
Efficient Similarity Join and Search on Multi-Attribute Data

Guoliang Li† Jian He† Dong Deng† Jian Li‡
†Department of Computer Science, Tsinghua University, Beijing, China

‡Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
{liguoliang, lijian83}@tsinghua.edu.cn; {hejian13, dd11}@mails.tsinghua.edu.cn

ABSTRACT
In this paper we study similarity join and search on multi-
attribute data. Traditional methods on single-attribute data
have pruning power only on single attributes and cannot
e�ciently support multi-attribute data. To address this
problem, we propose a prefix tree index which has holis-
tic pruning ability on multiple attributes. We propose a
cost model to quantify the prefix tree which can guide the
prefix tree construction. Based on the prefix tree, we devise
a filter-verification framework to support similarity search
and join on multi-attribute data. The filter step prunes a
large number of dissimilar results and identifies some candi-
dates using the prefix tree and the verification step verifies
the candidates to generate the final answer. For similar-
ity join, we prove that constructing an optimal prefix tree
is NP-complete and develop a greedy algorithm to achieve
high performance. For similarity search, since one prefix
tree cannot support all possible search queries, we extend
the cost model to support similarity search and devise a
budget-based algorithm to construct multiple high-quality
prefix trees. We also devise a hybrid verification algorithm
to improve the verification step. Experimental results show
our method significantly outperforms baseline approaches.

Categories and Subject Descriptors
H.2 [Database Management]: Database applications;
H.3.3 [Information Search and Retrieval]: Search process

Keywords
Similarity Search; Similarity Join; Multi-Attribute Data

1. INTRODUCTION
Real-world data is rather dirty due to typographical errors

and di↵erent representations of the same entity [11]. Tra-
ditional exact-matching join and search operations cannot
tolerate the dirty data and thus similarity join and search
are recently proposed to tolerate the dirty data. Given two
multi-attribute tables (e.g., products and movies), similar-
ity join finds all similar pairs from the two tables, where the
similarity can be quantified by similarity functions, e.g., edit

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright

c� 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2723733.

distance and Jaccard. Given a table with multiple attributes
and a query, similarity search finds the records from the ta-
ble that are similar to the query. Similarity join and search
are two important operations in data cleaning and integra-
tion and have many real-world applications, e.g., duplicate
detection, data fusion, and spell checking [11]. For exam-
ple, in the event of plane crash like Malaysia airlines flight
MH17, there are many data sources about passengers on
MH17, e.g., tables from Malaysia airlines, departure coun-
try, destination county, and passengers’ countries. We re-
quire to integrate them to generate high-quality data. As
another example, a user wants to search movies directed
by “James Cameron” and acted by “Arnold Schwarzenegger”
from a movie database with actors, directors, and movie
names. However the user does not know the exact spelling
of “Arnold Schwarzenegger” and inputs a query with ty-
pos. Obviously exact-matching search cannot find any re-
sults while similarity search can alleviate this problem and
help the user to find the relevant answers.

Existing algorithms on string similarity join [20,26,28,29]
and search [9,14,15,22,30] have pruning power only on single
attributes. For similarity join and search with constraints on
multiple attributes, they have to first use a single attribute
to identify candidates and then check whether the candi-
dates satisfy the constraints on other attributes. Obviously
these algorithms are rather expensive because they have no
pruning power on other attributes and generate many in-
termediate results. It calls for e↵ective methods to support
holistic similarity join and search on multi-attribute data.

To address this problem, we propose a prefix tree index
which has holistic pruning power on multiple attributes.
Based on the prefix tree, we devise a filter-verification frame-
work. The filter step prunes a large number of dissimilar
results and identifies some candidates using the prefix tree
and the verification step verifies the candidates to gener-
ate the final answer. For similarity join, we propose a cost
model to quantify the prefix tree. We prove that construct-
ing an optimal prefix tree is NP-complete and we develop
a greedy algorithm to achieve high performance. Di↵erent
from similarity join, one prefix tree cannot support all pos-
sible search queries with di↵erent similarity functions and
thresholds. To address this issue, we extend the cost model
to support similarity search. We develop a budge-based al-
gorithm to build high-quality prefix trees to achieve high
search performance. Since the similarity join and search
queries contain multiple attributes, the verification order on
attributes has a significant e↵ect on the verification perfor-
mance. In addition, many filtering algorithms can be used

to verify the candidates which also have a great e↵ect on
the performance. To this end, we devise a hybrid algorithm
to improve the verification performance. To summarize, we
make the following contributions. (1) We propose a prefix
tree index which has holistic pruning power on multiple at-
tributes and can be utilized to support both similarity join
and search queries. (2) For similarity join, we develop a cost
model to quantify the prefix tree. We prove that construct-
ing an optimal prefix tree is NP-complete and we develop a
greedy algorithm to construct a high-quality prefix tree (see
Section 3). (3) For similarity search, we devise a budget-
based method to construct multiple high-quality prefix trees
to support similarity search queries (see Section 4). (4) We
propose a hybrid verification algorithm to improve the ver-
ification performance (see Section 5). (5) Experimental re-
sults on real-world datasets show our method significantly
outperforms baseline approaches (see Section 6).

2. PRELIMINARIES
We first formally define the problem in Section 2.1 and

then briefly introduce a well-known technique – prefix filter
in Section 2.2. Lastly, we review related works in Section 2.3.

2.1 Problem Definition
Consider two multi-attribute tables R and S. Table R has

x attributes R1

,R2

, · · · ,Rx and m rows r
1

, r

2

, · · · , r
m

. Ta-
ble S has y attributes S1

,S2

, · · · ,Sy and n rows s
1

, s

2

, · · · , s
n

.
Let r

p

= [r1
p

, r

2

p

, · · · , rx
p

] where r

i

p

denotes the value of r
p

on
attribute Ri, and s

q

= [s1
q

, s

2

q

, · · · , sy
q

] where s

j

q

denotes the
value of s

q

on attribute Sj .
An atomic similarity join operation Ri ⇠ Sj returns all

similar pairs {(r
p

2 R, s

q

2 S)} such that ri
p

⇠ s

j

q

, where ⇠
is a similarity operator which will be defined later.
A complex similarity join operation is composed by more

than one atomic similarity join operation, e.g., � = Ri1 ⇠
Sj1 ^ Ri2 ⇠ Sj2 ^ · · · ^ Rik ⇠ Sjk , which finds all similar
pairs {(r

p

2R, s

q

2S)} such that ri1
p

⇠ s

j1
q

^ r

i2
p

⇠ s

j2
q

^ · · · ^
r

ik
p

⇠ s

jk
q

where 8t2[1, k], i

t

2[1, x] and j

t

2[1, y]. We call
�

t

=Rit⇠Sjt a predicate or attribute if the context is clear.
We utilize similarity measures to define the similarity op-

erator ⇠, which can be broadly classified into two categories,
character-based similarity and token-based similarity.
Character-based Similarity. It defines the similarity be-
tween two strings based on character transformations. The
well-known character-based similarity is edit distance. Con-
sider two string values ri

p

and s

j

q

. The edit distance ED(ri
p

, s

j

q

)
is the minimum number of single-character edit operations
(including insertion, deletion and substitution) needed to
transform r

i

p

to s

j

q

. The edit similarity extends edit distance
by taking into account the string length, which is defined

as ES(ri
p

, s

j

q

) = 1 � ED(r

i
p,s

j
q)

max(|rip|,|s
j
q |)

, where |ri
p

| is the length of

r

i

p

. Two strings r

i

p

and s

j

q

are similar with respect to edit
similarity if their similarity exceeds a given threshold ⌧ , i.e.,

r

i

p

ES,⌧⇠ s

j

q

i↵. ES(ri
p

, s

j

q

) � ⌧.

For example, given the Name attribute of table R in Fig-
ure 1, r1

1

= ‘Jeffery Ullman’, r1
4

=‘Jeffer Ullman’. We have
ED(r1

1

, r

1

4

) = 1 and ES(r1
1

, r

1

4

) = 1� 1

14

= 13

14

.
Token-based Similarity. It first splits each string into a
set of tokens by white spaces and then utilizes the set-based
similarity functions to quantify the similarity. The well-

R : Customer records of BOA

Id Name (R1) Address (R2) Country (R3)

r1 Je↵ery Ullman EE UCLA USA

r2 Jennifer Widom CS Stanford CA USA

r3 Jerry Wang CS Berkeley ENG

r4 Je↵er Ullman CS Stanford CA USA

r5 Don Antenio CS Stanford CA USA

S : Customer records of Wells Fargo

Id Name (S1) Address (S2) Country (S3)

s1 Je↵ery Ullman Stanford CA USA

s2 Herry Wang Berkeley CA ENG

s3 Don Ertenio CS Berkeley ENG

Figure 1: Two example tables: R and S.
known similarity functions include Overlap and Jaccard, de-
fined as below (see Appendix B for more functions).

• Overlap similarity: OLP(ri
p

, s

j

q

) = |ri
p

\ s

j

q

|
• Jaccard similarity: JAC(ri

p

, s

j

q

) =
|rip\s

j
q |

|rip[s

j
q |

where |ri
p

| denotes the size of set ri
p

.
r

i

p

and s

j

q

are similar with respect to the token-based sim-
ilarity if their similarity exceeds a threshold ⌧ , e.g.,

r

i

p

JAC,⌧⇠ s

j

q

i↵. JAC(ri
p

, s

j

q

) � ⌧.

For example, given the Address attribute of table R in
Figure 1, r

2

3

=‘CS Berkeley’ and r

2

4

=‘CS Stanford CA’.
OLP(r2

3

, r

2

4

) = 1 and JAC(r2
3

, r

2

4

) = 1

4

.
Traditional similarity join and search methods focus on

atomic operations, while in this paper we emphasize on com-
plex operations. Next, we formalize the problems of string
similarly join and search on multi-attribute data.

Definition 1. (Similarity Join on Multi-Attribute
Data) Given two multi-attribute tables R and S and a com-
plex similarity operation � = Ri1 ⇠ Sj1 ^Ri2 ⇠ Sj2 ^ · · ·^
Rik ⇠ Sjk , it finds all similar pairs {(r

p

2 R, s

q

2 S)} such

that ri1
p

⇠ s

j1
q

^ r

i2
p

⇠ s

j2
q

^ · · · ^ r

ik
p

⇠ s

jk
q

.

Definition 2. (Similarity Search on Multi-Attribute
Data) Given a multi-attribute table R and a query Q =
(Ri1 ⇠ Qi1

,Ri2 ⇠ Qi2
, · · · ,Rik ⇠ Qik), where Qit denotes

the query value on attribute Rit for t 2 [1, k], it finds similar

strings r
p

2 R such that ri1
p

⇠Qi1 ^ri2
p

⇠Qi2 ^ · · ·^ rik
p

⇠Qik .

For example, given two multi-attribute tables R and S in

Figure 1 and a complex operation R1

ES,0.8⇠ S1 ^R2

JAC,0.5⇠
S2. The first predicate is ES(r1

p

, s

1

q

) � 0.8 and the second
is JAC(r2

p

, s

2

q

) � 0.5. Similarity join on multi-attribute data
returns {(r

4

, s

1

)} as ES(r1
4

, s

1

1

) = 0.93 � 0.8 and JAC(r2
4

, s

2

1

)
= 0.67 � 0.5. Although r

1

1

= s

1

1

, (r
1

, s

1

) is not a similar pair,
as their Address values are not similar (JAC(r2

1

, s

2

1

)=00.5).
Given a multi-attribute table R in Figure 1 and a query

Q = (R1

ES,0.8⇠ ‘Jenifer Widom’, R2

OLP,2⇠ ‘CS Stanford’).
The first predicate is ES(r1

p

,Q1) � 0.8 and the second is
OLP(r2

p

,Q2) � 2. Similarity search on multi-attribute data
returns {r

2

} as ES(r1
2

,Q1)=0.93�0.8 and OLP(r2
2

,Q2)=2�2.

2.2 Prefix Filter
We briefly introduce the prefix filter [1,2]. It first trans-

forms each string to a set. For edit distance, the set contains
all q-grams of the string where a q-gram is a substring with
length q. For token-based similarity, the set contains all to-
kens in the string. Then it converts character-based and
token-based similarities to the overlap similarity: if string s

is similar to string r, the overlap of their corresponding sets
must exceed o, where o can be deduced as below.

• If OLP(r, s) � ⌧ then o = ⌧ .

Name Country

e11 e12 e13 e14 e15 e16 ...

an do ef en er fe ...

e31 e32

ENG USA

Address

e21 e22 e23 e24 e25 e26

Berkeley CA CS EE Stanford UCLA

Prefix Table for R and S
Name Address Country

r1 {e11, e
1
3, e

1
5} {e24, e

2
6} {e32}

r2 {e12, e
1
4, e

1
5} {e22, e

2
3, e

2
5} {e32}

r3 {e11, e
1
5, e

1
11} {e21, e

2
3} {e31}

r4 {e11, e
1
3, e

1
5} {e22, e

2
3, e

2
5} {e32}

r5 {e11, e
1
2, e

1
4} {e22, e

2
3, e

2
5} {e32}

s1 {e11, e
1
3, e

1
5} {e25, e

2
2} {e32}

s2 {e11, e
1
5, e

1
10} {e21, e

2
2} {e31}

s3 {e12, e
1
4, e

1
5} {e21, e

2
3} {e31}

Figure 2: Prefix Tokens for R and S in
Figure 1 (Use Dictionary Order).

r4
r5

LR
4

root

e12 e13 e14 e15 e111

e22 e23 e24 e25 e26

r4
r5

r3 r4
r5

r1

e22 e23 e25

r2
r5

r2
r5

e22 e23 e25

r4r4 r4

e22 e23 e25

r2
r5

e22 e23 e25 e21 e23

LR
10LR

2 LR
3 LR

6 LR
7 LR

9 LR
11 LR

12 LR
14 LR

16

r2
r5

LR
17

r2
r5

LR
18

r2
r4

LR
20

r3

LR
21

r2
r4

LR
24

r3

LR
26

r3

LR
27

e32 e31 e32 e32 e32 e32 e32 e32 e32 e32 e32 e32 e32 e32 e31 e32 e31 e31

r1

LR
5

e32

r2
r5

LR
8

e32

e26

e32

r1

LR
15

e26

e32

r1

LR
25

e24

r1

LR
13

e32

e24

e32

r1

LR
23

e21

r3

LR
1

e31

e21

e31

r3

LR
19

e32

r2
r4

LR
22

e11

Figure 3: Complete Prefix Tree for R in Figure 2.

• If JAC(r, s) � ⌧ then o = d⌧ |r|e.
• If ED(r, s)  ⌧ then o = |r|� q⌧ .

• If ES(r, s) � ⌧ , then o = d|r|� (|r|+ q � 1) (1�⌧)

⌧

|r|)e.
where |r| is the size of r(for ED/ES, r is the q-gram set).

For simplicity, we use string and set interchangeably if the
context is clear and each element in the set is called a token.
The prefix filter fixes a global order for the tokens and sorts
tokens of each set by this global order. Finally for each set
r, it selects the first |r|� o+ 1 tokens as its prefix, denoted
as pre(r). It is easy to prove that if two strings r and s are
similar, pre(r) \ pre(s) 6= � [29].

For example, given two multi-attribute tables R and S in

Figure 1 and a complex similarity operation R1

ED,1⇠ S1 ^
R2

JAC,0.3⇠ S2 ^ R3

OLP,1⇠ S3. For attributes R1 and S1, we
generate 2-gram set. For simplicity, we use the dictionary
order as a global order. For each attribute of each record, we
compute its prefix and generate a table of prefixes as shown

in Figure 2. We use R2

JAC,0.3⇠ S2 to demonstrate how to
compute the prefix. The prefix length for JAC(r2

p

, s

2

q

) � 0.3
is |pre(r2

p

)| = |r2
p

|� d|r2
p

|⌧e+1. So for r
2

, |pre(r2
1

)| = 2 and
pre(r2

1

) = {EE, UCLA} = {e24, e26}.

2.3 Related Works
Similarity Join on Single Attribute. Since the prefix
filter is e↵ective, many methods are proposed to optimize it
for di↵erent similarity operators [6,16,20,24,26,28,29]. ED-
join [12,28] proposed a location-based mismatch filter to re-
duce prefix length and a content-based mismatch filter to
reduce the number of candidates for ED. Pivotal prefix fil-
ter [4] reduced the prefix length for ED. PassJoin [17] pro-
posed segment filter to improve pruning power. PPJoin [29]
used the positions of prefix and su�x to improve pruning
power for token-based similarities. Length filter was pro-
posed to prune dissimilar answers based on length di↵er-
ence [8]. TrieJoin [23] used a di↵erent framework that di-
rectly computed real similarity using the trie structure.
Similarity Search on Single Attribute. Li et al. [14]
proposed a list-merge framework that converts other similar-
ities to overlap, builds inverted index, and merges inverted
lists of the query tokens to identify answers. Li et al. [15]
proposed variable length q-grams (VGram) to improve the
pruning power. Zhang et al. [30] proposed B

ed-tree which
uses q-grams as signatures and indexes the q-grams using
the B-tree. Deng et al. [5] addressed the top-k similarity
search problem with the trie structure. Hadjieleftheriou et

r4
r5

L4

root

an do ef en er er

CA CS EE Stanford UCLA

r4
r5

r3

r4
r5

r1

r2
r5

L8

L2

L3

L6 L7

r2
r5

L10

r2
r4

L12
r2
r4

L15

r3

L17

h1 h2
r1

L5
r1

L16

r1
r4

L9

r1

L14

Berkeley

r3

L1

r3

L11
r2
r3
r4

L13

CA CS EE Stanford UCLABerkeley

Figure 4: Partial Prefix Tree for R.
al. [9] devised a technique to support data updates in sim-
ilarity search. Wang et al. [25] proposed a dynamic prefix
length scheme for e↵ective filtering in similarity search.
Blocking-based Join Algorithm. There are many blocking-
based join algorithms on entity resolution [11,13,19,27]. To
link the records, they defined some rules (e.g., the same zip
code leads to the same entity), utilized the rules to gener-
ate blocks (e.g., records with the same zip code will be in
the same block), and took records in the same block as can-
didates. Di↵erent from the blocking-based algorithms [3,18]
that focused on learning blocking schemes to improve the re-
call, our paper emphasizes on devising e↵ective indexes and
e�cient algorithms to improve the performance for given
fuzzy-matching rules. Sarma et al. [21] proposed a blocking-
tree structure and devised a bottom-up algorithm to improve
the recall. Our method on similarity joins has the following
di↵erences. First, the objectives are di↵erent. They merged
blocks by enumerating every pair of leaf nodes to improve
the recall while we merged leaf nodes with the same parent
to reduce the candidate sizes to improve the e�ciency. The
high enumeration overhead is not acceptable in our prob-
lem. Second, the strategies of building tree structures are
di↵erent. The inverted lists on our tree have overlaps while
their blocks are disjoint. Third, the bottom-up algorithm is
still expensive for our problem, because it checks many tree
nodes to determine whether to combine. To further improve
the performance, we devise a greedy top-down algorithm.

3. SIMILARITY JOIN WITH PREFIX TREE
Given a complex similarity operation � = Ri1 ⇠ Sj1 ^

Ri2 ⇠ Sj2 ^ · · · ^Rik ⇠ Sjk , we devise a filter-verification
framework to answer the join query. The filter step identifies
the candidate pairs hr, si such that pre(rit)\pre(sjt) 6= � for
every t 2 [1, k] and the verification step verifies the candidate
paris by computing the real similarity on each attribute Rit

and Sjt . We study the filter step in this section and the
verification algorithm will be discussed in Section 5.

Algorithm 1: PrefixTree-Join (R, S, �)
Input: R, S: Two multi-attribute tables

�: A complex similarity operation
Output: A: Answer
Build one prefix tree with two tables R and S;1

for each leaf node do2

if there are two inverted lists LR and LS then3

for each (r, s) 2 LR ⇥ LS do4

Verify(r, s);5

if r is similar to s then6

Add hr, si to A;7

3.1 Prefix Tree
To e�ciently identify the candidates, we build a com-

plete prefix tree. Given a similarity operation �, we first
sort the predicates in �. Suppose the sorted predicates are
Ri1 ⇠ Sj1 ^ Ri2 ⇠ Sj2 ^ · · · ^ Rik ⇠ Sjk (the details on
sorting the attributes will be discussed in Section 3.2.3). For
simplicity, we first discuss how to construct a complete prefix
tree for R with the attribute order Ri1

,Ri2
, · · · ,Rik as fol-

lows. For each record r 2 R, each prefix token combination
he1, e2, · · · , eki where e

t 2 pre(rit) corresponds to a path
from the root to a leaf node, and each token e

t corresponds
to a tree node. At the leaf node, we keep an inverted list of
records that contain this token combination. For example,
Figure 3 shows the complete prefix tree for R in Figure 2.

Next we discuss how to utilize the complete prefix tree
to support similarity joins. We extend the complete prefix
tree to support two tables, where two inverted lists on each
leaf node l are maintained, LR

l

for R and LS
l

for S. For
each record r 2 R, we append it to the inverted list LR of
the corresponding leaf node, and for each record s 2 S, we
append it to inverted list LS . Obviously, for each leaf node
l, the pair (r, s) 2 LR

l

⇥ LS
l

must be a candidate because
r and s share a prefix token on every predicate. On the
other hand, if (r, s) is a candidate, they must appear on the
inverted lists of the same leaf node, because the complete
prefix tree contains all prefix token combinations.
Algorithm 1 shows the pseudo-code. PrefixTree-Join

first constructs one prefix tree for tables R and S, and a
given predicate order of the complex similarity operation �
(line 1). On each leaf node, it maintains two inverted lists:
LR for R and LS for S. Then it identifies all leaf nodes,
and for each leaf node, if there are two inverted lists (line 3),
it enumerates the candidate pairs in these two lists (line 4).
Next it verifies them (line 5), and if they are actually similar,
it adds this pair to the result set (line 7).
For example, given two tables R and S with a complex

similarity operationR3

OLP,1⇠ S3^R2

JAC,0.3⇠ S2. We first con-
struct a complete prefix tree as shown in Figure 5. Then we
enumerate all leaf nodes to generate candidate pairs. Take
the leaf node e

2

1

as an example. We add the pairs from its
two inverted lists LR

1

⇥ LS
1

, i.e., {(r
3

, s

2

), (r
3

, s

3

)}, to the
candidate set. Finally, there are 9 candidate pairs. If we use
the brute-force enumeration, there are 3 · 5 = 15 candidate
pairs. After verification, the results are {(r

4

, s

1

), (r
3

, s

2

)}.
However the complete prefix tree has a rather large index

size (see space complexity in Appendix D), because it re-
quires to enumerate every token combination for each record,
especially for records with long prefixes. To address this is-
sue, we propose a partial prefix tree which is a shrunk com-
plete prefix tree. Di↵erent from complete prefix tree, we do
not maintain every path. Instead, we select some subtrees

root

e21

e32e31

s2
s3

LS
1

r3

LR
1

s1

LS
4

r2
r4
r5

LR
4

e22 e25

s1

LS
7LR

7

r2
r4
r5

e23

s3

LS
3

r3

LR
3

e22 e23 e24 e26

s2

LS
2 LR

6

r1

LR
8

r1r2
r4
r5

LR
5 LS

5 LS
6LR

2 LS
8

Figure 5: Prefix Tree for Tables R and S in Figure 2
(LR(LS): inverted list for R (S)).
and for each subtree, we shrink it as a leaf node, and merge
the inverted lists of its leaf descendants as the inverted list
of the new leaf node.

For example, Figure 4 shows a partial prefix tree for R
in Figure 2. Compared to the complete prefix tree in Fig-
ure 3, the partial prefix tree shrinks the subtrees rooted
at {e1

2

,e1
3

,e1
4

,e1
11

} and removes many unnecessary branches.
Obviously the partial prefix tree is much smaller than the
complete prefix tree since the partial prefix tree does not
maintain every token combination. However there may be
many possible partial prefix trees and next we discuss how
to construct an optimal partial tree.

3.2 Optimal Prefix Tree
For simplicity, we use prefix tree and partial prefix inter-

changeably if the context is clear. To construct an optimal
prefix tree, we first define a cost model to evaluate a prefix
tree in Section 3.2.1. Then we discuss how to construct an
optimal prefix tree with a specific predicate order in Sec-
tion 3.2.2. Next, we prove that the problem of selecting
the optimal predicate order is NP complete and propose a
greedy algorithm in Section 3.2.3.

3.2.1 Join Cost Model with Prefix Tree
Since the join algorithm enumerates all pairs in the two

inverted lists, our goal is to minimize the Cartesian product
of the inverted lists. Next we define the cost model.

Definition 3 (Prefix tree Join Cost). Given a pre-
fix tree T built with two tables R and S, the join cost is

⇥(T) =
X

l2Leaf(T)

|LR
l

||LS
l

|cost
v

(1)

where Leaf(T) is the leaf node set of the prefix tree, LR
l

and
LS

l

are respectively the inverted lists of R and S on the leaf
node l and cost

v

is the average cost of verifying a candidate.

For example, consider the prefix tree built with tables R
and S in Figure 5. The join cost of prefix tree ⇥(T) =P

8

i=1

|LR
i

||LS
i

|cost
v

= 9 ⇤ cost
v

. 1

Then we define the optimal prefix tree.

Definition 4. (Optimal Prefix Tree with A Pred-
icate Order) Given a similarity operation with a predicate
order and two tables R and S, a partial prefix tree is an opti-
mal prefix tree with the predicate order if it has the minimum
join cost among all prefix trees with this predicate order.

For example, Figure 6 shows an optimal prefix tree of the
complete prefix tree in Figure 5.
1

Our cost model does not consider the duplicate candidate pairs in
di↵erent leaf nodes. For example, (r4, s1) will be counted 2 times un-
der di↵erent leaves in Figure 5. In practice, we only verify a candidate
pair once by utilizing a hash table to avoid the duplicate verification.

Algorithm 2: Optimal-BottomUp (R, S, �, ⇡)
Input: R, S: Two multi-attribute data tables

�: A sorted complex similarity operation
Output: T : Optimal prefix tree
Construct a complete prefix tree T with R,S and �;1

for each node v 2 T from bottom to top do2

if v is a leaf then ⇥(v) = |LR
v

||LS
v

| else3

LR
v

= [
c2Child(v)LR

c

;4

LS
v

= [
c2Child(v)LS

c

;5

if
P

c2Child(v)⇥(c) < |LR
v

||LS
v

| then6

⇥(v) =
P

c2Child(v)⇥(c) ;7

else8

⇥(v) = |LR
v

||LS
v

| ;9

Mark v as leaf and remove its children;10

return T ;11

root

e32e31

s2
s3

LS
1

r3

LR
1

s1

LS
2LR

2

r2
r4
r5

Figure 6: Optimal Prefix Tree for Tables R and S.
3.2.2 Optimal Prefix Tree with A Predicate Order
Given a complex similarity operation with a specified or-

der of predicates, we show how to construct an optimal prefix
tree with the minimum join cost. The basic idea is that we
first build a complete prefix tree and then determine if we
combine some paths in the complete prefix tree in a bottom-
up manner based on the join cost model. We devise a two-
step algorithm to construct the optimal prefix tree as shown
in Algorithm 2. In the first step, it constructs a complete
prefix tree given a specific predicate order (line 1). In the
second step, it revisits nodes from bottom to top to prune
subtrees (line 3). When checking each node, it compares
the cost of the subtree (|LR

v

||LS
v

|) and the cost of merg-
ing its children (

P
c2Child(v)⇥(c))

2. If the latter is smaller,
we keep its children (line 7); otherwise we merge its chil-
dren(lines 9-10). As it visits nodes in a bottom-up manner,
it guarantees the subtree rooted at each node is optimal.

For example, given two tables R and S in Figure 1, and

a complex similarity operation with an order R3

OLP,1⇠ S3 ^
R2

JAC,0.3⇠ S2. We first construct the complete tree as shown
in Figure 5. Then we enumerate all the nodes from bottom
to top to prune branches. Taking node e

3

1

as an example,
the cost of its subtree is |LR

1

||LS
1

|+ |LR
2

||LS
2

|+ |LR
3

||LS
3

| = 3,
which is larger than the merging cost |LR

1

[LR
2

[LR
3

||LS
1

[
LS

2

[LS
3

| = 2. Thus we remove the children of e3
1

and mark
e

3

1

as a leaf node. Similarly, we prune the subtree of node e

3

2

and all nodes with an empty list and construct an optimal
prefix tree as shown in Figure 6. The join cost with the
optimal prefix tree is 5 while that of the complete tree is 9.
The Optimal-BottomUp algorithm can find the optimal

tree correctly as shown in Lemma 1.

Lemma 1. The partial tree built by Optimal-BottomUp
is an optimal prefix tree with the given predicate order.

2For ease of presentation we omit the same coe�cient cost
v

Algorithm 3: Greedy-TopDown (R, S, �)
Input: R, S: Two multi-attribute tables

�: A sorted complex similarity operation
Output: T : A prefix tree
Initialize F with (root, �

1

); /* �
1

: the 1st operation*/1

for each (v,�
i

) 2 F do2

Split v to generate children Child(v) with �
i+1

;3

if
P

c2Child(v) |LR
c

||LS
c

| < |LR
v

||LS
v

| then4

Add all (c, �
i+1

) to F for each c 2 Child(v);5

else6

Mark v as a leaf;7

return T ;8

Though Algorithm 2 can build the optimal prefix tree
with a specified ordered complex similarity operation, its
construction cost is expensive (see the complexity in Ap-
pendix D). To address this issue we propose a greedy al-
gorithm to construct a partial prefix tree. Di↵erent from
the optimal solution which directly builds the complete pre-
fix tree, we construct a prefix tree in a top-down manner.
For each node, we compare the cost of splitting the subtree
rooted at it and that of not splitting the subtree. If the for-
mer is better, we split the node; otherwise we take it as a
leaf node. The pseudo-code is shown in Algorithm 3. Given
a complex operation �, it first initializes a queue F with the
root and the first similarity predicate �

1

(line 1). Then for
each record in the queue F , it splits the node and generates
its children (line 3). If

P
c2Child(v) |LR

c

||LS
c

| < |LR
v

||LS
v

|, it
splits the node and adds its children into F (line 5); other-
wise, it takes this node as a leaf node (line 7).

For example, consider the prefix tree in Figure 5. Given
node e1

3

, the cost of splitting node e1
3

is |LR
1

||LS
1

|+|LR
2

||LS
2

| =
3, and the cost of not splitting node e

1

3

is |LR
1

[LR
2

||LS
1

[
LS

2

| = 2. Thus we do not split e1
3

.

3.2.3 Optimal Prefix Tree without A Predicate Order
Given a similarity operation with |�| atomic predicates,

there are |�|! predicate order, and for each order, there is
an optimal prefix tree. We would like to find the optimal
prefix tree among these prefix trees.

Definition 5. (Optimal Prefix Tree) Given a sim-
ilarity operation and two tables R and S, a partial prefix
tree is an optimal prefix tree if it has the minimum join cost
among all partial prefix trees.

However, the problem of finding the optimal prefix tree is
NP-Hard as formalized in Lemma 2.

Lemma 2. Given two tables R and S, a complex similar-
ity operation �, finding the optimal prefix tree is NP-Hard.

Since find the optimal prefix tree is NP-Hard, we propose
an approximation algorithm. We first evaluate the cost of
each predicate on the whole table as follows

Cost(�
i

) =
X

c2Child(root)

|LR
c

||LS
c

| (2)

where �
i

is the i

th operation of �. Then it sorts the predi-
cates by Cost(�

i

) and constructs a prefix tree based on the
sorted order. For example, given tables in Figure 1 and a

complex operation R1

ED,1⇠ S1 ^R2

JAC,0.3⇠ S2 ^R3

OLP,1⇠ S3.
We first evaluate the cost of each predicate. The size of the
inverted list built with �

3

is |LR
1

| = 1, |LS
1

| = 2, |LR
2

| =
4, |LS

2

| = 1. Cost(�
3

) =
P

2

c=1

|LR
c

||LS
c

| = 6. Similarly, we
computeCost(�

2

) = 15 andCost(�
1

) = 26. AsCost(�
3

) <
Cost(�

2

) < Cost(�
1

), the predicate order is h�
3

,�
2

,�
1

i.

4. SIMILARITY SEARCH WITH PREFIX TREE
We extend the prefix tree to support similarity search

on multi-attribute data. We first give an overview in Sec-
tion 4.1. Then we discuss how to utilize the prefix tree to
answer a search query in Section 4.2. Finally we propose to
build the prefix trees for similarity search in Section 4.3.

4.1 Overview
For a similarity join query, the cost of constructing a prefix

tree is less than the join cost. However for a similarity search
query, the construction cost is much more expensive than
the cost of answering a search query. Thus for a similarity
search query, we want to construct the prefix tree o✏ine so
as to utilize it to answer online search queries. To utilize
prefix trees to support similarity search queries, we need to
answer the following questions.

First, di↵erent search queries have various similarity func-
tions and thresholds. For example, given the table in Fig-
ure 1, a user is familiar with the address but is not sure

how to spell the name, and issues a query (Name
ES,0.6⇠

‘Jenifer Ullman’, Address
JAC,0.8⇠ ‘CS Stanford’). An-

other user knows the name but is not familiar with the ad-
dress, and issues a query (Name

ES,0.9⇠ ‘Jeffery Ullman’,

Address
JAC,0.7⇠ ‘EE Stanford’). Obviously the two queries

involve di↵erent functions and thresholds. Since the prefixes
depend on the similarity functions and thresholds, can we
still use prefix trees to support similarity search? The an-
swer is yes. A common technique is to set a smallest possible
similarity threshold that a system can tolerate, e.g., 0.6, and
we utilize this threshold to construct prefix trees. An alter-
native is to build delta prefix trees. That is we build a prefix
tree for each threshold range, e.g., [1, 0.9], (0.9, 0.8], (0.8, 0.7],
(0.7, 0.6]. Given a query threshold 0.8, we use the first two
prefix trees to answer the query. For simplicity, we take the
first method as an example. To support various functions,
we transform them to the overlap similarity and use the
smallest threshold o to generate the prefix (see Section 2.2).

Second, since there are many search queries and di↵er-
ent queries involve di↵erent attribute combinations, a single
prefix tree cannot e�ciently answer all search queries and
we have to construct multiple prefix trees to answer search
queries. There are two issues we need to address. The
first is how to construct multiple high-quality prefix trees
to answer search queries? Since search queries are not given
and di↵erent queries have di↵erent similarity functions and
thresholds, the cost model for similarity joins cannot sup-
port search queries. To address this issue, we propose a
new model to support similarity search in Section 4.3. The
second is that given multiple prefix trees, how to e�ciently
utilize them to answer a search query? We propose e�cient
algorithms to address this issue in Section 4.2.

Based on these questions, we devise a framework to sup-
port similarity search queries on multi-attribute data. First
we construct multiple prefix trees o✏ine (see Section 4.3).
Then given an online query, we devise e�cient algorithms to
answer the query using these prefix trees (see Section 4.2).

4.2 Prefix-Tree-Based Search Algorithms
Using A Single Prefix Tree T to Answer A Query
Q. If the first-level attribute of T appears in Q, we can
use T to answer Q. The basic idea is to find the leaf nodes
of T such that the tokens on the path from the root to

root

e32e31

r3

LR
1

r1
r2
r4
r5

LR
2

root

e13 e15e12 e14e11

r2
r5

LR
2

r3

LR
6

r1
r3
r4
r5

LR
1

r1
r4

LR
3

r2
r5

LR
4

r1
r2
r3
r4

LR
5

e111

root

e23 e25e22 e24 e26e21

r2
r4
r5

LR
2

r2
r4
r5

LR
4

r2
r4
r5

LR
6

r3

LR
1

r3

LR
3

r3

LR
5

r3

LR
7e31 e32

T1 = hR1i T2 = hR2,R3i T3 = hR3i

Figure 7: Mutiple Prefix Trees for Table R.

each leaf also appear in the prefix tokens of Q. The records
on the inverted lists of leaf nodes are candidates. To this
end, we first find the longest sequence of attributes from
T , i.e., Ri1

,Ri2
, · · · ,Rit , where each attribute also appears

in the query attributes. Then from the root, we identify
its children with labels of prefix tokens in Qi1 . For each
identified child, if it is a leaf, the records on inverted lists
are candidates; otherwise we identify its children with labels
of prefix tokens in Qi2 . Iteratively, we can find all leaf nodes.

Algorithm 4 shows the pseudo-code for using a prefix
tree to answer Q. Given a query Q, SinglePrefixTree-
Search first recursively searches the prefix tree to get a set
of leaves where each token on the path is also a prefix token
of Q (line 1-9): it first identifies the longest sequence (line 1)
and adds the root to the candidate node list (line 2); Then
for each node, it checks whether its child contains a prefix
token in Q; If yes, this child will be added into the node list
(line 4); Iteratively it finds all leaf nodes (line 9). Next it
retrieves the inverted list of each identified leaf (line 11) and
verifies each candidate based on the other similarity predi-
cates (line 13). If a record is similar to the query, it is added
into the result set (line 14).

For example, consider a prefix tree of R in Figure 4 and
taking s

1

2 S as a search queryQ with pre(Q1) = {e1
1

, e

1

3

, e

1

5

},
pre(Q2) = {e2

2

, e

2

5

}, pre(Q3) = {e3
2

}. From the root, we
find its children {e1

1

, e

1

3

, e

1

5

} which contain a prefix token
in pre(Q1). e

1

3

is a leaf node and we get an inverted list
LR

9

. Then we check whether e

1

1

and e

1

5

have children with
labels e

2

5

, e

2

2

, and we find 4 leaf nodes whose inverted lists
are {LR

2

,LR
6

,LR
11

,LR
15

} (surrounded by red rectangles in Fig-
ure 3). From these five lists, we get 4 candidates {r

1

, r

2

, r

4

, r

5

}.
Finally we verify candidates and get a result {r

4

}.
Thus given a prefix tree T

i

, the time cost of using T
i

to
answer Q, denoted by Cost(T

i

,Q), includes two parts. The
first part is to identify the leaves and the second part is to
verify the candidates, which can be computed as below.

Cost(T
i

,Q) =
⇣ Y

Rjk2 (Ti\Q)

|pre(Qjk)|
⌘
+ |C

i

|cost
v

(3)

where (T
i

\Q) is the longest sequence of attributes in T
i

and Q, and C
i

is the candidate set by searching Q in T
i

. |C
i

|
can be estimated by adding the size of all identified inverted
lists which is very e�cient.

Using Multiple Prefix Trees to Answer A Query.
Next we study how to utilize multiple prefix trees to answer
a search query. First we identify the candidate prefix trees
that can answer the query Q, by checking whether the at-
tribute in the first level appears in Q. Second, we rank these
candidate prefix trees based on the cost of using the pre-
fix tree to answer Q, i.e., T

1

, T
2

, · · · , where Cost(T
1

,Q) 
Cost(T

2

,Q)  · · · .

Algorithm 4: SinglePrefixTree-Search (T , Q, �)

Input: T : Prefix tree
Q: Search query
�: A complex similarity operation

Output: A: Answer set
Identify the longest sequence of attributes1

Ri1
,Ri2

, · · · ,Rit of T that also appear in Q;
NodeSet = {root};2

for j = 1 to t do3

for node in NodeSet do4

NodeSet0 = �;5

for e

j in prefix of Qij do6

if node has a child n

j

with label ej then7

if n

j

is a leaf then LeafSet n

j

else8

NodeSet0 n

j

NodeSet = NodeSet0;9

for each leaf l 2 LeafSet do10

Retrive its inverted list L(l);11

for each candidate c 2 L(l) do12

Verify (c, Q);13

if c is simlar to Q then Add c to A;14

Then we have two strategies to answer the query. The
first one is that we use the prefix tree T

1

with the minimum
cost to generate a candidate set C

1

and verify the candi-
dates using other attributes. The second one is that we
utilize another tree T

i

to identify another candidate set C
i

and intersect C
1

and C
i

. Based on the new candidate set
C
1

\ C
i

, we can still utilize these two strategies to compute
the answer. Iteratively, we can find all the results.

Next we define a cost model to select a better strategy.
The cost of the first strategy is

Cost
1

= Cost(T
1

,Q). (4)

The cost of the second strategy is

Cost
2

=
Y

Rjk2 (T1\Q)

|pre(Qjk)|+
Y

Rjk2 (Ti\Q)

|pre(Qjk)|

+ |C
1

|+ |C
i

|+ |C
1

\ C
i

|cost
v

.

(5)

where |C
1

\ C
i

| can be obtained through sampling.
If Cost

1

 Cost
2

, we select the first strategy; otherwise
we select the second strategy.

The pseudo code is shown in Algorithm 5. It first retrieves
prefix trees that can answer Q from W (line 1). Then it
estimates Cost(T

i

,Q) and sorts T
i

(line 2). It estimates
the cost of the two methods (line 4-7). If the intersection-
based method is better, it intersects the two candidates and
iteratively decides to verify or intersect two candidate sets
(line 9-11). Otherwise, it verifies the candidates (line 12).

4.3 Multiple Prefix-Trees Construction
The cost of searching prefix trees depends on two factors.

The first is the query distribution, e.g. which attributes or
attribute combinations are frequently searched. The second
is data distribution, e.g. some attributes have more unique
values than other attributes. Since we do not know the
distribution of search queries, in this paper we only consider
the data distribution.

As there are at least x prefix trees, we first build x trees
using each attribute at the first level. We can use these trees
to answer any query. If there is more space, we optimize

Algorithm 5: MultiTreeSearch (R, Q, �, W)

Input: R: Multi-attribute data table
Q: Search query
W: Multiple prefix trees T

1

, T
2

..T
m

Output: A: Answer set
WQ {T

i

|T
i

2W,Ri1 2 Q} ;1

Sort T
i

2WQ by Cost(T
i

,Q);2

A Candidates using T
1

;3

Cost
1

= Cost(T
1

,Q) + |C
1

|cost
v

;4

for each T
i

2WQ do5

Estimate Cost
2

(T
i

) by Equation(5) ;6

Choose T
p

with smallest Cost
2

(T
p

) ;7

if Cost
2

(T
p

) < Cost
1

then8

C
p

 Candidates using T
p

;9

A = A \ C
p

;10

Decide to verify A or further intersect;11

else Verify all records in A;12

return A;13

these prefix trees and propose a cost-based method. Next
we define the cost and benefit of adding an attribute Rj to
current tree T

i

. The cost is the space increase by adding Rj

to T
i

and the benefit is query performance improvement.
As the new prefix tree shares many tree nodes with T

i

, we
only consider the cost of new inverted lists by adding Rj to
T
i

. As each record in T appears |pre(rRj)| times in the new
tree and thus the space cost can be computed as below.

CostSpace(Ti

,Rj) =
X

l2Leaf(Ti)

X

r2LR
l

(|pre(rRj)|) (6)

The benefit is hard to measure and di↵erent queries have
di↵erent benefits. Here our objective is to avoid slow queries,
i.e., there are no rather long inverted lists on the prefix tree.
Thus we want to make inverted lists evenly distributed after
adding Rj . To achieve this goal, we use a modified Shannon
entropy to capture this information.

Definition 6. The entropy of prefix tree T in search is

H(T) =
X

l2Leaf(T)

�P(l) logP(l) (7)

where Leaf(T) is the leaf set of T and P(l) is the ratio of
inverted-list size of node l to the sum of inverted-list sizes,

P(l) =
|LR

l

|P
l

02Leaf(Ti)
|LR

l

0 |
. (8)

Obviously, the larger entropy, the smaller average search
cost of using prefix tree to answer a query. With this entropy
cost model, we can define the benefit of adding Rj ,

Benefit(T
i

,Rj) = H(T
i

,Rj)�H(T
i

) (9)

where H(T
i

,Rj) denotes the entropy of the new tree by
adding Rj to T

i

.
Using the cost and benefit, our goal is to achieve the max-

imum benefit with a given space budget B. However, this
generalizes the classical knapsack problem, which is NP-
Hard. To this end, we devise a greedy algorithm to build
the prefix trees. We select the attribute Rj and T

i

with the

largest value Benefit(Ti,Rj
)

CostSpace(Ti,Rj
)

, and insert the new tree into the

tree set. The algorithm terminates until there is no space
to accommodate any prefix tree. Algorithm 6 shows pseudo
code. It first creates one-level prefix trees for each attribute
(lines 1-2). Then it greedily adds a new prefix tree (lines 6-
9). It terminates when meeting the space budget (line 6).

Algorithm 6: BuildMultipleTrees (R, B)
Input: R: Multi-attribute table

B: Space budget
Output: W: A set of prefix trees
for each attribute Ri do1

Construct T
i

with Ri and add T
i

to W;2

while B > 0 do3

for each T
i

2W do4

for each Rj do5

Compute CostSpace(Ti

,Rj) with Equation 6;6

Compute Benefit(T
i

,Rj) with Equation 9;7

Expand T
i

using Rj with largest Benefit(Ti,Rj
)

CostSpace(Ti,Rj
)

;8

W T (T
i

,Rj);9

B B �CostSpace(Ti

,Rj) ;10

return W ;11

For example, consider adding an attribute to T
1

in Fig-
ure 7. If we add attributeR3, the benifit Benefit(T

1

,R3) =
0.298 and the cost CostSpace(T1

,R3) = 4. Similarly we can
estimate Benefit(T

1

,R2) = 1.057 and CostSpace(T1

,R2) =

39. Benefit(T1,R3
)

CostSpace(T1,R3
)

= 0.0745 and Benefit(T1,R2
)

CostSpace(T1,R2
)

= 0.0271,

As Benefit(T1,R3
)

CostSpace(T1,R3
)

>

Benefit(T1,R2
)

CostSpace(T1,R2
)

, we expend T
1

with R3.

5. HYBRID VERIFICATION
In this section, we study how to e�ciently verify a candi-

date pair. There are two challenges in verifying a pair. The
first is to determine the order of verifying di↵erent predi-
cates. The second is to decide the order of using di↵erent
filtering algorithms. To address these challenges, we propose
a hybrid verification framework and prove its optimality.

5.1 Hybrid-based Verification Framework
Given a complex similarity operation � and a candidate

pair hr, si, we check whether hr, si satisfies each predicate in
�. A straightforward way is to examine each predicate one
by one through computing the real similarity. However this
method has two weaknesses. First, directly computing the
similarity is expensive. For example, the cost to verify hr, si
on the token-based function is |r|+ |s| while the cost on the
character-based function is (2⌧ + 1) · min(|r|, |s|). Second,
the pruning power of each predicate is also di↵erent and
it is important to select an appropriate order of predicates
to verify candidates. For example, given a candidate pair

hr
1

, s

1

i and a complex similarity operation R1

ED,1⇠ S1 ^
R2

JAC,0.3⇠ S2 ^R3

OLP,1⇠ S3, if we verify them with the order
h�

1

,�
3

,�
2

i. The cost is (3 · 14) + (1 + 1) + (2 + 2) = 48.
However, if we use the order h�

2

,�
1

,�
3

i, then the pair fails
in predicate �

2

, and thus the cost is only 2 + 2 = 4.
To reduce the verification cost, we can use lightweight

filters instead of computing the actual similarity. If the pair
cannot pass the filter, we prune it; otherwise we use other
filters or compute the actual similarity. For example, the
length filter can prune those pairs with length di↵erence
larger than ⌧ for edit distance. However di↵erent filters have
di↵erent cost and pruning power and it is also important to
select an appropriate order for using filtering algorithms.

Formally, suppose a similarity operation � has k similarity
predicates �

1

,�
2

, · · · ,�
k

, v filters �
1

,�
2

, · · · ,�
v

, and each
predicate �

i

also has a best verification algorithm ⇤
i

. There
are many possible ways to verify the pair. A naive way that
does not use any filter is h�

1

,⇤
1

i, h�
2

,⇤
2

i, · · · , h�
k

,⇤
k

i.

Algorithm 7: HybridVerification (C, Q, �, F)

Input: C: Candidate after prefix tree; Q: Search query
�: A complex similarity operation,
F : A set of filters and verification algorithms

Output: A: Answer
Compute and sort verification methods by ⇥(h�,�i)

P(h�,�i) ;1

for each hr, si 2 C do2

for each h�,�i do3

if (r, s) does not pass h�,�i then4

break;5

Add hr, si to A;6

Update ⇥(h�,�i)
P(h�,�i) ;7

return A;8

Another solution that uses all possible filters is h�
1

,�
11

i,
h�

1

,�
12

i, · · · , h�
1

,⇤
1

i, h�
2

,�
21

i, h�
2

,�
22

i, · · · , h�
2

,⇤
2

i,
h�

k

,�
k1

i, h�
k

,�
k2

i, · · · , h�
k

,⇤
k

i. We require to find an or-
der with the minimum cost to verify the pair. Suppose each
filter h�

i

,�
j

i (or each verification algorithm h�
i

,⇤
i

i) has a
time cost ⇥ to preform the filter (or the algorithm) and a
pruning probability P to prune the pair. We discuss how to
compute the time cost and pruning ability in Section 5.2.

Given a verification sequence = {h�
1

,�
1

i, h�
2

,�
2

i, · · · },
we compute its expected verification cost as follows.

Cost() =
X

h�,�i2

⇥(h�,�i) · P

(h�,�i), (10)

where ⇥(h�,�i) is the cost to use the filter � to verify pred-
icate � and P

(h�,�i) is the probability that h�,�i is used
to verify the pair given the sequence , that is the probabil-
ity the verification methods before h�,�i in cannot prune
the pair, which can be computed as

P

(h�,�i) =
Y

h�0
,�

0i is before h�,�i

1� P(h�0
,�0i), (11)

where P(h�0
,�0i) is the probability that the filter �0 on �0

can prune a pair.
We design a hybrid verification algorithm to address this

problem. Algorithm 7 gives the pseudo code of the algo-
rithm. It first computes ⇥(h�,�i)

P(h�,�i) for each pair of filter and

attribute, and sorts them in an ascending order (line 1).
Then it utilizes this order to verify each candidate pair. If
the candidate passes the filter, it selects the next filter or
verification algorithm; otherwise terminates (lines 2 - 5). Fi-
nally it adds the pair which passes all verification algorithms
to the answer set (line 6). Then it updates the expected cost
for other verification methods based on Equation 11 (line 7).
Iteratively, the algorithm can find a verification order.

Note that the above greedy algorithm is known to be op-
timal (see e.g., [10]), and for the sake of completeness, we
provide a simple proof of this fact in Appendix C.

For example, given a filter �
1

, a verification algorithm ⇤
2

and two similarity predicates �
1

, �
2

with the following ex-
pected cost ⇥(h�,�i)

P(h�,�i) . h�1

,�
1

i: 1.0

0.4

= 2.5, h�
1

,⇤
2

i: 8.3
0.9

= 9.2,

h�
2

,�
1

i: 1.0

0.25

= 4.0, h�
2

,⇤
2

i: 2.2
0.6

= 3.7. We sort verifica-

tion methods by ⇥(h�,�i)
P(h�,�i) and get an order h�

1

,�
1

i, h�
2

,⇤
2

i,
h�

2

,�
1

i, h�
1

,⇤
2

i. Then we compute P(h�,�i|) iteratively
by Equation (11) and get a sequence P(h�

1

,�
1

i|) = 1,
P(h�

2

,⇤
2

i|) = 0.6,P(h�
2

,�
1

i|) = 0.24,P(h�
1

,⇤
2

i|) =
0.18. ThusCost() =

P
h�i,�ji2 ⇥(h�i

,�
j

i)·P(h�
i

,�
j

i|) =
2.5 · 1+ 2.2 · 0.6+ 4.0 · 0.24+ 8.3 · 0.18 = 6.274. If we choose
order h�

1

,⇤
2

i, h�
2

,�
1

i, h�
2

,⇤
2

i, h�
1

,�
1

i, Cost() = 8.64.

5.2 Verification Cost and Pruning Probability
We first discuss the verification cost of various filters. Here

we only take important filters as examples. It is worth noting
that our method is orthogonal to the filtering techniques and
our method can be easily extended to support any filter.

Length Filter. It prunes hr, si if their length di↵erence is
larger than ⌧ for ED and |r| 1�⌧

⌧

for JAC. The time cost ⇥
is O(1) for the search problem, since the length/size can be
materialized; but for the join problem, the cost is O(1) for
the attribute in the similarity operation as we can get the
length when computing the prefixes; O(|r|+ |s|) otherwise.
Prefix Filter. It prunes hr, si if their prefixes have no com-
mon token. The time cost ⇥ is O(pre(r) + pre(s)). (If the
prefix filter is used in the filtering step for this attribute, we
will not use it again and set its pruning probability as 0.)

Count Filter. It is useful only for character-based func-
tions. If two strings are similar, they must share max(|r|, |s|)�
q+1� ⌧q common q grams. The time cost ⇥ is O(|r|+ |s|).
Content Filter. It is useful only for character-based simi-
larity functions. For example, for ED, it computes the sum
of the number of character di↵erence and if the di↵erence is
larger than 2⌧ , it prunes the pair. The cost is O(|r|+ |s|).

The well-known verification algorithm for ED is the dynamic-
programming algorithm with time cost of O(2⌧ min(|r|, |s|)).
The verification algorithm for JAC is O(|r|+ |s|).

Next we analyze the filtering probability. Initially, we can
utilize a sampling-based method to compute the pruning
probability of each filter. Then, after verifying each record,
we update the pruning probability of each filter. However it
is not free to get the pruning probability and it is expensive
to compute an appropriate order for every pair. Instead,
we periodically update the order. For similarity join, we
group the candidates based on a record in R and use the
same order for candidates in the same group; for similarity
search, we can use the same order for all candidates.

6. EXPERIMENT
We have implemented our techniques to support similarity

join and search on multi-attribute data and our goal is to
evaluate the e�ciency. We used two real datasets DBLP and
IMDB in the experiments, as shown in Table 1.
DBLP: It is a publication dataset (dblp.uni-trier.de/xml/).
We ran self-join on DBLP with 4 attributes {title, journal,
author, year}. The similarity operation was title

COS,⌧⇠ title

^journalJAC,⌧⇠ journal^authorES,⌧⇠ author^yearES,⌧⇠ year by
varying ⌧ in [0.75, 0.95].
IMDB: It is a movie database (imdb.com). We ran self-
join on IMDB with 4 attributes {title, genres, director,
writer}. The similarity operation was title

ES,⌧⇠ title ^
genres

JAC,⌧⇠ genres ^directorES,⌧⇠ director^writerES,⌧⇠ writer

by varying ⌧ in [0.75, 0.95].
All the algorithms were implemented in C++ and com-

piled using GCC 4.7 with the -O3 flag. All the experiments
were conducted on a machine running 64bit Ubuntu 14.04
with Intel Xeon E2650 2.0GHz processor and 16GB RAM.

6.1 Evaluation on Prefix Trees for Join
In this section, we evaluated our prefix trees for similar-

ity join. We first compared our optimal prefix tree and the
greedy prefix tree with CBlockTree [21], which was used to
merge blocks to improve the recall of the blocking-based
scheme (see Appendix C for details). Figure 8 shows the

Table 1: Datasets.
Datasets # Records # Attributes Size
DBLP 1M 4 174MB
IMDB 400K 4 159MB

candidate numbers and join time, where the bars from bot-
tom to top respectively denote the time of building trees,
filtering time and verification time. We had the following
observations. First, CBlockTree reduced the number of can-
didates, because it enumerated every two leaves and merged
the leaves with the join cost on the merged node smaller
than the cost on two individual leaves, while our method
only checked whether to combine the leaf nodes with the
same parent. However, enumerating every pair of leaf nodes
had expensive overhead, and thus CBlockTree had worse
performance than our method. Second, our greedy prefix
tree nearly had the same number of candidates with the op-
timal prefix tree, because if merging a subtree had a large
benefit, our greedy prefix tree would not split the subtree
and our cost model can e↵ectively decide whether to split a
node or not. Third, our greedy prefix tree had much better
join performance than the optimal prefix tree. The reason is
obvious that it took less time to construct the greedy prefix
tree, and the optimal tree generated a large complete pre-
fix tree and then merged many subtrees, which was rather
time consuming, especially for large datasets. Another rea-
son was that the greedy tree had similar pruning power with
the optimal tree and thus it did not loss much performance.

Then, we compared di↵erent orders of predicates in con-
structing the prefix trees. We compared the random order
with our greedy order. Figure 9 shows the results. We can
see that our greedy order significantly outperformed the ran-
dom order, even by 1-2 orders of magnitude. This is because
if we used predicates with large cost in top levels, then both
indexing and filtering took much time. Our greedy algo-
rithm selected an appropriate order of predicates and made
inverted lists on leaf nodes much shorter. For example, on
DBLP, for ⌧ = 0.8, the random order took nearly 1000 sec-
onds while our greedy order took less than 80 seconds.

6.2 Evaluation on Prefix Trees on Search
We generated 100K search queries based on the same simi-

larity operations, varied the thresholds, and reported the av-
erage search time. To build prefix index, we set a threshold
bound (0.7) for each predicate and built our multiple prefix
trees with the bound. We first evaluated our techniques by
using multiple prefix trees to answer a query (proposed in
Section 4.2). Suppose the size of the multiple prefix tree with
the first level was 1. We set B = 2 in this experiment. We
implemented three methods. (1) Intersection-based Method:
It computed the candidates using each predicate and then
intersected them. (2) Pipeline-based Method: It selected the
best predicate and utilized this predicate to generate can-
didates. (3) Cost-based Method: It used our cost model to
generate the candidates. Figure 10 shows the results (bot-
tom/top bars denote filtering/verification time).

We had the following observations. First, on DBLP, the
pipeline-based method was better than the intersection-based
method, because the pipeline-based method first used a highly
selective attribute to identify less candidates and then ver-
ified the candidates, and thus achieved rather high per-
formance. However, the intersection-based method used
each predicate to identify many candidates and thus was

expensive. For example, consider a query (Author
ES,0.8⇠

‘Dieter Baum, Vladimir V. Kalashnikov’, Journal
JAC,0.8⇠

 1e+06

 1e+07

 1e+08

0.95 0.9 0.85 0.8 0.75

C
a
n
d
id

a
te

 N
u
m

b
e
r

Threshold

GreedyPrefixTree
OptimalPrefixTree

CBlockTree

(a) Candidate Number (DBLP)

 1e+06

 1e+07

 1e+08

 1e+09

0.95 0.9 0.85 0.8 0.75

C
a
n
d
id

a
te

 N
u
m

b
e
r

Threshold

GreedyPrefixTree
OptimalPrefixTree

CBlockTree

(b) Candidate Number (IMDB)

 0

 50

 100

 150

 200

 250

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

GreedyPrefixTree
OptimalPrefixTree

CBlockTree

(c) E�ciency (DBLP)

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

GreedyPrefixTree
OptimalPrefixTree

CBlockTree

(d) E�ciency (IMDB)
Figure 8: Evaluation on Prefix Trees for Similarity Join: Optimal vs Greedy vs CBlockTree

 10

 100

 1000

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

GreedyOrder
RandomOrder

(a) E�ciency (DBLP)

 10

 100

 1000

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

GreedyOrder
RandomOrder

(b) E�ciency (IMDB)
Figure 9: Evaluation on Predicate Order for Join

 0

 1

 2

 3

 4

 5

0.95 0.9 0.85 0.8 0.75

T
im

e
(m

s)

Threshold

CostBasedSearch
Search-Pipeline

Search-Intersection

(a) E�ciency (DBLP)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.95 0.9 0.85 0.8 0.75

T
im

e
(m

s)

Threshold

CostBasedSearch
Search-Pipeline

Search-Intersection

(b) E�ciency (IMDB)
Figure 10: Evaluation on Prefix Trees for Search.

‘University Trier, Mathematik/Informatik’). Attribute
journal only generated 300 candidates (by prefix filter-
ing), while attribute author generated over 10K candi-
dates. The intersection-based method identified 10K can-
didates from attribute author and 300 candidates from
journal while the pipeline-based method only identified
300 candidates and then verified them. Obviously, the latter
was faster. Second, on IMDB, the intersection-based method
was better than the pipeline-based method because every
predicate generated nearly the same number of answers and
the intersection-based method can further reduce the can-
didate number by intersecting them, which had lower cost
than directly verifying each candidate. For example, a query
generated 1000 candidates on attribute Title and 1000 can-
didates on attribute Director, and there were 100 results.
The pipeline-based method identified 1000 candidates and
verified 1000 candidates while the intersection-based method
identified 2000 candidates and verified 150 candidates (there
were 150 candidates after the intersection). As the verifica-
tion cost was much more expensive than the filtering cost,
the intersection-based method was better. Third, our cost-
based method always achieved the best performance because
it judiciously selected appropriate predicates to generate the
candidates. If the best predicate generated a small num-
ber of candidates, it directly verified the candidates; oth-
erwise it selected another predicate to further reduce the
number of candidates. For example, on DBLP, for ⌧ = 0.75,
the intersection-based method took 4.6 milliseconds for each
query, and the pipeline-based method took 2.3 milliseconds,
while our cost-based method improved it to 0.4 milliseconds.

Then we evaluated the performance by varying the given
budget B. Suppose the size of all the 1-level prefix trees was
1. We varied B in 1.0, 1.5, 2.0, 2.5, and 3.0, and evaluated

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1.00 1.5 2.0 2.5 3.0

T
im

e
(m

s)

BufferSize

BuildMultiTrees

(a) E�ciency (DBLP)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1.00 1.5 2.0 2.5 3.0

T
im

e
(m

s)

BufferSize

BuildMultiTrees

(b) E�ciency (IMDB)
Figure 11: Evaluation on Search by Varying Budgets

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

HybridVerification
SortedVerification

RandomVerification

(a) E�ciency (DBLP)

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

HybridVerification
SortedVerification

RandomVerification

(b) E�ciency (IMDB)
Figure 12: Evaluation on Verification Algorithms.

the average search performance. Figure 11 shows the results.
We can see with the increase of B, our method achieved
higher performance, this is because we can use more prefix
trees to answer search queries, which obviously can improve
the performance. Especially, if each query attribute was con-
tained by a prefix tree, then the prefix tree can significantly
improve the performance than the 1-level prefix tree.

6.3 Evaluation on Verification Techniques
We evaluated our verification techniques. We compared

three methods. (1) Random Verification: we randomly veri-
fied a candidate. (2) Sorted Verification: we sorted the pred-
icates based on our techniques in Section 5.1. (3) Hybrid
Verification: we used our cost model in Section 5.1 to verify
a candidate. We used the length filter, prefix filter, count
filter, and content filter in the experiment. Figure 12 shows
the results. We can see that the hybrid verification outper-
formed the other two methods. This is because our hybrid
verification method always judiciously selected appropriate
orders of predicates to verify a candidate and used the ap-
propriate filtering algorithms to prune dissimilar pairs. Our
hybrid verification algorithm was better than the sorted ver-
ification method, especially for a small threshold. This is be-
cause selecting a predicate order was not enough to achieve
high performance and our hybrid verification method can
also utilize lightweight filters to prune many candidates. For
example, our method can utilize the length filter and count
filter on some attributes to prune many candidate with lit-
tle cost. The improvement of our hybrid method over the
sorted-based method on IMDB was significant because there
were many candidates in IMDB and our hybrid can utilize dif-
ferent filters to e↵ectively prune these candidates. However,
on DBLP, there were few candidates using an appropriate
predicate and thus the improvement was not significant.

 10

 100

 1000

 10000

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(a) Varying ⌧ (DBLP)

 10

 100

 1000

 10000

0.95 0.9 0.85 0.8 0.75

T
im

e
(s

)

Threshold

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(b) Varying ⌧ (IMDB)

 100

 1000

 10000

 100000

2 3 4

T
im

e
(s

)

Similarity predicate Number

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(c) Varying # Predicates(DBLP)

 100

 1000

 10000

 100000

2 3 4

T
im

e
(s

)

Similarity predicate Number

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(d) Varying # Predicates(IMDB)
Figure 13: Comparison on Similarity Joins.

6.4 Comparison with Baselines
We compared our method with state-of-the-art q-gram-

based methods, PPJoin [29] for token-based similarity and
ED-join [28] for character-based similarity. For fair compar-
ison, we used the same filters with these two algorithms,
including length filter, count filter, content filter, and prefix
filter. We extended them and took them as baseline ap-
proaches (see Appendix C for details): (1) Intersection:
It used PPJoin or ED-join to identify the candidates on ev-
ery predicate, intersected the candidates, and verified the
intersected candidates. (2) Pipeline: It selected the best
predicate using our model and used PPJoin or ED-join to
identify the candidates, and then verified the candidates.
(3) 2Selective: It first identified candidates for two most
selective attributes and then intersected them. (4) 2Con-
catenate: It concatenated two selective attributes as a sin-
gle attribute and then used PPJoin or ED-join to identify the
candidates. We also extended them to support search by us-
ing the threshold 0.7 (which was the same as our method).

6.4.1 Comparison on Similarity Joins
We compared the performance by varying the thresholds

and the number of similarity predicates, and the result is
shown in Figure 13. We had the following observations.
First, with the decrease of ⌧ , the performance of all the
methods become worse because a small threshold will gener-
ate more results and thus all the algorithms generated more
candidates and involved more verification time. Second, the
query with more predicate numbers may not have worse per-
formance, because a “lightweight” attribute will improve the
performance. For example, on DBLP, answering the query
with attributes title, journal, author was easier than an-
swering query with attributes title, author, because the
attribute journal can prune many dissimilar pairs. Third,
the intersection-based method was always worse because it
was very expensive to identify candidates for every predi-
cate. Fourth, 2Concatenate achieved the lowest perfor-
mance because it generated many more candidates than In-
tersection. Actually, the candidate set obtained by con-
catenating two attributes is a super set of the candidate set
obtained by intersecting two attributes, because if r is a
candidate of intersecting two attributes, then the concate-
nated attribute of r must satisfy the combined constraint
and thus r is a candidate of concatenating two attributes
(see Appendix C for more details). Fifth, alghouth 2Se-

 0

 5

 10

 15

 20

 25

 30

0.95 0.9 0.85 0.8 0.75

T
im

e
(m

s)

Threshold

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(a) Varying ⌧ (DBLP)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.95 0.9 0.85 0.8 0.75

T
im

e
(m

s)

Threshold

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(b) Varying ⌧ (IMDB)

 0.01

 0.1

 1

 10

 100

2 3 4

T
im

e
(m

s)

Similarity predicate number

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(c) Varying # Predicates(DBLP)

 0.01

 0.1

 1

 10

 100

2 3 4

T
im

e
(m

s)

Similarity predicate number

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(d) Varying # Predicates(IMDB)

 0

 5

 10

 15

 20

 25

1 1.5 2.0 2.5 3.0

T
im

e
(m

s)

Buffer Size

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(e) DBLP

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 1.5 2.0 2.5 3.0

T
im

e
(m

s)

Buffer Size

PrefixTree
Pipeline

Intersection

2Selective
2Concatenate

(f) IMDB
Figure 14: Comparison on Similarity Search with
Baselines (Including filtering&verification)

lective was better than Intersection, it was still worse
than our method, because it only used two attributes and
cannot adaptively select a better strategy for queries with
more than two attributes. Sixth, our method always out-
performed the baseline approaches. This was attributed to
the pruning power of our prefix tree and the e↵ectiveness of
our hybrid verification algorithm. The first technique can
prune a large number of dissimilar results and the second
technique can e�ciently verify each candidate pair.

6.4.2 Comparison on Similarity Search
We compared the search performance by varying the thresh-

olds, the number of similarity predicates, and the budge B.
The result is shown in Figure 14. We had the following ob-
servations. First, our method was still much better than the
four baselines for di↵erent bu↵er sizes, even the same bu↵er
size with existing methods. This is because our algorithm
selected a better search strategy to reduce the number of
candidates and utilized a cost-based verification algorithm
to improve the verification performance. Second, similar to
similarity join, with the decrease of thresholds, the perfor-
mance was also decreased because there will be more candi-
dates and answers. Third, with the increase of the bu↵er B,
the baseline kept the same performance and our method be-
came better, because our method can utilize the budget to
generate more prefix trees. Fourth, the search time actually
decreased when we used more similarity predicates. This is
because the last two similarity predicates actually had very
high pruning power and cheap filtering cost.

6.5 Scalability
We evaluated the scalability of di↵erent methods by vary-

ing the dataset sizes. Figure 15 shows the scalability on
join and Figure 16 shows the scalability on search. We can
see that with the increase of the dataset sizes, our method

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

200k 400k 600k 800k 1000k

T
im

e
(s

)

Table Size

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(a) Scalability (DBLP)

 0

 500

 1000

 1500

 2000

 2500

 3000

100k 200k 300k 400k

T
im

e
(s

)

Table Size

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(b) Scalability (IMDB)
Figure 15: Scalability on Joins.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

200k 400k 600k 800k 1000k

T
im

e
(m

s)

Table Size

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(a) Scalability (DBLP)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

100k 200k 300k 400k

T
im

e
(m

s)

Table Size

PrefixTree
Pipeline

Intersection
2Selective

2Concatenate

(b) Scalability (IMDB)
Figure 16: Scalability on Search.

Table 2: Scalability of index size
of records (DBLP) 400k 600k 800k 1M

Index Size 39MB 52MB 81MB 95MB
of records (IMDB) 100k 200k 300k 400k

Index Size 100MB 150MB 230MB 309MB

scaled well and always outperformed the baselines. On sim-
ilarity joins, with the increase of dataset sizes, our method
increased linearly. For example, on DBLP, our method took
10 seconds to join 200K records, and 50 seconds for 1M
records. On similarity search, our method also increased
linearly with the increase of dataset sizes on both of the two
datasets. This is attributed to the high pruning power of
our prefix trees which can prune a large number of dissimi-
lar results and the e�cient verification algorithms which can
e�ciently verify each candidate pair.

We also evaluated the index size, which included two parts:
prefix tree nodes and inverted lists. Since the index size can
be controlled by B for search, here we reported the index size
of similarity joins on the DBLP dataset in Table 2, where
we indexed all the four attributes with ⌧ = 0.8. We can see
the index size scaled well as the dataset sizes increased.

7. CONCLUSION
We have studied similarity search and join on multi-attribute

data. We devised a prefix tree index structure and utilized it
to support similarity search and join. For similarity join, we
proposed a cost model to quantify the prefix tree and proved
that finding the optimal prefix tree is NP-complete and we
devised a greedy algorithm to construct a high-quality pre-
fix tree. We extended the prefix tree to support similar-
ity search and constructed multiple prefix trees to answer
search queries. We devised a hybrid verification algorithm
by finding an appropriate order of predicates and filtering
algorithms to improve the verification performance. Exper-
imental results on two real datasets show that our method
significantly outperformed baseline approaches.
Acknowledgement. This work was partly supported by
the 973 Program of China (2015CB358700 and 2011CB302206),
and the NSFC project (61373024, 61422205, 61472198), Ten-
cent, Huawei, SAP, YETP0105, the “NExT Research Cen-
ter”(WBS: R-252-300-001-490), and the FDCT/106/2012/A3.

8. REFERENCES
[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. In WWW, pages 131–140, 2007.
[2] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator

for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.
[3] N. N. Dalvi, V. Rastogi, A. Dasgupta, A. D. Sarma, and

T. Sarlós. Optimal hashing schemes for entity matching. In
WWW, pages 295–306, 2013.

[4] D. Deng, G. Li, and J. Feng. A pivotal prefix based filtering
algorithm for string similarity search. In SIGMOD Conference,
pages 673–684, 2014.

[5] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string similarity
search with edit-distance constraints. In ICDE, pages 925–936,
2013.

[6] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A
mapreduce-based method for scalable string similarity joins. In
ICDE, pages 340–351, 2014.

[7] M. Garey and D. Johnson. A guide to the theory of
NP-completeness. WH Freeman and Company, 1979.

[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[9] M. Hadjieleftheriou, N. Koudas, and D. Srivastava. Incremental
maintenance of length normalized indexes for approximate
string matching. In SIGMOD Conference, pages 429–440, 2009.

[10] J. M. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. In SIGMOD
Conference, pages 267–276, 1993.

[11] M. A. Hernández and S. J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data Min.
Knowl. Discov., 2(1):9–37, 1998.

[12] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

[13] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD Conference,
pages 802–803, 2006.

[14] C. Li, J. Lu, and Y. Lu. E�cient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[15] C. Li, B. Wang, and X. Yang. Vgram: Improving performance
of approximate queries on string collections using
variable-length grams. In VLDB, pages 303–314, 2007.

[16] G. Li, D. Deng, and J. Feng. A partition-based method for
string similarity joins with edit-distance constraints. ACM
Trans. Database Syst., 38(2):9, 2013.

[17] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[18] A. McCallum, K. Nigam, and L. H. Ungar. E�cient clustering
of high-dimensional data sets with application to reference
matching. In SIGKDD, pages 169–178, 2000.

[19] M. Michelson and C. A. Knoblock. Learning blocking schemes
for record linkage. In AAAI, pages 440–445, 2006.

[20] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. E�cient exact
edit similarity query processing with the asymmetric signature
scheme. In SIGMOD Conference, pages 1033–1044, 2011.

[21] A. D. Sarma, A. Jain, A. Machanavajjhala, and P. Bohannon.
An automatic blocking mechanism for large-scale
de-duplication tasks. In CIKM, pages 1055–1064, 2012.

[22] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds
with one stone: An e�cient hierarchical framework for top-k
and threshold-based string similarity search. In ICDE, 2015.

[23] J. Wang, G. Li, and J. Feng. Trie-join: E�cient trie-based
string similarity joins with edit-distance constraints. PVLDB,
3(1):1219–1230, 2010.

[24] J. Wang, G. Li, and J. Feng. Fast-join: An e�cient method for
fuzzy token matching based string similarity join. In ICDE,
pages 458–469, 2011.

[25] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
SIGMOD Conference, pages 85–96, 2012.

[26] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin:
An e�cient algorithm for edit similarity joins. IEEE Trans.
Knowl. Data Eng., 25(8):1916–1929, 2013.

[27] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In
SIGMOD Conference, pages 219–232, 2009.

[28] C. Xiao, W. Wang, and X. Lin. Ed-join: an e�cient algorithm
for similarity joins with edit distance constraints. PVLDB,
1(1):933–944, 2008.

[29] C. Xiao, W. Wang, X. Lin, and J. X. Yu. E�cient similarity
joins for near duplicate detection. In WWW, pages 131–140,
2008.

[30] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava.
Bed-tree: an all-purpose index structure for string similarity
search based on edit distance. In SIGMOD, pages 915–926,
2010.

APPENDIX
A. PROOF

A.1 Proof of Lemma 1

Lemma 1. The partial tree built by the Optimal-BottomUp
is optimal.

Proof. Given any two tables R and S, a complex simi-
larity operation � with i atomic operations and a specified
attribute order, we want to prove that the partial tree built
by the Optimal-BottomUp is optimal. We prove it by re-
duction. For i = 1, there is only one atomic operation in �.
There are only two prefix trees for this situation, one con-
tains only one root node and the other one is a complete pre-
fix tree. The Optimal-BottomUp selects the optimal one
from these two prefix trees by comparing their costs. Thus
the partial tree built by Optimal-BottomUp is optimal.
Suppose for i = n � 1 the Optimal-BottomUp can find
the optimal prefix tree. For i = n, for any prefix tree with
depth larger than 0, the optimal one must be the one that
all the subtrees rooted at the first level nodes are gotten by
the Optimal-BottomUp method (when i = n � 1). Then
the Optimal-BottomUp will compare the cost of this pre-
fix tree with that of the prefix tree with only one root node
and select the optimal one. As there is only one prefix tree
with depth equal to 0 that is the one only contains a root
node, the Optimal-BottomUp can find the optimal prefix
tree when i = n.

A.2 Proof of Lemma 2
To prove Lemma 2, we first introduce the problem of exact

set cover as follows.

Definition 1 (Exact-Cover). We are given a set U
and a collection C of subsets of U . Each set S

i

2 C contains
exactly 3 elements of U . The Exact-Cover problem asks

if there exist |U|
3

subsets in C which exactly covers the set U
(i.e., each element of U is covered exactly once).

The Exact-Cover problem is a well known NP-Complete
problem [7].

Definition 2. (Optimal Partial Prefix Tree Prob-
lem (Partial)). Given two tables R and S and a complex
similarity operation �, the Partial problem is to find the
optimal prefix tree with the minimum join cost.

Lemma 2. The Partial problem is NP-hard.

Proof. We present a reduction from the Exact-Cover
problem, which is NP-Complete. In our reduction, the two
tables are the same, i.e., R = S. Given an instance (U =
{1, . . . , n}, C = {S

1

, . . . , S

m

}) of Exact-Cover, we con-
struct a Partial instance (�,R) as follows. The com-
plex similarity operation � contains m atomic operations
�

1

,�
2

, . . . ,�
m

and the tableR contains n+1 records r
0

, r

1

, . . . , r

n

.
Each �

i

corresponds to subset S

i

2 C and record r

i

corre-
sponds to element i 2 U for 1  i  n. r

0

is a special
record. For each 3-size subset S

i

= {x, y, z}(1  i  m,
1  x, y, z  n), let pre(ri

x

) = {e
x

}, pre(ri
y

) = {e
y

},
pre(ri

z

) = {e
z

} and pre(ri
w

) = {e} where w 62 S

i

. Note
e

x

, e

y

, e

z

and e are all di↵erent tokens. For the special record
r

0

, let pre(ri
0

) = {e, ei
0

} where e

i

0

is another di↵erent token.
See Table 1 for an example.

R pre(R1) pre(R2) pre(R3) pre(R4)

r

0

{e1
0

, e} {e2
0

, e} {e3
0

, e} {e4
0

, e}
r

1

{e
1

} {e} {e} {e}
r

2

{e
2

} {e
2

} {e} {e}
r

3

{e
3

} {e
3

} {e
3

} {e}
r

4

{e} {e
4

} {e
4

} {e
4

}
r

5

{e} {e} {e
5

} {e
5

}
r

6

{e} {e} {e} {e
6

}

Table 1: The table R (R = S) constructed
from Exact-Cover instance (U = {1, . . . , 6}), C =
{S

1

, . . . , S

4

}, where S

1

= {1, 2, 3}, S

2

= {2, 3, 4}, S

3

=
{3, 4, 5}, S

4

= {4, 5, 6}.

Next we show that the Exact-Cover instance has an
exact cover if and only if there is a partial prefix tree for
the corresponding Partial instance with cost n + n

3

+ 1.
Suppose we can find n

3

subsets T
1

, T

2

, . . . , T

n
3
from C which

can exactly cover U , we build a prefix tree with n

3

+1 levels.
Each internal node (including the root) corresponding to a
chosen subset T

i

and each leaf corresponds to an element.
Level 1 is the root node, which corresponds to T

1

. The
internal node at level i corresponds to T

i

. For each i 2 [1, n

3

],
suppose T

i

= {x, y, z}. Then, we can see T

i

has five child
nodes e, e

x

, e

y

, e

z

, e

i

0

. For ease of exposition, we always
arrange e as the leftmost child of any internal node. Hence,
all nodes on leftmost path (except the root) are labeled with
token e and the rests are leaves. Moreover, each leaf node
corresponds to a record in R (namely, e

x

corresponds to r

x

,
..., ei

0

corresponds to r

0

). We say a leaf corresponding to r

0

a
special leaf. Therefore each leaf is associated with two same
inverted lists (since R = S) with exactly one (the same)
record. Each r

i

for 1  i  n appears exactly once and the
special record r

0

appears n

3

+1 times as special leaves (each
internal node has a special leaf, except that the last level
has two special leaves, see Figure 1). This tree has a cost of
n+ n

3

+ 1.
Now we show the other direction: If there is a prefix tree

with cost n + n

3

+ 1, the corresponding Exact-Cover in-
stance has an exact cover. Consider an arbitrary prefix tree.
Suppose the set of internal nodes corresponds to a collection
Q of subsets of C. Suppose k elements are covered by Q. We
can see the cost of the tree is |Q| (each internal node has a
special leaf r

0

) +k (each non-special leaf)+ (n� k+1)2 (all
uncovered elements and r

0

are all in the leftmost leaf). We
know that |Q| � k/3. There are three cases:

1. If k  n�1, the above quantity is larger than 4n/3+1,
which does not satisfy the assumption.

2. If k = n and |Q| > n/3, the above quantity is larger
than 4n/3 + 1, which does not satisfy the assumption.

3. If k = n and |Q| = n/3, the above quantity is equal to
4n/3 + 1 and the n/3 subsets in Q is an exact cover of
U .

This concludes that Partial is NP-hard.

root

e

e e1 e2 e3 e10

e4 e5 e6 e40

r0 r4 r5 r6 r0

r1 r2 r3 r0

Figure 1: The optimal prefix tree built based on an
exact cover T

1

= S

1

and T

2

= S

4

of the Exact-Cover
instance in Table 1.

B. OTHER SIMILARITY FUNCTIONS
We give the definitions of COS and DICE.

• Cosine similarity: COS(ri
p

, s

j

q

) =
|rip\s

j
q |q

|rip|·|s
j
q |
.

• Dice similarity: DICE(ri
p

, s

j

q

) =
2|rip\s

j
q |

|rip|+|sjq |
.

We compute the threshold o for COS and DICE.

• If COS(r, s) � ⌧ then o = d⌧2|r|e.
• If DICE(r, s) � ⌧ then o = d ⌧

2�⌧

|r|e.

C. BASELINE APPROACHES
Given an atomic similarity operation Ri ⇠ Sj , the prefix

filter identifies the pairs of records whose prefixes on the two
attributes overlap as the candidates. To e�ciently compute
the candidate, we can build an inverted index on top of the
tokens. Each token is associated with an inverted list of
records whose prefixes on the attribute contain the token.
Then we can utilize the inverted lists to identify candidates.

Baseline Approaches. We extend prefix filtering to sup-
port complex similarity operations and give the following
baselines.

(1) Intersection-based Method. For each predicate, we
use existing algorithms to identify the similar answers on
this predicate, and then intersect them to compute the final
answers. This method has two weaknesses. First, it is rather
expensive to compute the similar results for every predicate,
especially there are many predicates. Second, there may
be large numbers of candidates for each predicate and it is
time- and space-consuming to maintain and intersect the
intermediate results.

(2) Pipeline-based Method. It first computes the re-
sults for a predicate and then verifies these candidates using
other similarity predicates. Since the candidates are record
pairs, we cannot utilize existing indexes to do further prun-
ing and have to verify them by computing their similarities
on other predicates. This method has the following disad-
vantages. First, a single attribute has low pruning power
and it will generate a large number of candidates. Second,
it is important to determine an appropriate order of predi-
cates as di↵erent orders have di↵erent pruning power. It is
challenging to select the best order.
(3) 2Concatenate Method. It concatenates two selective
attributes as a single attribute. However it is nontrivial to

root

e21

e32e31

s2
s3

LS
1

r3

LR
1

s1

LS
4

r2
r4
r5

LR
4

e22 e25

s1

LS
7LR

7

r2
r4
r5

e23

s3

LS
3

r3

LR
3

e22 e23 e24 e26

s2

LS
2 LR

6

r1

LR
8

r1r2
r4
r5

LR
5 LS

5 LS
6LR

2 LS
8

{e21, e23} {e22, e25}

s2
s3

LS
9

r3

LR
9

s1

LS
10LR

10

r2
r4
r5

Figure 2: Merge leaves in Prefix Tree to further
reduce cost. (Tables R and S from Figure 2)

concatenate two attributes, because di↵erent attributes may
use di↵erent similarity functions, e.g., edit distance and Jac-
card. To address this issue, we first transform them to the
overlap similarity. Then given the two most selective at-
tributes, we calculate the overlap thresholds o

1 and o

2 for
the two attributes. Next we concatenate tokens of the two
attributes, use o = o

1+o

2 as the new overlap threshold, and
generate the signatures for the concatenated attribute. This
method would generate large numbers of candidates. Actu-
ally the candidate set obtained by the concatenate-based
method is a super set of the candidate set obtained by the
intersection-based method.3

(4) 2Selective Method. Given a simlarity operation, it
first selectes two most selective attributes, identifies the can-
didates of the two attributes, and then intersects them.

(5) Extending The Roll-up Algorithm [21] to Gener-
ate CBlockTree. We extended the roll up algorithm [21]
to construct a CBlockTree so as to reduce the join cost of
our prefix tree. Figure 2 illustrates a CBlockTree. It first
builds a complete prefix tree, then enumerates every pair
of leaf nodes and merges any two leaves with the join cost
on the merged node smaller than the join cost on the two
individual leaves. Although this method can reduce the can-
didate size, it has a large overhead to enumerate every pair
of leaves. Since a prefix has many leaves, checking every pair
of leaves is rather expensive. Moreover, our problem focuses
on improving the performance, and thus this method is not
e�cient to address our problem.

3Consider a record with two attributes, {a, b, c, d} and
{↵,�, �, �}, where the token orders are a < b < c < d and
↵ < � < � < � respectively. Suppose o

1

= 2 and o

2

= 1.
The prefixes of the two attributes are {a, b} and {↵}. The
intersection-based method takes (L(a)[L(b))\L(↵) as can-
didates, where L(a) is the inverted list of a. The pipeline-
based method takes L(a) [L(b) or L(↵) as candidates.
The concatenated attribute is {a, b, c, d,↵,�, �, �}. Then the
prefix filtering selects 3 signatures from {a, b, c, d,↵,�, �, �}
in order. Based on the order, there are 4 possible cases:
{a, b, c}, {a, b,↵}, {a,↵,�}, {↵,�, �}. The candidates
are respectively L(a) [L(b) [L(c), L(a) [L(b) [L(↵),
L(a)[L(↵)[L(�), L(↵)[L(�)[L(�). In any case, the result
is a super set of the candidates obtained by the intersection-
based method. In addition, in most cases, the concatenate-
based method is even worse than the pipeline-based method.

D. COMPLEXITY

D.1 Time Complexity of Constructing The Op-
timal Prefix Tree

Time Complexity: Given two tables R and S and a com-
plex similarity operation � = Ri1 ⇠ Sj1 ^ Ri2 ⇠ Sj2 ^
· · · ^Rik ⇠ Sjk . The Optimal-BottomUp builds the op-
timal prefix tree by two steps. The first step of building

the complete prefix tree has a time complexity of O
⇣
(|R|+

|S|) ˆ|pre|
k

⌘
, where ˆ|pre| is the maximal prefix length of an

attribute. (It is worth noting that ˆ|pre| is not large, which
is not larger than the size of the corresponding token set).
The second step of generating the optimal tree has a time

complexity of O
⇣
k(|R| + |S|) ˆ|pre|

k

⌘
), where k is the num-

ber of predicates in the complex similarity operation. This

is because there are at most (|R|+ |S|) ˆ|pre|
k

records in in-
verted lists of all leaves, and each record will be checked at
most k times to build the optimal tree.

D.2 Time Complexity of Constructing The Greedy
Prefix Tree

Time Complexity: In the worst case, the greedy prefix
tree is exactly the same as the complete prefix tree, and
thus the time complexity of building the greedy prefix tree

is O
⇣
(|R| + |S|) ˆ|pre|

k

⌘
. In practice, many internal nodes

will not split and the greedy algorithm can be very e�cient.

D.3 Space Complexity of Prefix Tree
Space Complexity: In the worst case, the optimal prefix
tree is exactly the same as the complete prefix tree. The
size of the prefix tree consists two parts. The first part is
the number of records on inverted lists of leaf nodes, i.e.,

O
⇣
(|R| + |S|) ˆ|pre|

k

⌘
, where ˆ|pre| is the maximal prefix

length of an attribute. The second part is the number of tree

nodes, which is O
⇣
|pre(R)|k + |pre(S)|k

⌘
, where |pre(R)|

is the number of unique prefix tokens in an attribute. Thus

the total space cost is O
⇣
(|R| + |S|) ˆ|pre|

k

+ |pre(R)|k +

|pre(S)|k
⌘
. In practice, the size of the optimal prefix tree

is much smaller than the size of the complete prefix tree,
because many internal nodes will not split.

E. OPTIMALITY OF THE GREEDY VERI-
FICATION ALGORITHM

For simplicity, we use c

i

to denote ⇥(h�
i

,�
i

i) and p

i

to
denote P(h�

i

,�
i

i). Our goal is to find an order ⇡ such that
Cost(⇡) =

P
i

c

⇡(i)

·
Q

i�1

j=1

(1�p

⇡(j)

) is minimized. We need
to prove the optimal order is the increasing order of c

i

/p

i

.
We prove by contradiction. Suppose ⇡ is an optimal order
but c

⇡(k)

/p

⇡(k)

> c

⇡(k+1)

/p

⇡(k+1)

for some k. Consider the
order ⇡

0 obtained by swapping ⇡(k) and ⇡(k + 1). We can
see that

Cost(⇡)�Cost(⇡0) =
k�1Y

j=1

(1� p

⇡(j)

)⇥

�
c

⇡(k)

+ c

⇡(k+1)

(1� p

k

)� (c
⇡(k+1)

+ c

⇡(k)

· (1� p

⇡(k+1)

)
�

=
k�1Y

j=1

(1� p

⇡(j)

)
�
c

⇡(k)

p

⇡(k+1)

� c

⇡(k+1)

p

⇡(k)

�
> 0.

This contradicts that ⇡ is the optimal order. Thus our
greedy verification algorithm is optimal.

	Introduction
	Preliminaries
	Problem Definition
	Prefix Filter
	Related Works

	Similarity Join with Prefix tree
	Prefix Tree
	Optimal Prefix Tree
	Join Cost Model with Prefix Tree
	Optimal Prefix Tree with A Predicate Order
	Optimal Prefix Tree without A Predicate Order

	Similarity Search with Prefix Tree
	Overview
	Prefix-Tree-Based Search Algorithms
	Multiple Prefix-Trees Construction

	Hybrid Verification
	Hybrid-based Verification Framework
	Verification Cost and Pruning Probability

	Experiment
	Evaluation on Prefix Trees for Join
	Evaluation on Prefix Trees on Search
	Evaluation on Verification Techniques
	Comparison with Baselines
	Comparison on Similarity Joins
	Comparison on Similarity Search

	Scalability

	Conclusion
	References
	Proof
	Proof of Lemma 1
	Proof of Lemma 2

	Other Similarity Functions
	Baseline Approaches
	Complexity
	Time Complexity of Constructing The Optimal Prefix Tree
	Time Complexity of Constructing The Greedy Prefix Tree
	Space Complexity of Prefix Tree

	Optimality of the Greedy Verification Algorithm

