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ABSTRACT
A crowdsourcing system, such as the Amazon Mechanical Turk
(AMT), provides a platform for a large number of questions to be
answered by Internet workers. Such systems have been shown to be
useful to solve problems that are difficult for computers, including
entity resolution, sentiment analysis, and image recognition. In this
paper, we investigate the online task assignment problem: Given a
pool of n questions, which of the k questions should be assigned to
a worker? A poor assignment may not only waste time and money,
but may also hurt the quality of a crowdsourcing application that
depends on the workers’ answers. We propose to consider qual-
ity measures (also known as evaluation metrics) that are relevant
to an application during the task assignment process. Particularly,
we explore how Accuracy and F-score, two widely-used evalua-
tion metrics for crowdsourcing applications, can facilitate task as-
signment. Since these two metrics assume that the ground truth
of a question is known, we study their variants that make use of
the probability distributions derived from workers’ answers. We
further investigate online assignment strategies, which enables op-
timal task assignments. Since these algorithms are expensive, we
propose solutions that attain high quality in linear time. We develop
a system called the Quality-Aware Task Assignment System for
Crowdsourcing Applications (QASCA) on top of AMT. We eval-
uate our approaches on five real crowdsourcing applications. We
find that QASCA is efficient, and attains better result quality (of
more than 8% improvement) compared with existing methods.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscellaneous

Keywords
Crowdsourcing; Quality Control; Online Task Assignment

1. INTRODUCTION
Crowdsourcing solutions have been proposed to solve problems

that are often considered to be hard for computers (e.g., entity reso-
lution [56,60] and sentiment analysis [30]). Consider the entity res-
olution problem, where objects in a database referring to the same
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real-world entity are to be identified. For instance, in a product re-
view database, it is useful to collect all the users’ comments about
a particular product, which may be named differently by various
users (e.g., iPad Two and iPad 2). To perform this task, crowd-
sourcing techniques have been developed to generate human un-
derstandable questions (e.g., Are iPad Two and iPad 2 the same
or not?) for the database owner (or requester) [56]. These ques-
tions, packed into Human Intelligent Tasks (HITs), are posted on a
crowdsourcing platform (e.g., Amazon Mechanical Turk (AMT)).
Internet users (or workers) are then invited to answer these ques-
tions, based on which the final result is returned to the requester.

In AMT, every HIT contains a certain number (k) of questions.
Because a worker may give an incorrect answer, a HIT is assigned
to a number (z) of workers. The result of each question is then de-
rived based on voting strategies (e.g., Majority Vote). Upon com-
pletion of a HIT, the requester may pay a certain amount of money
to the worker. A fundamental issue, which we call task assign-
ment, is: Given a pool of n questions, which of the k questions
should be selected and put to the HIT for the coming worker? In
AMT, this issue is usually addressed in an offline manner: the ques-
tions assigned to all HITs were decided before they are shown to
the workers. As pointed out in [3,30], the main drawback of this
approach is that the difficulty level of a question is not considered:
for an “easy” question, its final result can be determined even if
the current number of answers received from workers is less than
z, whereas a more difficult or controversial question may require
answers from more than z workers. Notice that a requester may
only have a limited amount of budget to pay the workers. It is thus
important to decide the question(s) to be included in a HIT, in or-
der to obtain the best answers under the limited budget. Recent
solutions, such as CDAS [30] and AskIt! [3], address this problem
through online assignment strategies – the HIT is generated dynam-
ically when requested by a worker, i.e., the k questions are chosen
for the HIT “on the fly”. The statistical confidence of the answers
obtained so far for each question is tracked, and questions whose
answers are the least confident are put to the HIT. Thus, the num-
ber of times each question is asked can be different. These methods
were shown to perform better than the AMT’s approach.

However, existing online assignment strategies overlook an im-
portant factor – the applications that use the crowdsourced data.
Depending on the application semantics, the metric used to gauge
the quality of crowdsourced data can be different. In Twitter Sen-
timent Analysis, for instance, workers are invited to give their sen-
timents (e.g., “positive”, “neutral” or “negative”) for each crawled
tweet [30]. The Accuracy metric, which is the fraction of returned
tweets correctly classified, is often used to measure the quality of
the sentiment labels [18,22,30,44]. As for entity resolution [56,60],
which asks a worker to judge whether a pair of objects is “equal”
or “non-equal”, F-score [25,31,32,56,59] is often adopted to mea-
sure the quality of the entity-resolution results. As our experiments
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show, considering evaluation metrics in the task assignment process
can significantly improve the quality of the crowdsourced results.

Our solutions. In this paper, we propose a novel online task assign-
ment framework, which takes application-driven evaluation metrics
into account. We investigate two popular evaluation metrics, i.e.,
Accuracy and F-score, that are widely used by various crowdsourc-
ing applications [18,22,30,44,56,59]. Conceptually, our algorithm
enumerates all sets of k questions. For every set of k questions, our
solution estimates the improvement in the quality of the answers, if
these questions are really sent to the coming worker. The set of k
questions that maximizes the quality improvement will constitute
the new HIT. To realize this, we have to address two key issues:

• Lack of ground truth. Evaluation metrics, such as Accuracy and
F-score, assume that each question’s ground truth (or true answer)
is known. However, during the task assignment process, it may not
be possible to know the ground truth of a question. Thus, existing
evaluation metrics are not readily used to solve the task assignment
problem. We represent the possible true answer of a question by
the distribution matrix, which captures the probability distributions
of true answers. We study how to populate this matrix with two
models, namely Worker Probability (WP) [16,26,30,62] and Con-
fusion Matrix (CM) [1,22,61] that are commonly used to describe
the performance of workers. We further incorporate the distribution
matrix into Accuracy and F-score, resulting correspondingly in the
proposed two functions: Accuracy∗ and F-score∗.

• Expensive evaluation. Finding the best solution for the task as-
signment problem can be extremely expensive. Given a pool of
n questions, there are

(
n
k

)
sets of candidate questions for a HIT.

Moreover, due to the incorporation of the distribution matrix, mea-
suring the quality of the distribution matrix under Accuracy∗ or
F-score∗ can be expensive. We explore efficient algorithms for
quality measurement. We also propose two respective linear-time
algorithms to find the best set of questions for assignment.

We have developed a system called QASCA. As shown in Fig-
ure 1, QASCA is run on top of a crowdsourcing platform (e.g.,
AMT). The App Manager stores the n questions and other infor-
mation (e.g., budget) needed by the strategies. The Task Assign-
ment runs the strategies and decides the k questions to be included
in the HIT. The Web Server then sends the HIT to the workers. The
workers’ answers are then stored in the Database through the Web
Server, and the derived results are sent back to the requester. The
details of QASCA and how an entity resolution application can use
QASCA are described in Appendix A.

To summarize, we make the following contributions:
(1) We propose a novel task assignment framework by incorporat-
ing evaluation metrics into assignment strategies, and formalize the
online task assignment problem under the proposed framework;
(2) We generalize the definition of evaluation metrics to be able
to quantify the result quality w.r.t a distribution matrix, and devise

efficient algorithms to identify the optimal result of each question
that can maximize the overall quality;
(3) We propose two respective linear online assignment algorithms
that can efficiently select the best k questions for a coming worker;
(4) We develop a system called QASCA1, which enables a popu-
lar crowdsourcing platform (i.e., AMT) to support our task assign-
ment framework. We evaluate the performance of QASCA on five
real applications. Experimental results indicate that QASCA can
achieve much better (of more than 8% improvement) result quality
compared with five state-of-the-art systems.

The remainder of this paper is organized as follows. Section 2
defines the task assignment problem. We define Accuracy∗ and
F-score∗, and explain how to evaluate them in Section 3. Efficient
online assignment algorithms are devised in Section 4. Section 5
addresses how to compute distribution matrices. We present our ex-
perimental results in Section 6. Section 7 discusses related works.
Finally, we present conclusions and future work in Section 8.

2. THE TASK ASSIGNMENT PROBLEM
We first discuss the question model in Section 2.1, and then for-

mally define the task assignment problem in Section 2.2. Finally
we explain the workflow of QASCA in Section 2.3.

2.1 Question Model
Let S = {q1, q2, . . . , qn} denote the set of questions pro-

vided by a requester and each question has the same ` possible
labels (or answers), denoted by {L1, L2, . . . , L`}. For exam-
ple, the two labels for all generated questions in an entity reso-
lution application [59] are {L1=“equal”, L2=“non-equal”}. Let
D = {D1, D2, . . . , Dn} denote the answer set for all questions.
Each Di contains a set of tuples where each tuple (w, j) denotes
that question qi has been answered by worker w with label Lj . For
example, D2 = {(w1, 1), (w3, 2)} means that question q2 is an-
swered twice: worker w1 has answered question q2 with label L1

and worker w3 has answered question q2 with label L2.
When worker w completes a HIT, for each question qi (1 ≤

i ≤ n), we can compute the probability distribution of question
qi’s true label. The probability distributions of all questions form
the question model, called current distribution matrix, denoted by
Qc, which is an n × ` matrix. The i-th (1 ≤ i ≤ n) row Qci =
[ Qci,1, Q

c
i,2, . . . , Q

c
i,` ] represents the probability distribution for

question qi’s true label, and each cell Qci,j (1 ≤ i ≤ n, 1 ≤ j ≤ `)
denotes the probability that question qi’s true label is Lj . We will
discuss how to compute Qc in Section 5.1.
Remarks: For ease of presentation, we assume that (1) the labels
are pre-defined, and are the same for all questions; (2) each ques-
tion’s ground truth is a single label. These assumptions can be re-
laxed. First, if labels are not pre-defined, [50] addresses how to
enumerate possible labels for questions. Second, if each question
has multiple true labels, we can follow [40] to decompose each
question into ` filter questions, where each filter question is to de-
cide whether the original question satisfies a corresponding label or
not. To handle a domain with continuous values, we can adopt the
bucketing method [29], which discretizes the domain into different
buckets, where each bucket indicates a label.

2.2 Task Assignment
Note that a worker may request multiple HITs, so we keep track

of the history of previously assigned questions. Let Sw denote
the candidate set of questions for worker w, i.e., the set of ques-
tions that have not been assigned to worker w (each worker has her
unique Sw). QASCA will not assign duplicated questions to the
same worker. When worker w requests a HIT, it selects k ques-
tions in Sw and assigns them to her. To select questions for worker
1http://i.cs.hku.hk/∼ydzheng2/QASCA
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Figure 2: Workflow of QASCA.

w, QASCA first estimates the probability distribution of each ques-
tion qi’s (qi ∈ Sw) true label if workerw answers it. The estimated
probability distributions of all questions in Sw form an n × ` ma-
trix Qw, called estimated distribution matrix for worker w. The
i-th (qi ∈ Sw) row Qwi = [ Qwi,1, Q

w
i,2, . . . , Q

w
i,` ] represents the

estimated probability distribution for question qi’s true label if it is
answered by worker w. Each cell Qwi,j (qi ∈ Sw, 1 ≤ j ≤ `) de-
notes the estimated probability that question qi’s true label is Lj if
it is answered by worker w. Note that row i (orQwi ) is empty when
qi /∈ Sw. We will discuss how to compute Qw in Section 5.3.

Let the vector X = [x1, x2, . . . , xn] denote an assignment of
HIT, where each element xi = 1 (0) indicates that the question qi
will (not) be chosen to assign for the coming worker. When worker
w comes, based on Sw, we define X as a feasible assignment if it
satisfies (1)

∑n
i=1 xi = k, and (2) if xi = 1, then qi ∈ Sw. There

are k questions in a HIT and we can only assign questions in Sw to
worker w. Thus the number of feasible X is

(|Sw|
k

)
≤
(
n
k

)
.

Given Qc, Qw, and a feasible X , we construct a matrix QX

called assignment distribution matrix for X. The i-th row, QXi , is
the (estimated) probability distribution of question qi if worker w
answers all the assigned questions in X . We can construct QX

using Qc and Qw: for an unassigned question qi in X (or xi = 0),
its distribution (QXi ) remains to be Qci ; for an assigned question qi
in X (or xi = 1), its distribution (QXi ) is estimated to be Qwi , thus

QXi =

{
Qci if xi = 0,

Qwi if xi = 1.
(1)

Let F (·) be an evaluation metric, which is used to evaluate the
quality of a distribution matrix. When worker w requests a HIT,
there are

(|Sw|
k

)
feasible X , and the problem is to choose the opti-

mal feasible X∗ that maximizes F (QX). We formally define the
(online) task assignment problem in Definition 1.

DEFINITION 1. When a worker w requests a HIT, given the
current distribution matrix (Qc), the estimated distribution matrix
for the worker w (Qw), and the function F (·), the problem of task
assignment for the worker w is to find the optimal feasible assign-
ment vector X∗ such that X∗ = argmaxX F (QX).

2.3 Workflow of QASCA
To deploy an application, a requester needs to set n questions

with ` labels and she should also indicate the number of questions
in each HIT (k), the amount of money paid for each HIT (b), the
total invested budget (B) and the evaluation metric. In [20,23], the
issues of setting appropriate values of k and b are discussed. The
evaluation metric (e.g., Accuracy and F-score), which depends on
the application semantics, will be addressed in Section 3.

There are two events from workers that QASCA should process:
the event when a worker completes a HIT (called “HIT comple-

tion”) and the event when a worker requests a HIT (called “HIT
request”). Based on the workflow in Figure 2, we give an example
(Example 1) to show how QASCA processes these two events.

EXAMPLE 1. The solid (red) lines and the dotted (blue) lines in
Figure 2 represent how QASCA processes a HIT completion event
and a HIT request event, respectively:
(1) when a worker w completes a HIT (HIT completion process),
QASCA does several updates in the database: it first updates the
answer set D 2 (step A), and then based on the new D, it updates
some parameters such as workers’ qualities (step B). Finally it uses
these new parameters to update Qc (step C);
(2) when a worker w requests a HIT (HIT request process), sup-
pose S = {q1, q2, q3, q4, q5, q6}, and each HIT contains k = 2
questions. QASCA first extracts Qc (step 1) and parameters from
database to compute Qw for worker w (step 2). Assume worker w
has answered q3 and q5 previously, now the candidate set of ques-
tions for her is Sw = {q1, q2, q4, q6}. Since |Sw| = 4 and k = 2,
there are

(
4
2

)
= 6 feasible assignments for worker w (step 3). Con-

sider the first feasible assignment X1 = [1, 1, 0, 0, 0, 0], which as-
signs q1 and q2 to worker w. We construct QX1 by Equation 1, so
QX1
i = Qwi for i = 1, 2 and QX1

i = Qci for i = 3, 4, 5, 6. Simi-
larly, we can construct QX2 , QX3 , QX4 , QX5 , QX6 for other fea-
sible assignments. Based on the chosen function F (·) (Accuracy or
F-score), assume that F (QXi) (1 ≤ i ≤ 6) is maximized on QX6

(step 4) and sinceX6 = [0, 0, 0, 1, 0, 1], QASCA batches questions
{q4, q6} in a HIT and assigns it to worker w (step 5).

To help readers better understand our paper, we summarize nota-
tions in Appendix B. There are three challenges in Figure 2. Firstly,
how can we define F (·) for different evaluation metrics; secondly,
given Qc, Qw and F (·), how can we efficiently compute the opti-
mal assignment in Definition 1 (step 4); thirdly, how can we com-
pute Qc when a HIT is completed (step C) and estimate Qw for
worker w when a HIT is requested (step 2). We respectively ad-
dress these challenges in the following three sections.

3. EVALUATING QUALITY METRICS
In this section, we study the two popular evaluation metrics

(Accuracy and F-score) in Sections 3.1 and 3.2, respectively. For
each evaluation metric, we first introduce its original definition as-
suming the known ground truth, then we study its variants by in-
corporating a distribution matrix Q. Finally we define F (·) by dis-
cussing how to evaluate the quality ofQw.r.t. an evaluation metric.

We first clarify some notations. We denote the result vector by
R = [r1, r2, . . . , rn], where 1 ≤ ri ≤ ` and Lri is the returned

2Note that the answer set D is continuously updated. That is, in the HIT request
process, the current D is used to decide which questions should be assigned; while in
the HIT completion process, QASCA updatesD based on worker’s answers.



label (or result) for qi. We also denote the ground truth vector by
T = [t1, t2, . . . , tn], where 1 ≤ ti ≤ ` and Lti is the ground
truth label for qi. The formal definition of function Accuracy or
F-score is F (T,R), which evaluates the quality of R based on
known T . In task assignment scenarios, the ground truth vector
T is unknown, but we can obtain a distribution matrix Q based
on the crowd’s answers. Thus, we generalize the evaluation met-
rics to be able to quantify the quality of result vector R (called
“result quality”) w.r.t the distribution matrix Q, i.e., F ∗(Q,R).
Since given a distribution matrix Q, the requesters want the best
results R∗ = arg maxR F ∗(Q,R) to be returned. So in order to
evaluate the quality of Q, we consider the choice of R∗ and use
the best quality that Q can reach to evaluate the quality of Q, i.e.,
F (Q) = maxR F ∗(Q,R) = F ∗(Q,R∗).

3.1 Accuracy
Accuracy is an evaluation metric used by many crowdsourcing

applications [8,21,22,30,44]. It aims to measure the overall clas-
sification quality among all labels. For example, in a sentiment
analysis application, if a requester focuses on the overall quality
among all three labels (i.e., “positive”, “neutral” and “negative”),
Accuracy can be used as the evaluation metric. It is defined as the
fraction of returned labels that are correct. Let 1{·} denote an indi-
cator function which returns 1 if its argument is true; 0, otherwise.
For example, 1{5=2} = 0 and 1{5=5} = 1. Then we derive

Accuracy(T,R) =

∑n
i=1 1{ti=ri}

n
. (2)

Consider an example where n = 4, ` = 3, T = [2, 1, 3, 2] and
R = [2, 1, 3, 1]. Since it correctly identifies the labels of the 1st,
2nd, and 3rd questions, we have Accuracy(T,R) = 3

4
= 0.75.

3.1.1 Accuracy*
As shown above, the definition of Accuracy(T,R) requires to

know the ground truth T . In practice, however, we only have the
distribution matrix Q, which records the probability distribution of
each question’s true label. Therefore, we use the expected accuracy
to measure the result quality. Since Qi (the i-th row of Q) repre-
sents the probability distribution of question qi’s true label, then we
have P (ti = j) = Qi,j and E[1{ti=j}] = P (ti = j) · 1 +P (ti 6=
j) · 0 = Qi,j . Thus Accuracy∗(Q,R) is defined as

Accuracy∗(Q,R) = E[ Accuracy(T,R) ] =

∑n
i=1Qi,ri
n

. (3)

Specifically, Accuracy∗(Q,R) represents the expected number
of correctly answered questions out of all questions. For example,
consider the distribution matrix Qc in Figure 2. Given a result vec-
tor of R = [1, 2, 2, 1, 1, 1], its accuracy (w.r.t Qc) is defined as
Accuracy∗(Qc, R) = 0.8+0.4+0.75+0.5+0.9+0.3

6
= 60.83%.

3.1.2 Identify the Optimal Result for Accuracy*
In order to measure the quality of a distribution matrix Q, we

need to determine the optimal result vector R∗ that maximizes
Accuracy∗(Q,R), i.e., R∗ = argmaxR Accuracy∗(Q,R). To
compute R∗, an intuitive idea is to return the most likely la-
bel for each question, i.e., R∗ = [r∗1 , r

∗
2 , . . . , r

∗
n] where r∗i =

argmaxj Qi,j . We next prove that the idea is correct in Theorem 1.

THEOREM 1. For Accuracy∗, the optimal result r∗i (1 ≤ i ≤
n) of a question qi is the label with the highest probability, i.e.,
r∗i = arg maxj Qi,j .

Due to the space limits, we move all the proofs in our paper to the
Appendix. Based on Theorem 1, we know that for Accuracy∗, the
optimal result of a question qi only depends on its own distribution
Qi. TakeQc in Figure 2 as an example. Consider the first question.
Since Qc1,1 (0.8) > Qc1,2 (0.2), the optimal result for q1 is r∗1 =

1. Similarly we can derive the optimal result vector R∗ for all
questions, i.e., R∗ = [1, 1, 2, 1, 1, 2] (or [1, 1, 2, 2, 1, 2] as Qc4,1 =
Qc4,2). Thus the quality ofQc for the metric Accuracy, is measured
as F (Qc) = Accuracy∗(Qc, R∗) = 70.83%

For Accuracy, the definition (Equation 3) and the optimal result
selection (Theorem 1) are not very difficult. But for F-score, these
problems become more challenging.

3.2 F-score
In applications such as text classification [7], sentiment analy-

sis [31,32], entity resolution [56,59,60] and fact finding [42,63], a
requester may only be interested in a particular label (which we
call target label). In this situation, a question can be simplified
as a two-label question (i.e., ` = 2), where the two labels are the
“target label” and “non-target label”, denoted by L1 and L2, re-
spectively. For example, in an sentiment analysis application, if the
requester wants to pick out the “positive” sentiment tweets with a
high confidence, then each question is to identify whether a sen-
tence’s sentiment is L1=“positive” or L2=“non-positive”.

The F-score, introduced in [51], can be used to capture the qual-
ity of answers to the two-label questions above. This measure
(F-score) is formally defined as the weighted harmonic mean of
two commonly known metrics, namely Precision and Recall:

F-score =
1

α · 1
Precision + (1− α) · 1

Recall

, (4)

where
(1) Precision is the faction of questions with returned results L1

that are actually correct, i.e.,

Precision(T,R) =

∑n
i=1 1{ti=1} · 1{ri=1}∑n

i=1 1{ri=1}
; (5)

(2) Recall is the fraction of questions with ground truth L1 that are
actually returned with results L1, i.e.,

Recall(T,R) =

∑n
i=1 1{ti=1} · 1{ri=1}∑n

i=1 1{ti=1}
; (6)

(3) α ∈ (0, 1) is a parameter that controls the degree of emphasis:
α ∈ ( 1

2
, 1) emphasizes Precision; α ∈ (0, 1

2
) emphasizes Recall;

and we call the balanced F-score if α = 1
2

.
By plugging Equations 5 and 6 into Equation 4, we obtain:

F-score(T,R, α) =
∑n
i=1 1{ti=1} · 1{ri=1}∑n

i=1[ α · 1{ri=1} + (1− α) · 1{ti=1}]
. (7)

For the parameter α, if a requester wants to select “positive” sen-
timent sentences with a high confidence, she can set α to a large
value (e.g., 0.75) which emphasizes Precision more. On the other
hand, if a company manager wants to collect as many “positive”
comments for their products as possible, she can give more atten-
tion to Recall by setting α to a lower value (e.g., 0.25).

3.2.1 Challenges
As the numerator and denominator of F-score(T,R, α) both

have the random variable 1{ti=1}, its expectation cannot be com-
puted as easily as for Accuracy (Equation 3), so we resort to an-
other way of computing its expectation. We denote τ as the set of
all possible ground truth vectors, i.e., τ = {1, 2}n and |τ | = 2n.
Given Q, the probability that T ′ = [t′1, t

′
2, . . . , t

′
n] ∈ τ is the

ground truth vector is
∏n
i=1Qi,t′i . Then, we have

E[ F-score(T,R, α) ] =
∑
T ′∈τ

F-score(T ′, R, α) ·
n∏
i=1

Qi,t′i . (8)

There are two challenges related to this equation:
One is how to efficiently compute or estimate Equation 8. It is

computationally expensive to enumerate all 2n possible T ′. But



given α and R, for different T ′ ∈ τ , the numerator and denom-
inator of F-score(T ′, R, α) can only take at most n + 1 possible
values respectively, thus F-score(T ′, R, α) can only have at most
(n+ 1)2 possible values. Based on this observation, for a given Q
and α, Equation 8 can be accurately calculated inO(n3) time [24].
Nevertheless, this complexity is still very high to a task assignment
system as it is a key step in task assignment. Thus it is better to find
an accurate approximation that is efficient to compute.

Another challenge is that if we directly apply Equation 8 to de-
rive the optimal result for each question, we observe two interesting
facts that are different from Accuracy:

Observation 1: Returning the label with the highest probability
in each question may not be optimal (even for α = 0.5);

Observation 2: Deriving the optimal result of a question qi does
not only depend on the question’s distribution (or Qi) itself.

In order to verify these two observations, we next give two
counter-examples in Example 2.

EXAMPLE 2. Consider α = 0.5 and Q =
[
0.35 0.65
0.55 0.45

]
. If

we return the label with the highest probability for each question,
then we obtain a result vector R̃ = [2, 1] and the corresponding
E[ F-score(T, R̃, α) ] = 1

0.5·1+0.5·2 · 0.35 · 0.55 + 0 · 0.35 · 0.45 +
1

0.5·1+0.5·1 · 0.65 · 0.55 + 0 · 0.65 · 0.45 = 48.58% (Equation 8).
However, by enumerating all possible R ∈ {1, 2}2, we can derive
the optimal R∗ = [1, 1] and E[ F-score(T,R∗, α) ] = 53.58%.
This example verifies our first observation.

Consider α̂ = 0.5 and Q̂ =
[
0.35 0.65
0.9 0.1

]
. Using the same

method as above, we can obtain the optimal R̂∗ = [2, 1]. Com-
pared with the above example, we can see that for the same
α = α̂ = 0.5 in F-score, even if Q1 and Q̂1 are the same (i.e.,
[0.35, 0.65]), the computed r∗1 = 1 and r̂∗1 = 2 are different. This
example shows that the optimal result for each question is not only
dependent on the question’s distribution itself.

To address the above two challenges, we first give an approxi-
mation for E[ F-score(T,R, α) ] in Section 3.2.2 and then discuss
how to computeR∗ for the approximated function in Section 3.2.3.
3.2.2 F-score*

Following Equation 7, we approximate E[ F-score(T,R, α) ]

as
E[

∑n
i=1 1{ti=1}·1{ri=1} ]

E[
∑n
i=1 [ α·1{ri=1}+(1−α)·1{ti=1}] ]

to boost efficiency, which
is the ratio of the expectation of numerator and denominator of
F-score(T,R, α). By plugging Q inside, we can formally define
F-score∗(Q,R, α) as:

F-score∗(Q,R, α) =

∑n
i=1Qi,1 · 1{ri=1}∑n

i=1[ α · 1{ri=1} + (1− α) ·Qi,1 ]
. (9)

For example, consider the values of α̂, Q̂ and R̂∗ in Example 2.
Based on Equations 8 and 9, we can obtain E[ F-score(T, R̂∗, α̂) ] =

79.5% and F-score∗(Q̂, R̂∗, α̂) = 0.9
0.5·1+0.5·(0.35+0.9)

= 80%, re-
spectively. The error in the example is 0.5%.

Approximation Error. Let A and B denote two random vari-
ables. The same approximation (E

[
A
B

]
≈ E[A]

E[B]
) has also been

used by other works [4,28,39,45] for efficiency’s sake. Further-
more, [45] gives a general formula by expanding Taylor series:
E
[
A
B

]
= E[A]

E[B]
+
∑∞
v=1 φv,where φv = (−1)v·E[A]·<vB>+<A,vB>

(E[B])v+1 ,
<v B >= E[ (B − E[B])v ], and < A,v B >= E[ (A − E[A]) ·
(B − E[B])v ]. The standard approximation formula (derived by
delta method) used in [4,39] is E

[
A
B

]
= E[A]

E[B]
+ O(n−1) for n →

∞. By setting A and B as the numerator and denominator of
F-score(T,R, α), we can generally derive E[ F-score(T,R, α) ] =
F-score∗(Q,R, α) + O(n−1). We also verify this in experiments

(Section 6.1.2) and show that the error is small (≤ 0.01%) when
n ≥ 103, which means that our approximation is reasonable.

3.2.3 Identify the Optimal Result for F-score*
Unlike Accuracy∗, to identify the optimal result for F-score∗,

the method that chooses the most possible label of each question
is not correct anymore. However, the intuition that it is prefer-
able to return a label with a large probability value may still hold.
Based on this idea, we conjecture that there exists a threshold w.r.t
each question that can determine whether a target label should be
returned or not. That is, a target label should be returned only
when its probability is not lower than the threshold; otherwise the
non-target label is returned. More formally, let θi be the threshold
w.r.t a question qi. If Qi,1 ≥ θi, we return the target label (i.e.,
r∗i = 1); otherwise, the non-target label is returned (i.e., r∗i = 2).
We prove the correctness of the conjecture in Theorem 2. An in-
teresting observation from the theorem is that every question has
the same threshold, which is equal to λ∗ · α, where λ∗ represents
the optimal value for F-score∗ (or the quality evaluation of Q), i.e.,
λ∗ = maxR F-score∗(Q,R, α).

THEOREM 2. Given Q and α, for F-score∗, the optimal result
r∗i (1 ≤ i ≤ n) of a question qi can be derived by comparing Qi,1
with the threshold θ = λ∗ · α, i.e., r∗i = 1 if Qi,1 ≥ θ and r∗i = 2
if Qi,1 < θ.

As λ∗ = maxR F-score∗(Q,R, α), Theorem 2 shows that for
F-score∗, a question’s optimal result is related to the optimal value
for F-score∗ w.r.t. Q, which takes all the questions’ distributions
into consideration. This explains that why the claim for Accuracy∗

(Theorem 1), i.e., “a question’s optimal result is only dependent on
its own distribution” does not hold. Next we focus on the problem
of how to efficiently derive λ∗.

We first show that this problem can be reduced to a 0-1 fractional
programming (FP) problem, and then present an iterative algorithm
to identify the optimal value (λ∗). Let B = [b1, b2, . . . , bn], D =
[d1, d2, . . . , dn] denote two coefficient vectors, and β, γ denote
two scalars. The 0-1 FP problem is defined as:

max f(z) =

∑n
i=1(zi · bi) + β∑n
i=1(zi · di) + γ

s.t. z ∈ Ω ⊆ {0, 1}n

Comparing F-score∗ (Equation 9) with f(z), we find that F-score∗

can actually be rewritten in the form of f(z) as follows:{
zi = 1{ri=1}, bi = Qi,1, di = α for 1 ≤ i ≤ n;

β = 0, γ =
∑n
i=1(1− α) ·Qi,1, Ω = {0, 1}n.

(10)

Thus the problem of computing λ∗ can be reduced to a 0-1 FP
problem. The 0-1 FP problem can be efficiently solved based on
the Dinkelbach framework [12]. We apply it to our problem, which
consists of the following three steps:
Initialization: It first constructs a new function g(z, λ) =

∑n
i=1 (bi

−λ · di) · zi. Then it will iteratively update λ.
In our case, bi, di and zi (1 ≤ i ≤ n) can be represented follow-

ing Equation 10 and g(z, λ) =
∑n
i=1(Qi,1 − λ · α) · 1{ri=1}.

Iteration: Let λt denote the λ for the t-th iteration. For the first it-
eration, the algorithm initializes λ as a constant value λinit (for ex-
ample, 0): λ1 = λinit, and then computes z′ = arg maxz g(z, λ1).
By plugging the newly computed z′ into f(z), the algorithm up-
dates λ1 to λ2 = f(z′). Then it repeats the above iteration with the
updated λ (i.e., λ2).

In our case, in the first iteration, with initial λ1 = λinit, we have
to compute R′ = arg maxR

∑n
i=1(Qi,1 − λ1 · α) · 1{ri=1}, and

R′ = [r′1, r
′
2, . . . , r

′
n] can be derived by setting

1{r′i=1} =

{
1 (i.e., r′i = 1) if Qi,1 ≥ λ1 · α,
0 (i.e., r′i = 2) if Qi,1 < λ1 · α.



Then λ1 is updated as λ2 = F-score∗(Q,R′, α), and we repeat the
above iteration with the updated λ2.
Termination: The algorithm terminates at the c-th iteration when λ
converges (or it is unchanged), i.e., λc+1 = λc, and it returns λc+1

which is computed for the c-th iteration.
The Dinkelbach framework guarantees that the iterative process

will finally converge to the optimal objective value [12]. Thus our
algorithm can return the optimal value for F-score∗, i.e., λ∗ =
λc+1. The detailed algorithm is in Appendix E (Algorithm 1). We
next run the two counter-examples demonstrated in Example 2, and
analyze the time complexity in the end.

EXAMPLE 3. Consider α̂ and Q̂ in Example 2. In the 1st it-
eration, suppose λ1 = λinit = 0. As Q̂1,1 and Q̂2,1 are both
≥ λ1 · α̂ = 0, then R′ = [1, 1] and λ1 is updated to λ2 =

F-score(Q̂, R′, α̂) = 0.35+0.9
0.5·2+0.5·(0.35+0.9)

= 0.77. As λ2 6= λ1,

we continue. In the 2nd iteration, by comparing Q̂1,1 and Q̂2,1

with λ2 · α̂ = 0.385, we can construct R′ = [2, 1], and λ3 =

F-score(Q̂, R′, α̂) = 0.9
0.5·1+0.5·(0.35+0.9)

= 0.8 6= λ2. In the 3rd
iteration, as the updated λ3 ·α̂ = 0.4, we can constructR′ = [2, 1].
Since λ4 = λ3 = 0.8, it converges and λ̂∗ = 0.8 is returned. Fol-
lowing Theorem 2, we can obtain the threshold θ̂ = λ̂∗ · α̂ = 0.4.
Since Q̂1,1 < θ and Q̂2,1 ≥ θ, we have R̂∗ = [2, 1].

If we consider α and Q in Example 2, then similarly we derive
λ∗ = 0.62, θ = λ∗ · α = 0.31, and R∗ = [1, 1]. The above two
examples show that the approximation function F-score∗(·) also
conforms to the two observations verified in Example 2. Moreover,
F-score∗(·) gives us an intuitive explanation of why two observa-
tions occur: in the two examples, the optimal values of F-score∗

(λ∗ and λ̂∗) affect the individual threshold (θ and θ̂), and thus af-
fecting the optimal result vectors (especially r∗1 and r̂∗1 ).

Time Complexity. As each iteration requires O(n) time and there
are c iterations in total, the time complexity isO(c ·n). To evaluate
the time complexity in practice, we conduct extensive simulated ex-
periments by randomly generating Q and α ∈ [0, 1], which shows
that the time complexity of the algorithm linearly increases w.r.t. n.
It converges very fast, and c ≤ 15 when n = 2000 (Section 6.1.2).

4. ONLINE ASSIGNMENT ALGORITHMS
Recall Definition 1, the quality of a given distribution ma-

trix Q is measured as its maximal quality (or quality w.r.t R∗),
i.e., F (Q) = maxR F

∗(Q,R) = F ∗(Q,R∗), where F can be
Accuracy or F-score. To address the task assignment problem,
one simple solution is to enumerate all feasible assignment vec-
tors. For each one (X), QX can be constructed via Equation 1, and
we compute the optimal result vector for QX , denoted as RX =
arg maxR F ∗(QX , R). Finally X∗ = arg maxX F (QX , RX).

Obviously, this simple method is very expensive. To avoid enu-
merating

(|Sw|
k

)
feasible assignments, we propose two efficient al-

gorithms: a Top-k Benefit Algorithm for Accuracy∗ (Section 4.1)
and an Online Assignment Algorithm for F-score∗ (Section 4.2).

4.1 Accuracy*: Top-K Benefit Algorithm
Given Qc and Qw, let Rc = [rc1, r

c
2, . . . , r

c
n] and Rw =

[rw1 , r
w
2 , . . . , r

w
n ] denote their respective optimal result vectors, i.e.,

rci = arg maxj Q
c
i,j for 1 ≤ i ≤ n and rwi = arg maxj Q

w
i,j for

qi ∈ Sw. As shown in Theorem 1, the choice of respective optimal
result rci (rwi ) only depends on Qci (Qwi ). Therefore, based on the
definition of QX (Equation 1), the optimal result vector for QX ,
denoted by RX = [rX1 , r

X
2 , . . . , r

X
n ], can be represented using Rc

and Rw as follows:

rXi =

{
rci if xi = 0,

rwi if xi = 1.
(11)

According to Definition 1, we aim to find the optimal feasible as-
signment X such that Accuracy∗(QX , RX) =

∑n
i=1Qi,rXi

/n =∑n
i=1[ (Qi,rci /n) ·1{xi=0}+(Qi,rwi /n) ·1{xi=1} ] is maximized.

We can further derive Accuracy∗(QX , RX) =

n∑
i=1

Qci,rci
n

+

n∑
i=1

Qwi,rwi −Q
c
i,rci

n
· 1{xi=1}. (12)

As for each X , the value
∑n
i=1Q

c
i,rci

/n is fixed. Then for each
question qi, we can define the benefit of assigning it to worker w
as Benefit(qi) = Qwi,rwi − Qci,rci , which indicates that the func-
tion Accuracy∗ will be increased by Benefit(qi)/n if qi is as-
signed to worker w. Therefore, the optimal assignment consists
of k questions with the largest benefits, and selecting them needs
O(|Sw|) = O(n) time3. Example 4 illustrates how to apply the
Top-k Benefit Algorithm to assign questions in Figure 2 when the
function is set as Accuracy∗.

EXAMPLE 4. Consider Qc and Qw in Figure 2. We can
obtain Rc = [1, 1, 2, 1, 1, 2] (or [1, 1, 2, 2, 1, 2]) and Rw =
[1, 1, 0, 1, 0, 2].4 For each qi ∈ Sw, we compute its benefit as fol-
lows: Benefit(q1) = Qw1,rw1 −Q

c
1,rc1

= 0.123, Benefit(q2) = 0.212,
Benefit(q4) = 0.25 and Benefit(q6) = 0.175. So q2 and q4 which
have the highest benefits will be assigned to worker w.

4.2 F-score*: Online Assignment Algorithm
Compared with Accuracy∗, the online assignment for F-score∗

is more challenging. The main reason is that as shown in Sec-
tion 3.2.3, based on F-score∗, the optimal result for each question
is not only dependent on its own distribution. Given a feasible X
(QX can be constructed), deriving the optimal result vectorRX for
QX is not as straightforward as Equation 11 for Accuracy∗.

Next we show how to efficiently solve the task assignment prob-
lem for F-score∗. Recall that X∗ denotes the optimal assignment
and let δ∗ denote the optimal objective value, i.e.,

δ∗ = max
R

F-score∗(QX
∗
, R, α). (13)

The basic idea of our solution is to first initialize δinit ≤ δ∗ (say
δinit = 0), and then iteratively update the initial δinit to δ∗ until
convergence. Since δ∗ is unknown, the main problem is how to
ensure that δinit is always increasing until it reaches δ∗. More
formally, let δt denote the δ at the t-th iteration. Given δt, the
updated δt+1 should satisfy the following two properties:

Property 1: if δt < δ∗, then the updated δt+1 should satisfy
δt < δt+1 ≤ δ∗;

Property 2: if δt = δ∗, then the updated δt+1 should satisfy
δt = δt+1 = δ∗.

Intuitively, Property 1 guarantees that starting from δinit < δ∗,
δinit will be iteratively increased until δ∗. Property 2 guarantees
that at convergence (δt = δt+1), we can get δt+1 = δ∗. There are
two challenges in solving the problem:
(1) Given δt, how can we construct δt+1 such that the above two
properties hold?
(2) The update should be solved efficiently to satisfy the perfor-
mance requirement for task assignment.

To address the first challenge, we present our designed update in
Definition 2 as follows:

DEFINITION 2 (UPDATE). Given δt, Qc, Qw, α, and Sw, the
update from δt to δt+1 is defined as

δt+1 = max
X

F-score∗(QX , R̂X , α), (14)

3The problem that finds the top k elements in an array can be solved linearly using
the PICK algorithm [2].
4Note that for qi /∈ Sw , Qwi does not need to be computed, so we set rwi = 0 for
qi /∈ Sw and it will never be used.



where for each feasibleX (QX can be constructed via Equation 1),
R̂X = [r̂X1 , r̂

X
2 , . . . , r̂

X
n ] is constructed based on δt, i.e.,

r̂Xi =

{
1 if QXi,1 ≥ δt · α,
2 if QXi,1 < δt · α.

(15)

To help understand the meaning of δt+1 in Definition 2, we will
present a brute-force method to obtain δt+1. This method enumer-
ates all possible feasible assignment vectors. For each feasible X ,
as QX and R̂X can be constructed following Equation 1 and 15 re-
spectively, then F-score∗(QX , R̂X , α) can be computed. By com-
paring the computed values for all assignment vectors, we can ob-
tain the maximum value, i.e., δt+1. Theorem 3 formally proves that
the updated δt+1 following Definition 2 satisfies the two properties.

THEOREM 3. The defined δt+1 (in Definition 2) satisfies Prop-
erty 1 and Property 2.

To address the second challenge above, as shown in Theorem 4,
we find that this problem (computing δt+1 in Definition 2) can ac-
tually be reduced to a 0-1 FP problem and efficiently solved by
leveraging the Dinkelbach framework (similar to Section 3.2.3).

THEOREM 4. The problem of computing δt+1 (Definition 2)
can be reduced to a 0-1 FP problem.

Our designed algorithm, called F-score Online Assignment Algo-
rithm, computes the optimal assignment. In each iteration, it calls
the Update Algorithm, which leverages the Dinkelbach framework
to compute the updated δt+1. Note that the Dinkelbach framework
not only returns the updated δt+1, but also derives the correspond-
ing assignment X ′ such that δt+1 = F-score∗(QX

′
, R̂X

′
, α).

Thus, at the time that δ converges, the δ∗ and its corresponding op-
timal assignment X∗ are both returned by the Update Algorithm.
Appendix H gives the pseudo-codes of F-score Online Assignment
Algorithm (Algorithm 2) and Update Algorithm (Algorithm 3).
Time Complexity: We analyze the time complexity of F-score On-
line Assignment Algorithm. It is an iterative algorithm, where it
runs Update Algorithm in each iteration. Following Dinkelbach
framework, Update Algorithm adopts an iterative approach and
takes O(n) in each iteration. Suppose F-score Online Assignment
Algorithm requires u iterations to converge and Update Algorithm
requires v iterations to converge, then the total time complexity is
O(u · v · n). We conduct extensive simulated experiments by ran-
domly generating Qc and Qw (n = 2000), and varying α ∈ [0, 1],
which shows that the bound u·v <= 10 in practice (Section 6.1.3).

EXAMPLE 5. Given Sw, k, Qc and Qw in Figure 2, if the eval-
uation metric is set as F-score∗ with α = 0.75, we next derive the
optimal assignment for worker w. With an initial δ1 = δinit = 0,
we need to get δ2. The brute-force way5 is to enumerate all 6 fea-
sible assignments, where for the first X = [1, 1, 0, 0, 0, 0], we
construct QX . As QXi,1 ≥ δ1 · α = 0 for all 1 ≤ i ≤ n,
thus R̂X = [1, 1, 1, 1, 1] and F-score∗(QX , R̂X , α) = 0.68.
By considering all 6 feasible X , we derive the maximal F-score∗

value, i.e., 0.7, which corresponds to X = [0, 1, 0, 1, 0, 0]. Then
δ2 = 0.7 and as δ2 6= δ1, we continue with δ2. Again consider
X = [1, 1, 0, 0, 0, 0], as δ2 · α = 0.525, by comparing each QXi,1
(1 ≤ i ≤ n) with 0.525, we derive R̂X = [1, 1, 0, 0, 1, 0] and
F-score∗(QX , R̂X , α) = 0.832. By considering all 6 feasible X ,
the assignment X = [1, 1, 0, 0, 0, 0] corresponds to the maximal
F-score∗, and δ3 = 0.832 6= δ2. In the third iteration, similarly the
assignment X = [1, 1, 0, 0, 0, 0] corresponds to the δ4 = 0.832.
As δ4 = δ3, we have δ∗ = 0.832 and returnX∗ = [1, 1, 0, 0, 0, 0].

Compared with Accuracy∗ in Example 4, which assigns q2 and
q4 with the highest benefits, here the optimal assignment is q1 and
5Here we present the brute-force way for illustration purpose.

q2 if the evaluation metric is F-score∗ with α = 0.75. The reason is
that α = 0.75 focuses on Precision, and it tries to assign questions
such that the estimated probability for the target label L1 is of high
confidence (or Qi,1 is high). Thus it is more beneficial to assign q1
compared with q4, as Qw1,1 (0.818) ≥ Qw4,1 (0.75).

5. COMPUTING CURRENT AND ESTI-
MATED DISTRIBUTION MATRICES

In this section, we examine how to compute Qc and Qw in Sec-
tion 5.1 and 5.3 respectively. Since computing these two matrices
requires some parameters, Section 5.2 discusses the parameters and
the existing heuristics to compute them.

5.1 Current Distribution Matrix
When a worker completes a HIT, based on D = {D1, D2, . . . ,

Dn}, we compute the parameters (including prior probability and
worker model) and Qc. As Qci,j represents the probability that
question qi’s true label is Lj , we compute Qci,j based on the an-
swer set of qi, i.e., Di. From Bayes’ theorem we get

Qci,j = P (ti = j |Di) =
P (Di | ti = j) · P (ti = j)

P (Di)
. (16)

ThusQci,j ∝ P (Di | ti = j) ·P (ti = j). It means that if we derive
P (Di | ti = j) ·P (ti = j) for each label Lj (1 ≤ j ≤ `), then we
can normalize and finally get Qci,j for 1 ≤ j ≤ `. We next discuss
how to compute P (ti = j) and P (Di | ti = j):
(1) P (ti = j) is the prior probability which represents that a ques-
tion’s true label is Lj , and it is commonly regarded as the pro-
portion of questions whose true label is Lj , which is the same
among different questions, so w.l.o.g., we denote pj = P (ti = j).
Existing works [1,21,22,56] usually estimated the prior as the ex-
pected fraction of questions whose ground truth is label Lj , i.e.,

pj = E[
∑n
i=1 1{ti=j}

n
] =

∑n
i=1 Q

c
i,j

n
;

(2)P (Di | ti = j) is the probability that the answer set for question
qi is Di given that the question qi’s true label is Lj . Assume that
the answers inDi are independently answered by different workers
(which was also adopted in [10,16,22,30,62]). Let awi denote the
index of answered label for qi by worker w, then

P (Di | ti = j) =
∏

(w,j′)∈Di

P (awi = j′ | ti = j),

where P (awi = j′ | ti = j) is the probability that worker w an-
swers label Lj′ given the true label is Lj , which can be expressed
by worker model (Section 5.2). Initially, Qc is set as uniform
distribution for each question qi, i.e., Qci,j = 1

`
for 1 ≤ j ≤ `.

5.2 Parameters
For the issue about how to model a worker’s quality, several

works [16,26,30,62] define a worker w’s quality as a single value
mw ∈ [0, 1] called Worker Probability (WP) and

P (awi = j′ | ti = j) =

{
mw, for j = j′

1−mw
`−1

, for j 6= j′
.

Some other works [1,22,61] define a worker w’s quality as a ` × `
matrix Mw called Confusion Matrix (CM) and

P (awi = j′ | ti = j) = Mw
j,j′ for 1 ≤ j, j′ ≤ `.

For example, if an application has two labels, an example of WP
for worker w is mw = 0.6 and an example of CM for worker
w is Mw =

[
0.6 0.4
0.3 0.7

]
. In experiments (Section 6.2.2) we study

the properties of different worker models on real datasets. For
the initialization of WP and CM, each worker can be assumed as
a perfect worker in the beginning (the assumption made by some



prior work, e.g., Ipeirotis et al. [22]). Then for WP, mw = 1; while
for CM, Mw

j,j = 1 for 1 ≤ j ≤ ` and Mw
j,j′ = 0 for j 6= j′. Next

Example 6 shows how to compute Qc based on WP and prior.
EXAMPLE 6. Suppose a question q2 with three labels (` = 3)

has been answered by two workers: D2 = {(w1, L3), (w2, L1)},
where the worker models are mw1 = 0.7, mw2 = 0.6 and the
priors are p1 = p2 = p3 = 1

3
. In order to compute Qc2, based on

Equation 16, we get Qc2,1 = P (t2 = 1 |D2) ∝ P (aw1
2 = 3 | t2 =

1) ·P (aw2
2 = 1 | t2 = 1) ·P (t2 = 1) = 1−mw1

`−1
·mw2 ·p1 = 0.03

and similarly Qc2,2 ∝ 0.01, Qc2,3 ∝ 0.0467. By normalization, we
get Qc2 = [0.346, 0.115, 0.539].

To compute the worker model and prior parameters, we lever-
age the EM [10] algorithm, which uses the answer set as input,
and adopts an iterative approach (in each iteration, E-step and M-
step are applied) to update all parameters until convergence. The
EM algorithm has been widely used [1,21,22,56] to infer the pa-
rameters and has a fast convergence rate. There are some other
works [21,22,48,52,53,61] studying how to derive worker model
and prior parameters, and they can be easily adapted to our system.

5.3 Estimated Distribution Matrix
We next discuss how to compute Qw based on Qc and w’s

worker model. For each qi ∈ Sw, the computation of Qwi con-
sists of two steps: in the first step, we estimate lwi , which is de-
noted as the index of the label that worker w will answer for
qi; in the second step, we construct an estimated answer set (de-
noted as Dw

i ) for qi by adding a tuple containing lwi into Di, i.e.,
Dw
i = Di ∪ {(w, lwi )}, and then Qwi can be computed based on

Dw
i . We next talk about the details.

First Step: In order to estimate lwi , we first compute the label dis-
tribution that worker w will answer qi. We can derive P (awi =
j′ |Di) by considering all possible true labels of question qi:

P (a
w
i = j

′ |Di) =
∑`

j=1
P (a

w
i = j

′ | ti = j,Di)·P (ti = j |Di). (17)

(1) Given ti = j is known, awi = j′ is independent of Di, so
P (awi = j′ | ti = j,Di) = P (awi = j′ | ti = j), which can be
derived byw’s worker model. (2) We haveQci,j = P (ti = j |Di).
So we can compute P (awi = j′ |Di) for 1 ≤ j′ ≤ `.

Next, we predict lwi by capturing the label distribution, and the
weighted random sampling method [13] is leveraged to select a
label index lwi ∈ {1, 2, . . . , `}, where the label index j has proba-
bility P (awi = j |Di) to be sampled.
Second Step: To derive Qwi , we first construct Dw

i = Di ∪
{(w, lwi )}, then Qwi,j = P (ti = j | Dw

i ) ∝ P (Dw
i | ti = j) · pj .

Similar to Section 5.1, we get P (Dw
i | ti = j) = P (awi =

lwi | ti = j) ·
∏

(w,j′)∈Di P (awi = j′ | ti = j). Take a further step,
by considering Equation 16, we get

Qwi,j ∝ Qci,j · P (awi = lwi | ti = j), (18)

thusQwi can be computed by normalization if we getQci,j ·P (awi =
lwi | ti = j) for 1 ≤ j ≤ `. We next give an example (Example 7)
to show how to compute Qw based on Qc in Figure 2.

EXAMPLE 7. Given Qc in Figure 2, suppose worker w with
mw = 0.75 requests a HIT. To compute Qw, we take Qw1 as an
example. In the first step we derive the label distribution to predict
`w1 . Following Equation 17, P (aw1 = 1 |D1) =

∑2
j=1 P (aw1 =

1 | t1 = j) · P (t1 = j |D1) = 0.75 · 0.8 + 0.25 · 0.2 = 0.65 and
P (aw1 = 2 |D1) = 0.35, thus the label distribution is [0.65, 0.35].
After weighted random sampling, suppose we get `w1 = 1. In the
second step, following Equation 18, the proportion can be derived
by multiplying P (aw1 = 1 | t1 = j) to Qc1,j (1 ≤ j ≤ 2), which
is (0.8 · 0.75) : (0.2 · 0.25). To normalize the proportion, we get
Qw2 = [0.923, 0.077]. Similarly other Qwi for qi ∈ Sw can be
computed and Qw can be constructed in Figure 2.

6. EXPERIMENTS
We have conducted experiments on both simulated datasets (Sec-

tion 6.1) and real datasets (Section 6.2).

6.1 Experiments on Simulated Data
We first describe the experimental settings (Section 6.1.1), then

evaluate the performance of F-score∗ (Section 6.1.2), and finally
examine the online assignment algorithms (Section 6.1.3)

6.1.1 Settings for Simulated Data
We show how to generate distribution matrices in simulated ex-

periments. For F-score, as it focuses on a target label (L1), to gen-
erate an n×2 distribution matrixQ, each question qi’s (1 ≤ i ≤ n)
distribution is generated as follows: first the probability for target
label is randomly generated asQi,1 ∈ [0, 1], thenQi,2 = 1−Qi,1.
For Accuracy, to generate an n× ` distribution matrix Q, for each
question qi (1 ≤ i ≤ n), we randomly generate Qi,j ∈ [0, 1]
for 1 ≤ j ≤ `, and then normalize Qi to get a distribution. To
achieve statistical significance, we perform each experiment for
1000 times and record its average value. Experiments are imple-
mented in Python on a 16GB memory Ubuntu server.

6.1.2 Evaluating Our Techniques for F-Score*
As directly computing E[ F-score(T,R, α) ] is inefficient, an

approximation function F-score∗(Q,R, α) is proposed in Sec-
tion 3.2.2. In this section, we evaluate this approximation on ran-
domly generated distribution matrices. We first evaluate the ap-
proximation error, and then show the performance of its optimal
result vector selection algorithm.
Approximation Error. We study how the proposed function
F-score∗(Q,R, α) is approximate to E[ F-score(T,R, α) ] from
Figure 3(a)-(c). In Figure 3(a), we vary α ∈ [0, 1] and n ∈ [20, 50]
to observe the approximation error. For a fixed α and n, we ran-
domly generate Q and result vector R, and record the approxima-
tion error ε = | F-score∗(Q,R, α) − E[ F-score(T,R, α) ] | in
the figure (note that the error is averaged over 1000 repeated tri-
als). It shows that as n varies in [20, 50], the approximation er-
ror decreases, and when n = 20, the errors for different α are
smaller than 0.5%. As α varies in [0, 1], the average error reaches
the highest at around α = 0.5. Moreover, an interesting obser-
vation is that the curve is not symmetric, especially when α = 1
(which is Precision) and α = 0 (which is Recall). The reason
is that (1) E[ Precision(T,R) ] = E[

∑n
i=1 1{ti=1}·1{ri=1}∑n

i=1 1{ri=1}
] =∑n

i=1 Qi,1·1{ri=1}∑n
i=1 1{ri=1}

= F-score∗(Q,R, 1), so ε = 0 as α =

1; (2) E[ Recall(T,R) ] = E[
∑n
i=1 1{ti=1}·1{ri=1}∑n

i=1 1{ti=1}
] ≈∑n

i=1 Qi,1·1{ri=1}∑n
i=1 Qi,1

= F-score∗(Q,R, 0), so ε 6= 0 as α = 0.
Furthermore, to observe the distribution of ε, in Figure 3(b), we

set n = 50 and α = 0.5, and record the frequency of ε over
1000 trials. We observe that the error is centered around the mean
0.19%, and ranges from 0% to 0.31%, which is small and stable.
To observe how ε changes for a larger n, in Figure 3(c) we fix
α = 0.5 and record ε by varying n ∈ [0, 103]. The curve shows
that ε consistently decreases and it conforms to the error bound
(i.e., ε = O(n−1)) as derived in Section 3.2.2. Especially when
n = 1000, the average ε ≤ 0.01%, which is fairly small.

To summarize, the proposed function F-score∗(Q,R, α) (Equa-
tion 9) is a good approximation of E[ F-score(T,R, α) ] in practice.
Optimal Result Vector Selection. In Figure 3(d)-(f), we study the
result vector selection. Existing works [17,46,56] evaluate F-score
by choosing the result of each question as the label with the high-
est probability. We first study the quality improvement by using
our optimal returned result vector algorithm. Let R∗ denote the
optimal result vector, i.e., R∗ = argmaxR F-score∗(Q,R, α). Let
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R̃ = [r̃1, r̃2, . . . , r̃n] denote the result vector chosen by the existing
works [17,46,56], i.e., r̃i = 1 if Qi,1 ≥ Qi,2 (or Qi,1 ≥ 0.5) and
r̃i = 2 if otherwise. We set n = 2000 and vary α ∈ [0, 1], where
for a fixed α, we randomly generate Q, and respectively compute
R∗ and R̃ based on Q. Then we define the quality improvement as

∆ = E[ F-score(T,R∗, α) ]− E[ F-score(T, R̃, α) ], (19)
and we record ∆ in Figure 3(d). It can be observed that R∗ im-
proves the quality of R̃ a lot. As α varies in [0, 1], about 25% of
the values of α result in an improvement of over 10%. We also ob-
serve that the curve is asymmetric bowl-shaped, especially when α
is around 0.65, ∆ becomes zero. Next we apply the approximated
function F-score∗ to verify this interesting phenomenon in theory.
For some unknown α′, if R̃ is equal to R∗ (or R̃ = R∗),
(1) as R̃ is constructed by comparing with the threshold 0.5, thus
from Theorem 2 we know the threshold θ = λ∗ · α′ = 0.5 and
(2) as λ∗ = F-score∗(Q,R∗, α′), and R∗ = R̃, we have

λ∗ =

∑n
i=1 1{Qi,1≥0.5}·Qi,1

α′·
∑n
i=1 1{Qi,1≥0.5}+(1−α′)·

∑n
i=1 Qi,1

. Taking λ∗ · α′ =

0.5 inside, we can obtain
∑n
i=1Qi,1 · 1{Qi,1≥0.5} = 0.5 ·[∑n

i=1 1{Qi,1≥0.5} + ( 1
α′ − 1) ·

∑n
i=1Qi,1

]
. Note that as we

randomly generate Qi,1 (1 ≤ i ≤ n) for all questions, it makes
Qi,1 (1 ≤ i ≤ n) uniformly distributed in [0, 1]. Thus if we take
the expectation on both sides of the obtained formula, and apply
the properties of uniform distribution, we can derive 0.75 · n

2
=

0.5 ·
[
n
2

+ ( 1
α′ − 1) · 0.5 · n

]
, and then get α′ = 0.667, which

verifies our observation (around 0.65).
As the time complexity of optimal vector selection algorithm

(Section 3.2.3) is O(c · n), we next evaluate the bound of c (#it-
erations to converge) in Figure 3(e). For a fixed n = 2000, we
vary α from 0 to 1 with a step of 0.1, and for each α, we randomly
generate Q and record c by running our algorithm. Figure 3(e) il-
lustrates the frequency of c for all α. It can be seen that c ≤ 15
in general (for different α). To evaluate the efficiency with a larger
n, we vary n ∈ [0, 104] and record the running time in Figure 3(f),
which shows that the time linearly increases with n, and our algo-
rithm finishes within 0.05s even when n is large (n = 104).

6.1.3 Evaluating Online Assignment’s Efficiency
We evaluate the online assignment algorithm’s efficiency in Fig-

ure 4(a)-(d). First we compare different ways of initialization in
our algorithm. A basic way is to initialize δinit = 0. By con-
sidering that the optimal F-score∗ for QX

∗
may not be far away

from the optimal F-score∗ for Qc (as they are only different in k
questions’ distributions), we propose another way of initialization:
δ′init = maxR F-score∗(Qc, R, α), which can be computed using
the optimal result vector selection algorithm (Section 3.2.3). To

compare their efficiency, in Figure 4(a) we set n = 2000, k = 20,
and vary α ∈ [0, 1]. For a fixed α, we randomly generate Qc and
a confusion matrix, then Qw can be computed (Equation 18). We
run our algorithm with respective δinit and δ′init, and record the
time in Figure 4(a). It can be seen that both initializations are effi-
cient (≤ 0.3s), but there is a sudden increase as α ≥ 0.95 for δinit
(mainly due to the fact that big α focuses on Precision, that is, only
confident questions for L1 will be returned, which leads to a big
δ∗, and δinit = 0 is far away from δ∗). For δ′init, it is steady with
different α, as the initialization is computed by considering both
Qc and α. So we use δ′init to initialize in later experiments.

We next evaluate the performance of different k in Figure 4(b).
We set n = 2000 and vary k ∈ [5, 50] to observe the assignment’s
efficiency, which shows that it is invariant with k. The main reason
is that our algorithm iteratively updates δ, and the update solves a
0-1 FP problem via Dinkelbach framework, which is invariant of
the size k. To evaluate the bound for u · v, in Figure 4(c), we set
n = 2000 and vary α from 0 to 1 with a step of 0.1. For each
α, we generate Qc and Qw, and record the frequency of u · v in
Figure 4(c). It showed that generally u · v ≤ 10 for different α.

We then evaluate the assignment’s efficiency for Accuracy∗ and
F-score∗ with a larger n. We set k = 20, α = 0.5, and vary
n ∈ [0, 104] in Figure 4(d), which shows that both algorithms are
efficient. For example, both of them finish within 0.3s when n =
104. As reported in [23], the number of HITs for a certain task is
usually ≤ 5000, even for the top invested requesters. Therefore,
our assignment algorithms can work well in a real crowdsourcing
platform. Moreover, the assignment time both linearly increases
for Accuracy∗ and F-score∗, but with a larger factor in F-score∗, as
it has to deal with the converging complexity (i.e., u · v).

To summarize, the assignment algorithms are both efficient for
Accuracy∗ and F-score∗, and they work well even for a large num-
ber of tasks (e.g., n = 104).

6.2 Experiments for Real Datasets
We first discuss the experimental setup (Section 6.2.1), then eval-

uate the properties of different worker models (Section 6.2.2), and
finally compare with existing systems (Section 6.2.3).

6.2.1 Settings for Real Datasets
We generate five applications from real-world datasets (their

ground truth is known for evaluation purposes). The result qual-
ity for the first two applications are evaluated in Accuracy, which
is introduced as follows:
Films Poster (FS): FS uses the top 500 films (with posters) with the
highest ratings from IMDB6. We generate 1,000 questions, where
6http://www.imdb.com/



Table 1: Application Properties (Per System)
Data Labels n k m B Evaluation Metric
FS L1 =“<”, L2 =“≥” 1000 4 750 $15 Accuracy

SA
L1 =“positive”,
L2 =“neutral”,
L3 =“negative”

1000 4 750 $15 Accuracy

ER
L1 =“equal”,

L2 =“non-equal”
2000 4 1500 $30

F-score for L1

( α = 0.5 )

PSA
L1 =“positive”,

L2 =“non-positive”
1000 4 750 $15

F-score for L1

( α = 0.75 )

NSA
L1 =“negative”,

L2 =“non-negative”
1000 4 750 $15

F-score for L1

( α = 0.25 )

each question asks the crowd to compare two different films and the
coming worker should decide whether one film is published earlier
(<) or later (≥) than the other.
Sentiment Analysis (SA): SA uses the Twitter7 dataset to label the
sentiments of tweets w.r.t. different companies. It contains 5,152
hand-classified tweets. We select 1,000 tweets from them and each
question asks the crowd to label the sentiment (“positive”, “neutral”
or “negative”) of a tweet w.r.t. the related company.

The result quality for the other three applications is evaluated in
F-score (with different α), which is introduced as follows:
Entity Resolution (ER): ER uses Product8 dataset to evaluate
whether the descriptions of two products refer to the same product
or not. It contains 1,180,452 product pairs. For each pair (r1,r2),
we compute the Jaccard similarity ( r1∩r2

r1∪r2
) and select 2,000 pairs

with similarity ≥ 0.7 as our questions. Each question contains a
product pair and the coming worker should decide whether they
are “equal” or “non-equal”. It is evaluated using balanced F-score
for the “equal” label (α = 0.5).
Positive Sentiment Analysis (PSA): Based on the demand that a
company manager may want to select positive sentiment comments
for their products with high confidence (emphasizing Precision),
we generate PSA by selecting 1,000 tweets related to Apple com-
pany from the Twitter7 dataset. Each question is to ask the crowd
about whether the sentiment of a tweet related to Apple is “pos-
itive” or “non-positive”. As it emphasizes Precision, we set the
evaluation metric as F-score for “positive” where α = 0.75.
Negative Sentiment Analysis (NSA): From another perspective, a
company manager may want to collect as many negative sentiment
comments as possible for their products (emphasizing Recall), then
NSA is generated by selecting 1,000 tweets related to Apple com-
pany from the Twitter7 dataset. Each question is to ask the crowd
about whether the sentiment of a tweet related to Apple is “nega-
tive” or “non-negative”. It is evaluated using F-score for “negative”
where α = 0.25 (emphasizing Recall).

We compare QASCA with other five systems, i.e., Baseline,
CDAS [30], AskIt! [3], MaxMargin and ExpLoss:
(1) Baseline: It randomly assigns k questions to a coming worker.
(2) CDAS [30]: It adopts a quality-sensitive answering model to
measure the confidence of questions’ current results, and terminates
assigning the questions which have already got confident results. It
assigns k non-terminated questions.
(3) AskIt! [3]: It uses an entropy-like method to define the uncer-
tainty of each question, and assigns k most uncertain questions.
(4) MaxMargin: It selects the next question with the highest ex-
pected marginal improvement, disregarding the characteristics of
the worker, and it assigns k selected questions.
(5) ExpLoss: It selects the next question by considering the ex-
pected loss, defined as minj

∑`
j′=1 pj′ · 1{j 6=j′} (1 ≤ j ≤ `),

and it assigns k selected questions.

7http://www.sananalytics.com/lab/twitter-sentiment/
8http://dbs.uni-leipzig.de/file/Abt-Buy.zip

Table 2: Comparison between Worker Models
FS SA ER PSA NSA

CM 93.33% 87.09% 82.02% 91.73% 88.43%
WP 93.33% 78.64% 72.80% 92.61% 87.01%

Table 3: The average quality improvement (∆̂) of each system
by using our optimal result selection algorithm (Section 3.2.3)

Baseline CDAS AskIt! MaxMargin ExpLoss
ER (α = 0.5) 2.59% 2.69% 4.56% 5.49% 4.32%

PSA (α = 0.75) 4.14% 2.96% 1.26% 2.08% 1.66%
NSA (α = 0.25) 14.12% 10.45% 12.44% 14.26% 9.98%

As workers may vary in quality for different rounds, we need to
use the same set of workers in the comparison of all six systems. To
achieve this, when worker w comes, we use each system to assign
k = 4 questions, then k × 6 = 24 questions are batched into a
HIT in a random order and the HIT will be assigned to worker w.
Following this way, we can evaluate six systems in a “parallel” way
with the same set of workers. We pay each worker $0.12 for doing a
HIT, and assign each question to z = 3 workers on average, which
are typical experimental settings in AMT [56,59]. The detailed set-
tings are listed in Table 1. Take FS application as an example: there
are n = 1000 generated questions, and the “parallel” way assigns
m = n×z

k
= 1000×3

4
= 750 HITs in total for all six systems,

where each system corresponds to k = 4 questions in a HIT and
each system takes B = m×$0.12

6
= $15 for FS. When HITs are

finished, we compute the result quality w.r.t. the corresponding
evaluation metric based on the questions’ ground truth and report
their comparison results. All the HITs are published during 5:00
pm ∼ 10:00 pm (PDT) on weekdays, and all the crowdsourcing
applications are finished within 24 hours. The number of work-
ers participated in five applications FS, SA, ER, PSA and NSA are
respectively 97, 101, 193, 104, and 101.

We implement QASCA in Python using the Django web frame-
work, and deploy it on a 16GB memory Ubuntu server. We conduct
experiments on a widely-used crowdsourcing platform: AMT. We
use the “external-HIT” way provided by AMT which embeds the
generated HTML pages (by our server) into its frame and workers
directly interact with our server through the frame. When a worker
comes, we can identify the worker from the individual worker-id
provided by AMT. Then we can dynamically batch the selected
questions (from different systems) in a HIT for the coming worker.

6.2.2 Evaluating Worker Models
In this section, we especially study the selection of worker mod-

els in computing the distribution matrix. Recall that Section 5.2
reviews two typical worker models used in existing works: Worker
Probability (WP) and Confusion Matrix (CM). Intuitively CM is
better than WP as it is more complex. Even though what we ob-
serve from real datasets validates the intuition, we try to explain
some interesting observations. We first collect the crowd’s answers
from the five published applications on AMT.

In Table 2, we compare WP and CM on five applications by
leveraging the ground truth (ti) of each question. Based on the
collected answer set D = {D1, D2, . . . , Dn}, for each worker w
we compute the real WP and CM as follows

m̃w =
∑n
i=1 1{(w,ti)∈Di}∑n

i=1

∑`
j=1 1{(w,j)∈Di}

,

M̃w
j,j′ =

∑n
i=1 1{ti=j}·1{(w,j′)∈Di}∑n

i=1(1{ti=j}·
∑`
z=1 1{(w,z)∈Di})

.
(20)

We leverage the real priors (computed as p̃j =
∑n
i=1 1{ti=j}

n
for

1 ≤ j ≤ `) and two respective real worker models to derive
the distribution matrix based on Equation 16, and then the opti-
mal result vector R∗ w.r.t. corresponding evaluation metric can be
computed. Finally we evaluate the quality of R∗ using the ground
truths. To avoid overfitting, we randomly select 80% of the ques-
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Figure 5: End-to-End Experiments (Comparison on Real Result Quality by Varying # Completed HITs)

tions answered by each worker to compute WP and CM, respec-
tively. The random process is repeated over 1000 trails and we
record the average quality of the results in Table 2. We observe that
CM performs better than WP for SA and ER applications, while
they perform approximately the same for other three applications.

To explain this, we know that m̃w performs equally with M̃w

only if the following requirements hold: (1) M̃w
j,j′ = M̃w

j,j′′ for
j′ 6= j 6= j′′ (non-triangular elements in M̃w, which expresses the
relations between pairwise labels); (2) M̃w

j,j = M̃w
j′,j′ (triangular

elements in M̃w, which expresses the difficulty of individual label).
CM is better than WP on SA and ER, as they do not satisfy the

above requirements: for SA, if a question’s true label is “positive”,
a worker is more likely to answer “neutral” compared with “neg-
ative”, i.e., M̃w

1,2 > M̃w
1,3, which violates the first requirement, as

there exists relations between pairwise labels; for ER, two prod-
uct descriptions are “equal” only if all features (brand, color, etc.)
are the same, while they are “non-equal” once a different feature
is spotted, which implies that identifying a “non-equal” pair is eas-
ier than correctly identifying an “equal” pair, i.e., M̃w

1,1 < M̃w
2,2

(easier means a higher probability), which violates the second re-
quirement, as different labels have different difficulties.

To summarize, the above observations among labels in the two
applications (SA and ER) can only be captured by CM other than
WP. However, the labels in the other three applications (FS, PSA
and NSA) do not have explicit relations or difficulties, which per-
form similarly for WP and CM. As CM performs at least as good
as WP, we use the CM worker model in later experiments.

6.2.3 End-to-End Experiments
We compare QASCA with five other systems on five crowd-

sourcing applications in AMT.
Improvement of Optimal Result Selection. As we have vali-
dated the improvement in Section 6.1.2 on simulated datasets, here
we further explore its benefit on real datasets. Recall the defini-
tion of R∗ and R̃ in Section 6.1.2. As the ground truth vector T
is known on real datasets, we define the real quality improvement
w.r.t. different result vectors (R∗ and R̃) as

∆̂ = F-score(T,R∗, α)− F-score(T, R̃, α). (21)

As HITs are completed, we computeR∗ and R̃ based onQ by time,
and record ∆̂ at each time-stamp. Finally after all HITs are com-
pleted, we report the average ∆̂ for three applications (i.e., ER, PSA
and NSA)9 with the evaluation metric F-score in Table 3. Recall that
the three applications ER, PSA and NSA have different α (i.e., 0.5,
0.75 and 0.25), and their corresponding ∆ in simulated experiments
(Figure 3(d)) are around 2%, 1% and 9%, respectively. In Table 3,
we observe that the average ∆̂ are larger than zero on all applica-
tions, which means that all systems can benefit from choosing the
optimal result vector R∗. We also observe that NSA (α = 0.25)
has a bigger improvement compared with ER and PSA, which con-
forms to the observation in simulated experiments. Note that the

9In Theorem 1 we have proved that R∗ = R̃ for Accuracy∗, so we did not include
the applications with the evaluation metric Accuracy (i.e., FS and SA).

Table 4: Overall Result Quality (All HITs completed)
Dataset FS SA ER PSA NSA
Baseline 86.40% 72.20% 71.07% 80.85% 74.73%
CDAS 90.20% 73.80% 73.75% 81.58% 75.68%
AskIt! 87.90% 72.20% 71.78% 81.95% 73.16%

QASCA 98.30% 84.60% 85.96% 95.70% 86.65%
MaxMargin 88.00% 73.30% 72.02% 83.92% 75.96%

ExpLoss 87.30% 72.90% 71.36% 82.43% 73.38%

main reason that ∆̂ may have some differences from ∆ is that in
our simulated experiments, the Qi,1 for 1 ≤ i ≤ n is uniformly
distributed. While in reality, as a question qi gets more answers,
the computed distribution Qi may become more confident (either
Qi,1 is close to 1 or 0). To summarize, for F-score, all systems
can benefit from choosing the optimal result vector R∗ rather than
returning a label with the highest probability (R̃).
System Comparison Results. We next show the main results, i.e.,
the real result quality compared with other systems on all applica-
tions in Figure 5(a)-(e). We collect the completed HITs by time and
calculate the corresponding result quality based on the derived re-
sults of different systems. Since we have shown that the quality im-
proves a lot by selecting the optimal result vector R∗ for F-score∗

both in simulated datasets (Figure 3(d)) and real datasets (Table 3).
To make a fair comparison, we apply this optimization (i.e., select-
ing R∗) to all systems when the evaluation metric is F-score.

From Figure 5(a)-(e), we can observe that in the beginning, when
the number of completed HITs is small, all systems have similar
performance, as they all do not know much information about ques-
tions or workers. However, QASCA dominates other systems as
time goes by. This is because QASCA assigns the best k questions
for each coming worker to maximize the evaluation metric value
(Accuracy∗ or F-score∗), while other systems do not explicitly con-
sider the impact of evaluation metrics on result quality in their task
assignment process. For a clear comparison, Table 4 shows the fi-
nal result quality value when all HITs are completed, and QASCA
leads other systems over 8% for all applications. To be specific,
QASCA leads the second best system by 8.1%, 10.8%, 12.21%,
11.78% and 10.69% on five real-world datasets (FS, SA, ER, PSA
and NSA), respectively. We can also observe that MaxMargin out-
performs ExpLoss, as for the inherently ambiguous questions, they
will have high expected loss (ExpLoss will continuously assign
them); while the marginal benefit of assigning these questions will
be much lower as more answers are collected (MaxMargin can save
the assignments for more beneficial questions).

We compare the efficiency of different systems in Figure 6(a).
To make a fair comparison, for an application in each system, we
record the worst case assignment time during the assignment pro-
cess for all HITs. It is shown that all systems are efficient, and
the worst case assignment of all systems can be finished within
0.06s, which is fairly acceptable in real applications. Even though
QASCA is less efficient than other systems due to its complexity
in assignments, it can significantly improve the result quality (over
8%). The reason why ER runs slower is that it contains 2000 ques-
tions while other applications contain 1000 questions.
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Figure 6: Efficiency and Mean Estimation Deviation

Estimation of Worker Quality. We next examine how the esti-
mated quality of workers is different from the real quality of work-
ers10 by ranging the percentage of completed HITs. Let us denote
the real CM as M̃w and the estimated CM as Mw. For a worker
w, we further define the estimation deviation of worker quality as
the absolute difference of estimated quality and real quality, i.e.,
1
`×` ·

∑`
j=1

∑`
j′=1 |M

w
j,j′ − M̃w

j,j′ |. Then we calculate the mean
estimation deviation by averaging the calculated estimation devia-
tion among all workers. The smaller the mean estimation deviation
is, the closer the estimated worker quality (Mw) is to the real one
(M̃w). We report the mean estimation deviation by ranging the per-
centage of completed HITs for all datasets in Figure 6(b). It shows
that as more HITs are completed, the estimated worker quality gets
closer to the real one, which may explain why QASCA performs
much better compared with other systems as time goes by. That
is, as more HITs are completed, the worker’s quality is more ac-
curately estimated, then QASCA takes the desired quality metric
into consideration and can better leverage the estimated worker’s
quality to judge how the worker’s answers might affect the quality
metric if questions are assigned. Then it selects the assignment that
could maximize the quality metric.

7. RELATED WORK
Crowdsourcing Systems: Nowadays, crowdsourcing has been
widely used to address challenging problems that are hard for
machines. Crowdsourced query processing systems, such as
CrowdDB [14], Deco [41] and Qurk [35] are built to incorporate the
crowd into query processing. Many studies investigate how to im-
plement crowd-based operators, e.g., Join [34,56,59], Sort [5,34],
Max [16,54], Group-by [9,33], and Enumeration [50]. Some recent
work [57] uses sampling to reduce operators’ costs. We explore
how to devise online task assignment approaches to improve the
result quality of generated questions. Our work can be extended to
some of them. For example, in [59], the authors iteratively publish
a batch of questions on the crowdsourcing platform and can benefit
by publishing questions using our system in each iteration.
Evaluation Metrics: Accuracy [8,21,22,30,44] and F-score [25,
31,42,56,59,60,63] are two widely used evaluation metrics for
crowdsourcing applications, where Accuracy evaluates the overall
quality and F-score focuses on the quality of a specific label. Note
that there are other metrics defined based on different purposes. In
entity resolution, there are also several cluster-based metrics, such
asK-measure [27], GMD measure [36] and Rand-index [49]. For
strings, similarity-based metrics including Jaccard, Dice, Cosine
and Edit Distances are defined and used [11,55,58]. We focus on
studying the question-based metrics and propose solutions to esti-
mate the result quality based on distribution matrices.
Parameter Computation: There are also some approaches ad-
dressing how to compute worker model and prior parameters. Two
typical worker models are worker probability (WP) [16,26,30,62]
and confusion matrix (CM) [1,22,61]. To compute them, Raykar et

10The real quality of each worker is calculated by leveraging the ground truth T and
the answer setD. We can follow Section 6.2.2 (Equation 20) to compute the real CM.

al. [43] leveraged empirical Bayesian analysis to estimate the pa-
rameters; Ipeirotis et al. [22] applied EM algorithm to iteratively
update the parameters; Venanzi et al. [52] used Community Detec-
tion methods to compute parameters, which works well for workers
with limited answers. There are also some works [8,26,61] ad-
dressing more general worker models and discussing how to infer
the parameters. Other works [21,48] make a comparison among
different inference methods. Different from them (offline inference
problem), we study an online task assignment problem, and their
parameter computation methods can be adapted to our framework.
Task Assignment: CDAS [30] and AskIt! [3] are the two systems
that are most similar to QASCA. CDAS [30] adopts a quality-
sensitive answering model along with an early termination scheme,
and AskIt! [3] utilizes entropy-like methods to measure each ques-
tion’s uncertainty. Compared with these systems, QASCA takes
into account different evaluation metrics in the assignment scheme,
and achieved better result quality. There are some other works
about online task assignment in crowdsourcing, but they focus on
different perspectives. Parameswaran et al. [40] develop algorithms
to filter items based on a set of properties; Gao et al. [15] intro-
duce a cost sensitive method to determine whether questions can
be better solved by crowdsourcing or machine-based methods; Xi
et al. [6] address the budget allocation problem using the proposed
extended Markov Decision Process framework; Mo et al. [38] study
how to optimize the plurality of a HIT; Sheng et al. [47] investigate
how much repeated labeling helps in achieving better results; Ho et
al. [18,19] and Mo et al. [37] explore how to assign heterogeneous
tasks (tasks of multiple types) to workers.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the online task assignment prob-

lem. We proposed a novel assignment framework by incorporat-
ing evaluation metrics into assignment strategies. We generalized
the widely used existing evaluation metrics (Accuracy and F-score)
to be able to quantify the result quality w.r.t a distribution matrix.
We designed optimal result vector selection algorithms and two re-
spective efficient online assignment algorithms for Accuracy and
F-score. We built the QASCA system by integrating our novel as-
signment framework with AMT, and evaluated our system on five
real applications. The experimental results showed that QASCA
achieved much better result quality than existing approaches.

In the future, we plan to extend our work in five aspects: (1) As
QASCA maintains the worker history and expects them to come
back to answer another set of questions, it might be interesting
to construct certain scope of active advertisers and actively re-
cruit them to answer questions; (2) We will further investigate the
method of dealing with continuous values and more complicated
question types (e.g., cluster-based question [56] and transcription
question [23]); (3) More evaluation metrics will be incorporated in
the assignment framework; (4) We focus on question assignments
over a specific (or homogeneous) task, then how to incorporate het-
erogeneous tasks into the assignment framework is another direc-
tion; (5) We also plan to consider if a requester has multiple met-
rics in her mind (say both Accuracy and F-score), then how can we
wisely assign questions to a coming worker.
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APPENDIX
A. QASCA ARCHITECTURE

QASCA contains four components, namely APP Manager, Web
Server, Task Assignment and Database component in all. To deploy
an application, a requester has to configure the three files in APP
Manager. We first introduce the four components, and then show
how to deploy an entity resolution application in QASCA.
APP Manager: To deploy n questions in QASCA, the requester
first needs to create an application folder in APP Manager, which
consists of three files: (1) Question File is a JSON-format file
which stores the set of n questions and their possible labels; (2) UI
Template File is used to render k questions as a user understand-
able HIT in HTML templates; (3) Configuration File contains all
required information about the application, including the number
of questions in each HIT (k), the amount of money paid for each
HIT (b), the total budget (B), and the evaluation metric.
Web Server: Web Server processes the requests from workers in
crowdsourcing platform (AMT). If a worker requests a HIT, Web
Server calls Task Assignment, which dynamically generates a HIT
and assigns it to the worker; if a worker completes a HIT, Web
Server updates the answer set D and parameters (including prior
and worker model) in Database.



Table 5: Table of Notations
Symbol Description

Question Model
qi The i-th question (1 ≤ i ≤ n)
Lj The j-th label (1 ≤ j ≤ `)
ti The index of true label for qi (1 ≤ i ≤ n), 1 ≤ ti ≤ `
Di Answer set for question qi (1 ≤ i ≤ n)
S Questions set: S = {q1, q2, . . . , qn}
D Answer set for all questions: D = {D1, D2, . . . , Dn}
Qc Current distribution matrix (size n× ` matrix)

Task Assignment
k The number of questions per HIT
Sw Candidate questions set for worker w
Qw Estimated distribution matrix for worker w (size n× ` matrix)
X Assignment vector (1× n), where each element xi = {0, 1}
QX Assignment distribution matrix forX (size n× ` matrix)
R Result vector (1× n), where each element 1 ≤ ri ≤ `
awi The index of answered label by worker w for qi

Parameters
mw Worker Probability (WP) for worker w
Mw Confusion Matrix (CM) for worker w (size `× ` matrix)
pj Prior probability for label Lj (1 ≤ j ≤ `)

Task Assignment: Task Assignment is the core component in
QASCA. When a worker requests a HIT through Web Server,
based on the question model and the worker model stored in
Database, Task Assignment identifies k questions for the worker
by considering the evaluation metric specified in APP Manager.
Then it dynamically creates a HIT consisting of the identified k
questions, and assigns the HIT to the worker via Web Server. The
online task assignment problem is formally defined in Section 2.
Database: Database is the component that stores tables containing
question and worker model. When a worker requests a HIT through
Web Server, tables are queried by Task Assignment; when a worker
completes a HIT, tables are updated by Web Server. After all HITs
are completed, Database returns the result of each question based
on the question model and the evaluation metric.

Suppose a requester wants to deploy an entity resolution appli-
cation on QASCA and the application has generated n = 1000
questions where each question has the labels L1 =“equal” and
L2 =“non-equal”. The requester first creates an application folder
in the APP Manager component. In the created folder, the requester
(1) deploys the questions as JSON-format in the Questions File, (2)
specifies the HTML template in the UI Template File, (3) indicates
in the Configuration File that each HIT contains k = 10 questions
and is paid b = $0.02, and the total invested budget is B = $7,
and the evaluation metric is set as F-score for “equal” with α=0.5.

When a worker requests a HIT, Web Server acquires worker-id
from AMT and passes it to Task Assignment, which identifies k =
10 questions based on the specified evaluation metric (F-score for
“equal” with α=0.5) in APP Manager, and returns a HIT containing
the identified questions to the worker. When a worker completes a
HIT, Web Server updates the answer set and parameters.

The total number of HITs is denoted as m = B/b = 350. After
obtaining the answers of all m = 350 HITs, QASCA terminates
and returns the derived result for each question based on consid-
ering the question model (stored in Database) and the evaluation
metric (F-score for “equal” with α = 0.5).

B. SUMMARY OF NOTATIONS
We present the summary of notations in Table 5.

C. PROOF FOR THEOREM 1
Theorem 1: For Accuracy∗, the optimal result r∗i (1 ≤ i ≤ n)

of a question qi is the label with the highest probability, i.e., r∗i =
arg maxj Qi,j .

PROOF. We prove the theorem by proof of contradiction. Sup-
pose the theorem does not hold. Then in the optimal result vector

R∗ = [r∗1 , r
∗
2 , . . . , r

∗
n], there exists an index t (1 ≤ t ≤ n), such

that r∗t 6= arg maxj Qt,j . So we can construct a result vector
R′ = [r′1, r

′
2, . . . , r

′
n] where r′t = arg maxj Qt,j and r′i = r∗i for

i 6= t. Then we have Accuracy∗(Q,R′) − Accuracy∗(Q,R∗) =
(Qt,r′t − Qt,r∗t )/n > 0, which contradicts that R∗ is the optimal
result vector. Thus the theorem is correct.

D. PROOF FOR THEOREM 2
Theorem 2: Given Q and α, for F-score∗, the optimal result r∗i

(1 ≤ i ≤ n) of a question qi can be derived by comparing Qi,1
with the threshold θ = λ∗ · α, i.e., r∗i = 1 if Qi,1 ≥ θ and r∗i = 2
if Qi,1 < θ.

PROOF. In the proof for Theorem 2, we assume that λ∗
is known, and we try to exploit how the optimal result vec-
tor R∗ can be constructed with the known λ∗. As λ∗ =
maxR F-score∗(Q,R, α), which means that for any R ∈ {1, 2}n,
the inequality λ∗ ≥ F-score∗(Q,R, α) holds, i.e., we have λ∗ ≥∑n

i=1 Qi,1·1{ri=1}
α·

∑n
i=1 1{ri=1}+(1−α)·

∑n
i=1 Qi,1

, then we can further derive

∑n

i=1
(Qi,1 − λ∗ · α) · 1{ri=1} ≤ λ

∗ · (1− α) ·
∑n

i=1
Qi,1. (22)

From another perspective, the optimal result vector R∗ satisfies
λ∗ = F-score∗(Q,R∗, α), thus similarly we can derive∑n

i=1
(Qi,1 − λ∗ · α) · 1{r∗

i
=1} = λ

∗ · (1− α) ·
∑n

i=1
Qi,1. (23)

As λ∗, Q, and α are known, for ease of representation let us
denote a fixed constant A and a function h(R) as follows{

A = λ∗ · (1− α) ·
∑n
i=1 Qi,1,

h(R) =
∑n
i=1 (Qi,1 − λ∗ · α) · 1{ri=1}.

Then Equation 22 and 23 can be represented as: (1) for any R ∈
{1, 2}2, h(R) ≤ A; and (2) the optimal R∗ satisfies h(R∗) = A.
Next we prove that if we can deriveR′ = arg maxR { h(R) }, then
R′ = [r′1, r

′
2, . . . , r

′
n] is the optimal result vector (i.e., R′ = R∗).

From Equation 22, since R′ ∈ {1, 2}2, we can derive h(R′) ≤ A.
From R′ = arg maxR { h(R) }, we know that

maxR{ h(R) } = h(R′) and from Equation 23, we know that
maxR{ h(R) } ≥ h(R∗) = A. So we have h(R′) ≥ A. As
h(R′) ≤ A, we have h(R′) = A, or

∑n
i=1(Qi,1 − λ∗ · α) ·

1{r′i=1} = λ∗ · (1− α) ·
∑n
i=1Qi,1, and finally we can derive λ∗

from the above Equation: λ∗ =

∑n
i=1 Qi,1·1{r′

i
=1}

α·
∑n
i=1 1{r′

i
=1}+(1−α)·

∑n
i=1 Qi,1

.

As λ∗ = F-score∗(Q,R′, α), i.e., R′ derives the optimal λ∗,
we know R′ = R∗. Then R∗ = arg maxR{ h(R) }, i.e., R∗ =
arg maxR

{∑n
i=1(Qi,1−λ∗ ·α)·1{ri=1}

}
. In order to maximize

h(R), we can set 1{ri=1} = 1 (or ri = 1) if Qi,1 ≥ λ∗ · α and
1{ri=1} = 0 (or ri = 2) if Qi,1 < λ∗ · α. Then we get

r∗i =

{
1 if Qi,1 ≥ λ∗ · α,
2 if Qi,2 < λ∗ · α.

Thus we have proved that there exists a threshold θ = λ∗ · α,
such that R∗ = [ r∗1 , r

∗
2 , . . . , r

∗
n ] can be constructed as r∗i = 1 if

Qi,1 ≥ λ∗ · α and r∗i = 2 if otherwise.

E. COMPUTING THE QUALITY OF Q
FOR F-SCORE (ALGORITHM 1)

For a given Q, In order to derive the optimal λ∗ such that
λ∗ = maxR F-score∗(Q,R, α), following the discussions in Sec-
tion 3.2.3, we design Algorithm 1. It iteratively updates λ until
convergence. Let λt denote the λ for the t-th iteration, so initially
λ1 = λinit = 0. In the t-th iteration (λt is known), it first con-
structs a new result vector R′ using the known λt (lines 5-7) and



Algorithm 1 Measure the Quality of Q for F-score
Input: Q, α
Output: λ

1: λ = 0 ; // initialized as 0 (λinit = 0)
2: R′ = [ ] ;
3: while True do
4: λpre = λ; // record λ for this iteration
5: // construct newR′ = [r′1, r

′
2 . . . r

′
n]

6: for i = 1 to n do
7: ifQi,1 ≥ λ · α then r′i = 1 else r′i = 2

8: λ =

∑n
i=1 Qi,1·1{r′

i
=1}∑n

i=1
[ α·1{r′

i
=1}+(1−α)·Qi,1 ]

; // F-score∗(Q,R′, α)

9: if λpre == λ then
10: break
11: else
12: λpre = λ

13: return λ

then update λt to λt+1 = F-score∗(Q,R′, α) (line 8) for the next
iteration. The way to construct each r′i (1 ≤ i ≤ n) in R′ is
based on comparing Qi,1 with the threshold λt · α, i.e., r′i = 1 if
Qi,1 ≥ λt · α and ri = 2 if otherwise. Finally it decides whether
it converges (i.e., λt+1 = λt) or not (lines 9-12).

F. PROOF FOR THEOREM 3
Theorem 3: The defined δt+1 (in Definition 2) satisfies Property

1 and Property 2.
PROOF. As mentioned before, in the definition of computing

δt+1 (Definition 2), the construction ofRX (Equation 15) is similar
to the construction of R′ in choosing the optimal result vector for a
given Q (Algorithm 1). Thus the basic idea of the proof is to make
a comparison with Algorithm 1.

Before making the comparison, we present some theoretical re-
sults proved in [12] for the Dinkelbach framework (which ap-
plies to Algorithm 1). It has proved that starting from the initial
λinit ≤ λ∗, the λinit will be iteratively increased to λ∗ until
convergence. It means that the update from λt to λt+1 in Algo-
rithm 1 also conforms to our two properties, i.e., (1) if λt < λ∗,
then λt < λt+1 ≤ λ∗ and (2) if λt = λ∗, then λt = λt+1 = λ∗.

Recall that δ∗ and X∗ respectively denote the optimal value
and the optimal assignment vector, and we can derive δ∗ =

maxR F-score∗(QX
∗
, R, α). Thus, if Algorithm 1 takes QX

∗
and

α as the input, then λ∗ = maxR F-score∗(QX
∗
, R, α), which is

exactly δ∗, i.e., λ∗ = δ∗.
The comparison is conducted based on comparing our online as-

signment algorithm with Algorithm 1, which takes QX
∗

and α as
the input. As derived above, the optimal value for both algorithms
are the same (i.e., δ∗).

To prove Property 1, suppose both algorithms start with δt < δ∗,
and they update their respective values (denoted as δt+1 and λt+1

respectively) for the next iteration as follows{
δt+1 = maxX F-score∗(QX , R̂X , α),
λt+1 = F-score∗(QX

∗
, R′, α).

(24)

Note that for a feasibleX , R̂X is constructed by comparing each
QXi,1 (1 ≤ i ≤ n) with the threshold δt · α. And R′ is similarly
constructed by comparing each QX

∗
i,1 (1 ≤ i ≤ n) with the same

threshold δt · α. As X∗ is also a feasible assignment, we have
(QX

∗
, R′) ∈ {(QX , R̂X) | X is feasible }. Then by considering

Equation 24, we derive δt+1 ≥ λt+1. As mentioned above, since
δt < δ∗, the properties in [12] guarantee that λt+1 > δt, then we
derive δt+1 > δt. As δ∗ is the optimal objective value, we can
finally derive δt < δt+1 ≤ δ∗, which proves Property 1.

To prove Property 2, we apply the same comparison. Suppose
both algorithms start with δt = δ∗, then they are updated by Equa-
tion 24. Similarly we have δt+1 ≥ λt+1. As δt = δ∗, following

Algorithm 2 F-score Online Assignment
Input: Qc, Qw, α, k, Sw

Output: HIT

1: δ = 0 ; // initialized as 0 (δinit = 0)
2: while True do
3: δpre = δ

4: // get the updated δt+1 and its correspondingX
5: X, δ = Update(Qc, Qw, α, k, Sw, δ)
6: if δpre == δ then
7: break
8: else
9: δpre = δ

10: // construct HIT based on the returnedX
11: for i = 1 to n do
12: if xi == 1 then
13: HIT = HIT ∪ {qi}
14: return HIT

the properties in [12], we have λt+1 = δt = δ∗. Since δt+1 ≤ δ∗,
we derive δt = δt+1 = δ∗, which proves Property 2.

G. PROOF FOR THEOREM 4
Theorem 4: The problem of computing δt+1 (Definition 2) can

be reduced to a 0-1 FP problem.

PROOF. Given Qc, Qw and a feasible X , from Equation 1 we
know that QX can be expressed by X , Qc and Qw, then we have

QXi,1 = xi ·Qwi,1 + (1− xi) ·Qci,1.

GivenQX and δt, we know that R̂X is constructed by setting r̂Xi =
1 if QXi,1 ≥ δt · α and r̂Xi = 2 if QXi,1 < δt · α. It means that if
we construct R̂c (R̂w) by setting r̂ci = 1 (r̂wi = 1) if Qci,1 ≥ δt · α
(Qwi,1 ≥ δt ·α) and r̂ci = 2 (r̂wi = 2) ifQci,1 < δt ·α (Qwi,1 < δt ·α),
then R̂X can be expressed with the given R̂c and R̂w as follows:

1{r̂Xi =1} = xi · 1{r̂wi =1} + (1− xi) · 1{r̂ci=1}.

As xi = {0, 1}, if we plug the above derived QXi,1 and 1{r̂Xi =1}

into F-score∗(QX , R̂X , α) =

∑n
i=1 Q

X
i,1·1{r̂X

i
=1}∑n

i=1[ α·1{r̂X
i

=1}+(1−α)·QXi,1 ]
, and

set the parameters bi, di (1 ≤ i ≤ n), β and γ following
(1) bi = di = 0 for qi /∈ Sw, and
(2) bi, di (qi ∈ Sw), β and γ are set as:

bi = Qwi,1 · 1{r̂wi =1} −Qci,1 · 1{r̂ci=1}
di = α · (1{r̂wi =1} − 1{r̂ci=1}) + (1− α) · (Qwi,1 −Qci,1)
β =

∑n
i=1Q

c
i,1 · 1{r̂ci=1}

γ =
∑n
i=1[ α · 1{r̂ci=1} + (1− α) ·Qci,1 ],

then the problem is to maximize

F-score∗(QX , R̂X , α) =
∑n
i=1(xi · bi) + β∑n
i=1(xi · di) + γ

. (25)

s.t. X is a feasible assignment vector. As Qc, Qw, R̂c, R̂w, Sw,
α, and δt are known, then xi (1 ≤ i ≤ n) are the only unknown
variables. Let all the feasible assignment vectors form the subspace
Ω ⊆ {0, 1}n where |Ω| =

(|Sw|
k

)
. If we set zi = xi (1 ≤ i ≤ n),

then each z ∈ Ω corresponds to a feasible assignment vectorX . So
the problem is to maximize

∑n
i=1(zi·bi)+β∑n
i=1(zi·di)+γ

s.t. z ∈ Ω ⊆ {0, 1}n,
which is a 0-1 FP problem.

H. F-SCORE ONLINE ASSIGNMENT AL-
GORITHMS (ALGORITHM 2 AND 3)

Algorithm 2 is the F-score Online Assignment Algorithm, which
iteratively updates δinit until convergence. In each iteration (lines
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Figure 7: Additional Results on Real Datasets by Varying # Completed HITs

Algorithm 3 Update
Input: Qc, Qw, α, k, Sw, δ
Output: X,λ

1: λ = 0 ; // initialized as 0 (λinit = 0)
2: X = [ ] ;
3: R̂c = [ ]; R̂w = [ ];

4: b = d = [0, 0, . . . , 0]; β = 0; γ = 0;

5: // construct R̂c (R̂w) by comparingQc (Qw) with δ · α; (lines 6-9)
6: for i = 1 to n do
7: ifQci,1 ≥ δ · α then r̂ci = 1 else r̂ci = 2

8: for qi ∈ Sw do
9: ifQwi,1 ≥ δ · α then r̂wi = 1 else r̂wi = 2

10: Compute bi, di (1 ≤ i ≤ n) and β, γ following the proof in Theorem 4;
11: // Update λ from λinit until convergence; (line 12-21)
12: while True do
13: λpre = λ

14: compute TOP , a set which contains k questions in Sw that correspond to
the highest value of bi − λ · di;

15: for i = 1 to n do
16: if qi ∈ TOP then xi = 1 else xi = 0

17: λ =
∑n
i=1( xi·bi )+β∑n
i=1

( xi·di )+γ
;

18: if λpre == λ then
19: break
20: else
21: λpre = λ

22: return X,λ

3-9), it first calls the Update Algorithm (the details are introduced in
the following two paragraphs) to update δ (line 5), and then decide
whether it converges or not (lines 6-9). Finally, it uses the assign-
ment vector X corresponding to the converging δ to construct a
HIT (lines 10-14). The converging δ and its corresponding assign-
ment vector X are both optimal (i.e., respectively δ∗ and X∗).

As we have proved that that the problem of computing λt+1 can
be reduced to a 0-1 FP problem (Theorem 4), following the Dinkel-
bach framework [12] as discussed in Section 3.2.3, the key is to
solve the sub-problem z′ = argmaxz

∑n
i=1(bi − λ · di) · zi. In

Theorem 4, in order to get z′, due to the constraint of Ω (contain-
ing all feasible assignments), we should select k questions in Sw

(qi ∈ Sw) with the largest values of (bi − λ · di).
We present the detailed Update Algorithm in Algorithm 3, which

leverages Dinkelbach framework [12] to efficiently compute δt+1

based on δt. For efficiency’s sake it first constructs R̂c, R̂w (lines 5-
9), and bi, di (bi ∈ Sw), β, γ (line 10) following the details in The-
orem 4 . Then it iteratively updates λinit until convergence (lines
11-21). In each iteration (lines 13-21), with known λ, it selects k
questions in Sw (qi ∈ Sw) with the largest values of (bi − λ · di)
(line 14), which needs O(n) time by PICK algorithm [2]. Then
it updates λ following Equation 25 (line 17). Finally it decides
whether it converges or not (lines 18-21).

I. ADDITIONAL RESULTS
In order to show both Accuracy and F-score on all datasets,

we add five additional experiments, and the evaluation metrics
are respectively F-score for datasets FS and SA, and Accuracy for
datasets ER, PSA and NSA. To be precise, for FS, we set the eval-
uation metric as F-score for label “≥” with α = 0.5; and for SA,
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Figure 8: F-Score on CompanyLogo Dataset with 214 Labels

we set the evaluation metric as F-score for label “positive” with
α = 0.5. Apart from the change of evaluation metrics, we ap-
ply the same experimental settings to the new experiments as our
original ones (Table 1). We calculate the result quality for differ-
ent systems with the number of completed HITs in Figure 7. The
new experiments have similar results with our original ones and
QASCA outperforms other systems on all datasets.

J. EXPERIMENT ON MULTIPLE LABELS
We evaluate the efficiency and effectiveness of our model for

F-score on a real-world dataset with a large number of labels. The
dataset was constructed using the logos of Fortune 500 compa-
nies11, denoted by the “CompanyLogo” dataset. It had 500 ques-
tions in total, where each question contained a company logo, and
we asked workers to decide in which country the company was
founded. There were 214 labels (i.e., categories) in a question,
where each label corresponded to a country. Each question was as-
signed to 3 workers on average and each HIT contained 5 questions.
So there were 500×3

5
= 300 HITs. We deployed the application on

our system QASCA and set the evaluation metric as F-score for la-
bel “USA” with α = 0.5. There were 128 out of 500 questions
whose true labels corresponded to “USA”. We recorded the result
quality with different numbers of completed HITs and the maximal
assignment time among all HITs.

The experimental results (see Figure 8) showed that QASCA
achieved 90% F-score by completing only two thirds of the HITs.
That is, each question got only 2 answers on average from the
crowd. This result validated the effectiveness of our assignment
model for a large number of categories. Moreover, the maximal as-
signment time was 0.005s, and thus our method was also fairly ef-
ficient. This is because F-score focuses on the quality of a specific
label (or a certain group of labels), and we can optimize its cal-
culation by reducing a large number of labels into two categories,
where one category (called “target label”) contains the focused la-
bel and the other category (called “non-target label”) includes the
remaining labels. In our example, the “target label” was “USA”,
and all the other labels formed the “non-target label”. Therefore,
the calculation of F-score was actually independent of the number
of categories. If requesters focus on the quality of multiple labels,
they can use Accuracy instead of F-score.

11http://en.wikipedia.org/wiki/Fortune_Global_500


