
Synthesizing Natural Language to Visualization (NL2VIS)
Benchmarks from NL2SQL Benchmarks

Yuyu Luo
Tsinghua University, China

luoyy18@mails.tsinghua.edu.cn

Nan Tang
QCRI, HBKU, Qatar
ntang@hbku.edu.qa

Guoliang Li*
Tsinghua University, China
liguoliang@tsinghua.edu.cn

Chengliang Chai
Tsinghua University, China

ccl@tsinghua.edu.cn

Wenbo Li
Tsinghua University, China

li-wb17@mails.tsinghua.edu.cn

Xuedi Qin
Tsinghua University, China
qxd17@mails.tsinghua.edu.cn

ABSTRACT
Natural language (nl) is a promising interaction paradigm for data
visualization (vis). However, there are not any nl to vis (nl2vis)
benchmarks available. Our goal is to provide the �rst nl2vis bench-
mark to enable and push the �eld of nl2vis, especially with deep
learning technologies.

In this paper, we propose a nl2vis synthesizer (nl2sql-to-
nl2vis) that synthesizes nl2vis benchmarks by piggybacking
nl2sql benchmarks. The intuition is based on the semantic connec-
tion between sql queries and vis queries: sql queries specify what
data is needed and vis queries additionally need to specify how to
visualize. However, di�erent from sql that has well-de�ned syntax,
vis languages (e.g., Vega-Lite, VizQL, ggplot2) are syntactically very
di�erent. To provide nl2vis benchmarks that can support many vis
languages, we use a uni�ed intermediate representation, abstract
syntax trees (ASTs), for both sql and vis queries. We can synthesize
multiple vis trees through adding/deleting nodes to/from an sql
tree. Each vis tree can then be converted to (any) vis language.
The nl for vis will be modi�ed based on the nl for sql to re�ect
corresponding tree edits.

We produce the �rst nl2vis benchmark (nvBench), by applying
nl2sql-to-nl2vis on a popular nl2sql benchmark Spider, which
covers 105 domains, supports seven common types of visualizations,
and contains 25,750 (nl, vis) pairs. Our method reduces the man-
hour to 5.7% of developing a nl2vis benchmark from scratch (or
building a nl2vis benchmark from scratch takes 17.5 × man-hours
of our method). Extensive human validation, through 23 experts
and 312 crowd workers, demonstrates the high-quality of nvBench.

In order to verify that nvBench can enable learning-based ap-
proaches, we develop a seq2vis model. Our experimental results
show that seq2vis works well and signi�cantly outperforms the
state-of-the-art methods of the nl2vis task.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457261

ACM Reference Format:
Yuyu Luo, Nan Tang, Guoliang Li*, Chengliang Chai, Wenbo Li, and Xuedi
Qin. 2021. Synthesizing Natural Language to Visualization (NL2VIS) Bench-
marks from NL2SQL Benchmarks. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD ’21), June 20–25, 2021, Vir-
tual Event, China. ACM, Amsterdam, The Netherlands, 13 pages. https:
//doi.org/10.1145/3448016.3457261

1 INTRODUCTION
Visualizing data through nl (nl2vis) is an important step towards
democratizing data visualization [31, 32, 47, 55]. Recently, both
commercial vendors (e.g., Tableau’s Ask Data [50], Microsoft Power
BI [2], ThoughtSpot [3]) and academic researchers [11, 42, 46, 52,
62, 70] are starting to explore nl2vis techniques.

Despite its importance, the study of nl2vis is still in its infancy
(see e.g., the white paper from Thoughtspot [3]). So far, only simple
or constrained nl queries are supported. A big obstacle for advanc-
ing the �eld of nl2vis is the lack of benchmarks, and our goal is
to �ll this gap. In retrospect, benchmarks have played a key role
in spawning the boom in di�erent research communities, such as
TPC benchmarks for the database community, ImageNet [12] for
image processing, and GLUE [59] and SuperGLUE [58] for NLP.
Challenges. Benchmarking nl2vis to replicate production-like
situations faces three major challenges.
(1) [Data/Query Coverage.] Similar to nl2sql [26], nl2vis also highly
relies on the type of datasets used, because di�erent datasets have
di�erent structures, lengths, and various complexities of queries
(e.g., selection, comparison, aggregation, join) to be created. Also,
it should support the most commonly used charts [5].
(2) [Diversi�ed vis Languages.] There are dozens of common vis
languages, e.g., Vega-Lite [48], VizQL [22], ggplot2 [64], ZQL [51],
Echarts [27], and many more (see [47] for a survey). Each has its
unique syntax: which one(s) to support?
(3) [nl Variants.] Users may pose di�erent nl speci�cations for
the same visualization, either explicitly (e.g., “draw a pie chart”) or
implicitly (e.g., “show me the proportion”).
Common Practice and Its Limitations. The most widely used
practice for producing such benchmarks (e.g., Spider [68] for
nl2sql) follows two steps: manually design and collect compre-
hensive sets of data and queries, and then ask experts to complete
tasks. The above approach has two limitations: (1) [High Human
Cost]: these steps are laborious; even worse, the experts needed are

*Guoliang Li is the corresponding author.

https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/3448016.3457261

Figure 1: Sample visualization speci�cations

not always available in a general crowdsourcing environment [39];
and (2) [Not Extensible]: for any new dataset, one has to go through
the above two steps, from scratch.

The research question we ask in this paper is: Can we synthesize
nl2vis benchmarks that can support nl2vis on many data visualiza-
tion languages?

Key Observations. Our key observations are as follows.
(1) [sql and vis: Semantic Connection.] sql queries ask what data
is needed (i.e., data operations); and vis queries additionally just
need to specify how to visualize the data (i.e., vis types and other
visual encoding details).

Example 1. [vis Queries.] Figure 1 shows two popular ways of
specifying visualizations, Vega-Lite [48] and Tableau.

For Vega-Lite (Figure 1(a)), a user needs to specify what data is
needed and how to transform the data (marked in pink), and how
to map the data to the visual encoding (marked in blue), in order to
produce a bar chart.

Tableau is the tool for interactive data visualization. As shown
in Figure 1(b), a Tableau user also needs to specify a series of data
operations (marked in pink) and then choose the right visualization
types (marked in blue).

(2) [sql and vis: Syntactic Uni�cation.] As shown in Figure 2, an
sql query will be represented as an sql tree, which can be used to
synthesize multiple vis trees. These vis trees can then be translated
to (almost) any target vis syntax.
(3) [Reusable Resources.] We can piggyback nl2sql benchmarks [68];
and there are remarkable advances in NLP technology [30, 40, 57].
Contributions.We make the following contributions.
(1) [nl2sql-to-nl2vis Synthesizer.] We propose a nl2sql-to-nl2vis

Figure 2: Transforming sql to multiple vis languages

synthesizer that can synthesize multiple (nl, vis) pairs from one
(nl, sql) pair. (Section 2)
(2) [nvBench: Statistics and Evaluation.] We apply nl2sql-to-
nl2vis on a popular nl2sql benchmark Spider [68] to synthe-
size nvBench. nvBench contains 780 relational tables from 153
databases in 105 domains (for example, Sport, College, Hospital, and
so on), and has 7,247 visualizations and 25,750 (nl, vis) pairs. For
evaluation, (i) we invited 23 experts from the NLP, VIS, HCI, DB,
and DM communities, all with vis experience. The results show
that 86.9% of synthesized (nl, vis) pairs are well-matched. In ad-
dition, these experts help revise ∼2% imperfect nl queries, which
results in a re�ned version, namely nvBench∗. (ii) We also used
crowdsourcing and recruited 312 crowd workers, which shows that
88.7% synthesized (nl, vis) pairs are good. (Section 3)
(3) [seq2vis: nl2vis Neural Translation.] We apply a well known
seq2seq model [7] to learn the translation from nl queries to vis
queries, namely seq2vis. Experiments show that seq2vis achieves
∼65% accuracy on nvBench, which signi�cantly outperforms the
state-of-the-art approaches of the nl2vis task. (Section 4)
(4) [Conclusion.] We propose (i) the �rst nl2vis synthesizer
(nl2sql-to-nl2vis), and produce (ii) the �rst nl2vis benchmark
(nvBench). We are also (iii) the �rst to apply a neural transla-
tion model (seq2vis) on learning nl2vis and empirically show
that it works well. (Section 6)

The code and benchmark is available at https://github.com/
TsinghuaDatabaseGroup/nvBench, to help both the database
community and the visualization community, as well as commercial
vendors, to push the �eld of nl2vis.

2 NL2SQL-TO-NL2VIS SYNTHESIZER
2.1 Solution Overview
Figure 3 overviews the nl2sql-to-nl2vis synthesizer, which con-
sists of two steps: vis synthesis (i.e., generating visualizations based
on sql queries) and nl synthesis (i.e., editing the nl queries of sql
queries based on the synthesized vis).

It takes a (nl, sql) pair (nQ ,Q) as the input, and re-
turns as output a set of (nl, vis) pairs: {(n11, t1), . . . ,
(n1k , t1), . . . , (nm1, tm), . . . , (nmk , tm)}. Here,Q is an sql query, tQ
is its (equivalent) tree representation, and nQ is its corresponding
nl query. The output containsm vis trees {t1, . . . , tm }; each vis
tree ti relates to multiple nl queries (e.g., {n11, . . . ,n1k } are k nl
variants for query t1).

https://github.com/TsinghuaDatabaseGroup/nvBench
https://github.com/TsinghuaDatabaseGroup/nvBench

Figure 3: An overview of the nl2sql-to-nl2vis synthesizer

Figure 4: A running example for nl2sql-to-nl2vis

Example 2. [Input.] Figure 4 gives a real example from a Flight
dataset, where the original (nl, sql) pair (nQ ,Q) from the Spider [68]
nl2sql benchmark is given as input.

[Output.] The nl2sql-to-nl2vis will synthesize T
′

V with two
vis queries, t1 and t2 (We will explain the syntax of t1 and t2 in
Section 2.2). t1 is a pie chart and t2 is a bar chart. For t1, it syn-
thesizes two nl queries n11 and n12; and for t2, it also synthe-
sizes two nl queries n21 and n22. Hence, it will output four pairs
{(n11, t1), (n12, t1), (n21, t2), (n22, t2)}.

Step 1. vis Synthesis. It does tree edits to obtain multiple vis
trees from one sql tree, considered as vis candidates.
[Invariant (what data).] An sql query Q (or equivalently, its tree
representation tQ) is to retrievewhat data is needed. Because nl2sql
benchmarks have enough coverage and diversity, we try to keep
the data querying part unchanged.
[Variant (how to visualize).] Tree edits may modify the sql tree tQ
by adding how to visualize (i.e., the vis type) and some vis related
data operations (e.g., grouping and binning), as well as deleting
some nodes (e.g., an sql query may select more attributes than
needed for vis).

This will result in a setTV = {t1, . . . , tn } of vis trees. We denote
by ∆i the tree edits on sql tree tQ to get vis tree ti .

In order to ensure that each vis query w.r.t. a vis tree in TV is
“good”, e.g., a bar chart with several hundred bars is not readable
thus is bad. Hence, we need to �lter “bad” charts, while only keeping
good charts as T ′

V = {t1, . . . , tm }.
Step 2. nl Synthesis. Given the input (nQ , tQ), each good vis
query ti , and the tree operations ∆i that convert tQ into ti , it will
revise nQ to re�ect the change of ∆i , and get variants of nl speci�-
cations. The purpose of having variants of nl speci�cations, which
is a way of data augmentation [18], is to train a robust model.

Root ::= Q | Visualize Q
Q ::= intersect R R | union R R| except R R | R
R ::= Select | Select Filter | Select Order | Select Superlative
 | Select Order Filter | Select Superlative Filter | Select Group
 | Select Group Filter | Select Group Order | Select Group Superlative
 | Select Group Order Filter | Select Group SuperlativeFilter
Visualize ::= bar | pie | line | scatter | stacked bar | grouping line
 | grouping scatter
Select ::= A | A A | A A A | A … A
Order ::= asc A | desc A
Superlative ::= most V A | least V A
Group ::= grouping A | binning A
Filter ::= and Filter Filter | or Filter Filter | > A V | > A R | < A V | < A R
 | >= A V | >= A R | <= A V | <= A R | != A V | != A R | = A V | = A R
 | between A V V | between A R | like A V | not like A V
 | in A R | not in A R
A ::= max C T | min C T | count C T | sum C T | avg C T | C T
C ::= column
T ::= table
V ::= value

Figure 5: The grammar for (sql and vis) AST

At the end, it will produce a set of (nl, vis) pairs as:
{(n11, t1), . . . , (n1k , t1), . . . , (nm1, tm), . . . , (nml , tm)}.

2.2 Bridging SQL and VIS Queries with AST
An ideal grammar to bridge sql and vis queries is desired to be:
(1) uniform: it can represent both sql and vis queries; (2) language-
agnostic: it can be converted to either an sql query or a vis query
with a speci�c language (e.g., Vega-Lite); and (3) extensible: it can be
extended to support other sql queries or more visualization types.

One choice is based on Abstract Syntax Tree (AST). In particular,
we extend SemQL [21], which was used for nl2sql, to further
support nl2vis. The extended grammar is shown in Figure 5.

[sql Scope.] It supports sql queries with “select” to project on at-
tributes, “from” which tables asA ::= C (column)T (table), “where”
and “having” in the Filter conditions, “order by” through Order,
“group by” viaдroupinдA, “LIMIT” using Superlative, “aggregations”
on attributes such as {max, min, count, sum, avg}, and combing re-
sults such as {intersect, union, except}.

[vis Scope.] It supports seven types of commonly used visualiza-
tions [5], namely {bar, pie, line, scatter, stacked bar, grouping line,
grouping scatter}. Also, the “binning” operation is supported using
binninд A.

Figure 6 shows an sql AST tree tQ and a vis AST tree t1, relative
to the running example in Figure 4.

Figure 6: Sample sql and vis trees

2.3 Tree Edits: Generating VIS Candidates
Next, we discuss how to generate (candidate) vis trees from one
sql tree. Intuitively, given one sql tree, we can “delete” any tree
nodes or “insert” any tree nodes, as long as we can produce a valid
vis tree rooted with “Visualize Q” (Figure 5).

Enumerating all valid vis trees given a well-de�ned grammar
is not hard (see e.g., [35, 41]). The question is: For the purpose of
nl2vis, do we need to enumerate them? Just like nl2sql, do we need
to have all sql queries? The answer is clearly “no” because if many
queries have similar tree structures, their corresponding nl queries
will also be similar – providing many similar, or redundant (nl, vis)
pairs, is not helpful from the perspective of benchmarking nl2vis.

Moreover, existing nl2sql benchmarks have paid a lot of e�orts
on designing sql queries with di�erent complexities for what data
is needed. Naturally, if we piggyback nl2sql benchmarks, we should
keep their what data part, but focus on adding how to visualize.
Candidate visGeneration. Given an sql tree tQ , we �rst perform
di�erent deletions on tQ to get a set I of intermediate sql trees
{t I1, . . . , t

I
l }. For each intermediate sql tree t Ii ∈ I, we then make

insertions to get a set of vis trees TV = {t1, . . . , tn }. The tree edit
from tQ to ti (i ∈ [1,n]) is denoted by ∆i , consisting of deletions
(∆−

i) and insertions (∆+i).

[Deletions (∆−).] An sql tree mainly contains �ve types of subtrees,
i.e., Select, Order, Filter, Superlative, and grouping A. We keep the
last three unchanged (which can be mapped to vis languages), and
only edit the �rst two, Select and Order.

(Select.) An sql query may select many attributes but a vis query
typically needs one attribute (e.g., for pie charts), two attributes
(e.g., for line charts), or three attributes (e.g., for stacked bar charts).
Hence, given the set of attributes in tQ , we will enumerate and

Table 1: Rules for syntactically correct charts
C (Categorical), T (Temporal), Q (Quantitative)

One Variable
C grouping + count → {bar, pie}
T grouping/binning + count → {bar, pie, line}

Two Variables
C + Q grouping/binning/none + agg → {bar, pie}
T + Q grouping/binning/none + agg → {bar, pie, line}
Q + Q scatter

Three Variables
T+Q+C grouping + binning + agg → {grouping line, stacked bar}
C+Q+C grouping(s) + agg → {stacked bar}
Q+Q+C grouping(s) + agg → {grouping scatter}

keep all single attributes, the combination of two attributes, and the
combination of three attributes – each will result in an intermediate
sql tree in I.

(Order.) If Order is present in an sql tree t I ∈ I, we will keep t I
in I, and insert another tree t I′ into I by deleting the Order subtree,
because Order may not be needed for some visualizations (e.g., no
orders in pie charts).

[Insertions (∆+).] Next we discuss how to do insertions for each
t I ∈ I and output a set TV of vis trees.

(Group.) We can either perform grouping or binning on one
attribute A. If grouping/binning is present, we add an aggregate
(e.g., max, min, avg) node. For binning, if the column is temporal, we
bin the values by minute, hour, day of the week, month, quarter, or
year; if the column is numeric, we follow the convention by setting
binSize = dmaxValue−minV alue

#bins e (by default, #bins = 10).
(Visualize.) We will add a Visualize subtree. Also, we need to

ensure that the vis type (e.g., bar, line) added can lead to a valid
vis. We follow the rule of thumb (see Table 1) of vis w.r.t. attribute
types from the data visualization community [38, 65], which are
encoded as rules in our system.

(Order.) Order operation can be applied on bar, stacked bar, line,
or grouping line charts to sort the x-axis or y-axis.

After di�erent combinations of insertions above, we will obtain
candidate vis set TV .

Example 3. [Tree Edits.] Figure 6 shows how to convert the sql
tree tQ to one vis tree t1, by �rst deleting attribute A-subtrees for
�no and destination, and the Order subtree, followed by inserting the
count predicate, and two subtrees, one for Group, and the other for
Visualize.

2.4 Filtering Bad Visualizations
We use a pre-trained ML model M(), DeepEye [35]1, to prune can-
didate vis queries that are bad. Given a vis query v , M(v) outputs
either true (i.e., a good vis) or false (i.e., a bad vis).

By doing so, we prune bad visualizations from the candidate vis
set TV and get a set of good vis set T ′

V .
WorkingMechanismofDeepEye. It �rst uses expert rules (rules-
of-thumb from the visualization community) to remove invalid
visualizations (e.g., one cannot visualize a line chart with two cat-
egorical values) and obviously bad visualizations. It then uses a

1https://github.com/Thanksyy/DeepEye-APIs

Figure 7: Sample visualizations from TPC-H/TPC-DS

trained a binary classi�er to decide whether a vis is good or bad.
The binary classi�er was trained using 2520/30892 labeled good/bad
charts, using features such as the number of distinct values, the
number of tuples, the ratio of unique values, max and min values,
data type, attribute correlations, and vis type.

We also use TPC-H (http://www.tpc.org/tpch/) and TPC-DS
(http://www.tpc.org/tpcds/) benchmarks to test our vis queries
transformation and �ltering mechanisms. We �nd that below types
of vis queries are �ltered out by DeepEye as bad visualizations:
(1) a single value: this type of query retrieves a single value from
the database, and it is not suitable for visualization; (2) pie charts
having many slices, (3) bar charts with too many categories, and
(4) line charts with two qualitative variables.

Example 4. Figure 7 shows four sample visualizations, where (a)
and (b) are transformed from the TPC-H Q20 and Q8, respectively,
and (c) and (d) are transformed from TPC-DSQ9 andQ7, respectively.

Figures 7 (a) and (c) are bad visualizations and will be �ltered
out by DeepEye, because (a) shows too many slices and is hard to
derive useful insights from such a pie chart, and (c) is a bar chart to
show a single value, which is better to display simply with a table.
Figures 7 (b) and (d) are good visualizations: (b) is a bar chart that
shows the trend of market share changes over years, and (d) is a scatter
chart that shows the correlation between two variables.

2.5 NL Edits: Generating NL Variants
Each vis ti ∈ T ′

V is associated with a set of tree edits ∆i , i.e., dele-
tions ∆−

i and insertions ∆+i . Next, we need to modify the nl of the
corresponding sql query to re�ect these changes.
Insertions. For insertions such as grouping, aggregation, Order, and
vis types, we use nl extracted from Tableau’s Ask Data [50] and
NL4DV2 as rules to enrich the text. For binning, we conduct a user
study to collect use cases of how users describe binning operations
using nl. The table below shows some sample nl rules for inserting
di�erent tree nodes.
Visualize: “{plot, visualize, show, give, draw,...} as a vis type”
Order: “{order, sort, list, ...} by A (in {asc, desc, alpha} order)”
Agg: “{count, sum, average, how many,...} A (by grouping) ”
grouping: “by (each {item, category, ...} in) A”
binning: “ {with, in, ...} a bin/bucket of {month, year, ...}”

Example 5. Consider an nl query that asks “how many male and
female faculties do we have?” for the sql query “SELECT COUNT(*)
FROM Faculty GROUP BY sex”.

Assume that the vis query is simply to visualize the above result
using a pie chart, i.e., adding “VISUALIZE pie” to the corresponding
2https://nl4dv.github.io/nl4dv/showcase.html

sql tree. The nl edits will automatically revise the above nl for sql
to a nl for vis as “show the proportion about how many male
and female faculties do we have?”

When using rule-based nl insertions to re�ect ∆+, one drawback
is that the obtained nl speci�cation may not look very natural.
We adopt a popular NLP technique called back-translation [16] to
smooth it, e.g., �rst translating an English sentence to French, and
then translating it back to English. All the nl speci�cations in our
benchmarks are smoothed using back-translation.
Deletions. It is hard for us to automatically rewrite the origin nl
based on the deletions on nl AST tree. The �rst reason is that some
descriptions of sql clauses may be implicitly given in nl, so it is
di�cult to match the deleted tree nodes with the corresponding
nl phrases. The second reason is that it is di�cult to ensure that
the semantics and grammar of the nl are correct after deleting
the corresponding description. For these deletions, we manually
revised the nl queries.

2.6 From VIS Trees to Visualizations
The last step is to convert a vis tree to a targeted vis lan-
guage, so as to be rendered. The mapping from a vis tree
to a targeted vis language is hard-coded. Currently, we sup-
port both Vega-Lite and ECharts, with ∼240 and ∼320 lines of
Python code, respectively. There are also tools that translate
among di�erent visualizations, e.g., from ggplot2 to Vega-Lite
(https://github.com/vegawidget/ggvega). We also plan to support
other popular vis languages.

3 NVBENCH: STATS AND EVALUATION
3.1 Setup
We use nl2sql-to-nl2vis on Spider [68], the latest, popular, large-
scale, complex and cross-domain, and with the most challenging
nl2sql tasks (see Section 5 for more discussion).
nl2sql Benchmark. The Spider benchmark consists of 200
databases (averagely 5.1 tables for each database) on 138 domains
(for example, college, club, TV show, government, and so forth), and
10,181 (nl, sql) pairs on these databases. These (nl, sql) pairs were
designed to well cover di�erent domains, and various di�culties of
nl2sql tasks [68].
Applying nl2sql-to-nl2vis Synthesizer.When applying nl2sql-
to-nl2vis on these (nl, sql) pairs, some may not contribute to
any meaningful vis queries. These meaningless vis queries will be
pruned (see Section 2.4), and their corresponding tables or databases
will not be incorporated in our nvBench statistics. We have 1,838
vis objects (25.36% of total cases) that need experts to perform
nl edits due to tree deletions, which were completed by two PhD
students. For editing one nl query w.r.t. tree deletions, the PhD
students spent ∼1 minute on average. Finally, they produced 3,500
nl variants (13.59% of total nl variants) for the 1,838 vis objects.
The total time is estimated as 3500*1/60/24 = ∼2.4 days.

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/

Table 2: nvBench dataset statistics
Coverage

#-Databases #-Tables #-Domains
153 780 105

Top-5 Domains (#-Tables)
Sport (62) Customer (52) School (41) Shop (35) Student (22)

The Numbers of Columns and Rows
#-Cols Avg (#-Cols) Max (#-Cols) Min (#-Cols)
4,017 5.26 48 2
#-Rows Avg (#-Rows) Max (#-Rows) Min (#-Rows)
1,000,572 1309.65 183,978 1

The Types of Columns
C (%) T (%) Q (%)

2763 (68.78%) 465 (11.58%) 789 (19.64%)

Figure 8: Statistics of Columns and Rows

Figure 9: Column Level Statistics

3.2 Statistics of nvBench
Datasets. Table 2 summarizes the statistics of nvBench: the cover-
age of databases/tables/domain, the numbers of tuples and columns,
and the types of columns.
Coverage. nvBench contains 153 databases with 780 tables in total,
and covers 105 domains. The top-5 domains and the numbers of
tables they contain are also shown, e.g., domain Sport has 62 tables,
Customer has 52 tables, and so on.
The Numbers of Columns and Rows. The total number of columns
(resp. rows) of the 780 tables is 4,017 (resp. 1,000,572), with an
average of ∼5 columns (resp. ∼1,309 rows) per table (Table 2). The
maximum/minimum number of columns (resp. rows) is 48/2 (resp.
183,978/1).
The Types of Columns.We classify the column type as either cate-
gorical (C), temporal (T), or quantitative (Q). Categorical and quanti-
tative columns account for 88.42% of all columns, where categorical
type takes 68.78%. The temporal columns account for 11.58% of all
columns (Table 2).

Figure 8 provides details about the distributions of columns and
rows. Figure 8(a) shows that most tables have less than 5 columns.
Figure 8(b) shows that most tables are small, with 5 to 100 rows.

Besides, for quantitative columns, we also tested the goodness-
of-�x of six well-known distributions: the normal (abbr. Norm), log-
normal (abbr. L-N), exponential (abbr. Exp), power-law (abbr. Pow),

uniform (abbr. Unif), and chi-square (abbr. Chi-2) distributions. As
shown in Figure 9(a), the most common type of distribution is log-
normal, with 302 columns. Note that 295 columns do not follow the
above six distributions and there is no column follows the uniform
distribution. Only 2 columns with chi-square distribution, which
accounts for the least proportion. Figure 9(b) reports the feature of
data skewness, which shows that about 335 (42.46%) columns with
approximately symmetric distributions, 158 (20.03%) columns with
moderately skewed distributions, and ∼40% of the columns have a
highly skewed distribution. We then detect the percent of outliers in
a quantitative column, we say a data point is an outlier if it is more
than 1.5× interquartile ranges (IQRs) above the third quartile or the
�rst quartile. Figure 9(c) shows that about 468 (59.31%) quantitative
columns do not contain outliers, and around 174 (22.05%) columns
have 1%-10% outliers.
vis and nlQueries. nvBench consists of 25,750 (nl, vis) pairs and
7,247 distinct visualizations (Table 3). Next we discuss more details.
vis Types. nvBench consists of 7,247 distinct visualizations, in-
cluding seven types: bar (histogram), pie, line, scatter, stacked bar,
grouping line, and grouping scatter charts.

Among them, the number of (stacked) bar charts is the largest,
accounting for nearly 80%, while the quantity of (grouping) scatter
chart is the smallest because the amount of quantitative columns is
limited.

Bar charts and its variants take a huge percentage matches real-
world cases. As shown by Beagle [5] and SEEDB [56], bars (and
histograms) are the most popular vis types.
vis Hardness. Intuitively, not all nl2vis tasks are equivalently hard.
Along the same line of Spider [68] for nl2sql, we categorize vis
queries into 4 levels: easy, medium, hard, and extra hard, based on
the complexity of the vis tree.

We �rst de�ne three classes of AST subtrees: (S1) {Select, Order,
Group, Filter, Superlative}, (S2) {the number of A-subtrees, Filter-
subtrees, and Group-subtrees no more than two, respectively}, and
(S3) {intersect, union, except}. Next we further de�ne some rules for
a vis tree: (R1) it satis�es no more than two conditions in the set of
S2; (R2) it has two subtrees from S1 in total and meets no more than
one rule of S2; (R3) it satis�es at least three rules from S2, less than
three subtrees from S1 and without keywords from the set of S3;
(R4) it has three subtrees from S1 and meets less than three rules
from S2 and without keywords from S3; and (R5) it has no more
than one subtree from S1 and meets no rule in S2, but exactly has
one keyword from S3.

Next we de�ne the hardness of vis tree t .
• Easy: t has are no more than one subtree from S1, and the
number of A-subtrees no more than two.

• Medium: t satis�es either R1 or R2.
• Hard: t satis�es either R3, R4, or R5.
• Extra Hard: t has more conditions than the hard case.

Figure 10 shows the distribution of synthesized visualizations in
di�erent types and hardness. We can see that most visualizations
are medium, which account for 38.64%. Also, (stacked) bar charts
are the most popular.
nl Queries. Table 3 also shows the number of (nl, vis) pairs, the
lengths of these nl queries, and the diversity of nl queries.

Table 3: nvBench nl queries and vis queries
vis Types #-vis #-(nl, vis) #-(nl, vis)/#-vis Avg. #-W Max #-W Min #-W Avg. BLEU (Pair)

Bar 5,523 (76.21%) 19,407 (75.37%) 3.514 25 62 5 0.323
Pie 520 (7.18%) 1,750 (6.80%) 3.365 15 33 7 0.313
Line 380 (5.24%) 1,562 (6.07%) 4.111 25 49 6 0.380
Sca�er 266 (3.67%) 1,041 (4.04%) 3.914 17 39 8 0.438

Stacked Bar 359 (4.95%) 1,172 (4.55%) 3.265 28 45 11 0.405
Grouping Line 72 (1.00%) 271 (1.05%) 3.764 27 51 9 0.365
Grouping Sca�er 127 (1.75%) 547 (2.12%) 4.307 19 31 8 0.476

All Types 7,247 25,750 3.746 22.29 44.29 7.71 0.337

Figure 10: Visualization types vs. hardness

nvBench synthesizes 3.746 nl queries per vis on average. More-
over, the average number of words for each nl query is ∼22, and
roughly ∼16 of them are words for specifying what data is needed
and the remaining words are for how to visualize the data. For some
cases, the number of words of an nl query is large; the reason is that
the vis query is complex that contains �ltering and join operations.
Besides, our nl queries are well-speci�ed, which also leads to a
large number of words of the sentence.
Diversity of nl Queries. For di�erent nl queries w.r.t. the same vis
query, we need to ensure that they have enough di�erence (or
diversity). One common way to quantify two texts is through Bilin-
gual Evaluation Understudy (BLEU) score [43], which measures
the diversity of pairwise sentences, by counting matching n-grams.
BLEU’s output is always a number between 0 and 1, with values
closer to 1 representing more similar texts (i.e., more common n-
grams) and closer to 0 means good diversity. Note that BLEUmainly
quanti�es syntactic diversity; that is, it does not quantify the “mean-
ing”. This actually �ts our problem well because we use nl2vis to
quantify the quality of nl queries.

Table 3 reports the results, the sentences for pie charts have the
lowest BLEU score (0.313), which means that the diversity of the
nl queries for pie charts is high. The average BLEU score for all
cases is 0.337, which shows reasonable diversity for nl queries for
the same vis.

3.3 Expert and Crowd Evaluation

Human Tasks. The key questions we answer with our human
evaluation are: (T1) How close are machine-generated nl queries
to expected handwritten nl queries in nvBench? (T2) How does nl
queries match corresponding visualizations in nvBench? and (T3)
Collect handwritten nl queries for given visualizations. Tasks T1 and
T2 are to ask humans to verify that whether our synthesized nl2vis

Figure 11: Sample questions and answers

benchmark, nvBench, is good. Task T3 aims at enriching nvBench
by soliciting handwritten nl queries from experienced users.
Task T1. Given a (nl, vis) pair, we ask the participants the question:
“how close the given nl query is to their expectation of handwritten
nl query” with �ve choices {strongly disagree, disagree, neutral,
agree, strongly agree}.
Task T2. Given a (nl, vis) pair, we ask the participants: “how does
the nl query match the provided vis” with �ve choices {strongly
disagree, disagree, neutral, agree, strongly agree}.

We pack one T1 task and one T2 task as a HIT (i.e., a combined
question), and show this HIT to the participants, as depicted in
Figure 11. All vis objects are rendered by Vega-Lite. We told the
participants that the nl queries can be either machine-generated
or handwritten. We also explicitly told the participants that T1 and
T2 are not correlated, in order to remove the potential bias such
that even if one thinks that an nl query is machine-generated in
T1, he/she will not lower the matching rate of a (nl, vis) pair in T2
based on the answer to T1. The rationality of this setting is that, an
nl query is not natural does not mean that it does not match the
corresponding vis object.

Example 6. Consider Figure 11 with examples from our real test.
In Figure 11-¯, an expert considers T1 as a machine-generated nl
query (rated “disagree”) while still considers T2 as a good match (rated
“Strongly agree”), which shows that participants are aware that T1
and T2 should not be correlated.

Task T3. Given a vis object, we ask the participants to provide
corresponding handwritten nl queries.

Figure 12: Inter-rater reliability analysis for T2

Figure 13: Expert/crowd evaluation

For T1 and T2, we randomly sampled ∼10% (nl, vis) pairs and
their associated tables from nvBench. We additionally added n =
100 high-quality handwritten nl queries by two PhDs, such that it
has a mixture of machine-generated and handwritten nl queries. Of
course, we did not expose which nl queries are machine-generated
and which nl queries are handwritten to the participants. T3 was
performed along with T1 and T2, if participants can provide new
nl queries for given vis objects, which is not mandatory.
Participants. We invited both experts and crowd workers.
Experts: We invited 23 experts (4 females, 19 males, age 21–42),
including 14 Ph.D. students, 4 master students, 1 undergraduate
student, 2 research scientists, 1 R&D engineer, and 1 tenured pro-
fessor. Our participants’ research �elds include Human-Computer
Interaction (1), Natural Language Processing (1), Data Visualization
(3), Data Mining (2), and Database (16). All participants have more
than 3 years experience on data analysis and visualization. Because
the cost for experts is high, we assign one task to one expert and
trust his/her quality.
Crowd Workers: We recruited 312 workers from a crowdsourcing
platform appen3, who are good at English and had ≥ 90% HIT
approval rating. Each task was completed by 3 to 7 crowd workers
(by default 3). The majority voting [8–10] is used to aggregate the
answers from tasks T1 and T2. If the answers from three workers
cannot be aggregated via majority voting, e.g., each one gives a
di�erent answer, we will ask more questions, but are capped at
seven. In our testing, most questions are answered by three workers.

Tasks T1 and T2 are performed by both experts and crowd work-
ers. Task T3 is performed only by experts, because T3 is harder and
crowd workers failed T3 on our test.

Finally, we collected 2105 answers for T1 and T2 from crowd
workers, and 460 results for T1 and T2 from experts. Moreover, we
obtained 460 handwritten nl queries in T3, only from experts.

Next, we report our experimental �ndings.
Exp-T1 (Machine-generated or handwritten?). The results from both
crowd workers and experts are given in Figure 13(a). It shows that

3https://appen.com/, Figure Eight—formerly Crowd�ower—is now Appen

crowd workers/experts consider that 85.6% (31.3%+54.3%) / 81.1%
(29.1%+52%) synthesized nl queries are handwritten (i.e., those
rated as agree/strongly agree). There are only 6.6% (2%+4.6%), 6.1%
(0.7%+5.4%) of the nl queries are not written by humans (i.e., those
rated as strongly disagree/disagree), rated by experts and crowd
workers respectively. Also, it is di�cult for crowd workers and ex-
perts to determine whether 7.9%/12.8% nl queries are handwritten
or machine-generated (i.e., those rated as neutral).

In summary, both experts and crowd workers believe that most
nl queries are handwritten, instead of machine-generated. This
is expected, because a large portion of the text is inherited from
handwritten nl queries from Spider. Also, we consider that the
result from experts is more precise than crowd workers, because ex-
perts have good experience in data visualization but crowd workers
typically do not.

We also collected some comments from participants for those nl
queries that they reported as machine-generated. The most com-
mon comment is that some nl queries are long and complex, which
mainly correspond to the (extra) hard cases. The high complexities
of such nl for vis queries are mainly carried over from correspond-
ing sql queries with complex data operations. We keep (extra) hard
cases in nvBench for advanced database users. Other comments
are as follows: (1) some sentences use words that are not natural,
(2) multiple punctuation marks appear at the same time, (3) some
sentences are imperative mood, and (4) the words contain special
marks such as underlines.
Exp-T2 (Does nl queries match vis?). Figure 13(b) shows the result.
It tells us that experts consider 86.9% (67.8%+19.1%) nl queries
match (i.e., those rated as strongly agree/agree) the corresponding
vis well, and crowd workers think 88.7% (56.5%+32.2%) nl queries
are well-matched. Moreover, these experts also point out that the
easy and medium cases are very commonly used when they specify
visualizations, but rarely specify (extra) hard cases, for which they
tend to �rst use sql queries to get data and then visualize.

In summary, both experts and crowd workers agree that most nl
queries well match (rated as strongly agree/agree) vis queries. We
also proofread those (nl, vis) pairs rated as neutral/disagree/strong-
ly/disagree. We �nd that most of the nl queries contain some de-
scriptions about Filter/Join operations. Because it is di�cult for the
participants to directly observe the nl descriptions about Filter/Join
operations either from the vis results and the associated tables,
these types of (nl, vis) pairs are often falsely rated as neutral/dis-
agree/strongly disagree.
Inter-rater Reliability. Next we analyze the degree of agreement
between participants for task T2. We randomly sampled 50 overlap-
ping (nl, vis) pairs in T2 that are rated by both crowd workers and

Figure 14: Task T3 – user time (seconds)

experts. We map the answers strongly disagree/disagree/neutral/a-
gree/strongly agree to score 1/2/3/4/5 for easy plotting. Figure 12
uses a boxplot to visualize the distribution of answers. Each point
in the x-axis is for a sampled (nl, vis) pair, the y-axis for the ratings
from both experts and crowd workers, and the boxplot for agree-
ment/disagreement. The red line represents the median value of
answers while the box boundaries correspond to the 25th and 75th
percentiles. The blue dots (e.g., in x ∈ {3, 8, 9, 10, . . .} are identi�ed
as outliers and are automatically annotated by Vega-Lite while ren-
dering the �gure). As shown in Figure 12, we can see that most of
the tasks have a high degree of agreement between participants
with the following three cases: 1. Fully Agree: all crowd workers
and the expert give the same ratings in 22 (nl, vis) pairs (e.g.,
x = {1, 4, 5, 11, . . .}). 2. Mainly Agree: the di�erence of ratings be-
tween all crowd workers and the expert is maximum 1 such as agree
and strongly agree (e.g., x = {2, 3, 6, 8, 9, . . .}). 3. Slightly Disagree:
only two cases that have a di�erence of ratings at 2 (i.e., x = {7, 45}).
Exp-T3. We collect 460 new nl queries written by experts and
also record the time. The boxplot in Figure 14 tells us that the
longest time to complete T3 is 411 seconds (close to 7 minutes),
the shortest time is 37 seconds, the median is 82 seconds, and the
average time is 140 seconds (more than 2.3 minutes). By estima-
tion, the total time for humans to build nvBench from scratch is
140 ÷ 60 × 25750 = 60083 minutes, which is about 1001 hours,
around 42 days.

Besides collecting 460 handwritten nl queries, it also shows that
our nl2sql-to-nl2vis synthesizer can signi�cantly reduce the man-
hour to ∼2.4 days (for editing nl queries w.r.t. tree deletions, see
more details at the end of Section 3.1) from ∼42 days that requires
experts to provide all nl queries (as analyzed above). Note that, the
42 days man-hours is based on the case that we have generated all
meaningful vis queries; it will take much longer time if we also
need humans to provide meaningful vis queries.

4 NL2VIS NEURAL TRANSLATION
The key questions we answer with these experiments are: (1) Can
we translate nl queries to vis queries by learning from nvBench
(Section 4.3)? (2) Whether the learning-based nl2vis approach can
outperform the state-of-the-art rule-based or semantic parser based
methods for nl2vis (Section 4.4)? (3) What is the e�ect of low-rated
nl or vis queries through the generation process (Section 4.5)? (4)
We further conduct a case study using COVID-19 data (Section 4.6).

4.1 seq2vis: NL2VIS Neural Translation
nl2vis is very similar to nl2sql; the seq2seq model [53] is a natural
choice, where the input nl is a sequence and the output vis query
is also a sequence. We call it seq2vis for convenience, referring to
the nl2vis problem.

Figure 15 overviews seq2vis, which follows an encoder-decoder
architecture with attention mechanism [57] and has been used

Figure 15: The seq2visModel

in nl2sql tasks [4, 7, 53]. It also shows a running example on
translating an nl query to a vis query.

Next, we will brie�y explain seq2vis, for more details please
refer to [7].

The input nl query is represented as a sequence of tokens (or
words) [q1,q2, ...,ql] ∈ Vin . The output vis query is also a se-
quence of tokens [y1,y2, ...,yk] ∈ Vout . Here, Vin (resp. Vout)
is the input (resp. output) vocabulary. For example, in Figure 15,
the input sequence is [“I”, “prefer”, “a”, “pie”, . . .] and the output
sequence is [“Visualize”, “pie”, “Select”, . . .].
Encoder RNN. Given an input sequence nV = [q1,q2, . . . ,ql],
we concatenate nV with the database table schema informa-
tion A = [a1,a2, ...,am]. We use X = [x1,x2, ...,xn] =
[q1,q2, ...,ql ,a1,a2, ...,am] to represent the input sequence, where
n = l + m. We then use a pre-trained global word embedding
(GloVe) [44] to map each token xi to its vector representation. Once
the token embedding is ready, we feed embedded tokens into a bi-
directional recurrent neural network (RNN) using Long Short-Term
Memory (LSTM) cells. The output is a sequence of encoding vectors
(hidden states) H = [h1,h2, ...,hn].
Decoder RNN. The decoder is also an RNN based on LSTM
cells with attention mechanism [4] that generates the vis query
[y1,y2, ...,yk] based on the hidden states H . At each time step t ,
it predicts vis query token yt based on the recurrent state in the
decoder RNN si , the previous tokens, and an attention vector ci .

Note that one hardness of nl2vis is how to map “student id” in an
nl query to a column like “sid”. Fortunately, this has been manually
corrected (or normalized) by Spider [68] (i.e., change “sid” to “stu-
dent id”) to be semantically meaningful. Therefore, piggybacking
Spider can ensure that such cases don’t appear in nvBench. In
other words, if some attribute is “foo_bar”, then we cannot to map
an nl query to it; solving this problem is not the focus of this work.

4.2 Evaluation Settings

Methods.We consider the following methods.
– seq2vis: We use a standard encoder-decoder architecture with
attention mechanism [57] and has been widely used in nl2sql
tasks [4, 7, 53].
– NL4DV: NL4DV [42] is a toolkit that supports to generate data vi-
sualization using nl queries, mainly based on NLP semantic parses.
Note that, NL4DV [42] cannot handle Join and Nested queries.

– DeepEye: DeepEye [36] is a rule-based methodology for creating
vis charts. Similar to NL4DV [42], it can not successfully process
Join, Nested, and Filter queries.
Remark. For the deep learning based approach, we use a standard
and powerful one, instead of those more recent ones such as RAT-
SQL [60] and IR-Net [21], for two reasons: (1) seq2vis is more
extensible, because RAT-SQL and IR-Net are heavily optimized for
nl2sql on Spider benchmarks; and (2) our main purpose is to give
a proof-of-concept that deep learning based approaches work for
nl2vis (Section 4.3), and work better than non-learning based state-
of-the-art approaches such as NL4DV and DeepEye (Section 4.4).
Evaluation Metrics. As discussed in [26] for nl2sql, measuring
the translation quality is not easy. Similar to [26], we also use
di�erent levels of accuracy measures. From the vis AST query
perspective, we de�ne “vis tree matching accuracy” to measure
whether the seq2vis model can precisely predict the vis AST query
based on the nl input. From the vis result perspective, we want
to know whether the seq2vis model can predict a vis result that
exactly equivalent to the gold result even if the predicted vis AST is
inaccurate. Furthermore, we also de�ne “vis component matching
accuracy” to measure if the seq2vis model can precisely output
each component (x/y-axis) of the vis.
Tree matching accuracy. It measures if the predicted vis AST tree
exactly matches the ground truth vis AST tree. We de�neAcctr ee =
Ntr ee/N , where Ntr ee is the number of generated vis AST trees
that are exactly equivalent to the ground truth vis AST tree, and N
is the total number of trees.
Result matching accuracy. In some cases, the nl2vis system may
predict some vis queries with “novel” syntax structures, which
leads to the predicted vis query and the ground truth vis query
may not be the same but the visualization results of the predicted vis
query and the ground truth vis query may be the same. To alleviate
this issue, we use visualization vis result matching accuracy to
measure whether the predicted visualization vis is the same as
the ground truth visualization vis. This metric is computed as
Accr es = Nr es/N .
vis component matching accuracy. A visualization (vis object) con-
sists of three components: vis types, x/y/z-axis, and data with
transformation from a database D. In some cases, the vis system can
precisely predict the x/y/z-axis and data parts but fail to predict
the vis types. Motivated by this, we propose vis component match-
ing metric to reveal the detailed performance of nl2vis model on
each vis component. More concretely, for vis types component, we
measure the Visualize part of the vis query (Figure 5); for the x/y/z-
axis part, we measure the Select component of the vis query; and
for the data part, we measure the Group, Filter, Order, and Superla-
tive components. We compute vis component matching accuracy:
Acccomp = Ncomp/N , where Ncomp is the number of components
that match to the gold result N . For example, assume it has 100 bar
chart (N = 100) and it only predicts 88 bar chart (Nbar = 88), so
the Accbar = Nbar /N = 88%.
Datasets.We randomly split the (nl, vis) pairs of the nvBench into
training set with 20598 (80%) pairs, validation set with 1162 (4.5%)
pairs, and test set containing 3990 (15.5%) pairs. The heatmaps in

B (Bar Chart), P (Pie Chart), L (Line Chart), S (Scatter Chart)
SB (Stacked Bar), GL (Grouping Line), GS (Grouping Scatter)
Figure 16: The distribution of training and test set

Figure 16 show the distribution of the training and testing (nl, vis)
pairs. It depicts that the training set and test set have similar distri-
butions on visualization types and hardness. Besides, by comparing
with Figure 10, we can see that the training set and test set are close
to the entire nvBench distribution.

Currently, seq2vis does not consider to predict the V (value) of
the vis query. Instead of generating V by a learning-based model,
we use a heuristic method to extract values from nl queries and
�ll them into the right part of the predicted vis tree, i.e., right slots
in the predicted visualization query. This heuristic method can
achieve ∼92.3% accuracy on average.
Training Settings. We use a GloVe embedding model on the con-
catenation of the vis query and response output of the training data
for the embedding layer of our seq2vis model. We use an embed-
ding dimension of 100, hidden dimension of 150, a bi-directional
LSTM encoder and uni-directional LSTM decoder with attention.
We use a batch size of 16, clip the norm of the gradient at 2.0, and
do early stopping on the validation loss with a patience of 5.

4.3 Performance of seq2vis
Figure 17 summarizes the performance of seq2vis, including basic
seq2vis, seq2vis with attention [4], and seq2vis with the copying
mechanism [25], on the test set using vis tree matching metrics.

Figure 17(a) shows the vis tree matching accuracy, which shows
that seq2vis with attention performs the best and achieves av-
eragely 65.69% vis tree matching accuracy, which matches the
state-of-the-art performance of nl2sql tasks.

Figure 17(b) depicts the accuracy of three versions of seq2vis
on di�erent visualization types and di�culty levels. It also agrees
that seq2vis with attention works the best. More concretely, the
pie chart has the highest accuracy among the three methods on
average. By varying the visualization hardness, we observe that the
easy cases have the highest scores on the seq2vis with copying,
and get the lowest scores on the basic seq2vis. Overall, the average
performance of the model is related to the di�culty of the vis query,
and the performance is better in easier cases.

Figures 17(c)-(e) show the accuracy of three versions of seq2vis
under di�erent visualization types and di�cult levels. seq2vis with
attention outperforms the other two under almost all combinations
of visualization types and di�culty levels. Although the average
accuracy of seq2vis with copying is 7.97% higher than the ba-
sic seq2vis, seq2vis with copying fails in predicting the medium
stacked bar/scatter charts (Figure 17(e)). If we take the distribution
of training and test set as consideration (Figure 16), some accuracy

Figure 17: vis Tree matching accuracy, by varying hardness vs. visualization types on di�erent methods (test set)

Table 4: Average vis component matching accuracy (%) on nvBench
VIS Axis Data

Bar Pie Line Sca�er SB GL GS All Select Where Join Grouping Binning Order

SEQ2VIS 97.6 91.0 88.6 91.8 85.0 92.5 89.8 95.5 71.3 85.0 81.9 76.4 91.7 73.0
+A�ention 98.8 89.9 90.9 88.2 91.9 92.5 96.9 97.0 79.5 91.6 91.4 86.0 95.1 84.7
+Copying 99.1 92.8 89.5 96.5 19.8 92.5 85.7 92.8 78.6 83.9 84.9 80.4 92.3 85.0
Avg. 98.5 91.2 86.7 92.2 65.6 92.5 90.8 95.1 76.5 86.8 86.1 80.9 93.0 80.9

Table 5: Comparison with the state-of-the-art solutions
DeepEye NL4DV SEQ2VIS

Top-1 Top-3 Top-6 All Results Top-1 Top-1
Easy 9.5% 15.3% 23.0% 44.2% 11.5% 67.4%
Medium 15.4% 21.9% 24.7% 28.8% 22.5% 69.6%
Hard 1.4% 1.6% 1.8% 2.0% 7.6% 60.5%
Extra Hard 6.1% 6.8% 7.6% 8.0% 4.1% 61.8%

Overall 9.1% 13.1% 15.9% 22.2% 13.7% 65.7%

results, especially some hard/extra hard cases, may be considered
as outliers because it only accounts for a small proportion. For
example, all three methods work nearly perfectly on the extra hard
scatter charts (see (S, Extra Hard) in Figure 17(c)-(e)). The reason is
probably because this type of visualizations only accounts for 0.1%
(0.1% × 20598 =∼20) and 0.5% (0.5% × 3990 =∼20) the training and
test sets, respectively.

Table 4 showcases the average vis component matching accu-
racy. Overall, the seq2vis with the attention mechanism performs
well in each vis component prediction task. We compute the av-
erage performance (denoted as Avg.) of three models on each vis
component. It shows that the three models have the best accuracy
in predicting the Bar, that is, they can easily predict the visualization
type–bar chart. For predicting Axis, i.e., x/y/z-axis, three versions
of seq2vis perform poorly, with an average accuracy of 76.5%. The
main reason is that when predicting the y-axis, the corresponding
aggregate functions (e.g., avg, sum) must be precisely predicted.
For data part, three versions of seq2vis perform best on predicting
Binning operations and work worst on predicting Order operations.
Besides, the vis result matching metric has a slight improvement
in each version of the seq2vis model over the vis tree matching
metric, and we omit the discussion due to the space constraint.

4.4 Comparison with the State of the art
We use the same test set containing 3990 (nl, vis) pairs to compare
the performance between seq2vis with attention, DeepEye [36],
and NL4DV [42]. Because DeepEye can return top-k visualizations
for the input natural language (keywords) query, we report the top-
1, top-3, top-6, and all results (averagely top-19) given by DeepEye.
Table 5 reports the evaluation results. Our seq2vis with attention
signi�cantly outperforms DeepEye and NL4DV, because it learns
from the nvBench instead of relying on the rule-based approaches.
More concretely, our seq2vis with attention can better handle hard
and extra hard nl questions, but the other two work poorly on nl
questions of such hardness. Interestingly, although the accuracy of
DeepEye’s top-1 result is lower than that of NL4DV’s top-1 result,
the accuracy of DeepEye’s top-6 results is better than NL4DV in
the easy and medium nl questions. In summary, the learning-based
method–seq2vis signi�cantly outperforms the state-of-the-art rule-
based and semantic parser-based approaches for nl2vis tasks. In
particular, the learning-based method has the stronger ability to
handle those hard and extra hard queries with Join, Filtering, and
Nested operations, while the state-of-the-art solutions work very
poorly on such cases.

4.5 E�ect of Low-rated (nl, vis) Pairs
As reported in Section 3.3, the crowd workers and experts have
identi�ed 231 imperfect (nl, vis) pairs (i.e., those rated as strongly
disagree/disagree either in the Task 1 or Task 2) in the user study.
We now conduct an experiment to test the e�ect of low-rated (nl,
vis) pairs. We �rst removed all low-rated (nl, vis) pairs, identi�ed
by the crowd workers and experts, in the training set, to train
three versions of seq2vis models as the baseline. We then randomly

Figure 18: Relative accuracy w.r.t. low-rated pairs

injected x% (x = [20, 40, 60, 80, 100]) of low-rated (nl, vis) pairs
into the training set for training. We repeated the training three
times to compute the average accuracy. We then tested the accuracy
di�erence between the model trained without low-rated (nl, vis)
pairs with the models trained with x% low-rated (nl, vis) pairs.

Figure 18 shows the results, it depicts that the low-rated (nl, vis)
pairs have a slight in�uence on the performance of three versions
of seq2vis models. The seq2vis with an attention mechanism is
more in�uenced by the low-rated (nl, vis) pairs. Overall, the impact
of low-rated (nl, vis) pairs on the performance of three versions of
seq2vis models are small, showing the robustness of seq2vis.

4.6 Case Study using COVID-19 Data
We use the COVID-19 dataset, with the schema of (Date, Coun-
try, Confirmed, Active Cases, Recovered, Deaths, Daily Cases), to test
whether the seq2vis can support some popular use cases from
the well-designed COVID-19 dashboards [14, 33, 37]. We invite
3 experts in the task (T3) to participate in this case study. We
�rst ask experts to observe the 5 designed visualizations provided
by JHU COVID-19 Dashboard [14] (https://coronavirus.jhu.edu/map.
html). We then ask each expert to write 2 nl queries (6 nl queries in
total) for querying the visualization. The case study results are given
in Figure 19.We have 5 nl queries (colored in green) are successfully
predicted by seq2vis, and 1 nl query (colored in red) is failed. Next,
we analyze the 1 failed nl query. For the failed nl query, as shown
in Figure 19- B○-(3), it fails because it contains “until today”, the
unknown word in the dataset. It is hard for the seq2vis to convert
“until today” to the date “2020-09-13”, and thus fails to construct
the “Filter” subtree for the vis AST tree. Overall, the case study
demonstrates the e�ectiveness of the seq2vis on the well-designed
visualization tasks provided by the JHU COVID-19 Dashboard.

5 RELATEDWORK

vis Benchmarks. VizNet [23] provides a large-scale visualization
learning and benchmarking repository, which can help train au-
tomated visualization tools or evaluate the e�ectiveness of vis
designs. IDEBench [17] is used to evaluate the performance of
DBMSs for interactive data exploration (IDE) workloads. [6] is sim-
ilar to IDEBench, which is for validating the support of DBMSs
for IDE workloads, but it focuses particularly on cross�lter-style
applications. None of these benchmarks is designed for nl2vis.
nl2sql Benchmarks. Both the database community [28, 66] and
NLP community [15, 21, 67] have extensively studied the problem
of nl2sql, mainly bene�t from the availability of a rich collection
of nl2sql benchmarks: ATIS [45], Yelp and IMDB [66], Restau-
rants [54], Scholar [24], WikiSQL [69], and Spider [68].

Figure 19: Case Study with COVID-19 Data

nl2vis Techniques. Text-to-viz [11] uses rule-based methods to
translate text statements to infographics instead of visualizations.
There has been a surge of works on developing an nl interface for
data vis [1–3, 19, 34, 36, 42, 46, 49, 50, 52]. Unfortunately, there are
no publications that are associated with the nl2vis support fromMi-
crosoft Power BI [2], ThoughtSpot [3], and Tableau’s Ask Data [1].
NL4DV [42] is a toolkit that supports to generate data visualization
using nl queries, mainly based on NLP semantic parses [20, 29, 61],
similar to DataTone [19]. DeepEye [36, 46] demonstrates a simple
rule-based method for generating vis charts from keyword queries.
Training Data Generation. The work [13] increases the speed
of annotating (nl, sql) pairs over structured data. They sample
Operation Trees and ask annotators to write nl queries for these
sampled operation trees. We di�er in two main aspects: (1) their
Operation Tree generation and selection method cannot be used to
select visualizations, and (2) they cannot produce and edit the nl
queries automatically. Our nl2sql-to-nl2vis, proposed in Section 2,
is proposed to mainly solve the above two points.

DBPal [63] augments training data based on a set of pre-de�ned
(nl, sql) templates. On the one hand, designing templates with wide
coverage, high diversity and high quality requires a lot of e�ort
from experts, as discussed in their paper. On the other hand, DBPal’s
main goal is to do data augmentation, which cannot be directly
used to generate nl2vis benchmarks from nl2sql benchmarks, as
studied in this work.

6 CONCLUSION
We have proposed a novel nl2sql-to-nl2vis synthesizer that can
synthesize nl2vis benchmarks from existing nl2sql benchmarks.
We have evaluated the e�ectiveness of our synthesized nl2vis
benchmark (i.e., nvBench) which has high accuracy (i.e., the synthe-
sized nl queries are very close to human-provided ones), good cov-
erage (i.e., many domains, and di�erent complexities of databases),
and good diversity (i.e., many di�erent vis types). In addition, in
order to learn the translation from nl queries to vis queries, we
are the �rst to apply nl2vis neural translation model, seq2vis. Ex-
perimental results show that seq2vis works well and signi�cantly
outperforms the state-of-the-art approaches of the nl2vis task.
Acknowledgement. This work is supported by NSF of China
(61925205, 61632016), Huawei, BNRist, and TAL Education.
Chengliang Chai is supported by the Zhejiang Lab’s International
Talent Fund for Young Professionals.

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html

REFERENCES
[1] Ask Data. https://www.tableau.com/products/new-features/ask-data.
[2] Microsoft Power BI Q&A. https://docs.microsoft.com/en-us/power-bi/

create-reports/power-bi-tutorial-q-and-a.
[3] SpotIQ AI-Driven Insignts (2nd Edition). https://www.thoughtspot.com/

resources#white_paper.
[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. In ICLR, 2015.
[5] L. Battle, P. Duan, and et al. Beagle: Automated extraction and interpretation of

visualizations from the web. In CHI, page 594, 2018.
[6] L. Battle, P. Eichmann, and et al. Database benchmarking for supporting real-time

interactive querying of large data. In SIGMOD, 2020.
[7] D. Britz, A. Goldie, M. Luong, and Q. V. Le. Massive exploration of neural machine

translation architectures. CoRR, abs/1703.03906, 2017.
[8] C. Chai, L. Cao, G. Li, J. Li, Y. Luo, and S. Madden. Human-in-the-loop outlier

detection. In SIGMOD, pages 19–33. ACM, 2020.
[9] C. Chai, G. Li, J. Fan, and Y. Luo. Crowdchart: Crowdsourced data extraction

from visualization charts. IEEE Transactions on Knowledge and Data Engineering,
pages 1–1, 2020.

[10] C. Chai, G. Li, J. Fan, and Y. Luo. Crowdsourcing-based data extraction from
visualization charts. In 36th IEEE International Conference on Data Engineering,
ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1814–1817. IEEE, 2020.

[11] W. Cui, X. Zhang, Y. Wang, and et al. Text-to-viz: Automatic generation of
infographics from proportion-related natural language statements. IEEE Trans.
Vis. Comput. Graph., 26(1):906–916, 2020.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[13] J. Deriu, K. Mlynchyk, P. Schläpfer, Á. Rodrigo, and et al. A methodology for
creating question answering corpora using inverse data annotation. In ACL,
pages 897–911, 2020.

[14] E. Dong, H. Du, and L. Gardner. An interactive web-based dashboard to track
covid-19 in real time. The Lancet infectious diseases, 20(5):533–534, 2020.

[15] L. Dong and M. Lapata. Coarse-to-�ne decoding for neural semantic parsing. In
ACL, pages 731–742, 2018.

[16] S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding back-translation at
scale. In EMNLP, pages 489–500. ACL, 2018.

[17] P. Eichmann, E. Zgraggen, C. Binnig, and T. Kraska. Idebench: A benchmark for
interactive data exploration. In SIGMOD, 2020.

[18] M. Fadaee, A. Bisazza, and C. Monz. Data augmentation for low-resource neural
machine translation. In ACL, pages 567–573. Association for Computational
Linguistics, 2017.

[19] T. Gao, M. Dontcheva, and et al. Datatone: Managing ambiguity in natural
language interfaces for data visualization. In UIST, 2015.

[20] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning for user
interest and response prediction in online display advertising. Data Science and
Engineering, 5(1):12–26, 2020.

[21] J. Guo, Z. Zhan, Y. Gao, , and et al. Towards complex text-to-sql in cross-domain
database with intermediate representation. In ACL, 2019.

[22] P. Hanrahan. Vizql: a language for query, analysis and visualization. In SIGMOD,
page 721. ACM, 2006.

[23] K. Z. Hu, S. N. S. Gaikwad, and et al. Viznet: Towards A large-scale visualization
learning and benchmarking repository. In CHI, 2019.

[24] S. Iyer, I. Konstas, A. Cheung, and et al. Learning a neural semantic parser from
user feedback. In ACL, pages 963–973, 2017.

[25] R. Jia and P. Liang. Data recombination for neural semantic parsing. ACL, 2016.
[26] H. Kim, B. So, W. Han, and H. Lee. Natural language to SQL: where are we today?

Proc. VLDB Endow., 13(10):1737–1750, 2020.
[27] D. Li, H. Mei, and et al. Echarts: A declarative framework for rapid construction

of web-based visualization. Vis. Informatics, 2018.
[28] F. Li and H. V. Jagadish. Constructing an interactive natural language interface

for relational databases. Proc. VLDB Endow., 8(1):73–84, 2014.
[29] M. Li, H. Wang, and J. Li. Mining conditional functional dependency rules on big

data. Big Data Mining and Analytics, 03(01):68, 2020.
[30] Z. C. Lipton. A critical review of recurrent neural networks for sequence learning.

CoRR, abs/1506.00019, 2015.
[31] Y. Luo, C. Chai, X. Qin, N. Tang, and G. Li. Interactive cleaning for progressive

visualization through composite questions. In 36th IEEE International Conference
on Data Engineering, ICDE, pages 733–744. IEEE, 2020.

[32] Y. Luo, C. Chai, X. Qin, N. Tang, and G. Li. Visclean: Interactive cleaning for
progressive visualization. Proc. VLDB Endow., 13(12):2821–2824, 2020.

[33] Y. Luo, W. Li, T. Zhao, X. Yu, L. Zhang, G. Li, and N. Tang. Deeptrack: Monitoring
and exploring spatio-temporal data - A case of tracking COVID-19 -. Proc. VLDB
Endow., 13(12):2841–2844, 2020.

[34] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li. Steerable self-driving data
visualization. IEEE Transactions on Knowledge and Data Engineering, 2020.

[35] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data visualization.
In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018, pages 101–112, 2018.

[36] Y. Luo, X. Qin, N. Tang, G. Li, and X. Wang. Deepeye: Creating good data
visualizations by keyword search. In SIGMOD, 2018.

[37] Y. Luo, N. Tang, G. Li, W. Li, T. Zhao, and X. Yu. Deepeye: A data science system
for monitoring and exploring COVID-19 data. IEEE Data Eng. Bull., 2020.

[38] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation
for visual analysis. IEEE Trans. Vis. Comput. Graph., 2007.

[39] A. Marcus and A. G. Parameswaran. Crowdsourced data management: Industry
and academic perspectives. Found. Trends Databases, 2015.

[40] T. Mikolov, I. Sutskever, K. Chen, and et al. Distributed representations of words
and phrases and their compositionality. In NIPS, 2013.

[41] D. Moritz, C. Wang, G. L. Nelson, and et al. Formalizing visualization design
knowledge as constraints: Actionable and extensible models in draco. IEEE Trans.
Vis. Comput. Graph., 25(1):438–448.

[42] A. Narechania, A. Srinivasan, and J. T. Stasko. NL4DV: A toolkit for generating
analytic speci�cations for data visualization from natural language queries. IEEE
Trans. Vis. Comput. Graph., 27(2):369–379, 2021.

[43] K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, 2002.

[44] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543, 2014.

[45] P. J. Price. Evaluation of spoken language systems: the ATIS domain. In Speech and
Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania,
USA. Morgan Kaufmann, 1990.

[46] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: Visualizing your data by keyword
search. In EDBT, pages 441–444, 2018.

[47] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more e�cient and
e�ective: a survey. VLDB J., 29(1):93–117, 2020.

[48] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A
grammar of interactive graphics. IEEE TVCG, 23(1):341–350, 2017.

[49] V. Setlur, S. E. Battersby, and et al. Eviza: A natural language interface for visual
analysis. In UIST, 2016.

[50] V. Setlur, M. Tory, and A. Djalali. Inferencing underspeci�ed natural language
utterances in visual analysis. In IUI, pages 40–51. ACM, 2019.

[51] T. Siddiqui, A. Kim, and et al. E�ortless data exploration with zenvisage: An
expressive and interactive visual analytics system. PVLDB, 2016.

[52] A. Srinivasan and J. T. Stasko. Natural language interfaces for data analysis with
visualization: Considering what has and could be asked. In EuroVis, pages 55–59.
Eurographics Association, 2017.

[53] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[54] L. R. Tang and R. J. Mooney. Using multiple clause constructors in inductive
logic programming for semantic parsing. In EMCL, 2001.

[55] N. Tang, E. Wu, and G. Li. Towards democratizing relational data visualization.
In SIGMOD, pages 2025–2030. ACM, 2019.

[56] M. Vartak, S. Rahman, and et al. SEEDB: e�cient data-driven visualization
recommendations to support visual analytics. PVLDB, 2015.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In NIPS, 2017.

[58] A. Wang, Y. Pruksachatkun, and et al. Superglue: A stickier benchmark for
general-purpose language understanding systems. In NIPS, 2019.

[59] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding.
CoRR, abs/1804.07461, 2018.

[60] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson. RAT-SQL: relation-aware
schema encoding and linking for text-to-sql parsers. In ACL, 2020.

[61] Y. Wang, Y. Yao, H. Tong, F. Xu, and J. Lu. A brief review of network embedding.
Big Data Mining and Analytics, 2(1):35, 2019.

[62] Y. Wang, Y. Yuan, Y. Ma, and G. Wang. Time-dependent graphs: De�nitions,
applications, and algorithms. Data Science and Engineering, 4(4):352–366, 2019.

[63] N.Weir, P. Utama, A. Galakatos, A. Crotty, A. Ilkhechi, S. Ramaswamy, R. Bhushan,
N. Geisler, B. Hättasch, S. Eger, U. Çetintemel, and C. Binnig. Dbpal: A fully
pluggable NL2SQL training pipeline. In SIGMOD, pages 2347–2361, 2020.

[64] H. Wickham. ggplot2 - Elegant Graphics for Data Analysis. Use R. Springer, 2009.
[65] K.Wongsuphasawat and et al. Voyager: Exploratory analysis via faceted browsing

of visualization recommendations. IEEE TVCG, 2016.
[66] N. Yaghmazadeh, Y. Wang, and et al. Sqlizer: query synthesis from natural

language. Proc. ACM Program. Lang., pages 63:1–63:26, 2017.
[67] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. R. Radev. Typesql: Knowledge-based

type-aware neural text-to-sql generation. In NAACL-HLT, 2018.
[68] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D.Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman,

Z. Zhang, and D. R. Radev. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
3911–3921, 2018.

[69] V. Zhong and et al. Seq2sql: Generating structured queries from natural language
using reinforcement learning. CoRR, abs/1709.00103, 2017.

[70] X. Zhou, C. Chai, G. Li, and J. SUN. Database meets arti�cial intelligence: A
survey. IEEE Transactions on Knowledge and Data Engineering, pages 1–20, 2020.

https://www.tableau.com/products/new-features/ask-data
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-tutorial-q-and-a
https://docs.microsoft.com/en-us/power-bi/create-reports/power-bi-tutorial-q-and-a
https://www.thoughtspot.com/resources#white_paper
https://www.thoughtspot.com/resources#white_paper

	Abstract
	1 Introduction
	2 NL2SQL-to-NL2VIS Synthesizer
	2.1 Solution Overview
	2.2 Bridging SQL and VIS Queries with AST
	2.3 Tree Edits: Generating VIS Candidates
	2.4 Filtering Bad Visualizations
	2.5 NL Edits: Generating NL Variants
	2.6 From VIS Trees to Visualizations

	3 nvBench: Stats and Evaluation
	3.1 Setup
	3.2 Statistics of nvBench
	3.3 Expert and Crowd Evaluation

	4 NL2VIS Neural Translation
	4.1 seq2vis: NL2VIS Neural Translation
	4.2 Evaluation Settings
	4.3 Performance of seq2vis
	4.4 Comparison with the State of the art
	4.5 Effect of Low-rated (nl, vis) Pairs
	4.6 Case Study using COVID-19 Data

	5 Related Work
	6 Conclusion
	References

