333〉, 〈CB, 4.333〉
16 〈A, 1.583〉, 〈BC, 0.500〉, 〈DA, 0.167〉
· · · · · ·

R2, · · · ,Rr}, and the set of vertices whose corresponding
nodes are not fully covered by R, denoted by Vo. For each
Ri, we identify the corresponding list LRi

from the node-
influencer index L. For Vo, we on-the-fly generate such
list. We first compute its influencer list Iro = ∪u∈VoI

r
u.

For each vertex u ∈ Iro , we compute P({u},Vo) based on
Equation 3 and generate a sorted list of vertex u based on
their influences, denoted by LVo . We also generate a map
Fo = {〈u,P({u},Vo)〉|u ∈ I

r
o}.

Using these lists, given a query Q, for each vertex u, we
can compute its influence to R, i.e., P({u},VR) as below,

P({u},VR) = P({u},Vo) +
∑

1≤i≤r

P({u},VRi
) (7)

Next we devise an assembly-based algorithm to compute
k-vertex set S . For simplicity let R0 = Vo. Now we have a
set of lists, LR0

= LVo ,LR1
,LR2

, · · · ,LRr . We also have a
influencer-node index F from vertices to nodes Ri and Vo.
We still use the max-heapH to identify seeds. Different from
the expansion-based method, we do not insert all candidate
seeds into the max-heap. Instead we add candidate seeds
into the max-heap on-demand as follows.

Finding the First Seed. As vertices LR0
,LR1

, · · · ,LRr

are sorted by their influences in a descending order, we check
the vertices in order and add the vertices with the largest
influences into the max-heap. We obtain a lower bound BH
for the next seed’s influence using the heap and an upper
bound BL for the unvisited vertices’ influences using these
lists. If BH ≥ BL, we find the first seed and terminate;
otherwise we add more vertices into the heap.

Formally, we first check the first vertex of each list, e.g.,
u0 = LR0

[1], u1 = LR1
[1], u2 = LR2

[1], · · · , ur = LRr [1].
Let BL =

∑

0≤i≤r P({ui},VRi
) where P({ui},VRi

) is kept
in the list LRi

. Obviously BL is an upper bound of influ-
ences of unvisited vertices. (Notice that different from the
threshold-based algorithm [7], the influences in the lists will
be dynamically changed.) For each vertex ui, we compute
P({ui},VR) =

∑

ui∈Rj
P({ui},VRj

) where each P({ui},VRj
)

for 0 ≤ j ≤ r can be easily obtained from the influencer-node
index F . We insert these first vertices into the heap H. Af-
ter inserting all first vertices into the heap, let BH denote
the influence of the top vertex in the heap. Obviously if
BH ≥ BL, the top vertex must be the seed and we termi-
nate this iteration; otherwise we check the second vertices
of each list, update BL using the sum of influences of the
second vertices, and insert all second vertices into the heap.

Example 6. For query Q, we get three fully covered nodes,
BC, CB, DA, and the corresponding lists are illustrated in
Figure 4. We also get other three vertices 0, 1, 2. We gener-
ate a list of these vertices: {〈16, 1.583〉, 〈0, 1.333〉, 〈2, 1.333〉,
〈1, 1.0〉, · · · } as shown in Figure 4. In the first step, we ac-
cess vertices 〈16, 1.583〉, 〈3, 3.883〉, 〈14, 4.333〉, 〈10, 1.583〉.
We get a bound BL = 11.333. Using the influencer-node in-
dex F, we compute 〈16, 2.25〉, 〈3, 4.375〉, 〈14, 4.666〉, 〈10, 1.583〉
and insert them into H. We have BH = 4.667. Then we in-
sert the second, third, fourth vertices of each list into the
heap. We have BL = 3.917 < BH. Thus we get the first seed

16 1.583

2 1.333

0 1.333

12 0.333

1 1.000

List

4 0.333

17 0.333

14 0.333

3 0.125

3 3.833

7 1.333

5 1.333

6 1.000

4 1.000

16 0.500

0 0.500

List

10 1.583

11 1.000

8 1.333

19 0.917

18 0.917

21 0.792

3 0.417

List

4 0.333

5 0.333

0 0.167

16 0.167

14 4.333

12 1.333

15 2.333

13 1.000

9 1.000

23 0.333

List

DA CBBCA

11.333

6.333

5.000

3.917

3.250

1.958

14
4.667

3
4.375

16
2.250

10
1.583

14
4.667

3
4.375

16
2.250

15
2.333

5
1.667

10
1.583

8
1.333
!"!"!"!"!"!"!"!"

15

2.333

16

2.250

4

1.667

5

1.667

0

2.000

8

1.333

10

1.583

!"!"!"!" !"!"!"!"

14 4.667

3 4.344

3

4.375

16

2.250

15

2.333

5

1.667

0

2.000

4

1.667

8

1.333

!"!"!"!"!"!"!"!"

14 4.667

4.344Computed

Figure 4: An Example for Assembly-based Method.

14. Here we only access 16 vertices to find the first seed and
the expansion-based method visits 22 vertices.

Finding the Next Seed. Selecting the second seed is dif-
ferent from selecting the first seed, because once a seed s
is selected, some vertices which have co-influence with the
seed will be affected. We need to update their influences.
To address this issue, we use the expansion-based method
to find the next seed from the heap, e.g., u. We use its in-
fluence P({u}|{s}, VR) as a lower bound of the next seed,
also denoted by BH. If BH ≥ BL, then the top vertex of the
heap is the next seed; otherwise, we access the next vertices
of each list and insert them into the heap and update BL
using the sum of influences of these vertices. Then we use
the expansion-based method to find the next seed from the
heap and update BH using the top vertex. Iteratively we can
find top-k seeds. Unlike the expansion-based method, the
max-heap has a much smaller number of candidate seeds.

Example 7. We continue with Example 6. The top ver-
tex in the heap is 〈3, 4.344〉. Thus we have BH = 4.344.
Since the upper bound for unvisited vertices is BL = 3.917 <
BH, there is no vertex with better incremental influence than
vertex 3. Thus the second seed is vertex 3. Notice that here
we do not need to visit vertices 6, 13, 19, 23, 21, 17 to find the
top-2 seeds. Therefore the assembly-based method can reduce
the size of and operations on H, especially when there are
large numbers of candidate seeds.

4.3 Assembly-based Algorithm
In this section, we give the assembly-based algorithm and

the pseudo-code is shown in Algorithm 2. In the offline
processing, it requires to materialize the node-influencer list
LRi

for each node Ri (line 1), influencer-node list Fu for
each vertex u (line 2) and influencee set Ieu and influencer
set Iru (line 3). In the online search, it first computes the
tree nodes covered by R and loads the node-vertex lists
LR1

,LR2
, · · · ,LRr from the node-vertex index L (line 4).

It calculates LR0
for other vertices in R (line 5). Then it

initializes a max-heap H, a lower bound for the heap BH
and an upper bound for the lists BL (lines 6-7). Then it
pops the top vertices from the lists LR0

,LR2
, · · · ,LRr and

inserts them into max-heap H (lines 10-11). Next it esti-
mates an upper bound of the lists using the influences of the
current vertices, BL (line 12) and uses the expansion-based
algorithm to identify the next seed using the heap (line 13).
Then it takes the influence of the top vertex u of the heap
as a lower bound BH of the next seed (line 14). If BH ≥ BL,
the top vertex u is the next seed, and the algorithm pops it
from the heap and adds it into S (lines 16-18).

Algorithm 2: Assembly-based Algorithm

Input: G = (V, E): A graph; Q = (R, k): A query.
Output: S : k-vertex set
// Offline - Indexing

1 Precompute Node-influencer List LRi
for each node Ri;

2 Precompute Influencer-Node List Fu for each vertex u;
3 Precompute Iru and Ieu for each vertex u;
// Online - Search

4 Identify LR1
,LR2

, · · · ,LRr from Node-Vertex Index L;
5 Compute LR0

;
6 Initialize seed set S = ∅;
7 Bound for heap BH = 0; Bound for lists BL = 0;
8 while ∪0≤i≤rLRi

6= ∅ do
9 for i ∈ [0, r] do

10 Pop ui from LRi
;

11 Insert
(

ui,
∑

ui∈Rj
P({ui},VRj

)
)

into heap H;

12 BL =
∑

0≤i≤r
P({ui},VRi

);

13 u = Expansion(G, Q);
14 BH is the influence of the top element u in H;
15 if BH ≥ BL then
16 s = H.pop();
17 S = S ∪ {s} ;
18 if |S| = k then return ;

5. ALGORITHMS WITH ǫ · (1 − 1/e) AP-

PROXIMATION RATIO
The expansion- and assembly-based algorithms greedily

identify the top-k seeds to achieve 1 − 1/e approximation
ratio. However for large k, they are still expensive since they
have to visit large number of vertices and update their influ-
ences. To meet the instant-speed requirement, we propose
efficient algorithms with ǫ · (1−1/e) approximation ratio for
any ǫ ∈ (0, 1]. As such, we propose a bound-based algorithm
in Section 5.1 and a hint-based algorithm in Section 5.2.

5.1 Bound-based Algorithm
We can utilize the assembly-based algorithm to estimate

an upper bound and a lower bound of P(S ,VR). If the
lower bound is not smaller than ǫ times the upper bound,
we can terminate the algorithm and obviously this method
can achieve ǫ·(1−1/e) approximation ratio for any ǫ ∈ (0, 1].
Next we introduce the details.

Estimate Upper Bound of P(S ,VR). We first use the
assembly-based algorithm to greedily select the seeds. Sup-
pose at the i-th iteration, it gets a seed set Si = {s1, s2, · · · , si}
with i seeds. Since si is the i-th best seed, the incremental
influences of other vertices will not be larger than P(si|Si−1,VR)
based on the submodularity. We can use the i-th seed to
substitute the following k− i seeds and get an upper bound,

Bu = P(Si,VR) + (k − i) · P(si|Si−1,VR).

However the incremental influences of other vertices may
be much smaller than P(si|Si−1,VR), and the upper bound
would be loose. We want to improve the upper bound by
selecting k− i vertices from the max-heap. Let Pk−i denote
the (k− i)-th largest influence in the max-heap. If the upper
bound BL of the lists (LRi

) is larger than Pk−i, we add the
vertices in the lists into the heap, until BL is not larger than
the updated (k − i)-th largest influence in the max-heap.

Here we only use Equation 6 to estimate the upper bound
of such vertices and do not compute their real incremental
influences. Suppose the largest k − i influences in the heap
are Bu

1 ,B
u
2 , · · · ,B

u
k−i. We get a tighter upper bound,

Bu = P(Si,VR) +
∑

1≤j≤k−i

Bu
j . (8)

Estimate Lower Bound of P(S ,VR). For any vertex u,
if we do not consider its influencees that are also influencees
of Si (in other words we only consider its influencees that
are not influenced by Si), we can get a lower bound

P̂(u,VR) =
∑

w∈VR∩(Ie
u\Ie

Si
)

P(u ❀ w), (9)

where IeSi
= ∪s∈Si

Ies is the influencee set of Si. As the
incremental influence of u to w will not be smaller than
P(u ❀ w)− P(Si, w), we can get a tighter lower bound,

P̂(u,VR) = max(0,
∑

w∈VR∩Ie
u

P(u ❀ w)− P(Si, w)) (10)

To select the top-(k−i) vertices with the largest lower
bound, we can use a priority queue to keep these vertices.
When we add a vertex into the max-heap, we estimate its
lower bound. If its lower bound is larger than the (k− i)-th
largest influence in the priority queue, we use it to replace
the one in the priority queue with the smallest value. Then
we can use the vertices in the priority queue to estimate the
lower bound. For simplicity, suppose v1, v2, · · · , vk−i are the
k − i vertices with the largest lower bounds in the priority
queue. We compute their incremental lower bounds, denoted
by Bl

v1
,Bl

v2
, · · · ,Bl

vk−i
. (When computing the incremental

lower bound of vj , we temporarily treat v1, v2, · · · , vj−1 as
seeds.) Using the i seeds and the k−i vertices in the priority
queue, we get a lower bound of P(S ,VR),

Bl = P(Si,VR) +
∑

1≤j≤k−i

Bl
vj
. (11)

Obviously if Bl ≥ ǫ · Bu, we can terminate the algorithm,
since we can use vertices v1, v2, · · · , vk−i as the k − i seeds,
and the influences of these vertices plus the i seeds are not
smaller than ǫ times the influence of S . If Bl < ǫ · Bu,
we identify the next seed and update the lower and upper
bounds. Since the upper bound Bu monotonically decreases
and the lower bound Bl monotonically increases, iteratively
we can find seeds with ǫ · (1− 1/e) approximation ratio.

Example 8. Suppose k = 5 and ǫ = 80%. After we se-
lect two seeds 〈14, 4.667〉, 〈3, 4.344〉, we use heap H and lists
LRi

to find another 3 vertices with largest incremental in-
fluences to get 5 vertices so as to compute the upper bound.
As influences popped from H may be outdated, we estimate
their upper bound based on Equation 6. The top vertices
in the heap are 〈16, 1.858〉, 〈4, 1.667〉, 〈5, 1.667〉 and thus the
upper bound is Bu = 14.203. The top three vertices in the
priority queue are vertices 16, 10 and 0. We compute their
incremental lower bounds, 〈16, 1.0〉, 〈10, 1.0〉, 〈0, 0.0〉 using
Equation 9. Thus the lower bound is Bl = 11.01 computed
by seeds 〈14, 4.667〉, 〈3, 4.344〉 and three lower bounds. As
14.203 ∗ 80% > 11.01, we need to select the third seed, i.e.
vertex 16. Then the upper bound is updated to Bu = 13.251
and the new lower bound is Bl = 11.813. As 13.251 ∗ 80% <
11.813, the algorithm terminates. Here we only select 3 seeds
and use vertices 14, 3, 16, 10, 0 as the top-5 seeds.

5.2 Hint-based Algorithm
The bound-based method uses the vertices in the prior-

ity queue to substitute some real seeds. Since it does not
consider the co-influences among these vertices, the influ-
ence spread may be much smaller. To address this issue, we
propose a hint-based method.

Basic Idea. For each tree node Ri, we can precompute its
top-k seeds with the corresponding influence to Ri, i.e., the
answer of QRi

= (Ri, k), denoted by HRi
. Each vertex in

HRi
is called a hint for node Ri. Obviously, we have con-

sidered the co-influences between the hints in HRi
and we

can use them to estimate a much tighter lower bound. In
addition, for the vertex set Vo (the vertices inR whose corre-
sponding node is not fully covered by R), we also compute
its top-k seeds, denoted by HR0

= HVo . Since there are
small number of vertices in Vo, we can efficiently compute
HR0

and also take them as hints. Given a queryQ = (R, k),
we assemble the hints in HR0

,HR1
, · · · ,HRr to estimate a

tighter lower bound of P(S ,VR) as follows.

Hint-based Lower Bound. We can prove that for any k
distinct vertices v1, v2, · · · , vk in these hint lists, the sum of
their influences in the corresponding lists must be a lower
bound. That is

∑

1≤i≤k

∑

vi∈HRj

HRj
[vi] ≤ P(S ,VR) as

stated in Theorem 1, where HRj
[vi] is the incremental in-

fluence of vi in the hint list HRj
.

Theorem 1. Given a query Q = (R, k), let HR0
, HR1

,
· · · , HRr denote the hint lists of Q’s vertex set Vo and fully
covered regions R1,R2, · · · ,Rr, for any k distinct vertices
in these lists, v1, v2, · · · , vk, we have

∑

1≤i≤k

∑

vi∈HRj

HRj
[vi] ≤ P(S ,VR),

where S is the real seed set of Q.

Proof Sketch. First, since the query region R covers
regions R1,R2, · · · ,Rr and vertices in Vo and the influences
of hints in these lists are only for local region Ri, we have
∑

vi∈HRj

HRj
[vi] ≤ P(vi,VR). Thus vertices in different

lists have no influence overlap in any region. Second, if ver-
tices vi and vj are in the same list, we have considered their
co-influence in the list. Thus the Theorem is correct.

Based on Theorem 1, we want to select the k distinct
vertices with the largest total influences. To this end, we
can scan the hints in these lists to find k hints to maximize
the total influence. We can also use the threshold-based
algorithm [7] to find top k hints. As there are a small number
of hints, it is very efficient to find top k hints. LetHR denote
the set of top-k hints with the largest influences. Using these
k hints, we can get a tighter lower bound,

Bl
H =

∑

vi∈HR

∑

vi∈HRj

HRj
[vi]. (12)

Hint-based Method. Given a query Q, we first estimate
a lower bound Bl

H based on Equation 12. Then we use the
assembly-based method to find seeds. Suppose we select a
seed and estimate the upper bound Bu based on Equation 8.
If Bl

H ≥ ǫ · Bu, we terminate and use the hints as the seed
set S ; otherwise if the seed is in the hint set HR, we keep
the hint set and go to the next iteration. If the seed is
not in the hint set, we add the selected seed into the hint

3 3.833

4 0.500

6 0.667

Hint

14 4.333

13 0.667

Hint

10 1.583

11 0.444

8 0.972

Hint

DA CBBC

16

1.858

4

1.667

5

1.667

0

1.629

8

1.333

10

1.583

!"!"!"!" !"!"!"!"

12

1.667

14 4.667

3 4.344
= 14.203B

u

= 11.389B
u

H
B

u
 = 15.594

3

4.344

16

2.250

15

2.333

5

1.667

0

2.000

4

1.667

8

1.333

!"!"!"!"!"!"!"!"

14 4.667

Figure 5: Hint-based Method.

set HR, remove the hint with the minimal influence from
HR, and update the influence of the hint set and the lower
bound Bl

H. Next we use the assembly-based method to find
the next seed. Iteratively, we can find the seed set S with
ǫ · (1− 1/e) approximation ratio. It is worth noting that the
hint-based method will retreat to the bound-based method
if any initial hint is not a selected seed.

Example 9. Suppose k = 5 and we use the fully covered
regions to select hints as shown in Figure 5. We choose 5
hints with the largest incremental influences from hints, i.e.,
14, 3, 10, 8, 6. We sum up their incremental influences and
get a lower bound Bl

H = 11.389. Recall Example 8, the first
seed is vertex 14. The upper bound is Bu = 15.594. As
15.594 ∗ 80% > 11.389, we select the next seed. As vertex 14
is in the hint set, we do not update lower bound. The second
seed is vertex 3 and the upper bound is updated to Bu =
14.203. As 14.203∗80%<11.389, the algorithm terminates.
We take vertices 14, 3, 10, 8, 6 as top-k seeds. Compared
with the bound-based method which computes 3 seeds to do
estimation, the hint-based method only identifies 2 seeds.

6. COMPLEXITY AND UPDATE

6.1 Space Complexity
Influencer/Influencee Index Irv/I

e
v . Suppose the aver-

age number of influencers/influencees is τ r
θ /τ

e
θ . The com-

plexity of the influencer/influencee index isO(τ r
θ |V|)/O(τ

e
θ |V|).

QuadTree Index. If each leaf node contains m vertices,

the number of leaf nodes in the QuadTree is |V|
m

and the

total number of nodes (denoted by NQT) is NQT = 2 |V|
m

. The
complexity of the QuadTree is O(NQT + |V|) = O(|V|).
Influencer-Node Index F. As each vertex appears in
min(τ e

θ , NQT) QuadTree nodes in average, the space complex-
ity of the influencer-node index is O(min(τ e

θ , NQT)|V|).
Node-Influencer Index L. The influencer-node index is
the inverted index of the node-influencer index and its com-
plexity is also O(min(τ e

θ , NQT)|V|).
Hint Index H. Each QuadTree node contains at most k
hints, and the space complexity is O(kNQT).

6.2 Time Complexity
The expansion-based method first generates the candi-

dates. The time complexity to retrieve the vertices in the
query region is O(NQT + |VR|). For each v ∈ VR, it needs to
compute its influencer set Irv and takes ∪v∈VR

Irv as the can-
didate set. For each u ∈ ∪v∈VR

Irv , it computes the influence
P({u},VR) and the cost is |Ieu|. Thus the time complexity
to generate the candidates is O(|VR|τ

r
θ τ

e
θ), where τ r

θ /τ
e
θ is

the average number of influencers/influencees. Next it uses
the heap to select k seeds. The heap construction complex-
ity is O(|C|). Each candidate is estimated and computed
at most k times. Each selected seed affects min(|C|, τ r

θ τ
e
θ)

vertices that are required to compute the incremental in-
fluence. The estimation-based method estimates the in-
cremental influence of vertex v based on Iev and the com-
plexity is O(τ e

θ). To actually compute the incremental in-
fluence, it uses the Dijkstra algorithm and the complexity
is O(τ e

θ log τ e
θ + E) = O(τ e

θ log τ e
θ + τ e

θ τo), where E is the
number of edges accessed in the Dijkstra algorithm, τo is
the average out-degree of vertices, and E can be estimated
by τ e

θ τo. The heap adjustment complexity is O(log |C|).
Thus the time complexity of the expansion-based method is
O
(

|VR|τ
e
θ τ

r
θ +|C|+kmin(|C|, τ e

θ τ
r
θ)(τ

e
θ log τ e

θ +τ e
θ τo+log |C|

)

.
The assembly-based method avoids finding the candidates

and the number of vertices in the heap will be much smaller.
The time complexity is O(|Ca|+kmin(|Ca|, τ

e
θ τ

r
θ)(τ

e
θ log τ e

θ +
τ e
θ τo+log |Ca|)), where Ca is the set of vertices added into the
heap. The bound- and hint-based methods further reduce
the number of vertices added into the heap. The time com-
plexities areO(|Cb|+kmin(|Cb|, τ

e
θ τ

r
θ) (τ

e
θ log τ e

θ+τ e
θ τo+ log |Cb|))

and O(|Ch|+kmin(|Ch|, τ
e
θ τ

r
θ)(τ

e
θ log τ e

θ +τ e
θ τo+log |Ch|)) re-

spectively, where Cb and Ch are respectively the sets of ver-
tices added into heaps of bound- and hint-based methods.

6.3 Updates
First we discuss how to support location updates. Suppose

the location of vertex v is updated to QuadTree node n2 from
node n1. If n1 = n2, we do not update our index; otherwise
for the QuadTree, we move the vertex from n1 to n2 with
O(1) complexity. For the node-influencer index, we move
vertex v from the node-influencer list of node n1 to that of
node n2. As we use a hash map to maintain the list, the
time complexity is O(1). For the influencer-node list of v,
we replace n1 with n2 and the time complexity is also O(1).
For the hint index, for each hint h in node n1, as v is moved
away from node n1, we update h’s influence by subtracting
P(h, v) using Ieh and the time complexity is O(1). As there
are at most k hints, the total complexity is O(k). For each
hint in node n2, its influence will not decrease. We can still
use the influence as a lower bound and do not update hints in
n2. It is worth noting that the motivation of the hint-based
method is to provide a promising candidate set and using a
lower bound will not affect the result of our algorithm.

Then we discuss how to support graph updates.
(1) Add an edge (u, v). For each u′ ∈ Iru, we run the Di-
jkstra algorithm to update Ieu′ and the time complexity is
O(τ r

θ (τ
e
θ log τ e

θ + τ e
θ τo)). For each v′ ∈ Ieu′ , if u′ is not in

Irv′ , we add u′ in to Irv′ with time complexity O(1). We also
update the influencer-node index. Considering a QuadTree

node Ri, we update u
′’s influence to Ri as follows. For each

v′ ∈ Ieu′ ∩ Ri, we update P(u′,Ri) using the new influence
P(u′, v′) and the time complexity is O(τ e

θ τ
r
θ). Similarly, we

update the node-influencer list with the same complexity.
We do not update the hint index as the influences of hints
will not decrease and we still use them as lower bounds. The
time complexity of adding an edge is O(τ r

θ (τ
e
θ log τ e

θ +τ e
θ τo)).

(2) Delete an edge (u, v). It is the same as adding an edge
except for each hint h, the influence of h maybe decrease.
If h is in Irv , we update its influence by subtracting P(h, v′)
for v′ ∈ Iev and the complexity is O(kτ e

θ).
(3) Add/Delete an isolated vertex(with degree of 0). We in-
sert/delete it into/from the QuadTree with complexityO(log |V|).

7. EXPERIMENTAL STUDY
Datasets. We used four real datasets Gowalla, Twitter,
Foursquare, and Weibo. Gowalla was downloaded from an
open dataset website snap.stanford.edu/data/loc-gowalla.html.
Twitter, Foursquare and Weibo were respectively crawled
from twitter.com, foursquare.com, and weibo.com. The user
location was the place the user most frequently checked in.
The four datasets are directed graphs and the details are
shown in Table 2, where AvgD denotes the average degree,
and MaxID/MaxOD denotes the maximum in-/out-degree.

We utilized two widely-used models to set the edge proaba-
bilites [2]. For the weighted cascade model, we set the proba-
bility of (u, v) as 1

Nv
, whereNv is number of v’s in-neighbors.

For the trivalency model, we randomly and uniformly set a
probability in {0.1, 0.01, 0.001}, respectively corresponding
to high, medium and low probabilities.

Table 2: Datasets.
Datasets #Vertices #Edges AvgD MaxID MaxOD
Gowalla 197K 1.9M 9.67 739 735
Twitter 554K 4.29M 7.75 1,143 639
Foursquare 4.9M 53.7M 11.6 4702 727
Weibo 1.02M 166.7M 166.2 1000 4979

Queries. We randomly generated three types of queries
with different region sizes. (1) Small region queries: the
query region contained about 10,000 vertices. (2) Medium
region queries: the query region contained about 100,000
vertices. (3) Large region queries: the query region con-
tained about 1 million vertices. There were 1000 queries in
each type and we report the average performance.

Algorithms. We compared with the state-of-the-art algo-
rithms PMIA [2] and IRIE [9]. We obtained the source codes
from the authors and extended them to support our prob-
lem as discussed in Section 2.2. We also implemented our
algorithms, Expansion, Assembly, Bound, and Hint. All the
algorithms were implemented using C++.

Index Sizes and Time. Due to space constrains, we only
report the index sizes and time on the Foursquare dataset.
All algorithms utilized the QuadTree (QT), where leaf nodes
contained at most 500 vertices and the height was 7. PMIA

and our algorithms used influencer sets Irv and influencee
sets Iev . Assembly, Bound and Hint also used the node-
influencer index L and influencer-node index F . Hint uti-
lized an additional hint index H. Besides these indexes, the
memory usage also included the dataset and runtime usage
(RT). We report the preprocessing time on the Foursquare

dataset with θ = 0.05 and α = 0.3 using the weighted cas-
cade model, where α was a factor in IRIE to tune the influ-
ence spread and IRIE achieved the best influence spread at
α = 0.3. IRIE, PMIA, Expansion, IRIE, Assembly/Bound and
Hint respectively took 5.3, 118, 124, 800, and 2000 seconds.
The details are shown in Table 3.

Table 3: Memory&Time on Foursquare (GB,k=5000).
Methods Data QT Irv/I

e
v L&F H RT Total Time(s)

IRIE 1.4 0.13 – – – 0.2 1.7 5.3
PMIA 1.4 0.13 1.4 – – 1.2 4.1 118
Expansion 1.4 0.13 1.4 – – 1.2 4.1 124
Assembly 1.4 0.13 1.4 2.4 – 1.2 6.5 800
Bound 1.4 0.13 1.4 2.4 – 1.2 6.5 800
Hint 1.4 0.13 1.4 2.4 0.2 1.2 6.7 2000

Experiment settings. All the experiments were conducted
on a computer with two Intel(R) Xeon(R) E5630 3.0GHZ
processors and 48GB RAM, running Ubuntu 10.04.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

CELFGreedy
IRIE

PMIA
Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(a) Gowalla (|VR| ≈ 10K)

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 100 200 300 400 500

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

IRIE
PMIA

Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(b) Twitter (|VR| ≈ 100K)

 40

 60

 80

 100

 120

 140

 160

 180

 1000 2000 3000 4000 5000

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

PMIA
Expansion
Assembly

Hint(90%)

Hint(80%)
Bound(90%)
Bound(80%)

(c) Foursquare (|VR| ≈ 1M)

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

PMIA
Expansion
Assembly

Hint(90%)

Hint(80%)
Bound(90%)
Bound(80%)

(d) Weibo (|VR| ≈ 100K)

Figure 6: Influence Spread on Weighted Cascade Model ((a)(b)(c): θ = 0.05, (d) : θ = 0.001).

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

CELFGreedy
IRIE

PMIA
Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(a) Gowalla (|VR| ≈ 10K)

 4

 5

 6

 7

 8

 9

 100 200 300 400 500

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

IRIE
PMIA

Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(b) Twitter (|VR| ≈ 100K)

 40

 60

 80

 100

 1000 2000 3000 4000 5000

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

PMIA
Expansion
Assembly

Hint(90%)

Hint(80%)
Bound(90%)
Bound(80%)

(c) Foursquare (|VR| ≈ 1M)

 0

 10

 20

 30

 100 200 300 400 500

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Top-K

PMIA
Expansion
Assembly

Hint(90%)

Hint(80%)
Bound(90%)
Bound(80%)

(d) Weibo (|VR| ≈ 100K)

Figure 7: Influence Spread on Trivalency Model ((a)(b)(c): θ = 0.001, (d) : θ = 0.01).

 0.001

 0.01

 0.1

 1

 10

 10 20 30 40 50

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

IRIE
PMIA

Expansion
Assembly

(a) Gowalla (|VR| ≈ 10K)

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

IRIE
PMIA

Expansion
Assembly

(b) Twitter (|VR| ≈ 100K)

 0.1

 1

 10

 100

 1000

 1000 2000 3000 4000 5000

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

PMIA
Expansion
Assembly

(c) Foursquare (|VR| ≈ 1M)

 0.1

 1

 10

 100 200 300 400 500

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

PMIA
Expansion
Assembly

(d) Weibo (|VR| ≈ 100k)

Figure 8: Efficiency: IRIE vs PMIA vs Expansion vs Assembly on Weighted Cascade((a)(b)(c):θ=0.05,(d):θ=0.001).

 0.01

 0.1

 1

 10

 10 20 30 40 50

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

IRIE
PMIA

Expansion
Assembly

(a) Gowalla (|VR| ≈ 10K)

 0.1

 1

 10

 100

 1000

 100 200 300 400 500

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

IRIE
PMIA

Expansion
Assembly

(b) Twitter (|VR| ≈ 100K)

 1

 10

 100

 1000

 1000 2000 3000 4000 5000

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

PMIA
Expansion
Assembly

(c) Foursquare (|VR| ≈ 1M)

 1

 10

 100

 100 200 300 400 500

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

PMIA
Expansion
Assembly

(d) Weibo (|VR| ≈ 100K)

Figure 9: Efficiency: IRIE vs PMIA vs Expansion vs Assembly on Trivalency ((a)(b)(c):θ=0.001,(d):θ=0.01).

7.1 Influence Spread
We compared the influence spread of different methods.

Figures 6 and 7 show the results on the weighted cascade
model and trivalency model respectively, where 80% refers
to ǫ = 80%. For IRIE, we tuned its parameter α and
showed the best result at α = 0.3. For the other algo-
rithms, we set θ = 0.05. We also compared with CELF-

Greedy, which was the original greedy algorithm with the
cost-effective outbreak detection optimization [13].1 We can
see that CELFGreedy, IRIE, PMIA, Expansion, and Assem-

bly achieved nearly the same influence spread on the two
models, since they employed the greedy algorithm and had
1 − 1/e approximation ratio. As CELFGreedy was rather
slow, we only evaluated it on the Gowalla dataset. Although
IRIE achieved similar influence spread, it was rather hard to
tune the parameter α to achieve high influence spread. Hint
achieved nearly the same influence spread as the other algo-
rithms because it can accurately estimate the lower bounds

1
We used R = 20000 to obtain accurate estimation.

and considered the co-influences among hints. For example,
Hint nearly achieved more than 95% approximation. Bound
achieved smaller influence spreads as its selected vertices for
substituting the seeds may have low influence spreads (as it
did not consider the co-influences among these vertices).

7.2 Efficiency
We evaluated the efficiency of different algorithms. We

first compared PMIA, IRIE, Expansion, and Assembly with
1 − 1/e approximation ratio. We still used the three types
of queries. Figures 8(a), (b)/(d), and (c) show the results
for queries with small query regions, medium regions, and
large regions respectively on the weighted cascade model and
similarly Figure 9 shows the results on the trivalency model.
We have five observations. First, IRIE had the worst perfor-
mance. The main reason is that to select the next seed in
each iteration, IRIE was more expensive than PMIA and our
method, because IRIE had to update the incremental influ-
ences for all vertices (as it used linear equations to update
influences) while PMIA and our method only updated vertices

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 2000 3000 4000 5000

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

Assembly
Bound(90%)
Bound(85%)
Bound(80%)

Hint(90%)
Hint(85%)
Hint(80%)

(a) Weighted Cascade

 0

 5

 10

 15

 20

 1000 2000 3000 4000 5000

E
ffi

ci
en

cy
(S

ec
on

ds
)

Top-K

Assembly
Bound(90%)
Bound(85%)
Bound(80%)

Hint(90%)
Hint(85%)
Hint(80%)

(b) Trivalency

Figure 10: Efficiency: Assembly vs Bound vs Hints
on Foursquare (|VR| ≈ 1M, (a) : θ = 0.05, (b) : θ = 0.001).

 46

 48

 50

 52

 0.01 0.02 0.03 0.04 0.05

In
flu

en
ce

 s
pr

ea
d

(*
10

00
)

Influence Threshold

PMIA
Expansion
Assembly

Hint(90%)
Hint(85%)

Hint(80%)
Bound(90%)
Bound(85%)
Bound(80%)

(a) Spread – Foursquare

 0.1

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05

E
ffi

ci
en

cy
(S

ec
on

ds
)

Influence Threshold

PMIA
Expansion
Assembly

Hint(90%)
Hint(85%)

Hint(80%)
Bound(90%)
Bound(85%)
Bound(80%)

(b) Efficiency – Foursquare

Figure 11: Varying θ (k = 1000, |VR| = 1M).

that were actually affected by the selected seeds. When k
was large, IRIE was much worse than other methods. Al-
though IRIE achieved better efficiency than PMIA in influence
maximization, it achieved this by avoiding constructing local
influence structures (i.e., shortest-path trees). To support
online queries efficiently, these structures can be indexed in
an offline phase, which was not included in the online query
time. Since IRIE took much time on the Foursquare and
Weibo datasets (more than 1000 seconds), we did not show
the results in the figures. Second, Assembly outperformed
Expansion which in turns was better than PMIA, because
PMIA required to update influences for many vertices in each
iteration, Expansion used the estimated upper bounds to
prune large numbers of insignificant vertices, and Assembly

assembled the precomputed results on small regions to re-
duce the heap size and facilitate computing the influence
of each vertex. Third, as k increased, the elapsed time of
these algorithms also increased. PMIA and IRIE increased
linearly as they required to update influences for large num-
bers of vertices in each iteration. Expansion and Assem-

bly increased sublinearly because they used the bounds to
prune many insignificant vertices. Fourth, for large k, Ex-
pansion and Assembly significantly outperformed PMIA and
IRIE, even in two orders of magnitude, because for large
k, PMIA and IRIE required to compute incremental influ-
ences for large numbers of vertices while our method sig-
nificantly pruned many insignificant vertices. For example,
on the Foursquare dataset, PMIA, Expansion, Assembly re-
spectively took about 150, 4, and 2 seconds. Fifth, different
probability models had no much difference on the efficiency.

Then, we compared our algorithms Bound and Hint with
ǫ · (1 − 1/e) approximation ratio to Assembly with 1 − 1/e
approximation ratio. Figure 10 shows the results on the
Foursquare dataset. We have three observations. First,
Bound and Hint outperformed Assembly significantly since
they can terminate prematurely with a given approximation
threshold ǫ. Second, Hint outperformed Bound, especially
for large k, since Hint can better estimate the lower bounds
using the precomputed hints. For k = 5000, Bound took 2.5
seconds while Hint only took 0.4 seconds. Third, the smaller
ǫ, the better performance of Bound and Hint, because for a
smaller ǫ, Bound and Hint can terminate earlier.

Comparison of Our Algorithms: For applications caring
about efficiency, we suggest to use the Hint based algorithm.

 0.1

 1

 10

 100

 10 30 50 70 90

E
ffi

ci
en

cy
(S

ec
on

ds
)

Connectivity

PMIA
Expansion
Assembly

(a) Weighted Cascade (θ=0.001)

 0.1

 1

 10

 100

 10 30 50 70 90

E
ffi

ci
en

cy
(S

ec
on

ds
)

Connectivity

PMIA
Expansion
Assembly

(b) Trivalency (θ = 0.01)

Figure 12: Varying Vertex Connectivity in VR on
Weibo (k = 500, |VR| ≈ 100K).

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500

S
ca

la
bi

lit
y(

S
ec

on
ds

)

|VR| (*10K)

IRIE
PMIA

Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(a) Weighted Cascade (θ = 0.05)

 0.1

 1

 10

 100

 1000

 100 200 300 400 500

S
ca

la
bi

lit
y(

S
ec

on
ds

)

|VR| (*10K)

IRIE
PMIA

Expansion
Assembly

Hint(90%)
Hint(80%)

Bound(90%)
Bound(80%)

(b) Trivalency (θ = 0.001)

Figure 13: Scalability on Foursquare (k = 50).

Table 4: Average Update Cost (Milliseconds).

Datasets Location Graph
Weighted Cascade Trivalency

Gowalla 8*10−4 0.023 (θ = 0.05) 0.01 (θ = 0.01)
Twitter 9*10−4 0.028 (θ = 0.05) 0.014 (θ = 0.01)

Foursquare 10*10−4 0.024 (θ = 0.05) 0.012 (θ = 0.01)
Weibo 9*10−4 0.017 (θ = 0.001) 0.49 (θ = 0.01)

For applications caring about approximation ratio, we rec-
ommend the Assembly based algorithm.

7.3 Varing θ
We evaluated our algorithm by varying θ from 0.01 to

0.05. Figure 11 shows the results for both influence spared
and the elapsed time. We see that with the increase of θ, the
influence spread decreased because the influence of a vertex
will decrease, and the elapsed time also decreased since the
influence paths of a vertex were shorter for larger θ. The
determination of θ has been discussed in [2] which depends
on the average degree and structure of the graph and in the
paper we do not discuss the details.

7.4 Varying Connectivity
We evaluated different methods by varying the vertex con-

nectivity (i.e., the minimum number of vertices whose re-
moval disconnects the graph) in the query region. Figure 12
shows the results. We can see that with the increase of
the connectivity, the performance became worse as more
vertices were involved to compute the incremental influ-
ences. Our method still achieved high performance as we
pruned large number of insignificant vertices by estimating
the incremental influences. For the weighted cascade model,
with the increase of the connectivity, the performance of our
method slightly degrade, because although the connectivity
increased, the edge probabilities decreased and vertices re-
quired to update influences will not significantly increased.

7.5 Updates
We evaluated the efficiency on updates. We randomly up-

dated 100K locations and 100K edges (80K insertions and
20K deletions). We evaluated the average time of updating
locations and updating graph edges respectively. Table 4
shows the results. We can see that the average time of up-
dating locations was only about 1 microsecond. The average
time of updating graph edges was about 0.02 millisecond for

the weighted cascade model. For the trivalency model, the
update time on the Weibo dataset was larger than that on
other datatets because the Weibo dataset was much denser.
These experimental results are also consistent with our up-
date complexity analysis and our method can support loca-
tion and graph structure updates efficiently.

7.6 Scalability
We evaluated the scalability by varying the numbers of

vertices in the query region on the Foursquare datasets us-
ing the two models. Figure 13 shows the results. We can
see that our method scaled very well and still outperformed
IRIE and PMIA by 2-3 orders of magnitude, because even if
the graphs were rather large our method did not need to up-
date the influences for many vertices and still pruned large
number of insignificant vertices.

8. RELATED WORKS
Influence Maximization in Social Networks. The in-
fluence maximization problem was proposed in [6,19]. The
two proposed methods are probabilistic and had no bounded
influence spread guarantee. Kempe et. al. [10] proposed two
discrete influence spread models, Independent Cascade (IC)
model and Linear Thresholds model. They proved the in-
fluence maximization problem using the two models can be
solved by a greedy algorithm with 1− 1

e
approximation ratio.

Since the influence maximization problem is NP-hard, there
are many studies on improving the performance. Kimura
et. al. [12] used shortest paths to estimate the IC model.
Leskovec et. al. [13] developed a “lazy-forward” algorithm
which was much better than the simple greedy algorithms.
Chen et. al. [2] proposed the PMIA algorithm to solve the
influence spread maximization problem using the IC model.
The main idea is to estimate the global influence on vertex
v by its local maximum influence in-arborescence (PMIIA),
which is a tree structure representing the union of maximum
influence paths from other vertices to v. The similar idea
has been applied to support the linear threshold model [4].
Chen et. al. [3] proposed degree-discount heuristics for a
special case of the IC model where all propagation probabil-
ities between vertices are the same. Chen et. al. [5] utilized
the community structure to aggregate the features of ver-
tices to reduce the number of vertices they need to check.
Kim et. al. [11] proposed independent path algorithm for
the IC model, which can be parallelized by OpenMP meta-
programming expressions. Jung et. al. [9] proposed linear
equations to approximate the real influence.

Different from existing studies, we study the location-
aware influence maximization problem and focus on answer-
ing online quires in real-time. We consider how to efficiently
calculate the incremental influence of a vertex being selected
as a seed. Notice that the influence maximization problem
differs from traditional ranking problem in that the influence
overlap between top-k seeds should be taken into consider-
ation. Thus the PageRank algorithm [1] cannot be applied
directly to the influence maximization.

Learn Influence Spread. There are some studies on learn-
ing the influence spread function. Zhang et. al. [20] fo-
cused on evaluating the influence between users by consid-
ering both their social relationships and geological locations.
Different from our problem, they focused on finding top in-
fluential events for users while we emphasized on selecting
top-k seeds in a spatial region. Goyal et. al. [8] tried to
learn a user’s influence based on historical data which used
propagation trace logs to estimate the influence spread.

9. CONCLUSION
We have studied the location-aware influence maximiza-

tion problem. We proposed two greedy algorithms with
1−1/e approximation ratio. The expansion-based algorithm
estimated the upper bound of users’ influences and used a
best-first method to eliminate the insignificant users. The
assembly-based algorithm assembled the precomputed in-
formation on small regions to answer a query. We proposed
two algorithms with ǫ · (1 − 1/e) approximation ratio for
any ǫ ∈ (0, 1]. The bound-based algorithm utilized the esti-
mated upper/lower bounds to select top-k seeds. The hint-
based algorithm used precomputed hints to identify top-k
seeds. Experimental results showed our algorithms achieve
high performance while keeping large influence spread and
significantly outperform state-of-the-art algorithms.
Acknowledgement. This work was partly supported by
NSF of China (61272090 and 61373024), 973 Program of
China (2011CB302206), Beijing Higher Education Young
Elite Teacher Project (YETP0105), Tsinghua-Tencent Joint
Laboratory, “NExT Research Center” funded by MDA, Sin-
gapore (WBS:R-252-300-001-490), and FDCT/106/2012/A3.

10. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual

web search engine. Computer Networks, 30(1-7):107–117, 1998.

[2] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale social
networks. In KDD, pages 1029–1038, 2010.

[3] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD, pages 199–208, 2009.

[4] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear threshold
model. In ICDM, pages 88–97, 2010.

[5] Y.-C. Chen, W.-C. Peng, and S.-Y. Lee. Efficient algorithms for
influence maximization in social networks. Knowl. Inf. Syst.,
33(3):577–601, 2012.

[6] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD, pages 57–66, 2001.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based
approach to social influence maximization. PVLDB,
5(1):73–84, 2011.

[9] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM, pages
918–923, 2012.

[10] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD, pages
137–146, 2003.

[11] J. Kim, S.-K. Kim, and H. Yu. Scalable and parallelizable
processing of influence maximization for large-scale social
networks? In ICDE, pages 266–277, 2013.

[12] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In PKDD, pages 259–271, 2006.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.
VanBriesen, and N. S. Glance. Cost-effective outbreak detection
in networks. In KDD, pages 420–429, 2007.

[14] G. Li, J. Hu, K. lee Tan, and J. Feng. Effective location
identification from microblogs. In ICDE, 2014.

[15] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware
publish/subscribe. In KDD, pages 802–810, 2013.

[16] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang.
Towards social user profiling: unified and discriminative
influence model for inferring home locations. In KDD, pages
1023–1031, 2012.

[17] I. R. Misner and V. Devine. The world’s best known marketing
secret: Building your business with word-of-mouth marketing.
In Bard Press; 2nd Edition edition, 1999.

[18] J. Nail, C. Charron, and S. Baxter. The consumer advertising
backlash. In Forrester Research:, 2004.

[19] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD, pages 61–70, 2002.

[20] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating
geo-social influence in location-based social networks. In
CIKM, pages 1442–1451, 2012.

	Introduction
	Preliminary
	Problem Formulation
	Tree-based Approximation Model

	Expansion-based method
	Candidate Seeds Selection
	The Best-first Method to Identify a Seed
	Expansion-based Algorithm

	Assembly-based Method
	Indexes
	Assembly-based Framework
	Assembly-based Algorithm

	Algorithms with (1-1/e) Approximation Ratio
	Bound-based Algorithm
	Hint-based Algorithm

	Complexity and Update
	Space Complexity
	Time Complexity
	Updates

	Experimental Study
	Influence Spread
	Efficiency
	Varing
	Varying Connectivity
	Updates
	Scalability

	Related Works
	Conclusion
	References

