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ABSTRACT

Crowdsourcing is widely accepted as a means for resolving
tasks that machines are not good at. Unfortunately, Crowd-
sourcing may yield relatively low-quality results if there is no
proper quality control. Although previous studies attempt
to eliminate “bad” workers by using qualification tests, the
accuracies estimated from qualifications may not be accu-
rate, because workers have diverse accuracies across tasks.
Thus, the quality of the results could be further improved
by selectively assigning tasks to the workers who are well ac-
quainted with the tasks. To this end, we propose an adaptive
crowdsourcing framework, called iCrowd. iCrowd on-the-fly
estimates accuracies of a worker by evaluating her perfor-
mance on the completed tasks, and predicts which tasks the
worker is well acquainted with. When a worker requests for
a task, iCrowd assigns her a task, to which the worker has
the highest estimated accuracy among all online workers.
Once a worker submits an answer to a task, iCrowd analyzes
her answer and adjusts estimation of her accuracies to im-
prove subsequent task assignments. This paper studies the
challenges that arise in iCrowd. The first is how to estimate
diverse accuracies of a worker based on her completed tasks.
The second is instant task assignment. We deploy iCrowd
on Amazon Mechanical Turk, and conduct extensive exper-
iments on real datasets. Experimental results show that
iCrowd achieves higher quality than existing approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

Keywords

Crowdsourcing; Quality control; Adaptive task assignment

1. INTRODUCTION
Crowdsourcing outsources tasks for solutions from an un-

known group of people (aka workers), which is indeed useful
to many real-world applications, e.g., image search, entity
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resolution, answering database-hard queries [24, 23, 27, 28,
12, 32]. Due to its openness, crowdsourcing yields relatively
low-quality results, or even noise, which attracts great inter-
est in devising good quality control methods [17]. Existing
methods [32, 18, 30] employ a redundancy-based strategy
which publishes a crowdsourcing task to multiple workers
and derives the result by aggregating worker answers. A
näıve aggregation approach is majority voting that choos-
es the answer that the majority of the workers yield as the
result. Recently, more sophisticated approaches have been
proposed and they can be broadly classified into two cat-
egories. The gold-injected approaches [22] leverage small
amounts of tasks with ground truth to estimate workers’
quality, while the EM -based approaches [31, 8] simultane-
ously estimate worker quality and predict aggregated results
using an Expectation-Maximization (EM) strategy. More-
over, existing approaches further improve the quality by e-
liminating “bad”workers. A well-known way is to use quali-
fication tests to distinguish bad and good workers, and stop
assigning tasks to workers that cannot give good answers to
the qualification tasks.

Although existing methods perform well in simple crowd-
sourcing tasks, such as image labeling, they may have limita-
tions on more complicated crowdsourcing tasks that require
domain knowledge. In these tasks, workers may have diverse
accuracies across tasks, as they are usually good at tasks in
domains they are familiar with but may provide low-quality
answers in unfamiliar domains. Take crowdsourced entity
resolution [32] as an example. A worker acquainted with
Samsung stands a better chance to correctly differentiate
the models “Note4” and “S4”, while she may not be good at
tasks about iPad and cannot identify that “iPad with Reti-
na display” is colloquially referred to as “iPad 4”. Workers
with different backgrounds may be good at different topics:
a basketball fan stands a better chance to correctly anno-
tate tables related to NBA, while a film enthusiast is more
reliable for tables involving Hollywood films. Similar obser-
vations can be found in other tasks. We have conducted
empirical investigation on two complicated crowdsourcing
tasks, evaluating quality of Yahoo Answers and comparing
items (e.g., which car is more fuel efficient), and report em-
pirical observations of accuracy diversity in Figure 6.

The accuracy diversity in crowdsourcing engenders many
challenges, making existing solutions inadequate for produc-
ing high-quality result. On the one hand, a worker, who
gives good answers to qualification tests, may not provide
promising answers to other assigned tasks. As such, the ex-
isting approaches may over- or under-estimate workers’ ac-



Table 1: Microtasks for verifying whether two entities are matched.
Microtask Verifying two entities Tokens

t1 (iphone 4 WiFi 32GB, iphone four 3G black) {iphone 4 WiFi 32GB four 3G black}
t2 (ipod touch 32GB WiFi, ipod touch headphone) {ipod touch 32GB WiFi headphone}
t3 (ipad 3 WiFi 32GB black, new ipad cover white) {ipad 3 WiFi 32GB black new cover white}
t4 (iphone four WiFi 16GB, iphone four 3G 16GB) {iphone four WiFi 16GB 3G}
t5 (iphone 4 case black, iphone 4 WiFi 32GB) {iphone 4 case black WiFi 32GB}
t6 (iphone 4 WiFi 32GB, iphone four WiFi 32GB) {iphone 4 WiFi 32GB four}
t7 (ipod touch 32GB WiFi, ipod touch case black) {ipod touch 32GB WiFi case black}
t8 (ipod touch headphone, ipod nano headphone) {ipod touch nano headphone}
t9 (ipod touch WiFi, ipod nano headphone) {ipod touch WiFi nano headphone}
t10 (ipad 3 WiFi 32GB black, iphone 4 cover white) {ipad 3 WiFi 32GB black iphone 4 cover white}
t11 (ipad 4 WiFi 16GB, ipad retina display WiFi 16GB) {ipad 4 WiFi 16GB retina display}
t12 (ipad 3 cover white, new ipad cover white) {ipad 3 cover white new}

curacies and thus result in unreliable aggregated results. On
the other hand, existing approaches neglect a fact that we
can adaptively assign tasks to workers who have expertise on
the tasks to further improve the quality, instead of random
task assignment without considering workers’ expertise.

To address the limitations of existing approaches, we pro-
pose an adaptive crowdsourcing framework, called iCrowd.
iCrowd on-the-fly estimates accuracies of a worker by eval-
uating her performance on the completed tasks, and infers
worker’s accuracies on similar tasks. When a worker re-
quests for a task, the framework assigns the worker a task,
to which the worker has the highest estimated accuracy a-
mong all online workers. Once a worker submits her answer
to a task, iCrowd analyzes her answer and adaptively adjusts
the accuracy estimation to improve any subsequent task as-
signments. In this way, iCrowd can effectively predict which
workers are more appropriate for a task, and adaptively as-
signs the task to these high-quality workers.

We address two main research challenges that arise in
adaptive crowdsourcing. The first one is how to estimate
the diverse accuracies of workers based on their completed
tasks. To address this challenge, we propose an accuracy es-
timation method by considering the “similarity” of tasks: a
worker may have comparable accuracies on tasks in similar
domains. We first construct a graph to model similarity of
tasks and evaluate worker accuracies on her completed tasks.
The second one is instant task assignment based on the es-
timated accuracies. As workers are generally impatient to
wait for too long for a task assignment, we need to efficiently
assign tasks to the workers. We develop efficient algorithm-
s to support instant task assignment. Since existing plat-
forms, such as Amazon Mechanical Turk (AMT) [2], have
no functionality to support assigning tasks to workers, we
develop an iCrowd system which iteratively communicates
with the platforms to receive task requests from workers,
assign tasks to them, and obtain answers from the workers.

To summarize, we make the following contributions.

(1) We formulate the problem of adaptive crowdsourcing
and develop a framework iCrowd to support adaptive crowd-
sourcing in existing crowdsourcing platforms (see Section 2).

(2) We propose a graph-based estimation model to es-
timate the accuracies of a worker based on her completed
tasks, which can tackle the diverse accuracies of workers
across tasks and provide accurate estimation (see Section 3).

(3) We devise an adaptive assignment framework, prove
that the optimal task assignment problem is NP-hard, and

develop a greedy algorithm to enable instant task assign-
ments (see Section 4).

(4) We deploy iCrowd on AMT and conduct extensive ex-
periments on two real datasets. Experimental results show
that iCrowd achieves 10% - 20% improvement on accuracy
compared with state-of-the-art approaches (see Section 6).

2. AN OVERVIEW OF ADAPTIVE CROWD-
SOURCING

2.1 Problem Statement
Microtasks. Consider a requester who publishes a set of
microtasks T = {t1, t2, . . . tm}. For ease of presentation,
each microtask is a binary microtask with YES/NO choices.
Note that our techniques can be extended to microtasks with
more than two choices. Table 1 provides twelve microtasks
for entity resolution. Each microtask wants workers to verify
whether two records (in the second column) are matched as
a same product model. For example, t1 requires workers
to verify whether “iphone 4 WiFi 32GB” and “iphone four
3G black”are duplicated models. The worker, who has been
assigned with t1, would answer YES if she agrees that they
are the same product, or NO otherwise.
Workers. A set of workers W = {w1, w2, . . . , wn} will work
on microtasks in T . Note that worker set in crowdsourcing
is dynamic: any existing worker may become inactive by
stopping work on T while new workers may become active.
Moreover, since workers are prone to errors [22], answers
provided by them may not be always correct. To predic-
t whether a worker can correctly answer a microtask, we
introduce accuracy defined as below.

Definition 1 (Accuracy). The accuracy of a worker
w ∈ W on a microtask ti ∈ T , denoted by pwi , is the proba-
bility pwi = Pr{w correctly answers ti}.

For simplicity, we use vector pw = {pw1 , pw2 , . . . , pw|T |} to
represent the accuracies of w on microtasks in T .
Microtask Assignment. In crowdsourcing, to improve the
quality, a microtask is usually assigned to multiple workers
and its result is obtained via a voting scheme. Under this
scheme, we assign a microtask ti to a worker set Wti ⊂ W
with size k, where k is an assignment size to represent the
number of workers that can be assigned with ti. k is usual-
ly provided by the crowdsourcing requester. Given worker
set Wti , we utilize (weighted) majority voting, which is well
accepted in many crowdsourcing approaches [11, 32, 7]. For
ease of presentation, this paper considers the simple major-
ity voting where k is an odd number. If more than or equal



Table 2: Notations.
T a set of microtasks for crowdsourcing
W a set of active workers working on T
⟨ti, w⟩ assignment of microtask ti and worker w
Wti a set of workers completing microtask ti
pw = {pwi } estimated accuracies of w
qw = {qwi } observed accuracies of w
k assignment size per microtask

to k+1
2 workers vote for a same answer (e.g., YES), then we

take this consensus answer as the result of ti, and consider
ti is globally completed. We can compute the accuracy of
worker set Wti , denoted by Pr(Wti), based on the accuracy
of each individual in Wti . Specifically, this accuracy is the
probability that more than half of the workers in Wti can
provide the correct answer. Assuming the accuracies across
workers are independent, we compute Pr(Wti) as below.

Pr(Wti) =
k∑

x=k+1
2

∑

Wx
ti

( ∏

w∈Wx
ti

pwi
∏

w∈Wti
−Wx

ti

(
1− pwi )

)
(1)

where Wx
ti is any x-size subsets of Wti .

Based on worker set accuracy, an optimal microtask as-
signment problem assigns each microtask ti ∈ T to a subset
of workers Wti to maximize the sum of the probabilities that
microtasks are correctly answered, i.e., max

∑
ti∈T Pr(Wti).

However, crowdsourcing has brought the following two
great challenges that make microtask assignment much more
difficult. First, due to the openness of crowdsourcing, we
have limited, if not none, knowledge of workers. Thus, we
cannot obtain the accuracy pwi upfront, which makes the
computation of Pr(Wti) in Equation (1) rather difficult.
Second, the worker set W is dynamic: any existing work-
er may become inactive and new workers may become ac-
tive. These challenges engender us to study the problem of
adaptive crowdsourcing, which is described as follows.

Adaptive Crowdsourcing. This problem adaptively as-
signs microtasks to a dynamic set W of workers with un-
known accuracy pwi to optimize the overall accuracy of crowd-
sourcing, i.e., max

∑
ti∈T Pr(Wti). Specifically, it on-the-fly

estimates worker accuracy pwi based on the globally complet-
ed microtasks T d ⊆ T . Then, based on the estimation, it
adaptively assigns uncompleted microtasks in T − T d in it-
erations until all microtasks in T are globally completed,
where each iteration is triggered by a request from an active
worker w from a dynamic worker set W.

For example, consider the microtasks in Table 1 and a
worker set W = {w1, w2, . . . , w5}. Adaptive crowdsourcing
interacts with the workers in W for microtask assignmen-
t, where each assignment is triggered by a request from an
active worker, say w1. In the assignment, it considers the
globally completed microtasks of w1 to estimate the accu-
racy vector pw1 of w1, and assigns to w1 a microtask with
higher accuracy. After w1 submits its answer to the assigned
microtask, it adjusts the estimation of accuracies pw1 based
on the new T d, and continues to assign more microtasks.

For ease of presentation, we summarize the notations in
this paper in Table 2, where some will be introduced later.

2.2 iCrowd Framework
Our iCrowd framework is illustrated in Figure 1. We devel-

op iCrowd as an adaptive crowdsourcing component within
the CDAS (Crowdsourcing Data Analytics System) project,
along the lines of [22, 10]. The framework takes as input
a set T of microtasks, and on-the-fly communicates with
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Figure 1: Framework of iCrowd.

a crowdsourcing platform (e.g., Amazon Mechanical Turk)
for assigning microtasks to workers1. It adaptively assigns
microtasks to workers by using the following components.

Adaptive Assigner. This component interacts with a re-
questing worker, and employs two modules, namely Accu-
racy Estimator and Microtask Assigner for adaptive
microtask assignment.

Accuracy estimator takes as input the globally com-
pleted microtasks T d and estimates accuracies pw for each
worker w. Compared with existing approaches [22, 18, 30]
that employ some qualification tasks with ground truth to
compute an average accuracy for all the microtasks, the
highlight of our estimation is to consider accuracy diversity
across microtasks. The basic idea is to infer the accuracy
of a worker’s answer on a microtask based on her perfor-
mance on the globally completed microtasks which are sim-
ilar to the microtask. Specifically, as illustrated in Figure 2,
suppose worker w has provided correct answer to t1 about
iPhone, and incorrect answer to t2 about iPod. Then, Ac-
curacy Estimator would have higher confidence on w’s
answers of other microtasks about iPhone (similar to t1),
while it would doubt her answers about iPod. To formulate
this intuition, we introduce probabilistic models to evaluate
the performance of w on globally completed microtasks T d,
and employ a graph-based approach to infer accuracies pw

of w on the unassigned microtasks (see Section 3 for details).
Microtask assigner takes as input the active workers

with their accuracies estimated by Accuracy Estimator,
and assigns a microtask to a requesting worker. It consider-
s the dynamically estimated accuracies, and adaptively as-
signs a microtask to the top workers of the microtask with
highest accuracies based on the current estimation. It al-
so considers assigning the microtasks that would be more
beneficial to improve the estimation of worker accuracies.
Moreover, it devises effective indexes and develops efficien-
t algorithms for supporting real-time microtask assignment.
More details of microtask assigner can be found in Section 4.

1Note that the implementation details of the online com-
munication between iCrowd and the crowdsourcing platform
can be referred to Appendix A.
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Figure 2: An Example of Using iCrowd to Assign Microtasks to Workers on Amazon Mechanical Turk.

Warm-Up. This component is used to address the cold-
start problem: for a new worker w who does not vote for
any globally completed microtask, iCrowd cannot estimate
the worker accuracies pw. The component addresses the
problem by leveraging some microtasks with ground truth,
called qualification microtasks, for initial accuracy estima-
tion. In the pre-processing step, it selects a small amount of
“representative” microtasks from T and asks the requester
to label ground truth for them. Then, when a new worker
w requests for microtasks, it assigns some qualification mi-
crotasks to her (note that worker w is not aware that she
is working on qualification microtasks). After w submits
answers of the microtasks, the component compares her an-
swers with the ground truth to estimate accuracies. Besides,
it also seeks to eliminate “bad” workers based on qualifica-
tion microtasks: if the average accuracy is lower than a given
threshold, it rejects worker w as she is not qualified in work-
ing on the microtasks. For instance, given a threshold 0.6,
if worker w correctly answers less than 3 qualification mi-
crotasks when completing 5 qualification microtasks, iCrowd
rejects the worker (see Section 5 for more details).

3. ACCURACY ESTIMATION
This section introduces our accuracy estimation method

that tackles accuracy diversity of workers on different mi-
crotasks. The basic idea of our method is to consider the
“similarity”of microtasks: as observed from our empirical in-
vestigation in Section 6, the accuracies of a worker, although
may vary in different domains, tend to be comparable on the
microtasks in similar domains. As such, if we have observed
that a worker w correctly completes some microtasks, we can
infer that she would also perform well on microtasks in sim-
ilar domains. Consider our example microtasks in Table 1:
as t1 and t4 are similar (both of them are about “iPhone”),
if we have observed that worker w correctly answers t1, we
can conjecture that w stands a better chance to correctly
answer t4 compared with other microtasks.

We formulate the aforementioned similarities of micro-
tasks as a graph model, called microtask similarity graph
(or similarity graph for simplicity). Formally, a similarity
graph is a weighted undirected graph G = (T , E) where T is
a set of microtasks, and an edge eij between microtasks ti
and tj represents that ti and tj are similar and their similar-
ity is denoted by sij . Figure 3 illustrates a similarity graph
of our example microtasks, where the number in an edge
represents the similarity score of the connected microtasks
(we will explain how the number is computed in Section 3.3).

Based on the similarity graph, we estimate the accuracy
vector pw = {pw1 , pw2 , . . . , pw|T |} of worker w on the set T of
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Figure 3: Similarity Graph of Example Microtasks.
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microtasks from the globally completed microtasks T d ⊆ T .
More formally, we introduce observed accuracy, denoted by
qwi , to represent the probability that the answer of w on a
globally completed microtask ti ∈ T d is correct. Similar to
pw, for ease of presentation, we use a vector qw to denote
the observed accuracies of w on the microtask set T . We
will explain how to derive qw from T d in Section 3.2.

Now we are ready to formalize the problem of similarity-
based accuracy estimation, which is defined as below.

Definition 2 (Similarity-based accuracy estimation).
Given a similarity graph G = (T , E) and observed accura-
cy vector qw of worker w, it estimates accuracies pw =
{pw1 , pw2 , . . . , pw|T |} for unassigned microtasks in T − T d.

Consider our example similarity graph mentioned above
and five workers shown in Figure 4. Given a set of globally
completed microtasks, including the qualification microtasks
(t1, t2 and t3 in Figure 4) and the microtasks that reach con-
sensus (e.g., t6 given assignment size k = 3), and a worker
w1, the accuracy estimation problem wants to compute the
accuracies of w1 on the microtasks which are not assigned
to w1 yet, e.g., t4, t7, etc.

In the remaining part, we first introduce our model for
similarity-based accuracy estimation in Section 3.1. Then,
we discuss how to derive qw from T d in Section 3.2 and how
to construct the similarity graph in Section 3.3.



3.1 Graph-Based Estimation Model
The basic idea of our graph-based estimation model is to

estimate accuracies based on similarity between microtasks
in the graph: if the observed accuracies in qw are known
on some globally completed microtasks, we can conjecture
similar accuracies of the unassigned microtasks which are
connected to the completed ones in the graph. Take the
similarity graph in Figure 3 as an example. Given previous
performance of worker w, say correctly answering t2 and
providing incorrect answer to t3, our method would conjec-
ture that w would have higher accuracies on the microtasks
closely connected to t2 (e.g., t7, t8 and t9), while may not
be accurate on those connected to t3 (e.g., t10, t11 and t12).

However, it is non-trivial to exploit the similarity graph
for accuracy estimation, as the estimated accuracies pw need
to satisfy not only the local similarity that each pair of con-
nected microtasks have similar accuracies, but also the global
similarity that microtasks in coherent sub-graphs have simi-
lar accuracies. Moreover, pw also needs to be consistent with
the observed accuracies in qw: estimated accuracies should
not largely deviate from the observed accuracies. We formal-
ize these two objectives as follows. For ease of presentation,
we respectively use p, q, pi and qi to represent pw, qw, pwi
and qwi in the remaining part, if there is no ambiguity.

1) We want to minimize accuracy differences between simi-
lar microtasks. Formally, recall that S = {sij} denotes the
similarity matrix, where sij is the similarity between two
microtasks ti and tj . We introduce (pi − pj)

2 to measure
the difference between the estimated accuracies of worker
w on ti and tj . We choose this quadratic expression due
to the following reasons. First, the lower the difference of
the accuracies on ti and tj is, the smaller (pi − pj)

2 is, and
vice versa. Thus, we can minimize accuracy differences be-
tween similar microtasks by minimizing (pi − pj)2. Second,
it will enable us to easily obtain the optimal solution of our
optimization problem, which will be elaborated later in Lem-
ma 1. Given the difference expression, this objective aims to
minimize (pi−pj)

2 for the pair of microtasks with large sim-
ilarity sij . We further consider to normalize the similarities.

Let S′ = D− 1
2SD− 1

2 , where D denotes the diagonal matrix
with the (i, i) element equal to the sum of i-th row of S, i.e.,
Dii =

∑n
j=1 sij , where n is the number of microtasks in G.

Then, we formalize the overall accuracy difference between
similar microtasks as 1

2

∑
i,j (

sij√
Dii

pi −
sij√
Djj

pj)
2, which is

the summation of accuracy differences between microtask
pairs weighted by the normalized similarity.

2) We want to minimize accuracy difference between p and
q, as we do not want the estimate to deviate too much from
the observed accuracies. We utilize 1

2

∑n
i=1(pi−qi)

2 to mod-
el the differences between p and q. Note that we will discuss
how to compute qi in Section 3.2.

By considering the above factors, we compute accuracy
vector p∗ by solving the following optimization problem.

p∗ = argmin
p

1
2

(∑

i,j

sij(
pi√
Dii

−
pj√
Djj

)2 + α
n∑

i

(pi − qi)
2),

(2)
where α is a parameter balancing the two factors: a larger
α indicates that we prefer p will be more similar to q, while
a smaller α indicates that we are more concerned that the
estimated accuracies should be closer on similar microtasks.

Take our example similarity graph in Figure 3 as an ex-
ample. Suppose that a worker w has correctly answered t1
and provided wrong answers to t2 and t3. Then, we have a
vector q of observed accuracies containing q1 = 1, q2 = 0
and q3 = 0 (we will explain the details of computing these
observed accuracies in Section 3.2). Then, our optimization
objective in Equation (2) aims to predict estimated accura-
cy pi for microtask ti such that the microtasks, which are
closely connected in the similarity graph (e.g., the subgraph
containing t2 in the bottom right), have similar values in pi,
and these values are also similar to q. For instance, given
the above q, the predicted p should be that the microtasks
in the subgroup around t1 have larger estimated accuracies
than those in the subgraphs around t2 and t3.

The optimization problem can be analytically solved, as
illustrated in the following lemma.

Lemma 1. The solution of Equation (2) is

p∗ =
α

1 + α
· (I − 1

1 + α
S′)−1q. (3)

Proof. We prove the lemma by differentiating the Equa-
tion (2) with respect to p and then compute p∗ by taking
the first-order derivative equal to zero.

As it is challenging to directly compute the inverse ma-
trix (I − 1

1+α
S′)−1, we employ the personalized pagerank

algorithm [14] to iteratively compute p. Specifically, we set
vector p as the observed one q initially, and then update p
by using the following equation.

p =
1

1 + α
· pS′ +

α
1 + α

· q. (4)

As illustrated in Equation (4), in each iteration, each ele-
ment pi ∈ p is computed by the sum of it nearby accuracies
with similarity as weight at probability 1

1+α
, or set to its

observed accuracy qi at probability α
1+α

.

Lemma 2. The iterative algorithm based on Equation (4)
can compute the optimal solution p∗ in Equation (3).

Proof. This lemma is proved in [35].

The iterative algorithm based on Equation (4) is also very
expensive, and it is not applicable for online accuracy esti-
mation. To address this problem, we propose an efficient
algorithm by utilizing a nice linearity property of person-
alized pagerank. Specifically, let qti denote the observed
accuracy vector that only qi for microtask ti is 1 and others
are 0. Let pti denote the converged result of Equation (4)
given qti . There is a good property that we can compute
p∗ by a weighted summation of pti , as shown below.

Lemma 3 (Linearity [14]). Given pti for each micro-
task ti and q, the optimal estimated accuracy vector p∗ can
be computed as p∗ =

∑
q
i
∈q

qi · pti .

Based on Lemma 3, we develop an efficient online esti-
mation algorithm as shown in Algorithm 1. The algorithm
takes as input a worker w, microtask set T , and the set
of globally completed microtasks T d. In particular, we al-
so consider the qualification microtasks with ground truth
as globally completed. The algorithm estimates accuracy
vector p of worker w through the following steps. In the



Algorithm 1: EstimateAccuracy (w, T , T d)

Input: w: A worker; T : A microtask set ;
T d: A set of globally completed microtasks

Output: pw: Estimated accuracies of w
begin1

/* Offline Computation */
Generate a similarity graph G on T ;2

for Each microtask ti in G do3

Compute pti iteratively via Equation (4) ;4

/* Online Estimation */

qw ← ComputeObserved (T d) ;5

pw ←
∑

qw
i
∈qw qwi · pti ;6

return pw ;7

end8

offline component, it generates a similarity graph G by com-
puting microtask similarities, and pre-computes a vector pti

for each microtask ti in G via Equation (4). For online es-
timation, it first computes observed accuracies q based on
completed microtasks T d by calling function ComputeOb-
served (see Section 3.2), and then employs the linearity
property to compute p. Thanks to the linearity property,
the algorithm is efficient with time complexity O(|T |).

For example, consider estimating accuracies for worker
w1 in Figure 4. In offline, the algorithm computes pti for
each ti based on the graph in Figure 3. For instance, to
compute pt1 , it initially sets pt1 = qt1 = [1, 0, . . . , 0], and
then updates pt1 via Equation (4) to obtain a converged
vector. In the online component, after computing qw1 , it
computes accuracies of w1 as pw1 =

∑
q
w1
i

∈q
w1 qw1

i · pti .

3.2 Observed Accuracy Estimation
In this section, we discuss how to estimate the observed

accuracies qw that model worker w’s previous performance
on the globally completed microtasks.

The estimation is trivial if ti is a qualification microtask
with ground truth. In this case, we compare the answer
from w with the ground truth of ti, and set qwi = 1 if they
are the same, or qwi = 0 otherwise. The non-trivial case
is when ti does not have ground truth. In this case, we
estimate qwi by comparing w’s answer with the consensus
answer of microtask ti. The basic idea is that, if the two
answers are the same, we can use the probability that the
consensus answer is correct to estimate qwi . Otherwise, we
consider the probability of the complement event, i.e., the
consensus answer is incorrect. Formally, we respectively use
W1 and W2 to denote the workers of ti having the answer
equal to and not equal to the consensus answer. Then, the
observed accuracy of worker w can be computed as

qwi =

{
P1P2

P1P2+P1P2
, if answi = ans∗i

P1P2
P1P2+P1P2

, if answi ̸= ans∗i
(5)

where answi is w’s answer, ans∗i is the consensus answer,
P1 =

∏
w′∈W1

pw
′

i , P 1 =
∏

w′∈W1
1− pw

′

i , P2 =
∏

w′∈W2
pw

′

i

and P 2 =
∏

w′∈W2
1− pw

′

i . Note that the above pw
′

i can be

estimated by the previously estimated accuracy of w′. When
estimating qw for the first time, we use the average accuracy
returned by the Warm-Up component as an estimate.

Figure 4 provides some completed microtasks of the five
workers where t

√
(t×) represents qualification t is correctly

(incorrectly) answered. For worker w1, we obtain qw1
1 = 1,

qw1
2 = qw1

3 = 0 based on the qualification. We compute
qw1
6 for a globally completed microtask t6 (assignment size
k = 3). We consider the workers of t6, {w1, w2, w5}, and find
w1’s answer being equal to the consensus answer. Thus, we

compute qw1
6 =

p
w1
6 p

w5
6 (1−p

w2
6 )

p
w1
6 p

w5
6 (1−p

w2
6 )+(1−p

w1
6 )(1−p

w5
6 )p

w2
6

.

3.3 Discussion on Microtask Similarity
In this section, we discuss how to derive microtask similar-

ities for generating the similarity graph. We utilize the well-
known similarity techniques and examine the effect of these
techniques in the experiments (see Appendix D.1). Note
that this paper focuses on leveraging similarity for better
accuracy estimation, and leaves a thorough study on simi-
larity metrics as future work.

1) For textual microtasks, e.g., our example in Table 1,
we can employ existing similarity metrics, e.g., Jaccard sim-
ilarity, Edit distance, etc, to compute the similarity between
microtasks. For instance, we derive our example similarity
graph shown in Figure 3 by using Jaccard similarity. We
first take each of microtasks as a set of tokens, and com-
pute Jaccard similarity as the ratio of their intersection size
to their union size, and consider that two microtasks are
similar if their Jaccard similarity is not smaller than a giv-
en threshold. For example, the edge between microtasks t2
and t7 represents their similarity is 4/7, which is computed
by Jaccard similarity between their token sets in Table 1.
We also set a similarity threshold 0.5 to neglect the micro-
task pairs with similarity lower than 0.5. We can employ
the techniques in [33] to select appropriate similarity met-
rics and thresholds. In addition, we can also exploit existing
topic models, e.g., Latent Dirichlet Allocation (LDA) [6] to
obtain a topic distribution for each microtask, and compute
microtask similarity based on the topic distributions. In
our experiment, we utilized the LDA-based similarity and
achieved good performance.

2) For microtasks that can be represented as multiple-
dimension features, e.g., images, spatial objects, etc, we can
use the Euclidean similarity to quantify their similarity. For
instance, consider microtasks for verifying place names for
points-of-interest (POIs) in the map. Given two microtasks
ti and tj , we consider their corresponding POIs (x1, x2)
and (y1, y2). Then, we compute their Euclidean distance

dist(ti, tj) =
√∑2

d=1(xd − yd)2, and use 1 − dist(ti,tj)

τd
to

normalize their similarity between 0 and 1, where τd is the
maximum distance between POIs in the microtasks.

3) For some more complicated microtasks, e.g. verifying
translations of a paragraph of text, we can use classification-
based methods to derive their similarity. We can train a
classifier based on a training set. Then for each pair of mi-
crotasks, if we classify them as a similar pair, their similarity
is 1, and 0 otherwise. We may use existing classification al-
gorithms, e.g. SVM, to find similar microtasks.

4. ADAPTIVE TASK ASSIGNMENT
This section presents our adaptive approach for microtask

assignments based on estimated accuracies. We introduce an
adaptive assignment framework in Section 4.1 and discuss
the optimal microtask assignment problem in Section 4.2.

4.1 Adaptive Assignment Framework
The basic idea of our microtask assignment framework is

to adaptively “seek” for the top workers with higher accura-



cies to complete microtasks, as the estimated accuracies are
continuously updated. A high-level overview of our frame-
work is illustrated in Figure 5. At each time, the framework
aims to assign the microtasks, which are not globally com-
pleted, to the current set of active workers. It first adap-
tively finds the top workers having the highest estimated
accuracy pwi to complete each unassigned microtask ti based
on the up-to-date accuracy estimation, as illustrated by the
dotted arrow in the figure. As worker w may be taken as top
workers by multiple microtasks, the framework then deter-
mines a microtask to which w can contribute the most and
assigns this microtask to w (solid arrows). Moreover, when
a worker submits her answer to the assigned microtask, the
framework adaptively updates the assignment scheme based
on the new accuracy estimation.

For example, consider the five workers w1, w2, . . . , w5 in
Figure 5. The framework considers the up-to-date accura-
cies pw1

1 , pw2
2 , . . . estimated by Accuracy Estimator and

selects top workers, e.g., the top workers of t2 are w1, w3 and
w4. As some worker (e.g., w3) may be selected as top worker
for multiple microtasks (e.g., t1 and t2), the framework then
determines assigning which microtask is more “beneficial”
(will be explained later). Finally, our framework generates
a scheme that assigns t1 to workers w2 and w5, and t2 to
workers w1, w3 and w4.

To formalize the above idea, our framework utilizes the
following three steps for adaptive microtasks assignment.

Step 1 - Top worker set computation. This step first
identifies active workers which are ready to work on our mi-
crotasks. We can use different methods for identifying active
workers. One way is to use a time window (e.g., 30 minutes):
if the span from the last time when worker w requests mi-
crotasks to the current time is smaller than the window,
we consider w is active. Otherwise, w is inactive. Anoth-
er method is to examine if or not a worker is still holding
Human Intelligence Tasks (HITs) containing the microtasks
(see Appendix A for more details): if w is holding a HIT,
we consider w is active; otherwise, w is inactive.

Taking the set of active workers as candidates, the frame-
work then computes for each microtask the top workers.
Formally, let Wd(ti) denote the set of workers who have
been assigned to ti, i.e., the workers either have completed
or those are still working on ti. Let Wu(ti) = W −Wd(ti)
denote the workers to which ti can be assigned. Recall that
each microtask has an assignment size k that it could be
assigned to k workers. We define the top workers as below.

Definition 3 (Top Worker Set). Top worker set of

a microtask ti, denoted by Ŵ(ti), is a set of top k′ = k −
|Wd(ti)| workers with the highest accuracies on ti, i.e., ∀w ∈
Ŵ(ti),∀w′ ∈Wu(ti)− Ŵ(ti), p

w
i ≥ pw

′

i .

Table 3 provides some example top worker sets (k = 3).
For instance, microtask t4 has no assigned set Wd(ti) and
its top worker set consists of {w5, w4, w1} with the highest
accuracies (the numbers in parentheses). In addition, as t11
has been assigned to worker w2 in previous interaction, its
top worker set only contains two workers, w5 and w3.

Step 2 - Optimal microtask assignment. This step
takes the microtasks and their top worker sets as input and
generates an assignment scheme that satisfies the following
two properties: 1) each worker w could be assigned with at
most one microtask at each time, and 2) the number of work-
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Figure 5: Overview of Microtask Assignment.

Table 3: An Example of Microtask Assignment.

Task Top Worker Set Ŵ(ti) Assigned Wd(ti)

t4 (w5, 0.75), (w4, 0.7), (w1, 0.6) ∅
t11 (w5, 0.85), (w3, 0.8) (w2, 0.7)
t9 (w4, 0.85), (w2, 0.75), (w1, 0.7) ∅
t10 (w3, 0.7), (w1, 0.6) (w5, 0.8)

ers that a microtask ti can be assigned to is not greater than
the available assignment size of ti, i.e., the k

′ = k− |Wd(ti)|
in Definition 3. Consider our example in Table 3: both t4
and t11 take w5 as one of their top workers. However, w5

can only work on one microtask from {t4, t11} before w5 sub-
mits her answer to the assigned microtasks and continues to
request more microtasks. Under the above constraints, we
want to find an optimal assignment scheme that achieves the
highest overall accuracy. We formalize the problem of opti-
mal microtask assignment and develop an efficient algorithm
to solve the problem, which will be described in Section 4.2.

Step 3 - Worker performance testing. After the previ-
ous step, some workers may still not be assigned with micro-
tasks, as they are currently not taken as top workers of any
microtask. This may be attributed to our limited knowledge
about these workers. For example, suppose that a worker
w has completed all the microtasks she is good at accord-
ing to our accuracy estimation, say the microtasks in the
subgraph near t1 shown in Figure 3. Then, our Accuracy
Estimator is not sure if w can perform well in the other
two subgraphs near t2 and t3, as w only completed a limited
number of microtasks in these subgraphs.

In this case, our assignment framework actively tests the
performance of w by considering the following two factors.
The first factor is the uncertainty of the estimated accura-
cy of w on the microtask: we prefer to test a microtask,
on which Accuracy Estimator is not certain if w can
perform well. We use the estimation variance to model
the uncertainty. Suppose that w has completed N micro-
tasks that are similar to t′ (e.g., some microtasks in the
left-bottom subgraph similar to t2 in Figure 3), and N1 mi-
crotasks are correctly answered (based on our estimation
model in Section 3.2) while N0 microtasks are incorrect. We
estimate the estimation variance by assuming N1 and N0

follow a beta distribution (which is a commonly-used as-
sumption in estimation) β(N1 + 1, N0 + 1), and estimate
the uncertainty by the variance of the beta distribution, i.e.,

(N1+1)·(N0+1)
(N1+N0+2)2·(N1+N0+3)

. Then, we prefer to select the micro-
task with larger variance. The second factor is the accuracies
of existing workers which have been assigned to t′: we prefer
the microtask with high accuracies to make the performance



Algorithm 2: AssignTask (W, T , T d, {pw})
Input: W: Active workers; T : microtask set;

T : globally completed microtask set;
{pw}: Estimated accuracies of workers

Output: Asg = {⟨wj , ti⟩}: Assignments
begin1

// Step 1: Generating top worker sets ;2

for each microtask ti ∈ T − T d do3

Ŵ(ti)← GenTopWorkers (ti, {pw}) ;4

// Step 2: Compute optimal microtask assignment ;5

A∗ ← OptAssign (T − T d,W, {Ŵ(ti)}) ;6

for each ⟨t,Wt⟩ ∈ A∗ do7

Insert ⟨w, t⟩ into Asg for any w ∈Wt ;8

// Step 3: Test performance for workers ;9

for each w in W without assignment do10

t′ ← ComputeTestAssignment (w) ;11

Insert ⟨w, t′⟩ into Asg ;12

Return Asg ;13

end14

test more reliable. We use the estimated accuracies to mea-
sure quality of the existing worker set.

Algorithm 2 summarizes the pseudo-code of our adaptive
assignment framework. It first generates top worker sets
for the microtasks that are not globally completed. Then,
it employs the top worker sets to compute an optimal as-
signment scheme. For the workers who are not assigned
with microtasks, it further tests their accuracies by assign-
ing microtasks that have been assigned to other workers.
We next analyze the time complexity. The complexity of
the first step is O(|T | · |W|), as it computes top workers
for each microtask. We will prove optimal microtask assign-
ment OptAssign in the second step is NP-hard and devise
a greedy approximate algorithm with complexity O(|T |2) in
Section 4.2. The complexity of the third step is O(|W|· |T |).

4.2 Optimal Microtask Assignment
This section formalizes the optimal microtask assignment

problem mentioned in Section 4.1 and provides an algorithm
to solve the problem. The basic idea is to find an assignment
scheme to make as many microtasks to be globally completed
as possible, so as to immediately obtain the consensus result
of these microtasks and improve accuracy estimation. Note
that, to globally complete a microtask ti, we can assign the
top worker set Ŵ(ti) to ti (see Definition 3). For example,
consider the microtasks shown in Table 3. Suppose that we
assign t11 to its top worker set Ŵ(t11) = {w5, w3}. This mi-
crotask can be globally completed after the workers submit
their answers and we can then employ Algorithm 1 to im-
prove accuracy estimation of these workers. However, if two
microtasks ti and tj have common top worker sets, these two
microtasks cannot be completed at the same time, as a work-
er can only complete one microtask at a time. For instance,
if we assign t4 to its top worker set Ŵ(t4) = {w5, w4, w1}, w5

and w1 cannot respectively be assigned with t11 and t9 until
they submit answers to t4. Under this constraint, we prefer
to find a scheme that assigns workers to the microtasks with
higher overall accuracy and make these microtasks global-
ly completed. To formalize this intuition, we introduce the
optimal microtask assignment problem as follows.

Definition 4 (Optimal Task Assignment). Given a
set of uncompleted microtasks T −T d , a set of active work-

Algorithm 3: GreedyAssign (T − T d,W, {Ŵ(ti)})
Input: T −T d: uncompleted tasks; W: Active workers;

{Ŵ(ti)}: Top worker set of each task ti;

Output: A∗ = {⟨ti, Ŵ(ti)⟩}: assignment results
begin1

Ac ← ∅ ;2

for ti ∈ T − T d do Ac ← Ac ∪ {⟨ti, Ŵ(ti)⟩} ;3

A∗ ← ∅ ;4

while Ac is not empty do5

Choose a ⟨t, Ŵ(t)⟩ ∈ Ac with the maximum6
∑

w∈Ŵ(t)
pwt

|Ŵ(t)|
;

A∗ ← A∗ ∪ {⟨t, Ŵ(t)⟩} ;7

for Each ⟨t′,Wt′⟩ ∈ Ac do8

if Ŵ(t′) ∩ Ŵ(t) ̸= ∅ then9

Remove ⟨t′,Wt′⟩ from Ac ;10

return A∗ ;11

end12

ers W, and top worker set Ŵ(ti) for each microtask ti, it

finds an optimal assignment scheme A∗ = {⟨ti, Ŵ(ti)⟩} to
maximize the summation of the overall worker accuracy of
each microtask in the scheme, i.e.,

A∗ = argmax
A

∑

⟨ti,Ŵ(ti)⟩∈A

( ∑

w∈Ŵ(ti)

pwi
)

s.t. ∀ti, tj , Ŵ(ti) ∩ Ŵ(tj) = ∅.

where
∑

w∈Ŵ(ti)
pwi is the overall accuracy of workers that

globally complete ti. Summing such overall accuracy of each
microtask in A2,

∑
⟨ti,Ŵ(ti)⟩∈A

(∑
w∈Ŵ(ti)

pwi
)
can measure

the accuracy of all globally completed microtasks: maximiz-
ing this formula can make as many microtasks to be globally
completed with high-accuracy workers as possible.

For example, an assignment scheme in Table 3 is A =
{⟨t9, Ŵ(t9)⟩, ⟨t11, Ŵ(t11)⟩}, which makes t9 and t11 to be
globally completed by respectively assigning top worker sets
Ŵ(t9) and Ŵ(t11). The overall accuracy of this assignment
scheme is

∑
w∈Ŵ(t11)

pw11 +
∑

w∈Ŵ(t9)
pw9 .

Next, we show the optimal microtask assignment prob-
lem is NP-hard, as shown in the following lemma (see Ap-
pendix B for the proof).

Lemma 4. The problem of optimal microtask assignment
is NP-hard.

A Greedy approximation algorithm. As the problem of
microtask selection is NP-hard, we develop a greedy-based
approximation algorithm to efficiently solve it, as shown
in Algorithm 3. It takes as input the microtasks T − T d

that are not globally completed, a set W of active workers
and top worker set Ŵ(ti) of each microtask, and produces

an assignment scheme A∗ = {⟨ti, Ŵ(ti)⟩}. To this end, it
first computes candidate assignments Ac by considering each
ti ∈ T − T d as well as its Ŵ(ti), and then chooses assign-
ments from Ac iteratively. In each iteration, it chooses the
assignment ⟨t, Ŵ(t)⟩ with the maximum average worker ac-

curacy
∑

w∈Ŵ(t) p
w
t /|Ŵ(t)|. After inserting ⟨t, Ŵ(t)⟩ into

A∗, it eliminates the assignment ⟨t′, Ŵ(t′)⟩ ∈ Ac overlap-

ping with Ŵ(t). Finally, if there is no more candidate in
2In some special cases, A may be possibly empty.



Ac, it terminates and outputs the scheme A∗. The time
complexity of the greedy algorithm is O(|T |2).

Take the microtasks in Table 3 as an example. The greedy
algorithm produces A∗ for the microtasks as follows. In

the first iteration, it computes
∑

w∈Ŵ(ti)
pwi

|Ŵ(ti)|
for each micro-

task and chooses t11 with the highest score. Then, it inserts
⟨t11, {w5, w3}⟩ intoA∗ and removes ⟨t4, Ŵ(t4)⟩, ⟨t10, Ŵ(t10)⟩
from Ac. Similarly, in the second iteration, the algorithm
chooses ⟨t9, {w4, w2, w1}⟩ and inserts it intoA∗. Then, given
an empty Ac, the algorithm terminates and outputs A∗.

5. QUALIFICATION TASK ASSIGNMENT
Our framework in Algorithm 2 may not dispatch micro-

task to a worker w if w is not contained in any top worker
set. This will occur if 1) w is a new worker, or 2) w per-
forms worse than others on all microtasks. In both cases,
our framework needs to further test the quality of worker w
by assigning her microtasks. We propose to assign qualifica-
tion microtasks with ground truth to this end. Intuitively,
in the former case, these microtasks are used to test which
microtask w is good at. In the latter case, we have known
that w is less competitive on the microtask similar to what
she has completed. Thus, we need to test whether or not w
is good at other microtasks, as mentioned before.

It is worth noting that the requester can only label ground
truth to a limited number of qualification microtasks. Thus,
we need to determine what microtasks have larger “benefit”
to be qualification microtasks. We introduce a method for
selecting qualification microtasks. The basic idea is to select
the microtasks that have the maximum “influence” to other
microtasks in the similarity graph. Intuitively, the influence
captures how many microtasks we can infer that a worker
has potential to provide correct answer if she correctly an-
swers qualification microtasks. Take the similarity graph in
Figure 3 as an example. If we can only select 3 microtasks,
a good choice is {t1, t2, t3} as they can influence more mi-
crotasks related to iPhone, iPad and iPod. On the other
hand, the microtasks {t1, t4, t5} only have strong influence
on microtasks about iPhone and weak influence on other
microtasks, and thus they can only help us test whether
workers are good at this topic.

Based on the above intuition, consider qualification micro-
tasks T Q ⊆ T . We model the influence of T Q as the number
of non-zero values in the estimated accuracy vector inferred
from the qualification microtasks in T Q. Formally, based on
the linearity property introduced in Lemma 3, the estimat-
ed accuracy vector can be computed by

∑
ti∈T Q pti where

pti is the converged result of Equation (4) under the con-
dition that the observed accuracies satisfy that only qi for
microtask ti is 1 and others are 0. The influence is then com-
puted by INF(T Q) =

∑
p
i
∈
∑

ti∈T Q pti
I(pi ̸= 0) where I(·) is

an indicator function (i.e., I(pi ̸= 0) = 1 if pi ̸= 0, and
I(pi ̸= 0) = 0 otherwise). Now, we are ready to introduce
the problem of qualification selection.

Definition 5 (Qualification Microtask Selection).
Given a similarity graph G and a number Q, it selects a sub-
set of microtasks T Q ⊆ T satisfying: 1) the size |T Q| ≤ Q,
and 2) the influence of T Q, INF(T Q) is maximized.

Lemma 5. Qualification microtask selection is NP-hard.

Proof. See Appendix C for the proof.

Algorithm 4: SelectQualification (G, T , Q)

Input: G: A similarity graph; T : microtask set;
Q: Number of qualification microtasks

Output: T Q: Selected qualification microtasks
begin1

for Each microtask ti in T do2

Compute pti iteratively on G via Equation (4) ;3

T Q ← ∅ ;4

for i = 1 . . . Q do5

Find a microtask t∗ satisfying:6

t∗ = argmaxt∈T −T Q

{
INF(T Q ∪ {t})− INF(T Q)

}
,

where INF(T Q) =
∑

p
i
∈
∑

ti∈T Q pti
I(pi ̸= 0) ;

T Q ← T Q ∪ {t∗} ;7

Return T Q ;8

end9

We can devise a greedy algorithm for qualification micro-
task selection, as shown in Algorithm 4. The algorithm first
computes pti iteratively on the similarity graph G via Equa-
tion (4). Then, it selects qualification in Q iterations. In each
iteration, it selects a task t∗ that maximizes the marginal in-
fluence, i.e., t∗ = argmaxt∈T −T Q

{
INF(T Q ∪ {t})− INF(T Q)

}
.

We can prove that the approximation ratio of this greedy
algorithm is 1− 1

e
where e is the base of natural logarithm.

Next, we analyze its time complexity. It has Q iterations,
and, in each iteration, it computes INF(T Q ∪ {t}) for each
microtask t ∈ T , which needs to scan all microtask in pti .
Overall, the complexity of Algorithm 4 is O(Q · |T |2).

6. EXPERIMENTS

6.1 Experiment Setup
Datasets: We conducted experiments on real-world crowd-
sourcing platform Amazon Mechanical Turk (AMT) and e-
valuated the approaches on two real datasets.
1) YahooQA dataset: Evaluating quality of Question-Answers.
The first dataset contained a set of microtasks that asked
workers to evaluate whether a user-generated answer from
Yahoo Answers can appropriately address its corresponding
question. An example question and one of its answers were
“Who first proposed Heliocentrism?” and “Nicolaus Coper-
nicus, a Renaissance mathematician and astronomer.”. A
worker was required to do a Yes/No selection, i.e., whether
the answer can appropriately address the question. We gen-
erated the ground truth of each task based on the ratings
from Yahoo Answers: if an answer was rated as the “Best
Answer” by the asker and attracted many more “Thumbs
Up” than “Thumbs Down”, the answer was labeled with 1.
On the other hand, if the answer was not selected by the
asker and had many more “Thumbs Down”, it was labeled
with 0. We selected 110 question-answer pairs as tasks in six
domains, 2006 FIFAWorld Cup (FF), Books & Authors (BA),
Diet & Fitness (DF), Home Schooling (HS), Hunting (HT) and
Philosophy (PH). Table 4 shows statistics of YahooQA.
2) ItemCompare dataset: This dataset contained a set of mi-
crotasks that ask workers to compare two items based on a
specified comparison criteria. We used four domains, Food,
NBA, Auto and Country. In the Food domain, a microtask
asked workers to compare two food items, say Chocolate and
Honey, and identified which one had more calories. In the



(a) YahooQA dataset. (b) ItemCompare dataset.

Figure 6: Diverse Workers’ Accuracies Across Different Domains (Here, we only list workers that completed
more than 20 microtasks).

Table 4: Dataset Statistics.
Dataset YahooQA ItemCompare

# of microtasks 110 360
# of domains 6 4
# of workers 25 53

NBA domain, workers compared two NBA teams, say Los An-
geles Lakers and Milwaukee Bucks, and verified which team
won more NBA champions. In the Auto domain, workers
compared two cars, say 2014 Toyota Camry and 2014 Lexus
ES, and verified which one was more fuel efficient. In the
Country domain, workers compared two countries, say Brazil
and Canada, and verified which one had larger total area.
We generated 360 microtasks where each domain had 90
microtasks, and manually labelled the ground truth.

We published all the microtasks on AMT and evaluated
different approaches. We put 10 microtasks as a batch in
a Human Intelligence Task (HIT), and set the price of each
assignment as $0.1. To ensure that all the approaches were
compared on the same set of workers, we set the“Number of
Assignments per HIT” to a large number (10 in our exper-
iments) to collect enough answers. Based on the collected
answers, we ran different approaches for task assignment and
compared their performance. Table 4 shows statistics of the
datasets and answers collected from AMT.
Baseline approaches: We implemented our methods and
compared with baseline approaches. Note that we compared
both task assignment and aggregation: Given an approach,
we used its task assignment strategy to obtain answers from
workers and employed its aggregation strategy to derive the
final results for microtasks. We considered three baselines:
1) RandomMV: This approach used a random strategy for task
assignment and aggregated workers’ answers to generate the
result by using majority voting. 2) RandomEM: The approach
also used the random strategy for task assignment, but an
Expectation-Maximization (EM) algorithm [31, 8] was used
to aggregate the answers. The EM algorithm iteratively es-
timated worker’s accuracy (called confusion matrix in [31,
8]) and exploited the estimated accuracy to compute the ag-
gregated result. 3) AvgAccPV: This approach estimated an
average accuracy for each worker by injecting some “gold”
microtasks with ground truth, assigned microtasks to work-
ers with higher accuracies, and aggregated the answers using
the probabilistic verification model introduced in [22].
Evaluation metrics: We evaluated approaches on accura-
cy and efficiency. Accuracy was computed as the ratio of the

microtasks with correctly predicted results, and the efficien-
cy was measured by the elapsed time of task assignment.
Experiment settings: All approaches were evaluated un-
der assignment size for each microtask k = 3. In addition,
all the programs were implemented in JAVA and all the ex-
periments were run on a Ubuntu machine with an Intel Core
2 Quad X5450 3.00GHz processor and 4 GB memory.

6.2 Diverse Accuracies across Domains
We first investigated the diversity of workers’ accuracies

across different domains by analyzing the collected answers
in each dataset. For each worker, we computed the number
of her completed microtasks and the accuracy (the ratio of
correct answers to all of her completed microtasks) in each
domain. Figure 6 shows the results on the two datasets,
where the length of a bar represents the accuracy (the actual
value of the accuracy is also labelled beside the bar).

We had the following observations of diversity. On the one
hand, accuracies of each individual worker might be rather
diverse across domains: workers could be very good in some
domains, while performing badly in others. For example,
as shown in Figure 6(a), the first worker A2YEBGPVQ41ESM
had good accuracies in domains Books&Authors (0.875) and
Philosophy (0.70) but had rather bad accuracies in Di-
et&Fitness (0.35), Home Schooling (0.30), Hunting (0.231),
and FIFA (0.176). On the other hand, top workers w.r.t
accuracy in different domains might also be diverse. As
shown in Figure 6(b), the best worker in the Country do-
main was A2V99E4YEP14RI with accuracy 0.95. However, she
was low-ranked in the NBA domain (due to the low accuracy
0.52), while the best worker in the NBA domain was worker
A3JOGMTOAUEFUP. These observations have verified our claim
in Section 1 that workers may have diverse accuracies across
different tasks, and an average accuracy would be limited in
reflecting worker’s performance. These results also implied
the necessity of our microtask assignment that took accura-
cy diversity into consideration, because some good workers
(e.g., worker A2V99E4YEP14RI) in one domain (e.g., Country)
could be a spammer in another domain (e.g., NBA).

6.3 Evaluation on Adaptive Crowdsourcing
Next, we evaluated our adaptive crowdsourcing approach

on accuracy in this section. We first examined the effect of
the parameters used in our approach, i.e., microtask similar-
ity measures, parameter α in Equation (2) and assignment
size k, and then evaluated the approximation error of our
greedy algorithm for adaptive assignment. Due to the space
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Figure 7: Effect of Qualification.

limitations, we put these results in Appendix D. Here we e-
valuated the effect of qualification and adaptive assignment.

6.3.1 Effect of Qualification
We evaluated the effect of qualification and compared two

qualification strategies. The first one, denoted by RamdomQF,
randomly selected a set of Q qualification microtasks, while
the second one, denoted by InfQF, utilized the techniques
introduced in Section 5 for qualification selection. In the
experiments, we set the number Q as 10.

Figure 7 provides the experimental results. We can see
that InfQF outperformed RamdomQF in most of the domains
and the overall cases. For example, as shown in Figure 7(a),
the accuracy of InfQF was higher than that of RamdomQF
in four out of six domains (Books&Authors, FIFA, Philoso-
phy and Hunting), and 8% higher in the overall case (ALL).
In addition, InfQF outperformed RamdomQF in all the do-
mains and the overall case on the ItemCompare dataset (Fig-
ure 7(b)). The main reason is that the qualification micro-
tasks selected by RamdomQF might be scattered in different
domains, and the number of qualification microtasks in each
individual domain would thus be limited. This resulted in
overestimation or underestimation of workers’ accuracies in
the individual domains. In contrast, the InfQF method was
more “focused”, as it would select more qualification micro-
tasks that had large influence to individual domains. These
more focused qualification microtasks were helpful to reduce
estimation errors and eliminate “bad” workers in the early
qualification phase. For instance, on the YahooQA dataset,
InfQF identified and eliminated workers with limited accu-
racies in the FIFA domain, e.g., workers A2YEBGPVQ41ESM
and A1H8Y5D04A7T5E shown in Figure 6(a), and achieved
more than 30% improvement on accuracy compared with
RamdomQF in the domain. In addition, we also observed that
RamdomQFmight select good workers via qualification in some
special cases (e.g., Diet&Fitness and Home Schooling in
Figure 6(a)), as it might select some qualification micro-
tasks, which were good for these domains, by chance. How-
ever, the method had unsatisfactory performance in most of
the cases and achieved low overall performance.

In the remaining part of this section, we use InfQF as the
default method for qualification selection.

6.3.2 Effect of Adaptive Assignment
Then, we evaluated the effect of our adaptive microtask

assignment strategy. We studied the following two alterna-
tive strategies: 1) QF-Only: this strategy utilizes the accura-
cy which is estimated by qualification microtasks for assign-
ment and does not adaptively update accuracy estimation.
2) BestEffort: the strategy, although adaptively updates
accuracy estimation, adopts a best effort method for micro-
task assignment: given a request from a worker, it compares
the estimated accuracies of the microtasks the worker could
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Figure 8: Effect of The Adaptive Strategy.

work on and assigns the one with the highest accuracy. 3)
Adapt: this strategy not only adaptively updates accuracy
estimation using our graph-based estimation techniques in-
troduced in Section 3, but also assigns microtasks based on
our adaptive method proposed in Section 4.

Figure 8 shows the experimental results. We can see that
QF-Only achieved the worst performance in most of the cas-
es. This is due to the estimation error in qualification: as
qualification microtasks only took a small portion of the
dataset, estimation from these microtasks might not be very
accurate. BestEffort improved the accuracy compared with
QF-Only in many domains, because it adaptively updated ac-
curacy estimation as workers completed microtasks. How-
ever, the improvement was not significant. This is mainly
due to its microtask assignment strategy. The best micro-
task (with the highest accuracy) of a worker might not take
the worker as the best candidate to complete the task, be-
cause there might be other better workers. As such, this
assignment strategy introduced workers with relatively low
accuracy and thus affected the majority voting result, which
would also have negative influence on the following accura-
cy estimation. Adapt achieved the best accuracy on both
datasets. The improvement was attributed to not only our
adaptive accuracy estimation but also the assignment strat-
egy that took optimal microtask assignment and worker ac-
curacy testing. In the remainder of this section, we utilize
Adapt as the default strategy of iCrowd.

6.4 Comparison with Existing Approaches
We compared iCrowd with the three baseline approaches

mentioned in Section 6.1, RandomMV, RandomEM and AvgAc-
cPV. We used the same set of microtasks for qualification.

Figure 9 shows the performance of these approaches on
accuracy. We can see that the performance of random as-
signment strategies RandomMV and RandomEM largely depend-
ed on the quality of the worker set in a domain: if a domain
contained many more good workers, the accuracy would be
high; otherwise, the accuracy would be low. For example,
as shown in Figure 6(a), the average worker quality of the
FIFA domain was much lower than that of the Philoso-
phy domain, and thus the random strategies achieved much
worse result in FIFA (only about 0.4 on accuracy). We al-
so had an interesting observation that the EM algorithm
for worker answer aggregation might not always be help-
ful. For instance, the accuracy of RandomEM was lower than
that of RandomMV in the domains Auto and Country in Fig-
ure 9(b). This was mainly attributed to the accuracy esti-
mation mechanism of EM. The algorithm estimated worker
accuracies without considering the inherent accuracy diver-
sity over domains, and thus might overestimate some work-
ers with limited accuracies. The iterative mechanism of EM
might further propagate and aggravate the overestimation.

Moreover, AvgAccPV achieved limited performance on the
two datasets, which verified our claim that the average accu-
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Figure 9: Approach Comparison.

racy without considering domain diversity may not be effec-
tive for microtask assignment. For example, AvgAccPV would
incorrectly estimate that the first worker A2YEBGPVQ41ESM in
Figure 6(a) with high average accuracy also had good per-
formance in the Hunting domain, while the worker was bad
in Hunting. This resulted in unsatisfactory accuracy of Av-
gAccPV in this domain (only 25% as shown in Figure 9(a)).

Our approach iCrowd outperformed the baseline approach-
es. As shown in Figure 9, it gained about 10% improvement
in the average case (the ALL domain), and even more than
20% improvement in some domains (e.g., Home Schooling).
The main reason was that iCrowd utilized the graph-based
estimation model for capturing accuracy diversity in differ-
ent domains, which was very helpful to identify the workers
with expertise in each individual domain. Furthermore, the
assignment strategy of iCrowd could effectively assign mi-
crotasks to high-quality workers and progressively improved
accuracy estimation based on worker answers. We also ob-
served that iCrowd had limited improvement in the Auto do-
main on the ItemCompare dataset. This is mainly because
there was no very good workers in this domain: as shown in
Figure 6(b), the best worker in Auto only had an accuracy
of 0.76, while accuracies of the best workers in other three
domain were more than 0.9. As a result, iCrowd might not
have much space for choosing high-quality assignments.

6.5 Evaluation on Efficiency
We evaluated efficiency of our assignment algorithm using

simulation. Initially, the entire microtask set was empty. We
inserted 0.2 million microtasks at each time and ran iCrowd
to evaluate the efficiency. We also considered the maximal
number of “neighbors”, which can be influenced by a micro-
task in our accuracy inference. Given a maximal neighbor
number, say 40, and a microtask, we randomly selected 40
microtasks as neighbors of the microtask. Figure 10 shows
the experimental results. We can see that our method was
efficient and scaled very well: with the increase of the num-
bers of microtasks, the elapsed time increased sub-linearly.
The good performance on efficiency was mainly because we
devised effective index structures and developed efficient al-
gorithms for microtask assignment.

7. RELATED WORK
The studies most related to our work are quality-control

techniques in crowdsourcing. The existing approaches can
be broadly classified into two categories. The gold-injected
approaches [22, 1] leveraged a small amount of tasks with
ground truth to estimate workers’ reliability and aggregated
their answers based on the reliability. The EM -based ap-
proaches [31, 8, 18, 21] simultaneously estimated worker ac-
curacy and predicted aggregated results using an Expectation-
Maximization (EM) strategy. Moreover, Ipeirotis et al. [17]
studied how to evaluate the quality of workers to reject or
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block low-quality workers. Parameswaran et al. [26] assumed
the false positive and false negative rates of each worker, and
studied the number of assignments that are required for a
task. Our study is different from these quality-control tech-
niques in that we tackle the accuracy diversity in more com-
plicated crowdsourcing tasks for better accuracy estimation
and adaptively assign tasks to workers, instead of random
task assignment without considering workers’ expertise.

Recently, some approaches for task assignment [15, 16, 19,
20] and recommendation [3] have been proposed. Although
they also considered how to recommend and assign tasks to
appropriate workers, they neglected the fact that different
works had accuracy diversity across different tasks. Thus
different from these studies, we attempted to address two
new challenges. First, we studied how to effectively estimate
the diverse accuracy of workers based on their completed
tasks. Second, we proposed efficient algorithms to support
instant task assignment based on workers’ divserse accuracy.

There are some crowd-powered systems developed in the
human-computer interaction community. Solyent [5] is a
word processor that employs the Find-Fix-Verify interac-
tion method. Adrenaline [4] is a crowd-powered camera
that supports realtime crowdsourcing by using the interac-
tion method called rapid refinement. Recent studies in the
database community aim to leverage crowdsourcing to build
database systems, which can support some queries that can-
not be processed by machine-only methods (e.g. entity res-
olution and graph search) [25, 29, 12, 23, 27, 28, 32, 9, 34,
13, 10]. Nevertheless, iCrowd has a different goal from these
studies: iCrowd focuses on adaptively assigning tasks to ap-
propriate workers to improve the crowdsourcing quality.

8. CONCLUSION
We proposed iCrowd, an adaptive crowdsourcing frame-

work to adaptively assign microtasks to appropriate work-
ers who have high probabilities to correctly complete micro-
tasks. We devised a graph-based estimation model to cap-
ture the diverse accuracies of workers across different tasks in
order to provide more effective task assignment. We proved
that the optimal task assignment is NP-hard and devised
a greedy algorithm to enable instant task assignments. We
deployed iCrowd on AMT and experimental results on two
real datasets show that iCrowd achieved much higher quality
than state-of-the-art methods.
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APPENDIX

A. IMPLEMENTATION OF ICROWD ON A-
MAZON MECHANICAL TURK

We developed a system to support adaptive crowdsourcing
on Amazon Mechanical Turk (AMT), as shown in Figure 11.
As AMT does not support advanced HIT assignment (it on-
ly randomly assigns HITs to workers), the system utilized
the ExternalQuestion mechanism3 to manage microtasks on
our own Web server and take full control of microtask as-

3More information can be found in AMT Documentation at
http://aws.amazon.com/documentation/mturk/
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Figure 11: Implementation of iCrowd on AMT

signments. Specifically, the system generates HITs with the
ExternalQuestion mode, which are different from the ordi-
nary HITs in that each of such HITs only contains a URL
of our Web server, instead of the actual microtasks. Then,
when a worker accepts a published HIT and requests for mi-
crotasks4, AMT will send a request containing worker infor-
mation to our server. Given the worker information, iCrowd
in our server assigns microtasks to the worker and sends
them back to AMT. Next, AMT embeds the assigned mi-
crotasks as an HTML iframe in its user interface to present
the microtasks to the worker. After a worker submits her
answers, AMT transfers the answers to our server and our
server calls back some APIs of AMT to process paymen-
t. Finally, after collecting answers for all the microtasks,
iCrowd aggregates the answers and stores the obtained re-
sult. Briefly speaking, when a worker requests a microtask,
our system decides how to assign microtasks to the worker;
when a worker submits an answer, it collects the answer,
aggregates the answers, and computes which domains each
worker is skilled in. Iteratively, our system can assign all
tasks to appropriate workers.

B. PROOF OF LEMMA 4
We can prove the lemma by a reduction from the k-set

packing problem, which is known to be NP-hard.
Recall that an instance of k-set packing problem (U , C, k)

consists of a universe of elements U = {e1, e2, . . . , e|U|}, a
collection of subsets C = {C1, C2, . . . , C|C|} where Ci ⊆ U ,
and a number k. Each subset Ci contains less than k el-
ements, i.e., |Ci| ≤ k, and it is associated with a weight
w(Ci). The problem aims to select some subsets C∗ ⊆ C sat-
isfying ∀Ci, Cj ∈ C∗ are disjoint, to maximize

∑
Ci∈C∗ w(Ci).

Given any instance (U , C, k) of the k-set packing problem,
we create an instance of the microtask selection problem as
follows. We first create a set of active workers W, each of
which corresponds to an element in U . Then, we create a set
of microtasks T , each of which corresponds to a subset in
C, and let the number of assignments for each microtask be
equal to k. Then, it is easy to prove that the optimization
objectives of the problems are identical. The problem of

4Usually a HIT contains mutiple microtasks. For each HIT,
we only need to tell the worker how many microtasks in the
HIT and show the first microtask in the HIT. When the
worker finishes the microtask and clicks the “Next” link, we
assigns the next microtask to the worker.
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microtask selection can be solved, only if the k-set packing
problem is solved. Thus, we prove the lemma.

C. PROOF OF LEMMA 5
We can prove the lemma by a reduction from the maxi-

mum coverage problem, which is known to be NP-hard.
Recall that an instance of maximum coverage problem

(U , C, k) consists of a set of elements U = {u1, u2, . . . , u|U|},
a collection of subsets C = {C1, C2, . . . , C|C|} where Ci ⊆ U ,
and a number k. The problem aims to select k subsets C∗ ⊆
C to maximize the number of covered elements, |

⋃
C∈C∗ C|.

Given any instance (U , C, k) of the maximum coverage
problem, we create an instance of the qualification micro-
task selection problem as follows. We first create a set of
microtask T , each of which corresponds to an element in U .
Then, we create accuracy vector pti corresponding to each
set C ∈ C: for any ui ∈ C, we set the pi = 1; otherwise
pi = 0. Next, we let the number of qualification microtasks
be equal to k. Then, it is easy to prove that the problem of
qualification microtask selection can be solved, only if the
maximum coverage problem is solved. Thus, we prove the
lemma.

D. ADDITIONAL EXPERIMENTS

D.1 Evaluation on Similarity Measures
We investigated the methods for measuring microtask sim-

ilarity, which were essential to generate the similarity graph
for accuracy estimation. To compute microtask similarity,
we tokenized the text of microtasks and removed the stop-
words. Then, given two microtasks, we considered the fol-
lowing three similarity measures: 1) Jaccard: this method
took each microtask as a set of words and computed simi-
larity of two microtasks as the their overlap size divided by
their union size; 2) Cos(tf-idf): this method took each mi-
crotask as a vector of words associated with TF-IDF weight-
s, then it computed the similarity as the cosine similarity of
the vectors; 3) Cos(topic): this method first conducted top-
ic analysis by using Latent Dirichlet Allocation (LDA) [6]
to obtain a topic distribution for each microtask, and then
computed microtask similarity via the cosine similarity of
the two distributions. We also set a similarity threshold and
only utilized the microtask pairs with similarity larger than
the threshold.
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The experimental result is shown in Figure 12. We have
the following observations. First, different similarity mea-
sures did not significantly affect the performance. For ex-
ample, for a small similarity threshold, the three methods
achieved similar performance. Second, the similarity thresh-
olds had effect on the performance. A small threshold in-
volved some weak microtask connections and a large thresh-
old eliminated many strong microtask connections. Thus an
appropriate threshold could be helpful to achieve high per-
formance. Third, Cos(topic) achieved better performance,
because the topic analysis from the LDA model could dis-
cover the inherent topical relevance between microtasks in
the same domain while differentiate microtasks in different
domains.

We used Cos(topic) with threshold 0.8 as the default
similarity measure and threshold for all of our experiments.

D.2 Evaluation on Parameter α

We evaluated the effect of α introduced in Equation (2).
This parameter was used to leverage the two objectives in
accuracy estimation: 1) minimizing accuracy difference be-
tween similar microtasks, and 2) minimizing the difference
between estimated accuracies and observed accuracies. We
varied α and examined the accuracy of our approach.

As shown in Figure 13, depending solely on one objective
could not achieve satisfactory accuracy: On the one hand,
only depending on the first objective (α = 0) would lead to
all connected microtasks having the same estimated accu-
racies, which failed to capture accuracy diversity. On the
other hand, only depending on the second objective (α is
a large number, say 100) would make estimated accuracies
very close to the observed ones, which means the estima-
tion could not benefit from the graph-based inference. In
contrast, reconciling these two objectives (i.e., finding an
appropriate α) produced much better accuracy.

W set α = 1.0 as the default value for all of our experi-
ments.

D.3 Evaluation on Assignment Size k

We evaluated the approaches, RandomMV, RandomEM, Av-
gAccPV, and iCrowd, by varying the assignment size k. As
mentioned in Section 2.1, this parameter is used to set the
number of workers which are assigned with each microtask.

Figure 14 shows the experimental result. We can see that
our proposed approach iCrowd achieved the highest accura-
cy at every assignment size k, and outperformed the three
baselines. This is because iCrowd could effectively estimate
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Figure 14: Evaluating Assignment Size k on The
ItemCompare Dataset.
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Figure 15: Distribution of Microtasks Completions
for Top Workers on The ItemCompare Dataset.

workers’ diverse accuracies and, given each k, assign top-k
workers with higher accuracies to each microtask. Besides,
we observe that increasing k would generally improve the
overall accuracy. For example, accuracy of iCrowd was im-
proved by 5 percent from k = 1 to k = 3. This illustrates
that voting among more workers could increase the accuracy.
Nevertheless, the improvement might become insignificant
given a larger assignment size. This is because the newly
assigned workers have relatively lower estimated accuracies
and thus have lower weights in the voting to affect the final
result.

D.4 Approximation Error of Greedy Algorith-
m for Microtask Assignment

We evaluated our greedy algorithm (Algorithm 3) and ex-
amined its approximation error on the larger dataset Item-
Compare. Specifically, we implemented an enumeration-based
algorithm to find the optimal solution with the maximum
overall accuracy, denoted by OPT : it enumerated all feasi-
ble assignment schemes and returned the one with the max-
imum overall accuracy. Meanwhile, we ran our greedy algo-
rithm to produce a solution with overall accuracy denoted
by APP . Then, we measured the approximation error using
the equation

Error =
OPT − APP

OPT
× 100%. (6)

Table 5 shows the result where we varied the number of
active workers to be assigned (i.e., W in Algorithm 3). No-
tice that the enumeration-based algorithm took very long



Table 5: Approximation Errors of Algorithm 2 on
The ItemCompare Dataset.

# active workers 3 4 5 6 7

Approx. Error (%) 1.9 0.6 0.5 1.3 1.5

computation time when the number of active workers was
larger than 7 (we waited 30 minutes and did not get the
result). This is because, in this case, there were 337 mi-

crotasks having non-empty top worker sets ({Ŵ(ti)}). The
optimal algorithm had to enumerate all possible subsets of
337 microtasks such that the top worker sets in each of such
subsets were disjoint, which was rather time-consuming. As
such, we only reported the results for the number of active
workers up to 7. As shown in Table 5, the approximation
errors of our greedy algorithm were less than 2%.

This illustrated that the performance of the greedy algo-
rithm was very close to that of the optimal task assignment.

D.5 Assignment Distribution w.r.t Workers
In this section, we examined the distribution of the num-

ber of microtask assignments to workers on the larger Item-
Compare dataset. This dataset had 360 microtasks and the
assignment size for each microtask was k = 3. Thus the
number of total assignments was 1080.

Figure 15 shows the result for the top-15 workers. We can
see that each of these worker completed a fair number of
assignments, e.g., the first worker w1 completed more than
13% of all the assignments, and these top-15 workers com-
pleted 84% of all the assignments. This observation supports
our claim that the worker set that completed a crowdsourc-
ing job was relatively stable.


