
Interactive and Deterministic Data Cleaning

A Tossed Stone Raises a Thousand Ripples

Jian He1˚ Enzo Veltri2 Donatello Santoro2 Guoliang Li1
Giansalvatore Mecca2 Paolo Papotti3˚ Nan Tang4

1Tsinghua University, China 2Università della Basilicata, Potenza, Italy 3Arizona State University, USA
4Qatar Computing Research Institute, HBKU, Qatar

{hej13, liguoliang}@tsinghua.edu.cn, ppapotti@asu.edu, ntang@qf.org.qa
{enzo.veltri, donatello.santoro, giansalvatore.mecca}@gmail.com

ABSTRACT
We present Falcon, an interactive, deterministic, and

declarative data cleaning system, which uses SQL update
queries as the language to repair data. Falcon does not
rely on the existence of a set of pre-defined data quality
rules. On the contrary, it encourages users to explore the
data, identify possible problems, and make updates to fix
them. Bootstrapped by one user update, Falcon guesses a
set of possible sql update queries that can be used to repair
the data. The main technical challenge addressed in this
paper consists in finding a set of sql update queries that is
minimal in size and at the same time fixes the largest num-
ber of errors in the data. We formalize this problem as a
search in a lattice-shaped space. To guarantee that the cho-
sen updates are semantically correct, Falcon navigates the
lattice by interacting with users to gradually validate the
set of sql update queries. Besides using traditional one-hop
based traverse algorithms (e.g., BFS or DFS), we describe
novel multi-hop search algorithms such that Falcon can
dive over the lattice and conduct the search e�ciently. Our
novel search strategy is coupled with a number of optimiza-
tion techniques to further prune the search space and e�-
ciently maintain the lattice. We have conducted extensive
experiments using both real-world and synthetic datasets to
show that Falcon can e↵ectively communicate with users
in data repairing.

CCS Concepts
•Information systems Ñ Extraction, transformation
and loading; Data cleaning;

Keywords
Data Cleaning; Interactive; Deterministic; Declarative

˚Work partially done while interning/working at QCRI.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
c� 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915242

Date Molecule Laboratory Quantity
t1 11 Nov C16H16Cl Austin 200
t2 12 Nov statinÑC22H28F Austin 200
t3 12 Nov C24H75S6 N.Y.Ñ New York 1000Ñ100
t4 12 Nov statin Boston 200
t5 13 Nov statin Austin 200
t6 15 Nov C17H20N Dubai 150

Table 1: Dataset Tdrug with drug tests.

1. INTRODUCTION
High quality data is important to all businesses, and data

cleaning is an important but tedious step. In fact, removing
errors in order to get high quality data takes most of data
analysts’ time [31], and some studies predict a shortage of
people with the skills and the know-how for these tasks [33].

Consequently, the number and variety of users who are
getting close to the data for data quality tasks are destined
to increase, and we cannot assume that only IT sta↵ and
data scientists are in charge of the data cleaning process.

The above requirement poses new and interesting re-
search challenges. Indeed, a large body of the research
has been conducted on rule-based data repairing, which
consists of using integrity constraints to identify data er-
rors [11,12,17,25,40], and automated algorithms to enforce
these constraints over the data [7, 22, 23, 32, 43]. However,
in the evolving scenario of data cleaning, these approaches
show a serious limitation. Specifically, they assume that
data quality rules are declared upfront by domain experts
who understand the data and write logical formulas or pro-
cedural code. Despite many promising results, these systems
have failed short in terms of adoption in industrial tools.

We address the problem of improving the data cleaning
process by involving non-expert users as first-class citizens,
and present Falcon, a novel system for interactive data re-
pairing. Falcon departs from other interactive data clean-
ing systems [20,27,37,41,46], since it brings together a sim-
ple, user-oriented interaction paradigm with the benefits of
a declarative, deterministic, and expressive data quality lan-
guage – sql update (sqlu) queries. In fact, the system is
bootstrapped by an update to the data made by the user to
rectify an error; based on that, it infers a set of sqlu queries
that can be used as data quality rules to correct more errors.
We illustrate by example how it works.

Example 1: Table 1 reports a sample real-world dataset
Tdrug for experiments collected from di↵erent labs. Each
record represents the quantity and date of a test done in

893



a lab over a certain molecule. Errors are highlighted. Con-
sider the following three user updates.

�1: t3rLaboratorys – “New York” (from “N.Y.”)
�2: t3rQuantitys – 100 (from 1000)
�3: t2rMolecules – “C22H28F” (from “statin”)

There exist multiple interpretations for each update. For
instance, two possible semantics behind �1 could be either
reformatting all “N.Y.” to “New York” as shown in Q1, or
changing all Laboratory values to “New York” as shown in
Q1

1, regardless of their original values.

Q1: UPDATE Tdrug SET Laboratory = “New York”
WHERE Laboratory = “N.Y.”;

Q1
1: UPDATE Tdrug SET Laboratory = “New York”;

Similarly, one possible interpretation of �2, as given in
Q2, is that it is specific for Molecule and Date. Hence, it is
hard to generalize this update to apply it to other tuples.

Q2: UPDATE Tdrug SET Quantity = 100
WHERE Molecule =“C24H75S6” AND Date =“12 Nov”;

Update �3 is more interesting. Consider the following
three interpretations with di↵erent e↵ects. Q3 repairs er-
rors in both t2 and t5. Q1

3 also repairs both t2 and t5, but
additionally, it modifies t4rMolecules to “C22H28F”, which is
an erroneous update, since in Boston they test a di↵erent
statin molecule. On the other hand, the tuple-specific query
Q2

3 only corrects t2 but misses the chance to repair t5.

Q3: UPDATE Tdrug SET Molecule = “C22H28F”
WHERE Molecule =“statin” AND Laboratory =“Austin”;

Q1
3: UPDATE Tdrug SET Molecule = “C22H28F”

WHERE Molecule = “statin”;

Q2
3: UPDATE Tdrug SET Molecule = “C22H28F”

WHERE Molecule = “statin” AND Laboratory = “Austin”
AND Date = “12 Nov” AND Quantity = 200;

From Example 1, one may observe that there might exist
a large number of sqlu queries. Indeed, this large number
is not surprising, as up to thousands of precise and reliable
update queries can be needed in real-world settings, such as
Walmart catalog [14]. However, while an update is a perfect
starting point for the process of inferring the general scripts,
it comes with new challenges in terms of user interactions.

First, the search space for a new update is exponential to
the number of the attributes, and domain experts cannot
manually validate each of these sqlu queries. We have to
assume that a budget (e.g., #-user interactions) is given for
a specific update. Second, the discovery algorithm must be
fast (e.g., able to react in seconds) to enable user interac-
tions. However, each interaction may trigger the update of
data, which makes the search space a dynamic environment.
This dynamic behavior, together with the large search space
and a budget of user capacity, prevents the use of tradi-
tional tools for interactive response, such as precomputing
and caching. In order to e�ciently manage all potential up-
dates, and e↵ectively interact with users, we propose Fal-

con, which works as follows.

Workflow. The workflow of Falcon is depicted in Figure 1.
∂ The user examines the data and provides a repair � over
table T . ∑ Given�, Falcon generates a set of sqlu queries
as rules. It then selects a query Q whose validity is yet
unknown, and asks the user to verify it. ∏ Based on the
user verification on Q to be either True (i.e., valid) or False
(i.e., invalid), if Q is True, it utilizes Q to repair more data.

1

Falcon Table UI
T

 Interactive
Rule Engine

2 Query

3 True/False

Figure 1: Falcon workflow.

Obviously, Falcon can prune the search space based on the
validation on Q. The loop for steps ∑ and ∏ terminates
when either all usable queries have been identified, or the
user has no more capacity for the current �. Afterwards,
the user may go back to step ∂ to inspect another repair.

Contributions. We present Falcon, a novel interactive
data cleaning system, with the following contributions.

(1) To design data quality rules, we adopt the standard and
deterministic language of sql update statements (Section 2).
We discuss how to organize the search space of candidate
rules as a lattice, and its pruning principles, by leveraging
the properties of the lattice (Section 3).

(2) We devise e�cient algorithms for selecting candidate
queries to e↵ectively interact with the user (Section 4).
In particular, in contrast to traditional traversal (one-hop)
based approaches (Section 4.1), we present novel multiple-
hop search algorithms such that Falcon can accurately dis-
cover useful queries in a small number of steps (Section 4.2).

(3) We describe optimization techniques to improve the e�-
ciency of lattice maintenance (Section 5.1). We also propose
closed query sets to compress the lattice so as to improve the
search e�ciency (Section 5.2).

(4) Implemented on top of an open-source data wrangling
tool OpenRefine (http://openrefine.org), we have conducted
experiments with real-world and synthetic data to show the
e↵ectiveness and e�ciency of Falcon (Section 6).

Section 7 presents related work. Section 8 closes this pa-
per, followed by our agenda for future work.

2. PROBLEM STATEMENT
We first introduce the rules used to repair data (Sec-

tion 2.1). We then describe the search space of rules given
one user update (Section 2.2) and formally define the prob-
lem studied in this paper (Section 2.3). Finally, we discuss
its associated fundamental problems (Section 2.4).

2.1 SQL Update Queries: Mother Tongue
We adopt a simple and standard language to repair the

database, the language of update statements in sql (sqlu).
An sqlu statement updates records in a table T on at-

tributes A,B . . ., when some conditions hold. In this work,
we restrict the language to the case where updates are done
on one attribute A of table T with only boolean conjunctions:

UPDATE T SET A “ a WHERE boolean conjunctions

More specifically, each boolean conjunction is of the form
B “ v

B

, where B is an attribute of table T and v
B

is
a constant value from the domain of B, e.g., Molecule “
“statin”. Attribute B could also be the attribute to be up-
dated (i.e., B “ A), such as Laboratory in Q1 of Example 1.

894



We shall use the terms sqlu queries and data quality rules

(or simply rules) interchangeably in the following. We will
also treat updates and repairs equally.

Remark. sqlu queries used in this work are quite di↵erent
from the integrity constraints (ICs) that are widely adopted
by other data cleaning systems, such as functional depen-
dencies [1], conditional functional dependencies [16], condi-
tional inclusion dependencies [7], and denial constraints [12].
ICs are used to capture errors as violations, where one vi-
olation is a set of values that is not semantically coherent
when putting together. In other words, ICs do not explicitly
specify how to change data values to resolve violations. In
contrast, sqlu statements explicitly specify how to change
data values, which are thus considered to be deterministic.
The proposed sqlu is powerful enough to support existing
deterministic cleaning languages such as fixing rules [43],
constant CFDs [16], and widely used ETL rules.

Note that in this work we restrict our discussion to con-
junctive sqlu queries for three reasons. (1) It is easy for
users to understand, which is important for interacting with
users; (2) It is e�cient to reason about the relationship be-
tween di↵erent queries; and (3) It is known that queries
with other formulae such as disjunctions or negations can
be rewritten into an equivalent conjunctive formula [1].

2.2 Search Space for One Repair
Consider a repair � : trAs – a1 that changes the value

of trAs from error a to its correct value a1 with a ‰ a1. We
want to generalize this action so as to repair more errors.

Naturally, there exist multiple queries to interpret this re-
pair �. Implicitly, for each query, the SET clause is A – a1.
Hence we focus on the WHERE clause. Consider a boolean
condition as B “ v

B

, where B could be any attribute in
relation R. In an open-world assumption, the constant v

B

can be assigned from an infinite set of values, which is nei-
ther reasonable nor feasible in practice. Instead, we adopt a
closed-world assumption by only using the evidence from tu-
ple t, the tuple that is being repaired. In other words, for a
queryQ w.r.t. the above update�, if an attributeB appears
in the WHERE condition of Q, then the boolean conjunction
is B “ trBs, which is to bind the constant v

B

to the value
trBs. As a special query, we consider H as no condition be-
ing enforced in the WHERE clause. Stating in another way,
it is to update all A values in T to a1.

In summary, given a repair trAs – a1 for tuple t in table
T of relation R, the set Q of all rules for such a repair is:

UPDATE T SET A “ a1 WHERE X “ trXs

where X is an arbitrary subset of R, which can range from
the empty set H to all attributes in R (i.e., X “ R). Hence,
there are 2|R| possibilities of X, where |R| is the arity of
relation R. In other words, we can infer 2|R| queries for
each update. Consider update �3 in Example 1, we can
infer 24 “ 16 queries, where three of them are shown as
Q3, Q

1
3 and Q2

3.

2.3 Problem Statement
Given a repair, one wants to find the queries that are

semantically correct so as to repair the database.

Valid sqlu query. Given a repair, an sqlu query is valid

if the query is semantically correct. Since we do not know
which queries are valid in advance, we need to ask the user

to either validate the query as semantically correct, or inval-
idate it otherwise. Naturally, we want to find all valid sqlu

queries and use them to repair the database. A straight-
forward strategy is to ask the user to check every possible
query. Of course, this method is rather expensive as there
could be a large number of possible queries, for which we will
use containment relationships among queries to improve the
search of queries (Section 3).

Furthermore, the user normally has limited capacity for
the number of queries he/she can verify. To this end, we
want to find the cost-e↵ective queries to maximize the num-
ber of repaired tuples based on the queries validated by the
user, which is formally defined below.

Budget repair problem. Given a set Q of sqlu

queries, a table T , and a budget B for the number of
interactions the user can a↵ord, the budget repair prob-

lem is to select B queries Q1 from Q, so as to maximize
| î

QPQ1^validpQq“T QpT q|.
Here, validpQq is a boolean function that is T (resp. F) if

Q is a valid query (resp. not), and QpT q represents the set
of repairs of applying query Q over table T .

Observe that in the above problem, given a query Q, the
validity of Q (i.e., validpQq) is unknown, to be verified by
the user. Such a problem is typically categorized under the
framework of online algorithms [3], where one can process
input piece-by-piece in a serial fashion (i.e., the verification
validpQq of some Q), without having the entire input (i.e.,
the value validpQq for each Q in Q) available from the start.

O✏ine problem. Its corresponding o✏ine variant is the
following. Given as input that whether each query Q in Q
is valid or not is known, how to select B queries from Q to
maximize the number of repaired tuples. The objective of
designing an online algorithm is to get answers as accurate as
the o✏ine problem. It is easy to see that the o✏ine problem
of its online version (i.e., the budget repair problem) is NP-
hard, which can be readily proved by a reduction from the
maximum-coverage problem [34].

On analogy of what is proved in [5], when the o✏ine vari-
ant is NP-hard, there is no e�cient algorithm for computing
an optimal solution for its online algorithm. In other words,
when the o✏ine variant is intractable, there is no hope to
find an optimal solution with the cost in a constant factor
of the online variant (a.k.a. a competitive analysis [39]).

However, not all is lost. As will be shown later, we can
organize all queries in a graphical structure, such that when
the user verifies a query Q as valid or invalid, we can even
generate more inputs by computing the validity of queries
Q1 that are related to Q (Section 3). Even better, we de-
vise e�cient algorithms to search over the above graphical
structure (Section 4) and empirically show the e↵ectiveness
of the presented strategies (Section 6).

2.4 Fundamental Problems
Let Q` be a set of valid queries w.r.t. one user update.

Termination problem. The termination problem deter-
mines whether a rule-based process will stop, given Q` and
an instance T . We can readily verify that no matter in what
order the queries in Q` are executed, the whole process will
terminate, since the execution of each query is deterministic.

Conflicting queries. Two queries Q1 and Q2 are conflict-

ing queries if there exists a tuple t1 such that the following

895



two sequences of sql updates will obtain di↵erent results:
(1) Q1pQ2pt1qq, i.e., applying Q2 first to t followed by Q1,
and (2) Q2pQ1pt1qq.

Note that, the search space w.r.t. one repair � : trAs – a1

is a set Q of queries (Section 2.2), where each query Q P Q is
a way to generalize the action of changing trAs to a specific
value a1, by considering di↵erent attribute combinations. In
other words, no query Q will change a tuple to a value a2

that is di↵erent from a1. Hence, conflicting queries will not
be generated in one lattice.

Determinism problem. The determinism problem asks
whether all repairing processes (with di↵erent repairing or-
ders of the sqlu queries) end up with the same repair, given
Q` and an instance T .

It is easy to verify that, given Q` and T , regardless of the
orders of the queries in Q` are applied, all data repairs areî

QPQ` QpT q, where T is the original instance. Hence, any
set of rules is trivially deterministic.

3. A LATTICE: FALCON SEARCH SPACE
In this section, we shall present our organization of the

search space, so as to enable both e�cient and e↵ective
search over the candidate rules. We start by discussing the
relationship between two data quality rules.

Rule containment. For two rules Q and Q1, we say that
Q is contained by Q1 (or Q1

contains Q), denoted by Q ®
Q1, if for all possible database instances T over the input
schema R, the result of QpT q is a subset of the result of
Q1pT q (i.e., QpT q Ñ Q1pT q).
Intuitively, the rule containment captures the semantic

relationship among rules. In other words, no matter which
database T is used, Q will update a subset of T tuples that
Q1 will update if Q ® Q1, since Q is more specific than Q1.

Example 2: Consider queries Q3, Q1
3 and Q2

3 in Exam-
ple 1. It is straightforward to see that both Q3 and Q2

3 are
contained by Q1

3 (i.e., Q3 ® Q1
3 and Q2

3 ® Q1
3), and Q2

3 is
contained by Q3 (i.e., Q2

3 ® Q3).
It is readily to verify that the query containment “®” is

a partial order over the set Q of all possible rules, which is
reflexive, antisymmetric, and transitive. More specifically:

[Reflexivity] Q ® Q, for any Q P Q.F
F[Antisymmetry] If Q ® Q1 and Q1 ® Q, then Q “ Q1.

[Transitivity] If Q ® Q1 and Q1 ® Q2, then Q ® Q2. F
For a query Q, we denote by attrpQq the set of distinct

attributes in its WHERE condition.
Note that for each user update, the sqlu queries have

the same value constraint on the same attribute, and thus
the rule containment verification is equivalent to a sim-
pler condition: Q ® Q1 if attrpQ1q is a subset attrpQq.
For instance, Q3 ® Q1

3 since attrpQ1
3q “ tMoleculeu Ñ

tMolecule, Laboratoryu “ attrpQ3q.
A↵ected tuples. For each query Q and instance T , we
call the tuples in QpT q a↵ected tuples, i.e., the tuples that
Q will repair. We also call |QpT q| the a↵ected number of
Q, relative to T . Consider Q3 and Tdrug in Example 1 for
instance. The a↵ected tuples are Q3pTdrugq “ tt2, t5u, and
its corresponding a↵ected number is |Q3pTdrugq| “ 2.
We discuss next how to organize these queries to facilitate

search strategies.

DMLQ(1)
˝

vv }}   ''
DML(1)

˝

�� ✏✏ **

DMQ(2)
‚

ww ✏✏ **

DLQ(1)
˝

tt vv ''

MLQ (2)
˛

~~ ✏✏ ��
DM(2)

‚

�� ''

DL(1)
˝

✏✏ **

DQ(2)
‚

�� **

ML(2)
˛

vv ✏✏

MQ(3)
Ÿ

tt ✏✏

LQ(3)
ô

ww ��
D(3)

`

''

M(3)
Ÿ

  

L(3)
ô

~~

Q(4)
‹

wwH (6)
:

Figure 2: A sample lattice graph.

A set with a partial order is a partially ordered set, or
poset. Hence, Q is a poset on the partial order ® of rule
containment. Moreover, consider any two rules Q and Q1.
They have a greatest lower bound: the most specific query
that is contained by both Q and Q1. This query, denoted
byQ^Q1, is the one w.r.t. attrpQqYattrpQ1q. Also, they have
a least upper bound: the most general query that contains
both Q and Q1. This query, denoted by Q _ Q1, is the one
w.r.t. attrpQq X attrpQ1q. Therefore, we can organize the
queries in our search space as a lattice.

Query lattice. Given a repair � and a database instance
T , we denote by pQ,®, T q the corresponding lattice, or sim-
ply pQ,®q when T is clear from the context. Each node in
the lattice corresponds to a query Q P Q. Each directed
edge from node Q to Q1 indicates that Q ® Q1 (Q is con-
tained inQ1) and |attrpQq| “ |attrpQ1q|`1 (with one di↵erent
attribute). Moreover, the a↵ected number associated with
each query is maintained in the lattice (we will discuss how
to compute the number in Section 5.1.2).

Example 3: Figure 2 depicts the lattice for dataset Tdrug

and update �3 given in Example 1. Each capital letter is an
abbreviation of an attribute, e.g., D for Date. The node ML
is for the query Q3 on attributes Molecule and Laboratory.
The edge from ML to M indicates that the query Q3 (for
ML) is contained in Q1

3 (for M). The number 2 in node ML
is the a↵ected number of |Q3pTdrugq|. Moreover, the greatest
lower bound (resp. lowest upper bound) of ML and DL is
MDL (resp. L). We postpone the discussion of the shapes
in the figure, e.g., “ô”, “‹” and “˝”, to Section 5.2.

Valid and maximal valid nodes. Given a lattice pQ,®q,
the node relative to a rule Q is valid if it is semantically
correct, thus should be executed to repair data. In our work,
if the validity of a rule is unknown, we rely on the user to
verify (see more details in Section 2.3). Fortunately, if a rule
Q is known to be valid, we can infer that Q1 is also valid if
Q1 ® Q. Moreover, the node relative to a valid rule Q is
maximal valid, if no Q2 is valid and Q ® Q2.

Example 4: Consider the lattice in Figure 2. Assume that
there are two valid queries to be applied: ML (Q3 in Exam-
ple 1); and the other query DL that represents on a certain
date a certain lab works on only one molecule. All red nodes
are invalid queries, i.e., the queries that users will semanti-
cally invalidate. The other nodes are valid nodes. Moreover,
the blue nodes DL and ML are maximal valid nodes.

One nice property of using a lattice is that it provides
opportunities to prune nodes to be visited during traversal.

896



Lattice pruning. If a node Q is valid, by inference, all
nodes Q1 where Q1 ® Q are valid. On the other hand, if a
node Q is invalid, by inference, all nodes Q2 where Q ® Q2

are invalid. The rationality behind the above inferences is
that: if one query is valid, then any query that is more
specific is also valid; conversely, if it is invalid, then any
query that is more general is also invalid.

We denote by Q/ (i.e., above Q in the lattice) the queries
that Q contains, and Q' (i.e., below Q in the lattice) the
queries that contain Q. These notations naturally extend to
a set of queries, Q/ and Q', such that Q/ “ î

QPQ Q/ and
Q' “ î

QPQ Q'.

Example 5: Consider again the lattice in Figure 2. During
interactions with the user, if DL is validated, we can then
derive that DL/ “ {DML, DLQ, DMLQ} is valid. Con-
sider now DQ, if DQ is invalidated, we can then derive that
DQ' “ {D, Q, H} is invalid.

The notation used in this paper is summarized in Table 3
in Appendix A.

4. ALGORITHMS: FALCON IN ACTION
In this section, we first describe some traversal based al-

gorithms to solve our budget repair problem (Section 4.1).
We then present advanced algorithms to e�ciently navigate
the search space (Section 4.2).

When discussing the algorithms, we assume that the lat-
tice has been built given the user provided repair. The algo-
rithms are designed for traversing the lattice and interacting
with the user. Details of constructing and maintaining the
lattice will be provided in Section 5.1.

4.1 One-Hop Search: Falcon Glide
In traditional traversal algorithms of a lattice L the search

is based on some seeds, and then neighbours of the seeds
(i.e., one-hop) are visited by following edge connections. For
example, Breadth-first search (BFS) traverses L, by starting
at the bottom and explores the neighbor nodes first, before
moving to the next level neighbors. Depth-first search (DFS)
di↵erentiates in that after visiting a node, it explores as far
as possible along each branch before backtracking. A recent
traversal proposal, Ducc [28], bootstraps the search with a
DFS-style exploration until a node of interest is found. Then
it traverses the lattice alternating visits over valid and in-
valid nodes, in order to identify the border between them.
While the algorithm was defined to find minimal unique col-
umn combination, it can be used for any lattice traversal.

To better understand how di↵erent algorithms work, we
illustrate by an example below.

Example 6: Figure 3 shows how various search algorithms
work, where red nodes indicate invalid nodes, blue nodes
represent maximal valid nodes, and the other nodes (i.e.,
small circles) are valid nodes. Let B “ 3, the number of
questions the user can verify. BFS search will visit the nodes
in a breadth-first fashion, e.g., in the order B1, B2, B3. DFS
search will visit the nodes in a depth-first fashion, e.g., in the
order D1, D2, D3. Di↵erent from BFS and DFS, Ducc [28]
explores the graph in a zigzag fashion, which tries to pivot on
valid nodes and explores their neighbors, e.g., in the order
A1, A2, A3. Since the above methods are edge based, the
search paths are indicated on edges.

Now let us give some insight why traversal based algo-
rithms fail for our problem. Nodes close to the top (resp.

˝
B1

tt
B2

vv
B3
||

D1
$$
A1

))˝

|| ✏✏ **

˝

vv ✏✏ ((

˝

vv ✏✏

˝
D2

ss uu ""✏✏

˝

||
A2
✏✏

A3
��

‚

!! ((

˝F1

✏✏ **

‚
D3
}} **

‚

�� ✏✏

˝F3

##✏✏

‚

uu ✏✏

‚

ss ✏✏

‚

ww ��
‚

((""

‚

�� ((

‚

""✏✏

‚

$$✏✏

‚F2

zz ✏✏

‚

uu ||‚

((

‚

""

‚

✏✏

‚

zz‚
Figure 3: Lattice search algorithms. (Nodes ˝/‚/‚
represent valid nodes/maximal valid nodes/invalid
nodes. Red/green/blues edges are used to explain
di↵erent search strategies: BFS/DFS/Ducc.)

bottom) are more likely to be valid (resp. invalid). Hence,
if we traverse the lattice top-down, we have more chances
to visit a valid node Q. However, since it is close to the
top, the number of inferred valid nodes Q/ is small. On
the other hand, if we traverse the lattice bottom-up, we have
more chances to visit an invalid node Q1. However, since it
is close to the bottom, the number of inferred invalid nodes
Q1

' is small.
As shown in Example 6 and the above discussion, traver-

sal based algorithms are locality based – they follow edge
connections from visited nodes. In such a way, Falcon can
only glide over the lattice. This is obviously not ideal when
the lattice is big but the budget B is small, which is exactly
the case we face. Hence, we propose new algorithms next.

4.2 Multi-Hop Search: Falcon Dive
Now that we know that traversal based algorithms are

not suitable for our studied problem, we need to devise new
algorithms so that Falcon can dive on the lattice.

4.2.1 Binary Jump
Given a budget B, our objective is to define a divide-

and-conquer strategy that e�ciently identifies nodes that are
both valid and not very close to the top, so as to maximize
the number of tuples to be repaired. To this purpose, we
present an strategy, namely binary jump, inspired by clas-
sical binary search. Roughly speaking, we treat the search
space as a linear space (i.e., an array) by sacrificing some
structural connections, and sort the nodes based on their as-
sociated a↵ected numbers. We can then do multi-hop search
to locate a candidate node to be verified with the user.

Note that conventionally, a binary search finds the posi-
tion of a target value within a sorted array. Di↵erent from
it, binary jump does not have a target value to be searched.
In other words, binary jump is just inspired by binary search
by doing half-interval style lattice traversal.

Binary jump over a path. We first discuss binary jump
over a path. Consider DMLQ Ñ DLQ Ñ LQ Ñ Q Ñ H
in Figure 2. The ground truth of the validity of them is
(T, T, F, F, F), where T means valid and F means invalid.
The search algorithm does not know the ground truth, so
initially we have p?, ?, ?, ?, ?q. To find the truth with traver-
sal based approaches, we need OpNq questions in average,
where N is the length of the path. However, using binary

897



jump will reduce it to OplogNq questions, which is optimal,
by applying inferences of finding all valid/invalid nodes.

Next we discuss the meaning of “binary”. Straightfor-
wardly, binary may refer to the o↵set as standard binary
search. However, we need to incorporate the information of
a↵ected number. Hence, the binary search could refer to the
median number. For instance, in Figure 2, the path DMLQ
Ñ DLQ Ñ LQ Ñ Q Ñ H corresponds to the a↵ected num-
bers p1, 2, 3, 4, 6q and the binary jump is to find the value
that is closest to rp1 ` 6q{2s “ 4.

For binary jump, we introduce a parameter d to bound
the search depth, which is the number of iterations one
can do binary jump before termination. Given a path
Q1, Q2, ¨ ¨ ¨ , Q

x

, we first ask the middle node Q
x{2. If the

node is valid, we ask the next middle node between Q
x{2 and

Q
x

; otherwise, we ask the next middle node between Q1 and
Q

x{2. After d wrong searches, the process terminates. We
refer to this search strategy as BinaryJump(). The ratio-
nale behind using the parameter d is that if we are following
the wrong direction, we should be aware and go back to the
right track, as a fault confessed is half redressed. We will
discuss how d is set in practice in Section 6.

Note that the number of the most general query (i.e., the
empty set at the bottom of the lattice) will change the whole
column, which makes the median number an optimistic es-
timation. To make it more realistic, instead, we set the
binary jump using log scale to find the value that is closest
to e.g., rlogp1`6q

2 s “ 3.

From a path to a lattice. In order to take the advantage
of binary jump for lattice traversal, the broad intuition is to
do dimension reduction from a lattice to a one-dimensional
structure. That is, if we treat all nodes in the lattice uni-
formly, by sorting them in ascending order on their associ-
ated a↵ected numbers, we get a sorted array similar to the
one discussed above for the path.

Let Q? denote a set of unvalidated nodes, Q` represent
a set of valid nodes, and Q´ indicate a set of invalid nodes.
Next we present the algorithm.

Algorithm. Given a lattice pQ,®q w.r.t. a repair � over
table T , a budget B for the number of questions the user
can answer, and a depth d to bound the search depth, the
algorithm for binary jump is given below.

D1. [Initialization.] Let Q´ “ H, Q` “ ttopu (the top
node of the lattice), and Q? “ QzpQ´ Y Q`q. Also, let QX

be the set of nodes verified by users, initially empty.

D2. [Sort.] Sort unvalidated nodes Q? based on their af-
fected numbers in ascending order.

D3. [Binary jump] Do the binary jump over Q? and select

one node Q, which is referred to as BinaryJump() . If the

user still has capacity (the total number of interactions is
below B), it interacts with user to verify Q, and updates
QX “ QX Y tQu. Otherwise, the whole process terminates.
If Q is valid, it goes to step D4; otherwise, it goes to D5
below, if Q is invalid.

D4. [Q is valid.] Apply Q over table T and update the
a↵ected numbers of nodes in Q. Set Q` “ Q` Y Q/ (infer
and enlarge valid nodes). Let Q? “ Q' and go to step D2.

D5. [Q is invalid.] Set Q´ “ Q´ Y Q' (infer and enlarge
invalid nodes). If the current depth is d, it goes to step D6.
Otherwise, Q? “ Q/ and goes to step D2.

D6. [New search space.] Let Q? “ QzpQX/ Y QX
'q, i.e.,

search on the nodes that are not linked to any verified node.
It then goes to step D2.

Complexity. It is easy to see that there are up to B iter-
ations, and the sort (D2) dominates the cost. Hence, the
total time complexity is OpB ¨|Q|¨log|Q|q. Here, budget B is
typically small. Although the size of Q could be large for a
big relation, we will discuss an optimization in Section 5.1.1
about how to ensure that the size of Q is easily manageable.

4.2.2 Attribute Correlation: A Good Bait
Intuitively, we want to greedily select at each step the

node Q that is more likely to repair a large number of tuples.
However, since we do not know what are the correct nodes
until we verify them with the user, we need to estimate this
information. To define the score of a node, we augment the
existing information on the a↵ected number of each query
Q, i.e., the number of A values Q can repair (Section 3),
with the likelihood of a certain node to be related to the
current attribute A.

Attribute correlations. The attribute correlation between
two attributes A and B, denoted by corpA,Bq, is to measure
how close they are to each other.

The intuition of using attribute correlations is that, if node
Q is correlated to attribute A that is being updated, then
it is more likely to be semantically relevant and useful for
the repair process. In general, we may get such information
from data profiling tools that measure attributes correlation.

We adopt the techniques proposed in CORDS [29] to pro-
file a database T of relation R. Specifically, CORDS com-
putes for each attribute pair a score in r0, 1s. Note that
pA,Bq and pB,Aq are di↵erent pairs. The score of an at-
tribute pair pA,Bq equals to 1 means that it is a soft FD, in-
dicating that A approximately uniquely determines B. Oth-
erwise, it is a score computed using �2 statistics by exam-
ining the attribute values in attributes A and B.

In our lattice, oftentimes, we want to estimate the cor-
relation between the attributes in a query Q (i.e., attrpQq)
and the attribute A being updated. In other words, we need
to compute the correlation between a set of attributes to a
single attribute.

Using attribute correlations. Wemodified the algorithm
presented in CORDS to compute the correlation between a
setX of attributes and an attribute A, denoted by corpX,Aq.
In CORDS, an attribute pair pA,Bq is a soft FD if the sup-
port value suppA,Bq is above a given threshold ⌧ (see [29]
for more details). Similarly, we output pX,Bq as a soft FD
if the support value suppX,Bq ° ⌧ . Otherwise, we compute
the correlation score in r0, 1s for pX,Bq as follows.

corpX,Bq “ �2

nq
(1)

�2 “
m1ÿ

v1“1

m2ÿ

v2“1

...

mkÿ

vk“1

pn
v1,v2,...,vk ´ e

v1,v2,...,vk q2
e
v1,v2,...,vk

(2)

e
v1,v2,...,vk “ n

kπ

j“1

Prpv
j

q “ n
kπ

j“1

nj

vj

n
“ nj

i1
nj

v2
...nj

vk

nk´1
(3)

q “
kπ

i“1

m
i

´
kÿ

i“1

m
i

` k ´ 1 (4)

Here, k is the number of attributes in X and m
i

is the
number of distinct values in the i-th attribute. Moreover,
pv1, v2, ..., vkq is a tuple where the value of the j-th at-
tribute is v

j

. Also, n
v1,v2,...,vk is the frequency of tuple

898



Austin N.Y. Boston Dubai
C16H16Cl 1 0 0 0 1
statin 2 0 1 0 3

C24H75S6 0 1 0 0 1
C17H20N 0 0 0 1 1

3 1 1 1

Table 2: A 2-way contingency table.

pv1, v2, ..., vkq, and e
v1,v2,...,vk is the estimated frequency

based on the probability of v
j

appearing in the j-th at-
tribute, i.e., nj

vj
{n, where nj

vj
is the frequency of v

j

in the
j-th attribute and n is the number of tuples.

Example 7: Consider Table 1, and a given soft
FD in the traditional form: tMolecule, Laboratoryu Ñ
Quantity. Naturally, we have that the correlation value for
corptMolecule, Laboratoryu,Quantityq “ 1, since they can be
verified from the soft FD given above.

Consider now X “ tMoleculeu and B “ Laboratory.
Since there is no corresponding soft FD as tMoleculeu Ñ
Laboratory, we compute its correlation value by normalizing
�2 statistics.

To do so, we first compute contingency table (see Ta-
ble 2). We then compute expected count of each symbol
tuple. Consider tuple {statin,Austin}. The expected count
estatin,Boston “ pnMolecule

stain ¨ nLaboratory
Boston q{n “ 0.5, and the real

count nstatin,Austin “ 1. Thus the di↵erence is pnstatin,Austin ´
estatin,Bostonq2{estatin,Boston “ 0.5. By summing up all di↵er-
ences we have �2 “ 12.67, the degrees of freedom q “
4 ¨ 4´ p4` 4q ` 2´ 1 “ 9, thus corptMoleculeu, Laboratoryq “
12.67{p6 ˚ 9q “ 0.235.

We now give our greedy algorithm for multi-hop search
driven by correlation and a↵ected number.

Correlation aware binary jump (CoDive). We revise
binary jump by using the correlation information, a↵ecting
D3 in Section 4.2.1. Note that the function BinaryJump()

will locate a node Q in the sorted list Q?. Instead of asking
the user to verify Q, we revise it with the following method-
ology. (1) We pick more nodes around Q in the sorted list,
with w on its left and the other w on its right. (2) For the
above 2w` 1 nodes, we compute their scores (a↵ected num-
ber multiplies correlation score) and select the one with the
largest score, which will then be verified by the user. We
will discuss how w is set in practice in Section 6.

5. OPTIMIZATIONS
In this section, we first discuss optimizations for maintain-

ing the lattice (Section 5.1). We then describe a technique
to compress the search space, which can be applied to all al-
gorithms (Section 5.2). We also discuss an extension when
external sources are available (Appendix B).

5.1 Lattice Maintenance
There are two main challenges when maintaining the lat-

tice: its potential large size, and the updates of a↵ected
numbers of lattice nodes during each interaction. We ad-
dress these two issues below.

5.1.1 Partial Lattice Materialization
For some dataset, the number of attributes in R can be

large, such that a full materialization of the lattice is pro-
hibitively expensive with 2|R| nodes.

Fortunately, in our framework, the update provided by the
user is a strong indicator to guide which attributes should

be used. The intuition is that, given an update trAs – a1,
not all attributes are relevant. Consequently, constructing
a lattice by incorporating irrelevant attributes will decrease
both e�ciency and e↵ectiveness. Hence, we propose to pick
top-k attributes that are related to the attribute A being
updated, based on the attribute correlation score discussed
in Section 4.2.2. We refer to such a strategy as partial lattice
materalization, which performs much faster than a full mate-
rialization of the entire lattice, without losing accuracy. This
reduces the time complexity from Op2|R| ¨ |T |q to Op2k ¨ |T |q
where k could be much smaller than |R| in practice.
Practically, attribute correlation plays an important role

in devising e↵ective search strategies. We combine func-
tional dependencies (FDs) and highly related attribute sets
(rules) to improve the search strategy. Please see the exper-
iment in Appendix D.1 for more details on this point.

5.1.2 Initialize and Maintain Affected Numbers

Initialization. Given an update trAs – a1, we need to
compute the a↵ected number of each query Q in the lattice.
The straightforward way of executing an sqlu query for each
node is very costly.

We approach the problem of initializing a↵ected numbers

by leveraging the containment relationships between nodes.
Consider two queries Q and Q1, if Q ® Q1, then given any
database T , we have QpT q Ñ Q1pT q. Clearly, we can com-
pute the result of QpT q from Q1pT q. This is exactly the
problem of answering queries using materialized views [26].
Given the simplicity of the sqlu queries adopted in this
work, the query rewriting is simply to apply a selection us-
ing a constant value.

Example 8: Consider two queries Q3, Q
1
3, and the dataset

Tdrug in Example 1. If we compute Q1
3 over Tdrug first as

Q1
3pTdrugq, the result of Q3pTdrugq is simply to select all tuples

from Q1
3pTdrugq whose Laboratory values are Austin.

The above example suggests a simple way of computing
a↵ected numbers of lattice nodes in a bottom-up fashion.
Indeed, only one sqlu query is needed for the bottom node
of the lattice. Afterwards, in the bottom-up procedure, for
each query Q, it applies the aforementioned query rewrit-
ing technique on Q1pT q to compute QpT q, where Q ® Q1

indicates that Q1 is one level below Q.

Maintenance. Given the lattice pQ,®q for table T and
update �, when some rule Q is validated by the user, the
tuples a↵ected by Q will be repaired, i.e., QpT q will result in
a repaired database T 1 where T 1 “ T ‘ QpT q, i.e., applying
Q to T . For each yet unvalidated rule Q1, the above changes
should be reflected, i.e., the number of a↵ected tuples should
be changed correspondingly, from |Q1pT q| to |Q1pT 1q|.

The straightforward way is to execute Q1pT 1q to refresh
|Q1pT 1q|, or an optimized way of using the query rewriting
technique discussed above. However, in such incremental
scenarios, incremental algorithms have been developed for
various applications (see [36] for a survey). For incremental
algorithms, the updates are typically computed from a↵ected

areas, not the entire dataset. In our case, the a↵ect area is
exactly the a↵ected tuples QpT q. Next, we discuss how to
compute, for each unvalidated rule Q1, the new |Q1pT 1q|.
Case 1 [Q1 ® Q]: |Q1pT 1q| “ 0.

Case 2 [Q ® Q2]: |Q2pT 1q| “ |Q2pT q| ´ |QpT q|.
Case 3 [Q and Q3 are disjoint]: Neither Q ® Q3 nor
Q3 ® Q holds. We have |Q3pT 1q| “ |Q3pT q| ´ |Q3pQpT qq|.

899



The above case 1 says that, if a valid rule Q is executed,
then the tuples that can be a↵ected by the queries Q1 it
contains have already been repaired. It is safe to set their
a↵ected numbers to 0 directly. The above case 2 tells that,
for all the queries Q2 that contains Q, the set of tuples
QpT q that Q2 can a↵ect has been repaired. Hence, it is
simple to reduce their a↵ected numbers by |QpT q|. In case
3, since neither Q3 ® Q nor Q ® Q3 holds, it first checks
the number of tuples that Q3 can a↵ect w.r.t. Q by execut-
ing Q3pQpT qq, and then deducts its cardinality |Q3pQpT qq|
from its maintained value |Q3pT q|.
Time complexity. Cases 1 and 2 are clearly in constant
time. For case 3, the cost is reduced from computing Q3pT 1q
(i.e., the entire table) to Q3pQpT qq (the tuples a↵ected by
Q) where |QpT q| is typically much smaller than |T |.
Example 9: Consider Fig. 2. Assume that during one
interaction, the users validate ML (i.e., query Q3 in Ex-
ample 1). The a↵ected tuples are Q3pTdrugq “ tt2, t5u and
|Q3pTdrugq| “ 2. One can directly set the numbers associated
with DML, DLQ, and DMLQ to 0 (case 1). Moreover, it is
safe to change the number with node M as 3 ´ 2 “ 1. Simi-
larly, we change the number with L (resp. H) to 1 (resp. 4)
(case 2). Consider DL and tuples Q3pTdrugq “ tt2, t5u, it is
easy to verify that DL can update t2 but not t5, hence the
number with DL will be changed as 1 ´ 1 “ 0 (case 3).

5.2 Closed Rule Sets
A natural question, when searching a lattice, is whether

there is any redundancy in the behavior of the rules, so we
turn our attention now on how to identify such redundancy.

Closure operator f . Given a lattice pQ,®q for update
� and table T , we define a closure operator f . For any
Q P Q, let fpQq “ tQ1u and the following properties hold:
(1) Q ® Q1; (2) |QpT q| “ |Q1pT q|; and (3) EQ2 P Q where
Q1 ‰ Q2, Q1 ® Q2, and |Q1pT q| “ |Q2pT q|.

Intuitively, the closure operator f is to locate the maximal

ancestor of a query Q that has the same e↵ect on the number
tuples they can change. Consider Fig. 2 for example, we have
f(DMLQ) = {DL}, and f(DMQ) = {DM, DQ}.
Closed rule sets. Given a lattice pQ,®q, two rules Q and
Q1 belong to the same closed rule set, i↵ fpQq “ fpQ1q.
The smallest (minimal) closed rule set contains one rule Q,
i.e., fpQq “ tQu and no other rule Q1 where fpQ1q “ tQu.
Example 10: Consider Fig. 2. The shapes identify distinct
closed rule sets. For example, the closed rule set for “˝” is
{DMLQ, DML, DLQ, DL}, since they are connected and
have the same a↵ected numbers. Also, the closed rule set
for “‚” is {DMQ, DM, DQ}, similar for other shapes.

It deserves to note that the concept of closed rule sets is in
the instance level, i.e., queries in the same closed rule set will
change the same set of tuples for the given dataset. However,
they are not the same in the semantic level, i.e., some of
them might be valid while the others might be invalid. In
order to better understand the above discussion, consider
an extreme case that each lattice node can change only one
tuple, which makes all candidate queries in one closed rule
set. Apparently, they contain both valid and invalid rules.
In other words, the closed rule set ignores the factor that
whether a rule is valid or not.

Representative rule. One natural question, given a closed
rule set, is which query to be verified by the user. The intu-

ition behind our choice is that, the more specific the query
is, the easier it is for the user to verify. Hence, we define the
most representative rule in a closed rule set to be the query
Q with the largest number of predicates w.r.t. |attrpQq|.

For instance, in Example 10, the representative rule for
the rule set of “˝”, {DMLQ, DML, DLQ, DL}, is DMLQ.

Benefits of the closed rules set. Any search algorithm
over the lattice can benefit from the closed rules set. Given
a node in a set, there are consequences that favor the search
both if the rule is judged valid or invalid. Remember that
we expose and test the representative rule. If it is true, we
do not need to compute the updates for any query in the
same closed rule set any more. If the answer is no, we also
have a benefit in terms of pruning of the nodes, since all the
nodes in the set can be safely discharged.

Example 11: Consider Figure 3 and the case that an al-
gorithm has to test node F1. By computing the closed rule
set (nodes marked with ˝), the rule at the top is tested. If
the rule is valid, and therefore being executed, all the nodes
marked with ˝ will have empty updates now, so we can avoid
their computation. But if the rule is invalid, we can prune
all the nodes in the set, which is a big benefit compared with
the failed test of F1. In the latter case, we would still have
to validate the remaining nodes marked with ˝, even if we
can already derive that they are not valid.

The major di↵erence of our lattice, in contrast to tradi-
tional closed item set lattice used for data mining [42], is
that our lattice is dynamically changed. More specifically,
for each node Q, its associated information |QpT q| might
change during each interaction, such that the closed rule
sets will change correspondingly.

6. EXPERIMENTAL STUDY
We implemented Falcon in Java and used PostgreSQL

9.3 as the underlying DBMS. All experiments were con-
ducted on a MacBook Pro with an Intel i7 CPU@2.3Ghz
and 16GB of memory. Our frontend extends OpenRefine.

Datasets. We used four real-world datasets and one syn-
thetic dataset, described as follows.

∂ Soccer is a real dataset with 7 attributes and 1625 tu-
ples about soccer players and their clubs scraped from the
Web (www.premierleague.com/en-gb.html, www.legaseriea.
it/en/, www.bundesliga.com/en/).

∑ Hospital is based on a dataset from US Department
of Health & Human Services (http://www.medicare.gov/
hospitalcompare/). It has 12 attributes and 100k tuples.

∏ BUS is one of the UK government public datasets avail-
able at http://data.gov.uk/data and deals with bus sched-
ules and routes. It contains 15 attributes and 250K tuples.

π DBLP is based on the popular collection of authors, publi-
cations and venues from http://dblp.uni-trier.de/xml/. We
downloaded the whole xml dataset, and translated it into
a single relational table with 15 attributes. We considered
instances of 1M and 5M tuples, for quality and scalability
tests, respectively.

∫ Synth is a dataset we designed starting from the orig-
inal Soccer dataset in order to study the scalability over
the number of tuples and a larger number of attributes.
The dataset has 10 attributes and we used a generator
from http://www.cs.toronto.edu/tox/toxgene/ to create in-
stances of di↵erent sizes.

900



Algorithms. We implemented several algorithms for the
exploration of the lattice. First, we study our own proposals
for multi-hop search. Dive is the binary jump algorithm
presented in Section 4.2.1. CoDive is its extention to make
use of the attributes correlation information, when this is
available, as described in Section 4.2.2.

These are compared with one-hop search strategies (Sec-
tion 4.1). Beside BFS and DFS, we have also implemented
Ducc [28], which was designed to reduce the number of tests
during the discovery of all the minimal unique column com-
binations in a given dataset. As we will show in the results,
Ducc is better than BFS and DFS for extensive searches of
maximal rules in the lattice, but it was not designed to deal
with small values of budget B for user interactions.

In addition to these, we also compared our results with the
greedy search algorithm for the o↵-line version of our prob-
lem. This algorithm, O↵Line, is aware of the valid nodes
in the lattice. Given this information, it greedly picks the
node that maximizes the error coverage at each step, with
the number of steps equals to the budget B.

Baselines. We compared Falcon with four baselines.

∂ Refine: Our proposal generalizes the transformation
language of existing tools such as OpenRefine (http:
//openrefine.org/) and Trifacta Wrangler (https://www.
trifacta.com/trifacta-wrangler/) [27]. These tools enable
users to define transformations by examples exactly as in
our setting. Users modify values in a cell for attribute A
and the systems suggests possible transformations over the
remaining tuples for A. While we do not focus on string
manipulation as some of these tools, our language supports
rules (i.e., transformations) with look-up over any combina-
tion of columns in the relation. In fact, given an update,
these tools enable the inference of only two transformations
that are comparable to our language: either the single cell
is updated (the top of the lattice) or the erroneous value e
is replaced with the new value v for all the occurrences in
the attribute. The latter corresponds to one of the nodes
in our lattice. More precisely, the standardization rule is:
UPDATE T SET A = v WHERE A = e.

Given this context, a natural baseline algorithm models
these transformation tools. This algorithm, namely Refine,
checks for every user update the node that generalizes it to
a standardization rule, or picks the rule at the top of the
lattice if the validation fails.

∑ Rule-Learning Approaches: Many previous approaches
have concentrated on learning data-quality rules (e.g., [12,
17]). Therefore, we compared our algorithm with one of
these methods. More specifically:

piq starting from a dirty database, we asked users to clean a
sample of tuples (part of the budget was used to do this);

piiq based on the sample tuples, we used a CFD-miner to
learn a number of SQL-updates; since it is known that rule-
mining algorithms may discover semantically invalid rules
(due to “overfitting”) we asked users to select a subset of
semantically valid rules (the second part of the budget was
used for this purpose); and

piiiq we used the set of SQL-updates to repair the dirty
instance, and measured the benefit score (see below).

∏ Guided Data Repairs: To explore the impact of active

learning, we used GDR [46]. GDR (“Guided Data Repairs”)
is a recently proposed algorithm that relies on active learn-

ing in order to improve the quality of repairs. Given a set
of rules, it will incrementally ask users to solicit the right
repairs suggested by the rules. We tested an incremental
variant of algorithm ∑ above, by using GDR to suggest re-
pairs (i.e., cell updates) to users. In this case, additional
budget is used to answer GDR user queries.

π Active Learning in Lattice Traversal: Finally, we com-
pared our methods to an active learning variant of our
lattice-based approach that was designed ad-hoc for this pur-
pose. In the active learning algorithm, we first generated
some features for each node, including attribute indicator,
attribute values, original value, and updated value. We then
trained a support vector machine (SVM) model with labeled
nodes. Finally we used active learning to select the best node
to ask users in each iteration.

Errors and Metrics. Since the considered datasets are
clean, we introduce noise to verify the algorithms behaviour
in the cleaning process. To start, we manually defined a set
of CFDs [16] and fixing rules [43] for each scenario. We used
8 rules for Soccer, 124 rules for Hospital, 8 rules for BUS, 69
rules for DBLP, and 12 rules for Synth.

Afterwards, we used an error-generation tool to inject er-
rors into the clean instances. To make our error-generation
more systematic, we relied on an open-source error genera-
tion tool by Arocena and others [6]. The tool allows users to
inject various kinds of errors within a clean database, both
rule-based, random and statistics-based. Being based on an
open-source tool, our error generation configuration can be
easily shared and reused.

We keep running an algorithm until all the introduced
errors are fixed either by a rule or by the user updates.
Then, we focus our attention on the interaction cost. We
adopt natural metrics: the number of user-provided updates
U , the number of users’ answers for nodes validation A, and
we simply add them up to get the total interaction cost
T
C

. Notice that the latest metric is treating both kinds of
interaction with the same weight, i.e., they are considered
equally di�cult for the user. Despite more sophisticated
combinations are possible, we found that the simple sum
gives a global overview of the algorithms behaviour that is
close to the real overall experience of the users.

In order to have an indicator of the advantage of using
interactive cleaning, we also measure the benefit of an al-
gorithm in comparison to the manual update of all the er-
rors. We first define the cost ratio as the number of actions
divided by the number of errors. Manually updating 100
errors requires 100 user actions (updates) for a cost ratio
of 1. However, by using our tool, it may be the case that
25 actions can fix 100 errors, therefore the cost ratio would
be 0.25. Given an algorithm ↵, a dataset D, and the in-
teraction cost T

C

to obtain a set of queries Q covering all
introduced errors, we define the benefit of the algorithm as
BNF

↵

“ 1 ´ T
C

{|QpDq|.
Finally, we measure the execution times for the algorithms

in the generation of the lattice and in its maintenance.
Notice that we do not assume that users always provide

correct inputs. On the contrary, the impact of user mistakes
is studied in one of our experiments.

Experiments. We conducted five experiments. piq Exp-1
compares benefits of the various lattice-traversal algorithms
with di↵erent budget values, and show that CoDive maxi-
mizes the benefit. piiq Exp-2 studies the impact of di↵erent

901



-1,5

-1,0

-0,5

0,0

0,5

1,0

DFS BFS Ducc Dive CoDive

Be
ne

fit

Soccer Hospital Synth	10k
Synth	1M DBLP BUS

(a) Budget=2

-1,5

-1,0

-0,5

0,0

0,5

1,0

DFS BFS Ducc Dive CoDive

Be
ne

fit

Soccer Hospital Synth	10k
Synth	1M DBLP BUS

(b) Budget=3

-1,5

-1,0

-0,5

0,0

0,5

1,0

DFS BFS Ducc Dive CoDive

Be
ne

fit

Soccer Hospital Synth	10k
Synth	1M DBLP BUS

(c) Budget=5

Figure 4: Benefit for the various algorithms for the five datasets.

parameters of the models. In particular, we show that closed
rule sets, an optimization technique discussed in Section 5.2,
always reduces the cost. piiiq Exp-3 compares CoDive with
closed rule sets to the four baselines. Interestingly, our al-
gorithm outperforms all of the baselines. pivq Exp-4 studies
scalability. pvq Finally, Exp-5 investigates the robustness of
Falcon w.r.t. user mistakes.

Exp-1: Lattice search algorithms. We now turn our at-
tention to the comparison of the di↵erent search algorithms.
Figure 4 reports the benefit of each algorithm for the six
datasets over increasing budget B (i.e., maximum number
of questions after an update).

We start with the setting where the user is willing to an-
swer only two questions (B=2) in Figure 4(a). The proposed
algorithms, Dive and CoDive, consistently report a positive
gain, which, for CoDive, can be interpreted as a reduction
of the total user interaction cost between 22% (Soccer) and
97% (BUS). The plot also reveals that one-hop algorithms
fail for the budget exploration of the lattice, with the no-
table exception of the Hospital dataset. This results is not
surprising if we look more closely at this scenario. Hospital
schema has a large number of FDs with always one or two
attributes in the left hand side (LHS) of the rules. This is
reflected in the CFDs that we used to introduce the errors.
Rules with one or two LHS attributes are at the bottom of
the lattice, and this is the most favourable setting for one-
hop based algorithms, since they all start from the bottom.
On the other hand, when rules start to have more attributes
in the LHS, more nodes must be checked to take a decision,
these algorithms fail and Dive and CoDive greatly outper-
form them. Similar results can be observed with B “ 3 in
Figure 4(b). More details are provided in Appendix D.2.

By increasing the budget to five questions, as reported in
Figure 4(c), all algorithms can explore the lattice further
at each update and the performance improve accordingly.
This improvement is bigger for one-hop based algorithms as
they are now able to get closer to the maximal rules in the
traversal with a smaller number of updates.

Finally, since algorithm O↵Line does not need to perform
the search, for each update it is able to identify immediately
the maximal rule. Therefore as expected O↵Line is always
able to completely fix the data with a number of steps that
is equal to the number of rules used to introduce noise.

Exp-2: Closed rule sets and parameters. The results
for the previous experiments have been conducted with the
closed rule sets computed in the lattice. In fact, this opti-
mization enables a reduction both in the number of updates
and in the number of questions. To illustrate the impact
of the closed rule sets, we executed the lattice search algo-

1

10

100

1000

10000

DFS BFS Dive CoDive

#	
Up

da
te
s

Soccer Hospital Synth	10k

(a) Number of User Updates

1

10

100

1000

10000

DFS BFS Dive CoDive

#	
An

sw
er
s

Soccer Hospital Synth	10k

(b) Number of User Answers

Figure 5: Impact of closed rule sets for B “ 2.

10

100

1000

w=2 w=3 w=5 w=7 w=10

#U
se
r	I
nt
er
ac
tio

ns

AVG	U	- Synth	10k AVG	A	- Synth	10k
AVG	U	- Hospital AVG	A	-Hospital

(a) Avg costs over B “ 2, 3, 5
for algorithm CoDive wrt w

50

100

150

200

d=1 d=2 d=3 d=4 d=5 d=6

#	
Us

er
	In

te
ra
ct
io
ns

Dive	- No	B CoDive	- No	B
Dive	- B=5 CoDive	- B=5

(b) Costs for Synth 1k wrt d
for B=5 and without budget

Figure 6: E↵ects over the interaction cost. U and A
are the number of user updates and user answers.

rithms with and without this optimization, and we measure
the di↵erence in the number of required user updates and
user answers to cover all errors on three scenarios (Soccer,
Hospital and Synth 10k) (see Figure 5). All methods benefit
from the optimization, with the exception of Ducc, which
does not show any di↵erence, and thus is not reported.
The method that gains most benefit from this optimiza-

tion is DFS. The explanation is that with low budgets, such
as B “ 2, DFS always reaches the level in the lattice with
two attributes. While the rule corresponding to the node
may be too general and therefore invalidated by the user,
it may be part of a closed rule set. Therefore, the user is
o↵ered the representative rule, which is more specific and,
in some cases, true. This happens also for rules with only
one attribute in the LHS for Hospital, as discussed above. In
fact, even BFS, which never goes beyond nodes with only
one attribute in the LHS with low B values, benefits from
the closed rules set for this dataset.

As shown in Exp-1, on average CoDive has higher benefit
values than Dive. However, the quality of CoDive depends
on the value for parameter w (Section 4.2.2). We report in
Figure 6(a) the experimental results with di↵erent w values.
Each reported value is the number of user updates U (user
answers A) averaged over the results for B equals to 2, 3,
and 5. Both for Hospital and Synth 10k the best results are
observed with w “ 3. The parameters does not impact the
results for Soccer.

902



-1,5

-1,0

-0,5

0,0

0,5

1,0

CoDive Refine Rule	
Learn.

GDR Active	
Learn.Be

ne
fit

Soccer Hospital Synth	10k Synth	1M DBLP BUS

Figure 7: Benefit compared with the baselines.

We also report in Figure 6(b) the experimental results for
the synthetic datasets with di↵erent values of the parame-
ter d, as introduced for the binary jump algorithm in Sec-
tion 4.2.1. Experiments over di↵erent B values and datasets
also confirm that d “ 3 leads to the best results in terms of
optimization of the interaction cost.

Exp-3: Comparison to the baselines. Figure 7 reports
a comparison of our CoDive algorithm to the four baselines
discussed in Section 6. We fixed a timeout of two hours for
all tests. Notice that not all algorithm terminated within the
timeout. This accounts for the missing bars in the chart.

Our approach significantly outperforms all baselines.
First, CoDive results are significantly better than those
based on rule discovery. This suggests that our novel
paradigm for data repairing is an improvement w.r.t. pre-
vious approaches in which quality rules are established up-
front. Interestingly, this is confirmed also in the case in
which rule discovery is coupled with an interactive algo-
rithm, like GDR. In fact, the additional number of user in-
teractions needed to run GDR brings to even lower benefit.

Results confirm our intuition that using user updates to
lead the discovery of rules in an incremental way yields more
complete and e↵ective repairs than state-of-the-art rule-
learning algorithms, which can return incomplete or redun-
dant sets of constraints. In fact, in our experiments neither
RuleLearning, nor GDR was able to repair all of errors in
the data. Detailed comparison is reported in Appendix D.2.

CoDive algorithm also outperforms its active learning
variant. Since ActiveLearning shares the same infrastruc-
ture as CoDive, here results are better w.r.t. RuleLearning
and GDR. In fact, as for CoDive, whenever it terminated
also ActiveLearning was able to repair all errors. Active-
Learning worked well in datasets with few rules, such as
BUS and Synth 10k, while performed poorly in datasets with
many rules like Hospital. Appendix C reports further details
on active learning algorithm. Overall, however, benefit lev-
els are lower. Hence, the active learning variant pays the
price in terms of user-interactions of the additional training
phase, which does not bring benefits w.r.t. CoDive.

Finally, CoDive outperforms Refine because of the less
expressive language in the latter. While we discover rules
using any combination of columns, Refine either generates
rules for the entire column, which is unlikely to hold for
data errors, or rules that update a single tuple. Single tuples
updates are always correct and promptly validated, but their
very small coverage leads to no benefit in using this tool.

Exp-4: Scalability. We report the performance of the
lattice construction and maintenance in Figure 8. Times
are reported in ms and the y axis is in log scale.

0

1000

2000

3000

4000

5000

No	Errors 1% 2% 5%

Interactions Repairs

(a) Hospital

0

1000

2000

3000

4000

5000

No	Errors 1% 2% 5%

Interactions Repairs

(b) BUS

Figure 9: Impact of user mistakes.

We start by analyzing the impact of the techniques dis-
cussed in Section 5.1 for lattice maintenance. Figure 8(a)
shows the total execution time for an update, defined as the
time to create the lattice plus the time to update it with
rules validated by the user in the interaction. We find it
interesting to show that di↵erent updates can lead to very
di↵erent execution times, because of the size of the queries
involved in the lattice. Therefore, for the same scenario,
we report both the execution times for the first user update,
and corresponding interaction, and the times for the 4th user
update. For all combinations of updates and scenarios, the
incremental maintenance is 3–5 times faster than the naive
solution that rebuilds the lattice for every rule validated by
the user (4 times faster on average for the first five updates).

Creating the lattice requires to run queries to collect the
data, and intersection over the sets of tuples to find the cor-
responding number of a↵ected tuples for each node. When
the dataset is large, the creation of the lattice can require
a couple of seconds, as reported in Figure 8(b-c) for the
average of the first ten updates. However, the creation is re-
quired only when a new user update is given, and the main-
tenance of the lattice in the rule validation always requires
less than 20ms with our technique.

Finally, we study how the number of attributes in the
dataset influences the performance. For this experiment we
selected subsets of attributes of Hospital and also extended
it with two more attributes by joining another table. Fig-
ure 8(d) shows the average times over the first five updates
for the creation of the lattice and its maintenance with our
technique. While the response time is always below 10ms,
the creation of the lattice takes on average about 10 seconds,
with a maximum of 30 seconds for the first user update. As
discussed in Section 5.1.1, it is important to be able to iden-
tify the attributes of interest for the mining to limit the
exponential explosion of the number of nodes in the lattice.

Exp-5: User Mistakes. We also tested the robustness of
our approach w.r.t. to user-errors. That is, we do not as-
sume that users always provide correct answers. On the con-
trary, assume users may sporadically make mistakes. These
may be of two kinds, as follows. We notice that in both
cases, our algorithm is essentially self-healing:

piq The user performs a wrong update. This is the easier
case, since we can expect that from a wrong update, only
invalid rules are generated; these will be rejected by the user,
and the error is fixed.

piiq Following a valid update, the user wrongfully validates
an invalid rule. This case in more delicate, since, follow-
ing the wrong rule, the algorithm will indeed perform some
incorrect updates. Overall, however, this will simply gener-
ate more dirtiness in the database, and the user still has a
chance to correct this new dirtiness that s/he has introduced
in the database in subsequent iterations.

903



1

10

100

1000

10000

naïve incremental

Ti
m
e	
(m

s)
Hospital	- 1st	update Hospital	- 4th	update
Synth	10k	- 1st	update Synth	10k	- 4th	update

(a) Total execution time (ms)
for ith update: lattice creation
+ maintenance

1

10

100

1000

10000

100000

1k 10k 100k 1M

Ti
m
e	
(m

s)

Avg	lattice	creation Avg	lattice	maintenance

(b) Avg execution time (ms)
with increasing # of tuples for
Synth (first 10 updates)

1

10

100

1000

10000

100000

100k 500k 1M 2M 5M

Ti
m
e	
(m

s)

Avg	lattice	creation Avg	lattice	maintenance

(c) Avg execution time (ms)
with increasing # of tuples for
DBLP (first 10 updates)

1

10

100

1000

10000

100000

4	atts 8	atts 10	atts 14	atts

Ti
m
e	
(m

s)

Avg	lattice	creation Avg	lattice	maintenance

(d) Avg exec. time (ms) with
increasing # of attributes for
Hospital (first 10 updates)

Figure 8: E�ciency for the lattice creation and maintenance: Dive algorithm, unbounded B.

A key property is that the rules we discover at each step
are applied only once – i.e., during the step they were gener-
ated in – and therefore they can be fixed by further interac-
tion. This requires that the user is requested to reconsider
some previously updated cells. As a consequence, repair
ratios decrease in case of errors. In addition, we need to
prevent cyclic behaviors. To do this, the system checks up-
dates and notifies users whenever it is updating a cell that
has been repaired in previous iterations. This helps users to
identify previous mistakes, and prevents cycles.

Figure 9 shows the impact of user mistakes. Assume that
users made mistakes with a given probability – ranging from
1% to 5% – and compare results to the case without mistake.
Experiments confirm that the system is able to recover from
these errors, at the price of more user interactions.

7. RELATED WORK
Data transformation. Interactive systems for data trans-
formation [27,37,44] also reason about the updated attribute
to learn transformation rules. They mainly focus on string
manipulation and reformatting at the text level. In contrast,
we use more expressive SQL scripts. Consequently, we dis-
cover not only rules that contain one attribute that is being
updated syntactically, but also rules that combine multiple
attributes to semantically determine new repairs. Our lan-
guage and algorithms can lead to smaller interaction cost,
as discussed in Section 6 Exp-3.
Machine learning for cleaning. Given a set of user up-
dates, they can be used as training data to train machine
learning models, which in turn can be used to predict other
repairs [41, 45]. However, ML models are typically black-

boxes that identify updates without explanations, which are
hard to be trusted by users, especially for critical applica-
tions that need repairs with guaranteed correctness. Instead,
sqlu queries are declarative and are preferred for human val-
idation. Moreover, to train a machine learning model with
updates, they must be semantically consistent, i.e., they
refer to the same type of errors. In practice, however, this
assumption does not always hold since multiple updates may
refer to di↵erent types of errors. This heterogeneity may hin-
der the usability of the trained machine learning model for
prediction. Di↵erent from them, Falcon is bootstrapped
by a single update, and ensures the following interactions
are related to the queries with consistent semantics.
Query by examples. Several proposals have exploited the
opportunity of using examples to discover queries [2,8,9,38,
49,50], schema matchings [35,47], and schema mappings [4].
They mainly focus on finding how to join multiple tables. In
contrast to them, we study how to discover sqlu queries on
one table, with the main challenge of understanding the up-
date semantics that is not considered by other approaches.

From an algorithmic perspective, most of these approaches
exploit active learning to validate with users informative ex-
amples; we show in Section 6 Exp-3 how other signals, such
as correlation, can better guide the search in our setting.
Rule-based data cleaning. Rule-based approaches for
data cleaning are divided between methods to discover the
rules from clean data [11, 12, 17, 25, 40], and algorithms and
systems to apply the rules over dirty data to automatically
fix the detected errors [7,13,15,18,19,21,23,24,30,32,43,46].
Our proposal overcomes some of the shortcomings in these
methods. In terms of rules discovery, mining on dirty data
leads to a lot of useless rules, therefore most of the methods
report e↵ective results assuming a clean sample. On the
contrary, we naturally start from dirty data. In terms of
cleaning, we restrict our language to deterministic updates,
which do no need variables or placeholders that the users
ultimately have to manually verify. In terms of learning
from user repairs, the closest approach to our solution is the
use of previous repairs to model “repair preferences” [41].
However, this approach needs a set of rules to be given as
input and it only refines them, without discovering new ones.
Closed frequent itemset. The concept of closed frequent
itemset is widely used in data mining (see [48] for a survey),
where it refers to a set of itemsets that are both frequent
(i.e., the support value is above a given threshold) and closed
(i.e., there is no superset that is closed). In fact, our closed
rule set is inspired from closed frequent itemset, with the
major di↵erence that our data structure (i.e., the lattice)
keeps changing during interactions. Traditionally, the search
space for closed frequent itemset in data ming is static.

8. CONCLUSION AND FUTURE WORK
We have presented Falcon, an interactive, declarative

and deterministic data cleaning system. We have demon-
strated that Falcon can e↵ectively interact with users to
generalize user-solicited updates, and clean-up data with a
significant benefit w.r.t. the number of required interactions.

A number of possible future studies using Falcon are
apparent. First of all, we plan to extend it by using external
sources, as remarked in Appendix B. Moreover, we will
leverage the information obtained from previous interactions
with the user w.r.t. multiple data updates.

Acknowledgement. This work was partly supported
by the 973 Program of China (2015CB358700), NSF
of China (61422205, 61472198), Huawei, Shenzhou,
Tencent, FDCT/116/2013/A3, MYRG105(Y1-L3)-FST13-
GZ, National High-Tech R&D (863) Program of China
(2012AA012600), and the Chinese Special Project of Sci-
ence and Technology (2013zx01039-002-002).

904



9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] A. Abouzied, J. M. Hellerstein, and A. Silberschatz. Playful

query specification with dataplay. PVLDB,
5(12):1938–1941, 2012.

[3] S. Albers. Online algorithms: a survey. Math. Program.,
97(1-2), 2003.

[4] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse:
Mapping understanding and design by example. In ICDE,
pages 10–19, 2008.

[5] C. Ambühl. O✏ine list update is np-hard. In Algorithms -
ESA 2000, 8th Annual European Symposium, 2000.

[6] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller,
P. Papotti, and D. Santoro. Messing up with BART: error
generation for evaluating data-cleaning algorithms.
PVLDB, 9(2), 2015.

[7] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and e↵ective heuristic for repairing
constraints by value modification. In SIGMOD, 2005.

[8] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, 2014.

[9] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive join
query inference with JIM. PVLDB, 7(13), 2014.

[10] C. Chang and C. Lin. LIBSVM: A library for support
vector machines. ACMTIST, 2(3):27, 2011.

[11] F. Chiang and R. J. Miller. Discovering data quality rules.
PVLDB, 1(1), 2008.

[12] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13), 2013.

[13] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: a
commodity data cleaning system. In SIGMOD, 2013.

[14] O. Deshpande, D. S. Lamba, M. Tourn, S. Das,
S. Subramaniam, A. Rajaraman, V. Harinarayan, and
A. Doan. Building, maintaining, and using knowledge
bases: A report from the trenches. In SIGMOD, 2013.

[15] A. Ebaid, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani,
J. Quiané-Ruiz, N. Tang, and S. Yin. NADEEF: A
generalized data cleaning system. PVLDB,
6(12):1218–1221, 2013.

[16] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. ACM Trans. Database Syst., 33(2), 2008.

[17] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Trans. Knowl.
Data Eng., 23(5), 2011.

[18] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data
currency and consistency for conflict resolution. In ICDE,
2013.

[19] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In SIGMOD,
2011.

[20] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain
fixes with editing rules and master data. VLDB J., 21(2),
2012.

[21] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita. Declarative data cleaning: Language, model, and
algorithms. In VLDB, 2001.

[22] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC data-cleaning framework. PVLDB, 6(9), 2013.

[23] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping
and Cleaning. In ICDE, pages 232–243, 2014.

[24] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. That’s all
folks! LLUNATIC goes open source. PVLDB,
7(13):1565–1568, 2014.

[25] L. Golab, H. J. Karlo↵, F. Korn, B. Saha, and
D. Srivastava. Discovering conservation rules. In ICDE,
2012.

[26] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4), 2001.

[27] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. In CIDR, 2015.

[28] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and
F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4), 2013.

[29] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and
A. Aboulnaga. CORDS: automatic discovery of correlations
and soft functional dependencies. In SIGMOD, pages
647–658, 2004.

[30] M. Interlandi and N. Tang. Proof positive and negative in
data cleaning. In ICDE, 2015.

[31] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An interview
study. IEEE Trans. Vis. Comput. Graph., 18(12), 2012.

[32] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani,
J.-A. Quiane-Ruiz, P. Papotti, N. Tang, and S. Yin.
BigDansing: a system for big data cleansing. In SIGMOD,
2015.

[33] J. Manyika. Big data: The next frontier for innovation,
competition, and productivity. Technical report, McKinsey
Global Institute, 2011.

[34] C. H. Papadimitriou. Computational Complexity. Addison
Wesley, 1994.

[35] L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven
schema mapping. In SIGMOD, pages 73–84, 2012.

[36] G. Ramalingam and T. W. Reps. A categorized
bibliography on incremental computation. In POPL, 1993.

[37] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, pages 381–390,
2001.

[38] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and
L. Novik. Discovering queries based on example tuples. In
SIGMOD, pages 493–504, 2014.

[39] D. D. Sleator and R. E. Tarjan. Amortized e�ciency of list
update and paging rules. Commun. ACM, 28(2), 1985.

[40] S. Song and L. Chen. E�cient discovery of similarity
constraints for matching dependencies. Data Knowl. Eng.,
87, 2013.

[41] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller.
Continuous data cleaning. In ICDE, 2014.

[42] J. Wang, J. Han, and J. Pei. CLOSET+: searching for the
best strategies for mining frequent closed itemsets. In
SIGKDD, 2003.

[43] J. Wang and N. Tang. Towards dependable data repairing
with fixing rules. In SIGMOD, 2014.

[44] B. Wu and C. A. Knoblock. An iterative approach to
synthesize data transformation programs. In IJCAI, pages
1726–1732, 2015.

[45] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t
be scared: use scalable automatic repairing with maximal
likelihood and bounded changes. In SIGMOD, pages
553–564, 2013.

[46] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas. Guided data repair. PVLDB, 2011.

[47] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu.
Actively soliciting feedback for query answers in keyword
search-based data integration. PVLDB, 6(3):205–216, 2013.

[48] M. J. Zaki and W. Meira. Data Mining and Analysis:
Fundamental Concepts and Algorithms. Cambridge
University Press, 2014.

[49] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join queries. In
SIGMOD, 2013.

[50] M. M. Zloof. Query by example. In AFIPS. ACM, 1975.

APPENDIX
A. SUMMARY OF NOTATION

We summarize the notations used in the paper in Table 3.

905



Symbol Description
Q a sqlu query, or a data quality rule

QpT q a↵ected tuples of Q over table T
Q1 ® Q2 Q1 is contained by Q2

attrpQq attributes in the WHERE condition of Q
�: trAs – a1 an update of trAs to a1

pQ,®q w.r.t. � a lattice of queries Q on partial order ®
Q/ (Q/) the set of queries that Q (queries Q) contains
Q' (Q') the set of queries that contains Q (queries Q)

Table 3: Notations used in the paper.

Indicators AttributeValues Original Updated
D M L Q D M L Q M M

1 2 1 0 11 Nov statin Austin null statin C22H28F

Table 4: Features of node DML.

B. USING EXTERNAL SOURCES
In this section, we discuss an extension of our system when

external sources are present. Often times, external sources
(e.g., master data) are available and contain high quality
data. Next, we shall discuss how to leverage such informa-
tion by Falcon.

Consider a dirty table T with schema R and master data
M with schema R

m

. Assume without loss of generality that
|R| “ |R

m

|, and the alignment of attribute from each at-
tribute A P R to A P R1 is given. For all other attributes in
either relation that are not aligned will be ignored. More-
over, given the update � : trAs – a1, we assume that A P R.

UPDATE T SET T.A “ M.A1

FROM T,M WHERE T rXs “ MrX 1s P
Note that, di↵erently from the sqlu queries defined in

Section 2.1, we enforce the condition that A R X. The
reason is that we assume that master data contains only
correct values, but not errors. In such case, the number
of potential queries is 2|R|´1, which is the number of all
combinations of attributes in RztAu.

From the extension, we can repair errors from instance
level to schema level by using the same lattice and the same
algorithms.

C. ACTIVE LEARNING APPROACH
Active learning is a special case of semi-supervised ma-

chine learning with the goal of substantially reducing the
number of labelling when training a model. All the labels
for learning are obtained without reference to the learning
algorithm, while in active learning the learner interactively
chooses which data points to label. The hope of active learn-
ing is that interaction can substantially reduce the number of
labels required. The method relies on interactively querying
the user for labelling the data trying to maximize the benefit
for the actual learning algorithm.

We adopt a similar idea in our setting, as described below.
In order to use active learning in our problem, i.e., to

predict that which node (or query) in the lattice is valid or
invalid, we face two main issues to be addressed.

(1) We need to generate features for nodes in the lattice,
which are used to capture their characteristics.

Rank Attributes Set Correlation
1 {Stadium, Club Country} 1
2 {Soccer Manager, Soccer Club } 1
3 {Stadium, Soccer Club} 0.822
4 {Stadium, Soccer Manager} 0.789
5 {Stadium, Soccer Club, Soccer Manager} 0.654
... ... ...
99 {Stadium, Playercountry, Soccer Club} 0.303
100 {Stadium, Position} 0.006

Table 5: Correlation of attributes in Soccer dataset
when Stadium is updated.

(2) We need to use these features to select the node with the
maximum benefit to be labelled, which is then interact with
users to verify the selected node.

We explain in more detail about the implementation of
the above two steps below.

Feature Selection. We generate a number of features for
each node Q and train a Support Vector Machine (SVM)
model with LIBSVM [10]. For a node Q, the features in-
clude attribute indicator, attribute value, the original value
before the update, and the updated value. Attribute indica-
tor indicates whether the attribute is included in the node
(rule): if included, the indicator is 1; 0 otherwise. While if
the attribute is being updated, the indicator value is 2.

Question Generation. There are two phases in question
generation. First, in the initial 20 user updates, we use Ducc
to explore the lattice to label the nodes, taking the nodes
(and the corresponding features) from the user labelling as
the training data to train a SVM model that bootstraps the
active learning. Second, in each iteration, we apply the SVM
model to predict the label and corresponding probability of
each node, and select the node with the highest probabil-
ity of being valid (reported by SVM) to ask users. After
obtaining a label from user, we use lattice pruning tech-
nique (discussed in Section 3) to label other nodes in the
lattice and add them to existing training data to re-train
the SVM model.

We illustrate by an example for the active learning
method.

Example 12: Consider node DML in Figure 2. Firstly,
we generate features as illustrated in Table 4. Attribute
indicator of D is 1 because node DML includes attribute
D, indicator of M is 2 since it is the updated attribute.
Attribute values are the corresponding values taken from the
update �3 in Example 1. The original value and updated
value for the update are shown in the table.

Secondly, in each iteration, we apply SVM model to pre-
dict the probability of being valid of each node in the lattice.
Suppose node ML has the highest probability to be valid
that is 0.78. We then ask the user to label node ML and,
since in our example the node is valid, we label all nodes
above ML, i.e., {ML, DML, MLQ, DMLQ} to be valid and
we add them to re-train the SVM model.

D. ADDITIONAL EXPERIMENTS

D.1 Correlation Score Results
Correlation guides the search to nodes that are likely to

have a semantic connection. How to compute correlation

906



Soccer Hospital Synth 10k Synth 1M DBLP BUS
U A U A U A U A U A U A

DFS 11 33 129 387 177 531 5094 15282 1462 4386 3646 10938
BFS 82 246 423 1269 729 2187 14035 42105 1338 4014 4172 12516
Ducc 25 75 129 387 70 210 3083 9249 1122 3036 3646 10938
Dive 15 41 219 657 29 87 74 222 462 1386 312 936

CoDive 8 19 206 412 24 72 74 222 140 420 48 144

|QpT q| 82 2000 1640 15000 6086 4172

Table 6: Comparison of the lattice search algorithms with B “ 3: U is the number of user updates, A is the
number of user answers, and |QpT q| is the total number of errors.

Soccer Hospital Synth 10k Synth 1M DBLP BUS
T
C

Rep T
C

Rep T
C

Rep T
C

Rep T
C

Rep T
C

Rep
CoDive B=5 49 82 567 2000 70 1640 394 15000 560 6086 96 4172

Refine 132 82 4000 2000 2470 1640 13326 15000 12172 6086 7258 4172
Rule Learning 194 27 315 500 474 1212 4800 15000 502 0 1191 757

GDR 225 30 1025 500 1578 943 - - - - - -
Active Learning 217 82 2157 2000 214 1640 - - - - 1220 4172

|QpT q| 82 2000 1640 15000 6086 4172

Table 7: Comparison of the baselines. Here T
C

is the total interaction cost for the user, Rep is the number of
repaired cells, and |QpT q| is the number of errors.

is discussed in Section 4.2.2 to improve the binary jump
strategy. This is crucial in order to discover set of attributes
that form rules that are worth validating with the user. Note
that if many null values are present, we only count non-null
values, and the attributes with many null values will have
low correlation score. To clarify the role of the correlation
score, consider the following example.

�1: t1rStadiums – “Volkswagen Arena”(from “Weserstadion”)

The user updates attribute Stadium. Table 5 shows a sum-
mary of the correlation scores, relative to attribute Stadium,
for attributes in the Soccer dataset. Every set of attributes
in the table can be seen as the left hand side attributes to
form a FD. In fact, we know the conclusion of the rule for the
given update (the Stadium attribute), but we do not know
which attributes to use in the premise of the rule. From
the correlation scores, we can deduce that each Stadium usu-
ally belongs to one Soccer Club and has one Soccer Manager,
while each Stadium could have many Positions. Thus the cor-
relation score of Stadium, SoccerClub, SoccerManager (row
with rank 5) is much larger than that of Stadium and Position
(row at rank 100). Our algorithm uses this intuition to guide
the search strategy, and the experiment results also verify
that the correlations are e↵ective in avoiding rules that are
unlikely to be validated by the user, such as the one deriving
from row at rank 100.

D.2 More Details on Exp-1 and Exp-3
We now discuss in more details the di↵erent search algo-

rithms and baselines for all datasets.
As reported in Table 6, all search algorithms, with the

exception of BFS, lead to a clean dataset with a number of
user updates U that is smaller than the number of errors in
the data (|QpT q|, reported at the bottom). When consider-
ing the user answers (A), their number is from 4 to 68 times
smaller than the cost of manually fixing the errors (without
any rule nor tool), when considering the best performing
algorithm (numbers in bold). In particular, both for num-
ber of required updates and for number of required answers,
CoDive is always the method with the lowest e↵ort, with
the exception of the Hospital dataset. In this case, DFS and

Ducc perform better because of the simple rules that have
been used to model the injection of the errors in the data.
All rules for this dataset have only one or two attributes
in the left hand side of the rules, such as Zip Ñ State or
Address, City Ñ State. In these cases, the correct rules are
at the bottom of the lattice, which is the level that DFS
and Ducc explore first. On the contrary, if our algorithms
miss the correct node at the bottom, they would start ex-
ploring the rest of the lattice and converge to the bottom
again slowly, thus with a larger number of questions. Notice
that, as discussed in Exp-2, the closed rule sets optimization
shows a significant improvement on the Hospital scenario for
the DFS algorithm.

We also remark that the Hospital dataset has a number of
rather specific features. This dataset was created by joining
several tables, originally in normal form, in order to obtain a
large number of functional dependencies and redundancy in
the data for testing rule-based data repair algorithms [20,22].
Given the highly denormalized table resulting from these
joins, the dataset should not be considered representative of
a standard data cleaning task.

Table 7 reports the results for CoDive compared with the
baselines. Missing numbers denote cases for which the tool
was stopped after the fixed timeout (two hours) for all tests.
We observe that Rule Learning and GDR were not able to
cover all errors because of the limited scope of the discovered
rules. This is due to the limited size of the sample used
in mining. A larger sample would lead to better results in
terms of recall, but with a higher cost for the collection of the
clean tuples. Refine is always able to detect all errors, but
with a much larger number of interaction because of its less
expressive language, compared to CoDive. Finally, active
learning has worse performance w.r.t. CoDive because of
required training data, and in two cases with large dataset
it was not able to terminate before the timeout.

907




