
Location-Aware Pub/Sub System: When Continuous
Moving Queries Meet Dynamic Event Streams

Long Guo #1, Dongxiang Zhang #2, Guoliang Li †3, Kian-Lee Tan #4, Zhifeng Bao ∗5
#School of Computing, National University of Singapore, Singapore

†Department of Computer Science, Tsinghua University, Beijing, China
∗School of Computer Science & Information Technology, RMIT University, Melbourne, Australia

{1guolong,2zhangdo,4tankl}@comp.nus.edu.sg, 3liguoliang@tsinghua.edu.cn, 5zhifeng.bao@rmit.edu.au

ABSTRACT
In this paper, we propose a new location-aware pub/sub system,
Elaps, that continuously monitors moving users subscribing to dy-
namic event streams from social media and E-commerce applica-
tions. Users are notified instantly when there is a matching event
nearby. To the best of our knowledge, Elaps is the first to take into
account continuous moving queries against dynamic event streams.
Like existing works on continuous moving query processing, Elaps
employs the concept of safe region to reduce communication over-
head. However, unlike existing works which assume data from
publishers are static, updates to safe regions may be triggered by
newly arrived events. In Elaps, we develop a concept called impact
region that allows us to identify whether a safe region is affected by
newly arrived events. Moreover, we propose a novel cost model to
optimize the safe region size to keep the communication overhead
low. Based on the cost model, we design two incremental methods,
iGM and idGM, for safe region construction. In addition, Elaps
uses boolean expression, which is more expressive than keywords,
to model user intent and we propose a novel index, BEQ-Tree, to
handle spatial boolean expression matching. In our experiments,
we use geo-tweets from Twitter and venues from Foursquare to
simulate publishers and boolean expressions generated from AOL
search log to represent users intentions. We test user movement
in both synthetic trajectories and real taxi trajectories. The results
show that Elaps can significantly reduce the communication over-
head and disseminate events to users in real-time.

Categories and Subject Descriptors
H.2 [Database Management]: Database applications;
H.2.8 [Database applications]: Spatial database and GIS

Keywords
pub/sub; continuous moving queries; dynamic event streams

1. INTRODUCTION
The prevalence of social networks and mobile devices has fa-

cilitated the real-time dissemination of local events such as sales,
shows and exhibitions. To avoid missing interesting events in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2746481.

neighborhood, various location-aware pub/sub systems have been
proposed. These fall into two categories: they either focused on
how to handle incoming event streams efficiently by assuming users’
locations are static [1, 2, 3, 4]; or they attempted to process contin-
uous moving subscriptions against a static event dataset [5, 6, 7, 8,
9, 10]. None of them can really support subscriptions from mobile
users moving all the time against spatial events that are continu-
ously published by local businesses.

In this paper, we propose a new location-aware pub/sub sys-
tem, Elaps, that continuously monitors moving users subscribing
to dynamic event streams from social media and E-commerce ap-
plications. Users are notified instantly when there is a matching
event nearby. Unlike existing pub/sub systems, Elaps uses boolean
expressions, which are more expressive than keywords, to model
user intent. This means users can subscribe to structured, semi-
structured and unstructured data.

name = ochirly

model = dress
$200 < price < $500

service = car maintaining

car model = Porsche
price = $1500

name = museum

category = technology
close time > 6pm

name = museum

category = technology
open time = 8am

close time = 6pm

name = shoes

model = Jordan AJ23
price < $1000

name = shoes

model = Jordan AJ23
limited = yes

price = $899

service = car maintaining

car model = Porsche
price = $1500

name = ochirly

model = dress
price = $489

Figure 1: A working scenario of Elaps

Fig. 1 illustrates a working scenario of such a system. Here,
the subscribers with mobile devices are the moving objects, and
a subscription is represented in the form of a boolean expression.
For example, if a user is interested in Jordan basketball shoes, he
can use a boolean expression to model the interest: (name=shoes
∧ model=Jordan AJ23 ∧ price < $1000). Note that pub/sub
systems based on keyword subscription cannot support numeric at-
tribute matching such as price < $1000. To specify the locational
matching constraint, a subscriber can set a notification radius so
that events lying inside the circle are considered as candidates. For
example, the circles in Fig. 1 represent the notification regions of
different users. When a user moves, the notification region moves
along. On the publisher side, an event is published at a location. If
a shoe shop is on sale, then the location of the shop is the event lo-
cation. Our system continuously monitors the moving subscribers
and notify them once there is a matching event in their circles.

843

Location-aware news feed Location-aware pub/sub Continuous spatial queries
GeoFeed[1] MobiFeed[11] Rt-tree[2] IQ-tree[3] CLCB[4] KNN/Range Spatial keyword Elaps

continuous moving queries 7 7 7 7 7 3 3 3
dynamic event streams 3 3 3 3 3 7 7 3

matching semantic - - keyword keyword BE - keyword BE

Table 1: Comparison of existing location-aware pub/sub system

To meet the above desiderata, our system is designed to tackle
the two main challenges:

a) how to effectively process continuous moving subscriptions
against dynamic event streams. Safe region has been widely used to
reduce communication cost for continuous moving query process-
ing [5, 6, 7, 8, 9, 10]. The intuition behind the notion of safe region
is that if there are no matching events nearby, the users are safe to
disconnect from the server and do not need to periodically update
their locations. However, we observed that the safe region tech-
niques used in [5, 6, 7, 8, 9, 10] fail to work effectively when dy-
namic events are considered. This is because newly arrived events
can trigger new communication needed to update the safe regions,
besides the communication incurred by location updates. More-
over, these two types of communication have conflicting require-
ments on the size of safe regions. Therefore, there is a need to
reconsider how best to exploit safe regions.

b) how to support symmetric boolean expression matching with
spatial constraints between subscribers and publishers. In other
words, when a subscriber arrives, we need to search in the event
database for matching events within the specified notification ra-
dius; when a new event arrives, we need to search in the subscriber
database to find matching subscribers and notify them.

More specifically, our technical contributions are summarized as
follows:

• We optimize the design and processing of safe regions in
several ways. First, given a safe region, we derive its im-
pact region. The impact region is a novel concept used to
identify if its corresponding safe region is affected by newly
arrived events. Second, we propose a cost-based approach to
determine the optimal safe region size to keep the commu-
nication overhead low. Our cost model considers the com-
munication cost incurred by location updates as well as that
incurred by event arrival. Third, based on the cost model, we
design two new schemes, iGM and idGM, to incrementally
construct safe regions.

• We propose a new index named BEQ-Tree which integrates
Quadtree [12] with boolean expressions seamlessly to sup-
port spatial boolean expression matching and safe region con-
struction efficiently.

Moreover, we conduct comprehensive experiments using real
datasets to evaluate the system performance. We use geo-tweets
from Twitter and venues from Foursquare to simulate publishers
and boolean expressions generated from AOL search log to rep-
resent users intentions. We test user movement in both synthetic
trajectories and real taxi trajectories. The results show that our pro-
posed iGM and idGM can reduce the communication overhead by
10 times. Also, our proposed index handles spatial boolean expres-
sion matching significantly faster than the competing methods.

The rest of this paper is organized as follows. We first review var-
ious location-based pub/sub systems and boolean expression match-
ing and give a problem statement in Section 2. We then propose
how to handle continuous moving queries against dynamic event
streams in Section 3. We further introduce how to handle spatial

boolean expression matching in Section 4. Based on the techniques
proposed in Section 3 and Section 4, we present the system frame-
work of Elaps in Section 5. Finally, we evaluate our system perfor-
mance in Section 6 and conclude the paper in Section 7.

2. RELATED WORK
In Elaps, our primary goal is to build a pub/sub system that caters

for both continuous moving subscribers and dynamic event streams
from publishers, and our secondary goal is to support a more ex-
pressive event matching semantic than pure keywords. Thus, in
this section, we first highlight the novelty of Elaps as compared
with existing location-aware pub/sub systems and then present the
related work about boolean expression matching. Finally we give a
problem statement.

2.1 Location-aware Pub/sub
To clearly distinguish Elaps from other works in the literature,

we first present a taxonomy of the existing location-aware pub/sub
systems and our proposed Elaps in three aspects: support for con-
tinuous moving queries, support for dynamic event streams and
event matching semantic (see Table 1).

Location-aware pub/sub system. A location-aware pub/sub
system sends matching geo-tagged events to the corresponding sub-
scribers. Compared to existing location-aware pub/sub systems [2,
3, 4], Elaps has two distinguishing features, as shown in Table 1.
First, it continuously monitors users’ locations and sends nearby
notifications in real time, while [2, 3, 4] assume users’ locations
are static. Second, it allows users to specify their interests with
boolean expressions, which provides better flexibility and expres-
siveness in shaping an interest than keyword subscription in [2, 3].

Continuous spatial queries. Another problem that is closely re-
lated to our research is the processing of continuous spatial queries
such as continuous KNN/range queries [5, 6, 7] and continuous
spatial keyword queries [8, 9, 10]. Given a moving query, exist-
ing works have developed techniques to continuously return a set
of objects satisfying the spatial constraint [5, 6, 7] or the combined
spatial and textual constraints [8, 9, 10]. To reduce the communica-
tion overhead, these methods typically require users to update their
locations only when they move out of their safe regions. Moreover,
users within the safe regions can safely disconnect from the server
as long as there is no matching event in their neighborhood. Since
we focus on range query, the safe region construction methods for
spatial keyword query in [8, 9, 10] cannot be applied. Besides,
those proposed for continuous knn/range queries [5, 6, 7] assume
the publisher events are static, so they fail to solve our problem ei-
ther (Please refer to Section 3 for a detailed justification). Lastly,
these methods allow users to search for relevant events by keyword
subscriptions while Elaps uses a more expressive boolean expres-
sion to model user intent.

Location-aware news feed system. We also note that location-
aware news feed systems enable mobile users to share geo-tagged
user-generated messages. In GeoFeed [1], users retrieve geo-related
message updates from either their social friends or social media. It
differs from Elaps in that: (1) GeoFeed is pull-based, which poses

844

a high chance of missing interesting events, (2) users are static ob-
jects, (3) users cannot customize the messages they are interested
in explicitly. MobiFeed [11] extends GeoFeed to support mobile
users. Instead of monitoring the location of moving users from
time to time like Elaps, it predicts the potential next locations for
a moving user in advance and pushes the messages around these
locations to the user. Thus, it cannot support continuous moving
queries; moreover, there is no guarantee that users will not miss
any matching event.

Therefore, to our knowledge, Elaps is the first location-aware
pub/sub system that takes into account continuous moving queries
as well as dynamic event streams.

2.2 Boolean expression matching
There have been several studies on efficient event matching over

a large quantity of subscriptions [13, 14, 15]. Whang et al. [14]
proposed k-index which partitions the subscriptions into inverted
lists, whose key is a triple of subscription size, attribute name and
attribute value. To further improve efficiency and expressiveness,
Sadoghi and Jacobsen proposed the BE-Tree [15] and developed a
two-stage partition mechanism to facilitate pruning. Zhang et al.
[16] proposed a scalable and extensible index named OpIndex to
support high-dimensional and sparse database effectively. OpIndex
adopts a two-layer partition scheme and can be extended to support
more expressive subscriptions.

In Elaps, we require not only event matching but also subscrip-
tion matching over a large quantity of events. Among the above
methods, only k-index and OpIndex can be extended to support
subscription matching. Both indexes adopt a two-layer partitioning
scheme and use the inverted list to group the attributes in the sec-
ond layer. Their difference is the way they partition the events in
the first layer. k-index partitions the events based on the event size,
while OpIndex partitions the events based on the pivot attribute se-
lected for each event. However, both partitioning schemes are not
efficient in supporting subscription matching, especially when the
spatial matching is taken into consideration. In this paper, we pro-
pose a more efficient index BEQ-Tree to support spatial subscrip-
tion matching.

2.3 Problem Statement
In this paper, we study the efficient processing of continuous

moving range queries against dynamic event streams. Given a set of
continuous arriving events, for a moving subscriber with a boolean
expression subscription associated with a notification region, the
subscriber is notified once there is a matching event located within
his notification region. We aim for a solution that (i) optimizes
the client/server communication cost and (ii) guarantees that the
matching events are disseminated to subscribers in real-time.

3. CONTINUOUS MOVING QUERIES
OVER DYNAMIC EVENT STREAMS

Compared to existing location-based pub/sub systems, Elaps is
the first to consider continuous moving queries against dynamic
event streams from publishers. The main challenge is to reduce
communication overhead because users have to periodically report
their current locations to the server to guarantee that no matching
events in their neighborhood are missed. Existing pub/sub systems
that can handle moving users mainly use safe region techniques
to reduce communication cost. The intuition behind the notion of
safe region is that if there are no matching events nearby, the users
are safe to disconnect from the server and do not need to period-
ically update their locations. In this way, the communication cost

can be significantly reduced and there would be no matching events
missed. In this section, we first propose how to apply these tech-
niques into our pub/sub application. Then, we explain why the
safe regions constructed in these systems fail to work well when
dynamic event streams are considered. Finally, we propose our so-
lutions based on a concept named impact region as well as a new
cost model for safe region construction.

3.1 Safe Region against Static Event Datasets
Safe region has been widely used to reduce communication cost

for continuous spatial query processing [5, 6, 7]. In these work, a
common assumption is that the continuous query is issued against
a static dataset and the goal is to determine an area in which there is
no matching events or the matching events remain the same. Since
the publisher dataset is static, there would be no new event match-
ing in the safe region. For our application, we define a region is
safe if its minimum distance to any matching event is larger than
the user’s notification radius, denoted by r1.

DEFINITION 1 (SAFE REGION). The safe region R for a sub-
scriber s is a region such that s ∈ R and for any matching event e,
we have d(p, e) > r for any p ∈ R.

In the following, we examine existing safe region techniques and
show how to apply them for continuous proximity detection be-
tween subscribers and their matching events.

e1

e3

e2

e4

s r

r

Safe Region Impact Region

(a) VM

s r

e4

e1

r

r

r r

e2

Safe Region Impact Region

e3

(b) GM

Figure 2: Applying existing methods for safe region construction

Voronoi-based Method (VM). Voronoi diagram is often used
in processing continuous kNN queries in continuous spatial query
applications [5, 6]. Since the publisher dataset is static, the space is
partitioned into voronoi cells based on the locations of publishers.
Each voronoi cell indicates a region dominated by a publisher such
that as long as a subscriber moves in that cell, the publisher is as-
sured to be the nearest neighbor. To apply voronoi diagram in our
application, we first find all the matching events outside of the noti-
fication region 2 and construct voronoi cells based on the matching
events. Each cell contains one matching event. The safe region is
the voronoi cell containing the user, excluding the circle centered
at the matching event with notification radius.

Figure 2(a) shows an example of safe region based on voronoi di-
agram. There are four matching events that partition the space into
four voronoi cells. Since the subscriber is located in e4, the safe
region is the voronoi cell for e4 excluding the circle and marked
in the shaded area. As long as the user moves in the safe region,
we can guarantee that there is no matching event nearby and the
1A notation table consisting of symbols and their meanings is pro-
vided in Table 3(Appendix A)
2If a matching event appears in the notification region, we notify
the subscriber immediately about the matching. Then, the event
will not be considered again for this user in the future.

845

user only need to check his distance with e4 and can temporarily
disconnect from the server.

Grid-based Method (GM). In [7], safe region based on grid
cells was proposed to handle spatial alarm applications. By parti-
tioning the space into cells, a safe region is represented by a set of
cells whose distance to any matching events is larger than the noti-
fication radius. An example of grid-based safe region is shown in
Figure 2(b). The safe region for the subscriber contains the whole
space except the cells close to the matching events. Compared to
the voronoi diagram method, the grid based safe region is easier to
construct and contains a larger region than VM.

When the event dataset is static, GM generates a larger safe re-
gion and achieves better performance in terms of communication
I/O. However, when we consider dynamic event streams, the re-
sults can be totally different. In this case, a larger safe region does
not necessarily mean a better solution. When a new matching event
arrives close or inside the safe region, the region may not be “safe”
any more. Then the whole safe region has to be re-constructed,
leading to additional communication I/O. This observation moti-
vates us to first develop a new concept named impact region to
identify whether a safe region is “safe” or not when a new event ar-
rives, and then propose a novel cost model based on the safe region
and impact region to guide the construction of the safe region .

3.2 Impact Region
We first define the impact region for a certain safe region R,

and use it to determine whether R will be affected by the arrival
of a new event. Intuitively, if a new matching event arrives in the
impact region, the safe region R is not “safe” any more and needs
to be updated. Otherwise, the safe region remains the same. With
the help of the impact region, we do not need to update the safe
region each time a new matching event arrives. Thus, the impact
region can help reduce the communication cost incurred by event
arrival. The concept of impact region will also be needed in our
proposed cost model to estimate the expected time before the next
matching event affects its corresponding safe region.

DEFINITION 2 (IMPACT REGION). Given a safe region R, the
impact region I for R is defined as

{p | p ∈ U and ∃ p′ ∈ R (d(p, p′) < r)}

where U is the whole space and r is the notification radius.

Based on the definition, we know that if a point is located outside
the impact region, its minimum distance to safe region R must be
larger than r. Hence, we can consider impact region as an expan-
sion of the safe region by the length of notification radius. Note
that the impact region is uniquely determined by the safe region
and should always be used together with the safe region. In the fol-
lowing, we briefly introduce how to construct impact regions from
the safe regions in Figure 2.

EXAMPLE 1. In VM, the impact region is constructed by ex-
panding the Voroni cell of the nearest event with distance r. As
shown in Figure 2, the impact region covers the notification region
of the subscriber after the expansion. We can guarantee that when
a new event arrives outside the impact region, its minimum distance
to the impact region is larger than the notification radius. This new
event will not fall inside the notification region as long as the user
moves within the safe region. Hence, we only need to update the
safe regions whose impact region contains this new event.

In GM, the impact region is constructed by expanding the safe
region with r to see which cells are contained in or intersected
with the expanded region, which is the whole space in this example.

When a new matching event arrives in the impact region, we need
users to report their location to guarantee that the current safe re-
gion is “safe” and no matching notification is missed. Since the
impact region contains the whole space, new communication over-
head is incurred each time when a new matching event arrives.

Up till now, we have introduced the three types of regions main-
tained for each moving user: notification region O, safe region R
and impact region I. The notification region is set by the sub-
scribers and move with them. It is a circle centered at the sub-
scriber’s current location with radius r. For each subscriber, the
system constructs a safe region and an impact region for him. The
safe region is sent to the subscriber to monitor the location update
and the impact region is stored at the server side to monitor the
event arrival. Their relationships are summarized as follows:

LEMMA 1. O is contained in I, denoted by O ⊆ I.
PROOF. Suppose we can find a point p ∈ O but p /∈ I. Since

p /∈ I, based on the definition of the impact region, for any point
p′ in the safe region R, we have d(p, p′) > r. Since the safe region
is required to cover the user’s current location s, i.e, s ∈ R, we
have d(p, s) > r. However, since p is located in the notification
region, for any points p ∈ O, we have d(p, s) < r. This leads to a
contradiction.

LEMMA 2. R is contained in I, denoted by R⊆ I.
PROOF. Based on the definition of impact region, for any point

p ∈ R, if we can find a point p′ ∈ R such that d(p, p′) < r, we
know p is also a point in the impact region. Let p = p′ and we
finish the proof.

Note that the safe region R does not necessarily contain the no-
tification region O. In fact, when a user increases his notification
radius r, the safe region shrinks such that the minimum distance
of the new safe region to any matching event is guaranteed to be
larger than r. In addition, we can prove that the area of impact
region grows when the safe region expands.

LEMMA 3. Given I1 derived from R1 and I2 derived from R2,
if R1 ⊆ R2, we have I1 ⊆ I2.

PROOF. Suppose we can find a point p ∈ I1 but p /∈ I2. Since
p /∈ I2, based on the definition of the impact region, for any point
p′ ∈ R2, we have d(p, p′) > r. Since R1 ⊆ R2, this conclusion
also applied in the sub-region, i.e., for any point p′ ∈ R1, we
have d(p, p′) > r. This leads to a contradiction with p ∈ I1.
Hence, if p ∈ I1, we have p ∈ I2. a new matching event e with
p as its location will influence R1 because e is located within I1.
Since R1 ⊆ R2, e will also influence R2. However, since e is
located outside I2, this contradicts with the definition of impact
region that any matching event located outside the impact region
will not influence the safe region. Hence, if p ∈ I1, we have p ∈
I2.

In the following, we show that there is no matching event in the
impact region.

LEMMA 4. Suppose I is an impact region constructed for sub-
scriber s, for any event e matching s, e is located outside I.

PROOF. If there is a matching event e ∈ I, based on the defini-
tion of the impact region, we can find a point p in the safe region
such that d(p, e) < r. Then, by following the definition of safe
region, since p ∈ R, we have d(p, e) > r. This leads to a contra-
diction. Hence, e must be located outside I.

From Lemma 4, we can ensure that if a matching event expires, it
is located outside the impact region and has no effect on the current
safe region.

846

3.3 Cost Model for Safe Region Construction
Since we consider continuous query processing against dynamic

event streams, we first identify all the possible cases in which new
communication can be triggered for an existing subscriber.

1. The subscriber moves out of his current safe region. He
needs to report his new precise location to the server. At
the server side, a new safe region is calculated and sent back
to the user.

2. A new matching event arrives in the system. Whether a com-
munication is triggered depends on the location of the new
event. If the event is located outside the impact region, the
safe region is not affected based on the definition. Other-
wise, the safe region has to be updated. This triggers a new
communication. First, the server notifies the subscriber to
update the location. Then, the precise location is reported by
the client. When the server receives the accurate location,
it calculates the distance from the event to the subscriber.
If the distance is smaller than the user’s notification radius,
a matching notification is sent to the user. Otherwise, the
server needs to calculate and sends a new safe region to the
client. In the meanwhile, the impact region is updated, but
stored at the server side.

3. An existing matching event is expired and removed from the
system. Based on Lemma 4, the matching event is located
outside the impact region. We can guarantee that the current
safe region is still “safe”. As long as the subscriber is in the
current safe region, he can disconnect from the server and no
matching event will be missed.

Therefore, there are two types of communication incurred when
handling a continuous query over dynamic event streams: I) The
subscriber moves out of the safe region. II) A new matching event
arrives in the impact region. These two types of communication
have conflicting requirements on the size of safe region. The first
type prefers larger safe region so that it takes longer time for the
subscriber to move out of the safe region. However, the second
type prefers smaller safe region. This is because a smaller safe re-
gion results in a smaller impact region according to Lemma 3 and it
becomes less likely for a matching event to occur in the impact re-
gion. Existing safe region techniques do not work well for dynamic
event streams because they neglect the second type of communica-
tion. Therefore, we propose a new cost model for safe region con-
struction taking into account all these two types of communication.

The goal of our cost model is to minimize the communication
overhead which is measured by the number of the two types of
communication I/O for a subscriber s. Hence, we construct a safe
region R for s such that the expected elapsed time before the next
communication I/O is maximized. The expected elapsed time is
denoted by fobj(R, I) and used as the objective function to maxi-
mize. Let ts(R) denote the expected time to move out of the cur-
rent safe region R and ti(I) denote the expected time before the
next matching event occurs in the impact region I constructed from
R. Since there are only two circumstances in which communica-
tion I/O is triggered, we have

fobj(R, I) = min(ts(R), ti(I)) (1)

Next, we define bm to measure the tradeoff between the two
types of communication.

bm(R, I) = ts(R)

ti(I)
(2)

We can prove that bm(R, I) has a positive correlation with the
area of R:

LEMMA 5. Given two safe regions R and R′ with R ⊆ R′, we
have bm(R, I) ≤ bm(R′, I′).

PROOF. Since R ⊆ R′, we know that ts(R) ≤ ts(R′) and
ti(I) ≥ ti(I′) based on Lemma 3 and the definition of ts and ti.
Hence, bm(R, I) = ts(R)

ti(I)
≤ ts(R′)

ti(I′) = bm(R′, I′).

If bm(R, I) ≤ 1, we have ts(R) ≤ ti(I) and fobj = ts(R).
In this case, we need to maximize ts(R) and we prefer a larger
safe region for R. If bm(R, I) > 1, we have fobj = ti(I) and
we prefer a smaller safe region for R. The relationship between
fobj(R, I) and bm(R, I) are stated in the following two lemmas:

LEMMA 6. Given two safe regions R and R′ with R ⊆ R′,
suppose bm(R′, I′) ≤ 1, we have fobj(R, I) ≤ fobj(R′, I′).

PROOF. Based on Lemma 5, bm(R, I) ≤ bm(R′, I′) ≤ 1 be-
cause R ⊆ R′. For R, since bm(R, I) ≤ 1, we have ts(R) ≤
ti(I) and thus fobj(R, I) = ts(R). Similarly, fobj(R′, I′) =
ts(R′). Since R is contained in R′, we have ts(R) ≤ ts(R′).
Therefore, fobj(R, I) = ts(R) ≤ ts(R′) = fobj(R′, I′).

LEMMA 7. Given two safe regions R and R′ with R ⊆ R′,
suppose bm(R, I) ≥ 1, we have fobj(R, I) ≥ fobj(R′, I′).

PROOF. Based on Lemma 5, bm(R′, I′) ≥ bm(R, I) ≥ 1 be-
cause R ⊆ R′. For R, since bm(R, I) ≥ 1, we have ts(R) ≥
ti(I) and thus fobj(R, I) = ti(I). Similarly, fobj(R′, I′) =
ti(I′). Since R′ is contained in R, we have ti(I) ≥ ti(I′). There-
fore, fobj(R, I) = ti(I) ≥ ti(I′) = fobj(R′, I′).

Our safe region construction method relies on the above lemmas.
The idea is to start from the user’s current location and incremen-
tally expand the area towards an “optimal” safe region (i.e., fobj
is maximized). Initially, R contains only a point. Thus, ts can
be seen as 0 and bm(R, I) ≤ 1. When we expand R, bm(R, I)
and fobj(R, I) also increase (Lemma 5 and 6). In this case, it en-
courages us to expand the safe region until any further expansion
would cause bm(R, I) ≥ 1 or the region not “safe”. This is be-
cause fobj(R, I) decreases when bm(R, I) ≥ 1 if we continue to
expand R based on Lemma 7.

Note that there are many possible ways to expand a safe region,
resulting in lots of candidate safe regions. For each of these candi-
date safe regions, we have bm ≤ 1 and thus fobj = ts. Hence, the
“optimal” safe region is the candidate safe region with the largest
ts. Based on this observation, we should expand the safe region in
such a way that the corresponding ts can be maximized.

3.4 Incremental Grid-based Method
We are now ready to present our incremental method, named

iGM (incremental Grid-based Method), towards optimal safe re-
gion construction. Since we need a flexible way to represent safe
region in arbitrary shape, we partition the space into N × N cells
and a safe region is represented by the set of cells that it covers. Our
algorithm starts from the cell containing the user’s current location
and iteratively expands it to cover nearby cells. In each expansion, a
“good” cell based on certain criteria is added to the current safe re-
gion. When a cell is added into the current safe region, we also need
to expand the corresponding impact region to calculate bm(R, I).
The algorithm terminates when any further expansion would cause
bm(R, I) > 1 or there is no more valid adjacent cells to expand.
In the following, we introduce the estimation of bm(R, I) for a
candidate safe region R as well as the selection criteria for the next
cell to expand.

847

Algorithm 1: ConstructSafeRegion
input: Subscription s
output: Safe regionR and impact region I

1 bm ← 0
2 ne ← 0
3 d(s,R)← 0
4 H ← ∅
5 c← the cell that contains s
6 HEntry h← tuple(c, d(s, c))
7 insert h intoH, mark c as visited
8 whileH ̸= ∅ do
9 HEntry (c′, d(s, c′))←H.pop()

10 if β[c′] ̸= false then
11 d(s,R)← min{H.top().dist,min{d(s, c′′)}}
12 Ic ← getImpactCells(c′)
13 foreach cn ∈ Ic do
14 ne = ne + ϕ[cn]

15 bm =
f ·ne·d(s,R)

n·vs
16 if bm ≤ 1 then
17 R← R∪ c′

18 I ← I ∪ Ic
19 foreach non-visited adjacent unit cell c′′ do
20 HEntry h← tuple (c′′, d(s, c′′))
21 insert h intoH, mark c′′ as visited
22 returnR and I

Assume that subscribers are moving with linear motion func-
tions. The expected time ts(R) to move out of R can be calculated
by

ts(R) =
d(s,R)

vs
(3)

where d(s,R) is the minimum distance from a subscriber’s loca-
tion to the boundary of a candidate safe region R and vs is the
current moving speed.

The expected time ti(I) before the next matching event occurs
in the impact region I for R, is estimated by

ti(I) =
te

p(e, I) (4)

where te is the average time interval between two new events arriv-
ing at the system and p(e, I) is the probability for a new event to
match subscriber s and occur in his impact region I.

We can estimate te from the average arrival speed in the event
streams. We denote the average arriving rate of the new events by f
and we have te = 1

f
. The probability p(e, I) can also be estimated

from the distributions of the existing events in the system. Let ne

be the number of matching events located in the impact region I.
ne can be estimated by ne =

∑
c∈I nc where nc is the number of

existing matching events located within cell c. Let n be the total
number of events in the system. We can estimate p(e, I) = ne

n
.

Then ti can be calculated as follows.

ti(I) =
n

f · ne
(5)

Based on Equation 3 and Equation 5, we have

bm(R, I) = ts(R)

ti(I)
=

f · ne · d(s,R)

n · vs
(6)

Note that among the parameters, vs, f and n are system statistics
and are independent of the safe region and impact region. d(s,R)
and ne are dependent on the areas of the candidate safe region and
impact region respectively.

Next, we introduce our expansion criteria. Suppose the current
safe region is R. We mark all the cells covered by or intersected

c1

e1

e3

e4

e2

Safe Region Impact Region

c1

e1

e3

e4

e2e1

e3

e4

e2

1 2

45

e1

e3

e4

e2 c'1 c'2 c'3 c'4 c'5

c1

c2

c2

c3

c4

c'6

c1

c2

c3

c4

c5

c'7

c'8

c'9

c'10

c'11

Figure 3: Safe region and impact region expansion

with R as visited. The candidate cells to expand include all the
adjacent cells of R that are unvisited. Our expansion criteria is to
pick the cell c with the minimum distance to the subscriber. In other
words, we expand the area circularly. This is because we expand
the safe region until any expansion would cause bm(R, I) ≥ 1. In
this process, we have bm(R, I) always smaller than 1 and our goal
is to maximize ts. Since the moving pattern of the subscriber is not
available, we expand the cells in every direction uniformly so as to
improve the performance in the worst case.

Our iGM algorithm for safe region construction is shown in Al-
gorithm 1. The input is a subscription s with notification radius r
and speed vs. We first initialize the parameters bm, ne and d(s,R)
(lines 1-3) and build a min-heap H whose root stores the cell can-
didate with the minimum distance to s. The heap is initialized to
contain the cell c where the subscriber is located (lines 4-7). After
the initialization steps, we expand the safe region in a breadth-first
fashion (lines 8-21). The candidate cell c′ with the minimum dis-
tance to s is popped in each iteration (line 9). A boolean array B is
used to indicate whether a grid cell is safe or not. A cell in the array
is set to safe if its distance to the nearest matching event is larger
than the notification radius of s. If c′ is not safe, we simply ignore
it and continue to examine the next cell in the heap. Otherwise, we
calculate d(s,R) and ne for the enlarged safe region R ∪ c′ and
impact region I ∪ Ic to evaluate bm (lines 10-18), where Ic is the
set of candidate cells that need to be added to I if c′ is added to R.
The calculation of d(s,R) follows the equation:

d(s,R∪ c′) = min{H.top().dist,min{d(s, c′′)}} (7)

where c′′ is an unvisited adjacent cell of c′(line 11). The proce-
dure getImpactCells is used to get Ic(line 12). Then we update
ne(I∪Ic) (lines 13-14) and calculate bm(R∪c′, I∪Ic) (line 15).
If bm(R ∪ c′, I ∪ Ic) ≤ 1, we enlarge R to contain cell c′ and I
to contain the cells in Ic (lines 16-18). We then insert the adjacent
cells of c′ which are not visited to H (lines 19-21). The whole al-
gorithm terminates when H becomes empty and we return the safe
region and impact region. Note that the two types of regions are
constructed together in the expansion.

When a cell is added into the current safe region, we expand the
impact region in the meanwhile. A naive solution is to scan all the
cells within the notification radius and add them into current impact
region. However, this incurs many redundant operations because a
candidate cell will be added into impact region multiple times. To

848

avoid scanning so many cells in each expansion, we propose an
incremental solution that is able to add only the unvisited cells into
the impact region. We use an example to illustrate our idea.

EXAMPLE 2. Illustrating examples of safe region expansion in
multiple steps are shown in Figure 3. In the first step, the safe
region R is initialized to the cell containing s, i.e., R = c1 and the
impact region is an enlarged area of R by notification radius r. In
the second step, a neighboring cell c2 with the minimum distance
is selected. Since c2 has a neighboring cell c1 included in the safe
region, we know that the cells within distance to c1 has been added
in the impact region. Thus, we can directly add cells c′1, c′2, c′3,
c′4 and c′5 into the impact region without scanning all the cells. In
the third step, c3 is selected into the safe region. The expansion
of impact region is similar to the second step and we do not show
this step in the figure. In the fourth step, the nearest unvisited cell
c4 is selected. This time, the cell has two adjacent cells included
in the safe region. We only need to add one cell c′6 to the impact
region. As the expansion process continues, the safe region and
impact region become larger, resulting in a larger bm. Suppose
c5 is the last cell to cause bm ≤ 1 during the expansion, we can
terminate the algorithm after we expand the safe region to include
c5 and update the impact region accordingly.

Next, we propose a direction-aware version of iGM when the
direction information of the moving objects is available.

3.5 Incremental Direction-aware GM
Since most smartphones are equipped with sensors for direction

detection, we propose a direction-aware iGM, named idGM, that
takes into account user moving direction to better maximize ts(R),
the expected time to leave a safe region.

To make iGM direction-aware, we should take into account the
direction information when expanding the safe region. In other
words, the original expansion mechanism relies on the distance be-
tween d(s,R∪c) and each time the cell with the minimum distance
is selected. We extend the idea to propose a more general scoring
function in determining the next cell to expand. The ranking func-
tion takes into account of the user moving direction as well as the
cell distance and is defined as follows:

τ(s, c) = α · A(s, c) + (1− α) · D(s, c) (8)

The direction preference A(s, c) is the cosine value of the angle
θ between the moving direction v⃗s and the vector s⃗c from s to c.

A(s, c) = cosθ =
v⃗s · s⃗c

∥v⃗s∥∥s⃗c∥
(9)

The distance preference D(s, c) is the normalized distance from
c to s, which is defined as

D(s, c) =
d(s, c)

dmax
(10)

where dmax is a normalization parameter which can be set to the
maximum distance between any two points in the space.

Note that our goal is to maximize ts in the safe region construc-
tion until the condition bm ≤ 1 is not satisfied. If the user moving
pattern is predictable and we have high confidence that the user will
continue to move along the direction, we can set α to a value close
to 1. Then, the cells within the user’s moving direction have higher
priority to be added to the safe region. As long as the direction does
not change, the user can stay in the safe region for a long time. If
the user moving pattern is not clear and there are many uncertain-
ties, we can set α to be a small value and uniformly expand the safe
region in all directions.

With the new scoring function τ , we can modify Algorithm 1 to
be direction-aware. The entry of H is modified as a tuple (c, d(s, c), τ)
(line 7). And the entries in H are sorted in increasing order of τ .
Now the algorithm expands the safe region by taking both the dis-
tance preference and direction preference into consideration. The
grid cell with the minimum τ will be accessed firstly. Compared to
iGM, idGM constructs a direction-aware safe region which takes
a longer period before the next communication occurs. In Ap-
pendix B, we present how to reduce the bytes transferred in the
communication between the server and the subscribers.

4. SPATIAL BE-MATCHING
In Section 3, we have introduced how to optimize the commu-

nication cost between the server and the client. In this section,
we present how to disseminate the matching events to the sub-
scribers in real-time. We observe that existing pub/sub systems
using boolean expression matching [13, 14, 15, 16] rarely pay at-
tention to index construction for the event stream. However, in the
location-based service scenario, a subscriber wants to be notified
when there is a matching event near him, even though this event
has already been published before his subscription. This motivates
us to build an index to cater for continuously arriving subscriptions’
matching, namely BEQ-Tree (Boolean Expression Quad-Tree). In
addition, we can utilize BEQ-Tree to improve the efficiency of con-
strucing the safe region in iGM and idGM.

First of all, we describe the problem setting. In Elaps, a sub-
scriber expresses his interest in the form of spatial subscription and
is modeled as a moving object, while a publisher is associated with
a geo-location and publishes spatial events.

Spatial Subscription. A spatial subscription extends a boolean
expression with a notification region O. In this paper, we model a
boolean expression as a conjunction of predicates. Each predicate
is determined by three elements: an attribute A, an operator fop
and an operand o. It accepts an input value x and the output is a
boolean value indicating whether the operator constraint is satisfied
or not: P (A,fop,ō)(x) → {0, 1}. Elaps can support relational oper-
ators <,≤,=, >,≥,[] 3 and set operators ∈, /∈. As mentioned, the
notification region O is a circle centered at user’s current location
with radius r. Formally, a spatial subscription s is defined over |s|
predicates and an notification region O:

s : P
A,fop,o
1 (x) ∧ P

A,fop,o
2 (x) ∧ ... ∧ P

A,fop,o

|s| (x) ∧ O

For example, a user interested in Samsung TQ can submit a sub-
scription like (brand=samsung ∧ size>50)∧ r=1km ∧ lat=1.28 ∧
lng=103.8). Note that the location is detected automatically. Here-
after, we use spatial subscription and subscription interchangeably.

Spatial Event. A spatial event e contains |e| tuples and a loca-
tion loc: e : (A1 = o1) ∧ (A2 = o2) ∧ ... ∧ (A|e| = o|e|) ∧ loc,
where Ai is the attribute and ōi is the associated value or operand.
For example, a Samsung TQ promotion event can be represented by
(brand=samsung ∧ size=55 ∧ 3D=yes ∧ lat=1.28 ∧ lng=103.8).

Spatial Subscription Match. The match between a spatial boolean
expression s and an event e consists of two aspects: boolean ex-
pression match and spatial match, as defined below.

DEFINITION 3 (BOOLEAN EXPRESSION MATCH). A boolean
expression match is satisfied if for each predicate P in s, P is sat-
isfied by a tuple Ai = oi in e. We use s∼be to denote a boolean
expression match and say S be-matches E.

3In this case, the operand o contains two values: o.l and o.r

849

A

2

5

B

3

6

y

ye1

ye2

A

1

C

7

4

y

ye4

ye6

C

7

y

ye3

B

9

y

ye5

WG1 e1 e2 WG2 e3 WG32 e5 WG33 e4 e6

G3

G32 G33

G1 G2

e5

e3

σ4

e6

e1
e2

σ2σ1

e4 σ33

σ32

G1 G2

G31

G3
G32

G33 G34

G4

e1

e2

e3

e4

e5

e6 A = 4 C = 7

B = 9

A = 1

C = 7

A = 2 B = 6

A = 5 B = 3

Root

Figure 4: An example for BEQ-Tree

DEFINITION 4 (SPATIAL MATCH). We say there is a spatial
match between s and e, denoted by s∼se, if the location loc of e is
inside the notification region O of s.

DEFINITION 5 (MATCH). We say a subscription s matches
an event e, denoted by s∼e, if s∼be and s∼se.

4.1 Spatial Event Index
BEQ-Tree is designed to be efficient in both query processing

and event update. It adopts a two-layer partitioning mechanism,
one for the spatial attribute and the other for the predicates in the
boolean expression.

In the first layer, we partition the events based on the spatial at-
tribute. Since Quadtree [12] can answer spatial range query quickly
and support efficient update operations, we adopt it to partition the
space such that each cell in the leaf level contains at most Emax

events, where Emax is a moderately large number. In each cell, we
select a reference point and adopt the idea of iDistance [17] to cal-
culate and index the distance from each event to the reference point.
The reference point is denoted as σ and selected as the center of a
tree cell in this paper.

In the second layer, we further partition the events in each cell
based on the attributes in the predicates. The predicates with the
same attribute and appear in the same tree cell are organized in the
same inverted list, denoted by L⟨Gi,A⟩ where Gi is the tree cell
and A is the attribute. The location of an event e in Gi is converted
to a single dimensional value y = dist(e, σi), where dist(e, σi)
represents the Euclidean distance between e and σi. We then build
an inverted list for attribute y for each cell. Each inverted list is
sorted by the operand value. For each cell, we also maintain a
counter array for all the events in this cell.

EXAMPLE 3. Fig. 4 shows an example for the BEQ-Tree, where
we set Emax = 2 for a Quadtree cell. The space is first hierarchi-
cally partitioned into cells. Each cell Gi is associated with a set of
inverted lists to store predicates with the same attribute. All tuple
lists are sorted in ascending order of their tuple values. There is
an extended attribute y to store the distance from the event to the
reference point in a cell. Each predicate has a pointer to a count-
ing array for the corresponding Quadtree cell, which will be used
in subscription matching.

Algorithm 2: BESpatialMatch(Subscription s, Cell partition G)

1 Re ← ∅
2 for each predicate (A fop ō) ∈ s do
3 if G does not contain A then
4 return Re

5 WG ← counter array associated with G
6 for each predicate (A fop ō) ∈ s do
7 for each operator fop ∈ {=, ̸=,≤,≥, []} do
8 determine the range Ra in L⟨G,A⟩
9 for each matching entry t ∈ Ra do

10 ++WG[t.e]

11 y ← dist(s, σ)
12 if s is located within G then
13 dmin ← y − r, dmax ← y + r
14 else
15 dmin ← y − r
16 determine dmax accordingly
17 for each t ∈ L⟨G,y⟩ and t.ō ∈ [dmin, dmax] do
18 if WG[t.e] == |s| then
19 if dist(s.l, t.l) ≤ r then
20 add the corresponding event into Re

21 return Re

4.2 Subscription Matching
In the following, we show how to find the matching events given

a subscription s with an notification region O. We first find all the
leaf cells that intersect with O using the Quadtree, and then exam-
ine the events in each candidate leaf cell G by calling Algorithm 2.

In Algorithm 2, we first check whether a cell partition G in the
BEQ-Tree contains all the attributes that appear in s. If we find
an attribute of s not appearing in G, we can prune the search space
and examine other cells (lines 2-4). Otherwise, we copy the counter
array associated with G and set the initial values of the entries to
be 0 (line 5). Next, we introduce how to find the matching events
by performing boolean expression match (lines 6-10) and spatial
range match (lines 11-20).

The boolean expression match algorithm adopts the idea of the
classic counting algorithm in [18, 13, 14]. Given a predicate A
fop ō, we use different accessing strategy for different operators
in s (lines 6-8). If fop is ‘=’, we can check whether ō appears
in the sorted tuple list L⟨G,A⟩ using binary search. If fop is ‘ ̸=’,
all the values in the tuple list except ō are visited. If fop is ‘≤’
(‘<’), all the tuple entries whose value is no larger (smaller) than
ō match A fop ō. The case is similar for ‘≥’ (or ‘>’) and ‘[]’.
For each list entry visited, we increase the corresponding counter
value by 1 (lines 9-10). If the value increases to the size of s, the
corresponding event be-matches s (see Definition 3).

We use Fig. 5 to explain how to perform spatial range match.
Similar to boolean expression match, we need to locate the interval
in the spatial list within which the corresponding event may fit in
the notification region O. There are two cases to consider. First,
s is located within G (lines 11-13). In this case, the interval is
[y − r, y + r], where y is the one-dimensional distance value of
s. Second, s lies out of G (lines 14-16). In this case, the lower
bound of the interval is y − r. If the notification range contains
a vertex of G, we have dmax = ∞, which means that we start
from dmin and traverse to the end of the spatial list. Otherwise,
dmax = max{dist(σ, pi)}, where pi is one of the intersection
points between G and O. As shown in Fig. 5, the notification region
crosses two grid cells and we need to conduct spatial range search
in these two partitions. The shaded areas indicate the search inter-
val using the indexed distance. The interval for G1 is [y−r, y+r],
because s is located within G1. The interval for G2 is [y−r, dmax],

850

σ4

σ2σ1

σ3

s
r

dmax

RRG1

RRG3

G1 G2

G3 G4

y - r y + r

y - r dmax

Figure 5: Spatial range match

because s is located outside G2 and O does not contain the vertex.
For each tuple in the interval, if its corresponding event be-matches
s, we check whether the event is located within O. If yes, we find
a match (lines 17-20). Since subscribers tend to specify a small
notification range, the spatial range match would be very efficient,
because only a few entries in the spatial list are traversed.

By performing the boolean expression match and spatial match,
we only need to traverse a small part of entries in a list, which
can further improve the matching performance besides the spatial
pruning of the first layer.

BEQ-Tree used in iGM and idGM. To construct the safe re-
gion in iGM and idGM, the set of be-matching events should be
found first. A naive method is to find all the be-matching events
in the whole space. However, one property of iGM and idGM is
that these two algorithms usually do not expand to the whole space
with the constraint of bm(R, I) ≤ 1. Based on this property, we
use BEQ-Tree in an incremental manner to get the be-matching
events on demand. To construct the safe region for a subscriber s,
we start from the cell c containing s and search the BEQ-Tree to
get the set of be-matching events in c. In the meantime, if the leaf
Qudatree cells intersected with c contains other cells around c, we
also get the be-matching events in these cells. When iGM or idGM
expands to a cell whose be-matching events have not been found,
we check the surrounding Quadtree cells to get the be-matching
events. In this way, we only need to find the set of be-matching
events on demand and traverse only a part of the space.

5. SYSTEM FRAMEWORK
So far, we have introduced the techniques of safe region and

impact region to reduce communication I/O and the BEQ-Tree to
reduce the response time. In this section, we present the system
framework in Fig. 6 as a whole picture to see how different func-
tion components are connected. In particular, we introduce how to
process subscription arrival/expiration, event arrival/expiration and
user location update.

Subscription arrival/expiration. In Elaps, users can submit
new subscriptions and an existing subscription expires if the user
is no longer interested in receiving matching events. Such kind of
messages are handled by the Subscription Processor. When a new
subscription arrives, we need to find if there exist any matching
events in the event database. Since this is an extension of boolean
expression matching with spatial constraints, we propose a new in-
dex named BEQ-Tree to solve the problem in Section 4. For each
new subscriber, we also call Algorithm 1 in Section 3 to construct
a new safe region and impact region for the user. The safe region
is sent to the user and the impact region is maintained at the server
side. The impact region is inserted into an inverted index with cell
id as the key and the elements are impact regions covering the cell.
When a subscription expires, we remove it from the subscription
index and impact region index.

Subscription Processor

Matching Event

Finder

Subscription

Handler

Safe Region

Constructor

update

publish/expire
subscribe/exit

update

update

SubscribersSubscribers

Safe RegionPublishersPublishers

Event Processor

Impact Region

Updater

affected update

Impact Region

Verifier

Event

Handler

Subscription

Index

Impact Region

Index

Event Index

Figure 6: The workflow in Elaps framework

Event arrival and expiration. When a new event e arrives, we
need to identify from the subscriber database the users whose inter-
ests match the new event (e is contained in the notification region)
and those users whose safe regions are affected (e is contained in
the impact region). Since we use safe region to reduce the com-
munication overhead, the subscriber’s precise location is not main-
tained at the server side. We only know the user is currently in the
safe region but the precise location is not available. Thus, we build
separate indexes to handle boolean expression matching and spatial
constraint verification. For the boolean expression matching, we
can simply adopt existing subscription index such as OpIndex [16]
and BE-Tree [15]. For the spatial attribute, we store the impact
region for subscribers in the impact region index maintained as a
hash table. When e arrives, we find the matching users U from the
subscription index. For each subscriber u ∈ U , we check whether
e locates within his impact region. If yes, the server send e to u.
If the distance from u to e is smaller than the notification radius,
the user is notified. Otherwise, we calculate a new safe region and
impact region. The new safe region is sent to the subscriber and the
impact region index is also updated.

User location update. Each time a subscriber moves out of the
safe region, he reports the new location to the server. Once the
server receives the new location, it calls Algorithm 1 to construct
a new safe region and impact region for the user. Again, the safe
region is sent to the subscriber and the inverted index for impact
regions is updated.

6. EXPERIMENTAL STUDY
In this section, we present a comprehensive evaluation of the per-

formance for Elaps. In particular, we are interested in evaluating (1)
the communication overhead caused by continuous moving query
processing against dynamic event streams and (2) the matching ef-
ficiency of our proposed BEQ-Tree. For safe region techniques,
we compare our proposed iGM and idGM based on the new cost
model against existing methods VM and GM. In all these methods,
we calculate and store the impact regions at the server side for per-
formance evaluation. For spatial boolean expression matching, we
compare BEQ-Tree with three baseline algorithms: (i) Quad-tree,
which first filters events outside the notification region using the
spatial index Quad-tree [19] and then verifies the boolean expres-
sion matching; (ii) extension of k-index [14], which finds matching
events for a given subscription. The be-matching events are fur-
ther verified for spatial matching; (iii) OpIndex, which first filters
the events not matching the boolean expressions using a variant of
OpIndex [16] and then verifies the spatial matching. Note that all
the indexes are memory resident and all the approaches produce
the same and complete results. We implemented all the methods in
C++ and conducted the experiments on a server with 48GB mem-
ory running Centos 5.6.

851

6.1 Experimental Setup
Event and Subscription Datasets. We use geo-tweets from

Twitter and venues from Foursquare to simulate the event streams.
In Twitter, each geo-tweet is considered as a spatial event. We
treat each keyword as an attribute and the value is the frequency
of the keyword in the tweet. This converts a geo-tweet into a list
of attribute-value pairs. In the following experiments, we use 50
million geo-tweets as the event database and another 10 million
to simulate a dynamic event stream. To generate subscriptions on
the Twitter dataset, we adopt the same technique in [16] to con-
vert a keyword query in AOL search log 4 into a boolean expres-
sion. For example, a query “SIGMOD Melbourne” can be trans-
formed to (SIGMOD=1 ∧ Melbourne=1) to support equal operator
or (SIGMOD∈[5,20] ∧ MelBourne∈[2,8]) to support interval opera-
tor. The dataset description and experimental results of Foursquare
is presented in Appendix D.2 due to space limitations.

User Trajectory Datasets. We use both synthetic trajectories
and real trajectories to simulate user moving patterns. For the syn-
thetic trajectories, we generate 10, 000 trajectories using Brinkoff’s
generator [20]. The average travel period of each trajectory is 1000
timestamps. In our experiments, timestamp is used to capture the
periodicity of location update. We set each timestamp to be 5 sec-
onds in the following experiments, which means the GPS location
of a user is sampled every 5 seconds. For the real trajectories, we
use the GPS probing records of taxies in Singapore as the real tra-
jectories [21]. We extract 10,000 trajectories from different taxies
and each trajectory contains 1000 sequential points.

Communication Overhead
Event arrival rate f (/tm) 10, 50, 100, 500
Moving speed vs (m/tm) 20, 40, 60, 80, 100
Notification radius r (km) 1, 2, 3, 4, 5

Number of events E 10M, 20M, 30M, 40M, 50M
Matching Performance

Number of events E 10M, 20M, 30M, 40M, 50M
Avg. sub size δ 1, 2, 3, 4, 5

Notification radius r (km) 1, 2, 3, 4, 5

Table 2: Parameters evaluated in the experiments

Evaluation Parameters. Table 2 shows the main parameters and
values used throughout the experiments (default values are in bold).
To evaluate continuous moving query processing, we examine the
scalability with respect to increasing event arrival rate f , user mov-
ing speed vs, notification radius r and event corpus size E. To eval-
uate the matching performance of spatial boolean expressions, we
examine increasing event corpus size E, average subscription size
δ and notification radius r. The system performance can be mea-
sured by the average communication I/O and event matching time
for a subscriber. Note that we do not need to examine the perfor-
mance w.r.t. increasing number of subscribers. This is because the
subscribers will not affect each other in terms of communication
overhead and event matching efficiency. In our system, the number
of subscribers directly influences the scalability of the subscription
index (see Fig. 6). However, in this work, we adopt an existing in-
dex (OpIndex [16]) which has been shown to be scalable even for
a large number of subscribers. Moreover, the focus of this work is
not on the subscription index. Thus, we did not look into this any
further. Pease refer to [15] for details.

Parameter Tuning. There are two parameters that require tun-
ing for iGM and idGM: N (the whole space is partitioned into

4http://www.gregsadetsky.com/aol-data/

N ×N cells) and α (the tuining parameter of the preference score
τ), and one parameter that requires tuning for BEQ-Tree: Emax

(the maximum number of events in a Qudatree cell). We con-
duct several experiments to tune the parameters and the results are
shown in Appendix D.1. Based on the results, we set N to be 600,
α to be 0.5 and Emax to be 60K.

6.2 Continuous Moving Query Processing
In this part, we evaluate the communication overhead caused by

continuous moving query processing against dynamic event streams.

6.2.1 Synthetic Trajectories
The first set of experiments on continuous moving query pro-

cessing are conducted on the synthetic trajectories using the Twitter
and Foursquare events.

Effect of the event arrival rate f . Fig. 7(a) presents the im-
pact of the event arrival rate f on the performance. We report the
communication overhead incurred when users move out of the safe
region (location update) and when a new matching event occurs
in the impact region (event arrival) respectively. We have the fol-
lowing observations. (1) As f increases, all the methods scale in
varying degrees. Because there would be more matching events
that fall within the impact region, which increases the cost incurred
by event arrival. (2) in terms of the total communication cost, iGM
and idGM can outperform the other baseline methods by one order
of magnitude. Such performance gain increases when f increases,
especially on the cost incurred by event arrival. This is because
iGM and idGM can adjust the size of the safe region dynamically
according to several parameters of the system to balance the cost
incurred by location update and the cost incurred by event arrival.
(3) Regarding the cost incurred by location update alone, GM has
the smallest one, because it constructs the largest safe region. VM
performs much worse than the other methods, because it constructs
a safe region around the nearest matching event regardless of the
user’s location. idGM performs better than iGM, because idGM
can construct a safe region with a larger ts which is the expected
time before the subscriber leaves the safe region by considering the
user’s moving direction. (4) Regarding the cost incurred by event
arrival alone, GM is the highest, because it constructs a rather large
impact region even though f is very high. Although VM can con-
struct a smaller impact region compared to GM, the impact region
of VM always contains some highly skewed area (around the near-
est matching event). Therefore, the cost incurred by event arrival of
VM is also high. When f is larger, iGM and idGM would construct
a smaller safe region and impact region based on the cost model.
Thus, the cost incurred by event arrival can be controlled very well.

Effect of the speed vs. Fig. 7(b) depicts the effect of another key
factor, the moving speed v, on the communication overhead. When
v increases, the subscriber would leave the safe region more fre-
quently, resulting in an increased cost incurred by location update.
Therefore, the total communication cost increases for all methods
except GM. GM is not sensitive to v for Foursquare and Twitter, be-
cause it constructs a rather large safe region. As shown, iGM and
idGM still outperform the rest, since they can dynamically increase
the size of the safe region as v increases. We can also observe that
the superiority of idGM compared with iGM is more significant
with a larger v.

Effect of the notification radius r. Next, we evaluate the effect
of the notification radius r. The results are shown in Fig. 7(c). A
larger r results in a smaller safe region, which increases the cost
incurred by location update for all the methods. For VM, the cost
incurred by event arrival increases. This is because we expand the
safe region for VM by the length of r and thus a larger r results

852

0

300

600

900

1.2K

1.5K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

3.5Klocation update
event arrival

50010050100

(a) Synthetic Trajectories

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

location update event arrival

10080604020

(b) Synthetic Trajectories

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(c) Synthetic Trajectories

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Number of Events

location update event arrival

50M40M30M20M10M

(d) Synthetic Trajectories

0

300

600

900

1.2K

1.5K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

3.6Klocation update
event arrival

50010050100

(e) Taxi Trajectories

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(f) Taxi Trajectories

Figure 7: Communication I/O on Twitter.

0

100

200

300

400

500

600

700

800

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Number of Events

BE
Spatial

50M40M30M20M10M

(a) Varing number of events

0

100

200

300

400

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Sub Size

BE
Spatial

54321

(b) Varing sub size

0

100

200

300

400

500

600

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Radius Size

BE
Spatial

5km4km3km2km1km

(c) Varing radius

Figure 8: Experiments on the event index.

in a larger impact region. In contrast, iGM and idGM can adjust
the size of the impact region dynamically even though r increases.
Thus, iGM and idGM show 10X better performance than the other
baseline methods.

Effect of the number of events E. Lastly, we study the com-
munication overhead when increasing the size of the Twitter events
from 10M to 50M. The results are shown in Fig. 7(d). More events
(i.e., more matching events) in the system result in a smaller safe
region and impact region. A smaller safe region leads to more cost
incurred by location update, while a smaller impact region leads to
less cost incurred by event arrival. For VM, the overall communica-
tion overhead increases because the increase in the cost incurred by
location update surpasses that in the cost incurred by event arrival.
On the other hand, for GM, the overall communication overhead
decreases, because the performance of GM relies more on the im-
pact region. Compared with VM and GM, our two methods can
adjust the area of the safe region and impact region better when
the system environment changes and thus scale very well when the
event size increases.

6.2.2 Taxi Trajectories
The second set of experiments are conducted on the real taxi tra-

jectories in Singapore. Since the trajectories are only located within
Singapore, we extract those geo-tweets located within Singapore

from the Twitter dataset. In total, we extract 906,977 geo-tweets.
We use 0.5 million of them as the event database and the remain-
ing to simulate the event stream. We evaluate the communication
overhead with respect to the event arrival rate f and the notification
radius r. The results are shown in Fig. 7(e) and Fig. 7(f). Compared
with the synthetic trajectories where the speed is constant, the taxi
trajectories contain all kinds of taxies with different moving sta-
tus. Besides, the moving speed of a taxi is influenced by the road
traffic greatly. Therefore, it is more difficult to predict the mov-
ing behavior for the taxi trajectories. However, as can be seen, our
two methods can still achieve a much better performance compared
with the other baseline methods. As compared to the counterpart
GM, our iGM and idGM have a comparable performance in terms
of the cost incurred by location update and reduce the cost incurred
by event arrival significantly by more than 1 order of magnitude.

6.2.3 Cost Model Evaluation
In this part, we study the optimality and robustness of our cost

model.
Optimality Evaluation. When constructing a safe region for a

subscriber, we start from his location and incrementally expand. In
this process, the value of bm(R, I) increases and our cost model
indicates that the best safe region occurs when bm(R, I) = 1. To
test the optimality, we terminate the expansion at different values

853

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90

β (b
m

≤ β)

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

iGM on Foursquare

idGM on Foursquare

iGM on Twitter

idGM on Twitter

Figure 9: Optimality evaluation.

of bm(R, I) and this value is denoted by β. As shown in Fig. 9, we
can see that when terminating too early (β < 1) or too late (β > 1),
the performance is inferior to the case when β = 1.

Adaptability Evaluation. To evaluate the robustness of our cost
model, we look into two parameters that may change frequently in
reality: the event arrival rate f and the speed vs (The other parame-
ters are dependent on the area of safe region and impact region). We
set up a dynamic environment in which f or vs varies all the time.
For comparison, we designed two optimal methods, iGM-opi and
idGM-opi with the knowledge of future pattern update in advance.
When f or v varies, the optimal methods would construct a new
safe region accordingly using the new parameters and such safe
region update is not counted as a new communication I/O in the
experiments. Fig. 10(a) and Fig. 10(b) show the experimental re-
sults with dynamic f and vs respectively. We gradually increase the
event arrival rate f from 0/tm to 500/tm and then reduce it back
to 0/tm. This process is repeated 10 times. The dynamic moving
speed vs is set in a similar way (0 → 100m/tm → 0m/tm). As
shown in Figure 15, iGM and idGM can achieve a comparable per-
formance as iGM-opt and idGM-opt due to the good adaptability,
because they can adapt to the update of f and vs when the update
causes a communication. This shows that our methods are robust
to different user motion and event arrival patterns.

6.3 Spatial Boolean Expression Matching
In this section, we study the efficiency in spatial boolean expres-

sion matching, which can be further categorized into the elapsed
time on the boolean expression match and that on the spatial match,
namely BE and Spatial respectively. In particular, we use the Twit-
ter dataset to compare our proposed BEQ-Tree with several base-
line indexes as described at the beginning of Section 6.

Effect of the number of events E. We evaluate the average
matching time when increasing the number of events. From the
results presented in Fig. 8(a), we have the following findings: (1)
Quadtree can do the spatial match quickly, but it needs much time
to filter candidate events. (2) k-index and OpIndex need more time
for spatial match compared to Quadtree. (3) BEQ-Tree outper-
forms the other methods, and exhibits a 97% better matching time
as compared to the next best algorithm. This is because it utilizes
a Quadtree-like structure in the first layer that exhibits good prun-
ing power, and maintains a sorted inverted list in the second layer,
with which fewer events are examined. As shown, BEQ-Tree can
answer the subscription matching within a few microseconds for a
20 million dataset, which is highly favored in real applications.

Effect of the subscription size δ. Fig. 8(b) presents the elapsed
time w.r.t the varying subscription size δ. We make three obser-
vations. (1) Overall, BEQ-Tree achieves a speedup of 20 times
w.r.t. Quadtree, k-index and OpIndex respectively. (2) Regard-
ing the boolean expression match (BE) time, more attributes are

0

200

400

600

800

Twitter Foursquare

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Frequency

1.9K 1.4K

(a) Dynamic arrival rate

0

200

400

Twitter Foursquare

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

1.1K 0.8K
VM
GM
iGM
idGM
iGM-opi
idGM-opi

(b) Dynamic speed

Figure 10: Adaptability evaluation.

involved in the match as δ increases, resulting in a higher com-
putation time. (3) Regarding the spatial match time, k-index and
OpIndex are sensitive to the subscription size, because they gener-
ate fewer candidate events as δ increases.

Effect of the notification radius r. The matching performance
w.r.t. varying notification radius r is presented in Fig. 8(c). Only
Quadtree is sensitive to r, because more candidate events are gen-
erated in the first step. In contrast, the performance of BEQ-Tree is
stable and scales very well with r.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

Inserted/Deleted Event Size (M)

U
p
d
a
te

 C
o
s
t

(x
1
0
0
0
s
)

Insertion

Deletion

Figure 11: Update cost for BEQ-Tree.

BEQ-Tree Update Cost. At last, Fig. 11 shows the update cost
for BEQ-Tree. To test the insertion cost, we start from a BEQ-Tree
with 20 million events and incrementally insert 10 million events.
The total time of inserting every 1 million tuples is plotted in Fig-
ure 11. We can see that as the size BEQ-Tree increases, it takes
more time to insert the same number of tuples because the tree
height also increases. The deletion process starts from a BEQ-Tree
with 30 million events and the cost for deleting every 1 million
records is reported in Figure 11 as well. We can see that as more
records are deleted, the tree becomes smaller and the deletion oper-
ation becomes faster. In both cases, it takes less than 300 seconds
to delete or insert 1 million events, which means our BEQ-Tree is
efficient in update.

7. CONCLUSION
In this paper, we build a novel location-aware pub/sub system,

Elaps, which takes into account continuous moving queries over
dynamic event streams. To reduce communication overhead, we
propose a concept named impact region and a novel cost model.
Based on the cost model, we propose two incremental methods
to construct the safe region and impact region. To reduce the re-
sponse time of Elaps, we propose a novel index BEQ-Tree which
can support efficient spatial subscription matching over a collection
of events in the dynamic event environment. Experimental results
on real datasets show that Elaps can greatly reduce the communi-
cation overhead and disseminate events to users in real-time.

854

8. ACKNOWLEDGMENT
This work is funded by the NExT Search Centre (grant R-252-

300-001-490), which is supported by the Singapore National Re-
search Foundation under its International Research Centre @ Sin-
gapore Funding Initiative and administered by the IDM Program
Office. Guoliang Li is partly supported by the Chinese Special
Project of Science and Technology (2013zx01039-002-002), the
NSFC project (61422205, 61472198) and the 973 Program of China
(2015CB358700).

9. REFERENCES

[1] J. Bao, M. Mokbel, and C.-Y. Chow, “Geofeed: A location
aware news feed system,” in ICDE, 2012, pp. 54–65.

[2] G. Li, Y. Wang, T. Wang, and J. Feng, “Location-aware
publish/subscribe,” in KDD, 2013, pp. 802–810.

[3] L. Chen, G. Cong, and X. Cao, “An efficient query indexing
mechanism for filtering geo-textual data,” in SIGMOD, 2013,
pp. 749–760.

[4] G. Cugola and A. Margara, “High-performance
location-aware publish-subscribe on gpus,” in Middleware,
2012, pp. 312–331.

[5] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee,
“Location-based spatial queries,” in SIGMOD, 2003, pp.
443–454.

[6] M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang, “Efficient
construction of safe regions for moving knn queries over
dynamic datasets,” in SSTD, 2009, pp. 373–379.

[7] B. Bamba, L. Liu, A. Iyengar, and P. S. Yu, “Safe region
techniques for fast spatial alarm evaluation,” Georgia
Institute of Technology, 2008.

[8] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient
continuously moving top-k spatial keyword query
processing,” in ICDE, 2011, pp. 541–552.

[9] W. Huang, G. Li, K.-L. Tan, and J. Feng, “Efficient
safe-region construction for moving top-k spatial keyword
queries,” in CIKM, 2012, pp. 932–941.

[10] L. Guo, J. Shao, H. Aung, and K.-L. Tan, “Efficient
continuous top-k spatial keyword queries on road networks,”
GeoInformatica, pp. 1–32, 2014.

[11] W. Xu, C.-Y. Chow, M. L. Yiu, Q. Li, and C. K. Poon,
“Mobifeed: A location-aware news feed system for mobile
users,” in SIGSPATIAL ’12, 2012, pp. 538–541.

[12] R. Finkel and J. Bentley, “Quad trees a data structure for
retrieval on composite keys,” Acta Informatica, vol. 4, no. 1,
pp. 1–9, 1974.

[13] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha, “Filtering algorithms and implementation for
very fast publish/subscribe systems,” in SIGMOD, 2001, pp.
115–126.

[14] S. E. Whang, H. Garcia-Molina, C. Brower,
J. Shanmugasundaram, S. Vassilvitskii, E. Vee, and
R. Yerneni, “Indexing boolean expressions,” PVLDB, vol. 2,
no. 1, pp. 37–48, 2009.

[15] M. Sadoghi and H.-A. Jacobsen, “Be-tree: An index
structure to efficiently match boolean expressions over
high-dimensional discrete space,” in SIGMOD, 2011, pp.
637–648.

[16] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient
publish/subscribe index for ecommerce databases,” PVLDB,
vol. 7, no. 8, pp. 613–624, 2014.

[17] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang,
“idistance: An adaptive b+-tree based indexing method for
nearest neighbor search,” TODS, vol. 30, no. 2, pp. 364–397,
2005.

[18] T. W. Yan and H. García-Molina, “Index structures for
selective dissemination of information under the boolean
model,” TODS, vol. 19, no. 2, pp. 332–364, 1994.

[19] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in SIGMOD, 1984, pp. 47–57.

[20] T. Brinkhoff, “A framework for generating network-based
moving objects,” Geoinformatica, vol. 6, no. 2, pp. 153–180,
2002.

[21] J. Zhou, A. K. Tung, W. Wu, and W. S. Ng, “A
“semi-lazy” approach to probabilistic path
prediction in dynamic environments,” in KDD ’13, 2013, pp.
748–756.

[22] G. Antoshenkov and M. Ziauddin, “Query processing and
optimization in oracle rdb,” The VLDB Journal, vol. 5, no. 4,
pp. 229–237, 1996.

[23] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, pp. 1–38, Mar. 2006.

[24] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and
R. Bayer, “Integrating the ub-tree into a database system
kernel,” in VLDB ’00, 2000, pp. 263–272.

APPENDIX
A. LIST OF SYMBOLS

Symbol Description
s a moving subscriber
e a spatial event
O notification region specified by a subscriber
r notification radius
R safe region of a subscriber
I impact region of a subscriber
f event arrival rate
vs user moving speed
n total number of events in the system
ne total number of matching events in I

d(s,R) the minimum distance from s to the boundary of R
c a grid cell in iGM and idGM
G a cell partition in BEQ-Tree
σ a reference point in G
y the spatial attribute for distance indexing
W counter array in each cell partition in BEQ-Tree

Table 3: Summary of Notations

B. REPRESENTATION OF THE SAFE RE-
GION

To reduce the bytes transferred in the communication between
servers and subscribers, we use Bitmap as a more compact repre-
sentation of safe region. We allocate a Bitmap whose length is the
number of cells. If a cell is in the safe region, we set the corre-
sponding element of the Bitmap to be 1. During the communica-
tion, we adopt the run-length encoding compression method (e.g.,
BBC [22] and WAH [23]) to further reduce the size of the Bitmap.

855

0

200

400

600

800

1K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

2.5Klocation update
event arrival

50010050100

(a) Varing event arrival rate

0

200

400

600

800

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

location update event arrival

10080604020

(b) Varing speed

0

200

400

600

800

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(c) Varing radius

Figure 12: Communication I/O on Foursquare.

0 10 50 100 500
1

10

100

1K

10K

Event Arrival Rate

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
) VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(a) Varing event arrival rate

20 40 60 80 100
1

10

100

1K

Speed

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
)

VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(b) Varing speed

1km 2km 3km 4km 5km
10

100

1K

Radius Size

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
)

VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(c) Varing radius

10M 20M 30M 40M 50M
10

100

1K

10K

Number of Events

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
) VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(d) Varing number of events

Figure 13: Server computation cost for safe region construction.

In this way, we achieve a very compact representation of the safe
region. When subscribers receive the message, they first decode it
into the original Bitmap and can easily detect whether the cell they
are located in is in the safe region or not.

In our implementation, we assign each cell a value derived from
the z-ordering of the cells [24]. Based on the z-order, the cells close
to each other will be assigned similar ids. Then, we use the classic
WHC [23] to compress the list of ids. Our experimental results
show that the size of compressed ids is around 5% − 10% of the
original size.

C. INDEX MAINTENANCE OF BEQ-TREE
In our system, new events will be continually published by the

publishers. Each event has a valid period and will expire after this
period. Thus, BEQ-Tree should be efficient in terms of the mainte-
nance cost.

We first consider how a new event is inserted into the BEQ-Tree
index. Given an event E, we first find the cell with the lowest level
that contains E. If the number of events within that cell is smaller
than maxevent, we append a new entry e in the associated counter
array VGi and set its value to the location of E. For each non-
spatial attribute, we insert its value and the key pointing to e into
the corresponding tuple list. For the spatial attribute, we convert it
to the one-dimensional distance y and insert y to the spatial list. If
the cell is full, we need to partition it into four child cells and insert
the event into the corresponding child cell.

The delete operation is processed as follows. We first find the
cell with the lowest level that contains E. Then, we traverse the
inverted lists whose attribute is contained in E and delete the tuple.
The deletion is fast because the list is sorted and we can use binary
search to quickly identify the tuple to delete. If the cell becomes
empty after deletion, we check whether its sibling nodes are also
empty. If yes, we merge them to the parent node.

Memory Cost. Let E denote the set of spatial events published
to Elaps, E denote the size of E, |T | denote the total number of

tuples in E and |t| denote the memory space cost by an entry in
the list. The event index contains two components: the tuple lists
and the counter arrays. Each tuple corresponds to a unique entry
in the tuple lists. Thus, the tuple lists occupy O(|T ||t|) memory
space. In addition, each event corresponds to a unique entry in the
counter arrays. Since the size of an entry in the counter arrays is
much smaller than the size of an entry in the tuple list, the total
memory cost for the index is O(|T ||t|). As can be seen, our index
takes linear space cost. The index maintenance of BEQ-Tree is
presented in Appendix C due to space limitations.

Update Complexity. Let N denote the maximum level of the
BEQ-Tree, |L| denote the maximum length of the tuple lists and
P denote the maximum number of conjunctions in a subscription.
The cost of Quadtree cell identification is O(N). The insertion or
deletion cost of a conjunction into a sorted list is log(|L|). Thus,
the total insertion or deletion complexity is O(N) + O(Plog|L|) =
O(Plog|L|), because usually N ≪ L in our BEQ-Tree. Note that
with the help of the hierarchical structure in our index, |L| will not
be too large, making the index maintenance very efficient.

D. ADDITIONAL EXPERIMENTAL RESULTS

D.1 Parameter Tuning

200 400 600 800 1K
0

1K

2K

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
)

N

0

30

60

 C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Communication I/O

Construction Time

(a) Varying N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

α

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Synthetic Trajectories

Taxi Trajectories

(b) Varying α

Figure 14: Parameter tuning for iGM and idGM.

856

In continuous moving query processing, our proposed iGM and
idGM use small cells to approximate the safe region and impact
region. Suppose the whole space is split into N ×N cells and we
increase N from 200 to 1000 to test how the performance varies
when the cell size becomes smaller. As shown in Fig. 14(a), when
N increases, we can represent the cell in a more precise fashion and
the optimal safe region is better approximated. Thus, it can reduce
communication I/O. However, it requires more construction time
since we need more iterations to expand the safe region until the
termination condition is satisfied. For the following experiments,
we set N to be 600 as a tradeoff between communication I/O and
CPU cost in safe region construction5

Another parameter in idGM is α which reflects the confidence
level of user moving pattern. In the synthetic trajectories, we in-
crease α from 0 to 1.0. If α = 0, idGM degrades to iGM. We can
see that direction is a factor that can improve system performance.
The optimal performance occurs when α = 0.5. If α is set very
high, the performance is bad because the system assumes that the
subscriber always moves along the original direction and is likely
to construct a safe region along the direction. Then, it is easy for
the subscriber to move out of the safe region when he changes the
moving direction.

For BEQ-Tree, we tune the parameter Emax which is the maxi-
mum number of events in a cell. Fig. 15(a) and Fig. 15(b) illustrate
the matching time and construction time of BEQ-Tree when vary-
ing Emax. When Emax increases, the cell becomes larger and the
effect of spatial pruning degrades. Thus, it takes more matching
time (Fig. 15(a)). However, a smaller Emax results in more lev-
els in the BEQ-Tree, which increases the update cost (Fig. 15(b)).
Therefor, we set Emax to be 60K as a good tradeoff between sub-
scription matching time and event update cost.

D.2 Experiments on Foursquare
Foursquare Dataset. In Foursquare, each venue is considered as

one spatial event. We extract structured information, i.e., attribute-
value pairs, from the venues. Each venue has around 50 attributes
and we harvest 1, 832, 418 venues. Among them, we use 1.5 mil-
lion venues as the event database and the remaining to simulate the
event stream. To generate the subscriptions over the Foursquare
venue stream, we let the subscriptions follow the same distribu-
tion as the venues. In other words, if an attribute is frequent in the
venues, it is also frequent in the subscriptions. The operators and
operands in the predicates are synthetically attached.

5The parameter tuning in this section hold for all the data set and
experiments.

5K 10K 20K 40K 60K 80K 100K 120K
5

10

15

20

25

E
max

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

(a) Matching Time

5K 10K 20K 40K 60K 80K100K120K
0

1

2

3

4

5

E
max

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

x
1
0
0
0
s
)

(b) Index Construction Time

Figure 15: Parameter tuning for BEQ-Tree.

Fig. 12 shows the average communication I/O on Foursquare
dataset. As shown, the performance is similar with that tested on
the Twitter dataset. iGM and idGM can reduce the communication
cost incurred by event arrival significantly, and achieve a compa-
rable performance as GM to constrol the communication cost in-
curred by location update.

D.3 Server Computation Cost
In the following, we report the average server computation cost

for safe region and impact region construction during the experi-
ment period (i.e., 1000 timestamps), which have not been included
into the main experimental section due to space limitations. For
VM, GM, iGM-BE, idGM-BE, we use k-index to find all the match-
ing events first and then construct the safe region and impact region.
For iGM-BEQ and idGM-BEQ, we use BEQ-Tree to find the set of
matching events on demand, as described in Section 4.2. The re-
sults are shown in Fig. 13. We have the following observations.
(1) VM performs worse than GM in terms of computation cost al-
though VM incurs less communication cost than GM, because VM
needs more time to construct the safe region and impact region. (2)
iGM and idGM can outperform VM and GM by one order of mag-
nitude, because each communication would trigger an update for
the safe region and impact region while the communication cost of
iGM and idGM can be reduced significantly with the guide of the
cost model. (3) iGM-BEQ and idGM-BEQ show superior perfor-
mance than iGM-BE and idGM-BE, because our safe region con-
struction methods usually do not expand to the whole space and we
can use BEQ-Tree to traverse only a part of the whole space. In
addition, the advantage is more obvious when the event arrival rate
is higher or the number of events is larger, making our system more
scalable.

857

