
Supporting Search-As-You-Type
Using SQL in Databases

Guoliang Li, Jianhua Feng, Member, IEEE, and Chen Li, Member, IEEE

Abstract—A search-as-you-type system computes answers on-the-fly as a user types in a keyword query character by character. We

study how to support search-as-you-type on data residing in a relational DBMS. We focus on how to support this type of search using

the native database language, SQL. A main challenge is how to leverage existing database functionalities to meet the high-

performance requirement to achieve an interactive speed. We study how to use auxiliary indexes stored as tables to increase search

performance. We present solutions for both single-keyword queries and multikeyword queries, and develop novel techniques for fuzzy

search using SQL by allowing mismatches between query keywords and answers. We present techniques to answer first-N queries

and discuss how to support updates efficiently. Experiments on large, real data sets show that our techniques enable DBMS systems

on a commodity computer to support search-as-you-type on tables with millions of records.

Index Terms—Search-as-you-type, databases, SQL, fuzzy search

Ç

1 INTRODUCTION

MANY information systems nowadays improve user
search experiences by providing instant feedback as

users formulate search queries. Most search engines and
online search forms support autocompletion, which shows
suggested queries or even answers “on the fly” as a user
types in a keyword query character by character. For
instance, consider the Web search interface at Netflix,1 which
allows a user to search for movie information. If a user types
in a partial query “mad,” the system shows movies with a title
matching this keyword as a prefix, such as “Madagascar”
and “Mad Men: Season 1.” The instant feedback helps the
user not only in formulating the query, but also in under-
standing the underlying data. This type of search is generally
called search-as-you-type or type-ahead search.

Since many search systems store their information in a

backend relational DBMS, a question arises naturally: how to

support search-as-you-type on the data residing in a DBMS?

Some databases such as Oracle and SQL server already

support prefix search, and we could use this feature to do

search-as-you-type. However, not all databases provide this

feature. For this reason, we study new methods that can be

used in all databases. One approach is to develop a separate

application layer on the database to construct indexes, and

implement algorithms for answering queries. While this

approach has the advantage of achieving a high perfor-

mance, its main drawback is duplicating data and indexes,

resulting in additional hardware costs. Another approach is

to use database extenders, such as DB2 Extenders, Informix

DataBlades, Microsoft SQL Server Common Language

Runtime (CLR) integration, and Oracle Cartridges, which

allow developers to implement new functionalities to a

DBMS. This approach is not feasible for databases that do not

provide such an extender interface, such as MySQL. Since it

needs to utilize proprietary interfaces provided by database

vendors, a solution for one database may not be portable to

others. In addition, an extender-based solution, especially

those implemented in C/C++, could cause serious reliability

and security problems to database engines.
In this paper we study how to support search-as-you-type

on DBMS systems using the native query language (SQL). In

other words, we want to use SQL to find answers to a search

query as a user types in keywords character by character.

Our goal is to utilize the built-in query engine of the database

system as much as possible. In this way, we can reduce the

programming efforts to support search-as-you-type. In

addition, the solution developed on one database using

standard SQL techniques is portable to other databases

which support the same standard. Similar observation are

also made by Gravano et al. [17] and Jestes et al. [23] which

use SQL to support similarity join in databases.
A main question when adopting this attractive idea is: Is it

feasible and scalable? In particular, can SQL meet the high-

performance requirement to implement an interactive search

interface? Studies have shown that such an interface requires

each query be answered within 100 milliseconds [38]. DBMS

systems are not specially designed for keyword queries,

making it more challenging to support search-as-you-type.

As we will see later in this paper, some important

functionalities to support search-as-you-type require join

operations, which could be rather expensive to execute by

the query engine.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013 461

. G. Li and J. Feng are with the Tsinghua National Laboratory for
Information Science and Technology, Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: {liguoliang, fengjh}@tsinghua.edu.cn.

. C. Li is with the Department of Computer Science, School of Information
and Computer Sciences, University of California, Irvine, CA 92697-3435.
E-mail: chenli@ics.uci.edu.

Manuscript received 30 Dec. 2010; revised 6 May 2011; accepted 9 June 2011;
published online 23 June 2011.
Recommended for acceptance by P. Ipeirotis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-12-0704.
Digital Object Identifier no. 10.1109/TKDE.2011.148.

1. http://www.netflix.com/BrowseSelection.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

The scalability becomes even more unclear if we want to
support two useful features in search-as-you-type, namely
multikeyword search and fuzzy search. In multikeyword search,
we allow a query string to have multiple keywords, and find
records that match these keywords, even if the keywords
appear at different places. For instance, we allow a user who
types in a query “privacy mining rak” to find a
publication by “Rakesh Agrawal” with a title including the
keywords “privacy” and “mining,” even though these
keywords are at different places in the record. In fuzzy
search, we want to allow minor mismatches between query
keywords and answers. For instance, a partial query
“aggraw” should find a record with a keyword “agrawal”
despite the typo in the query. While these features can
further improve user search experiences, supporting them
makes it even more challenging to do search-as-you-type
inside DBMS systems.

In this paper, we develop various techniques to address
these challenges. In Section 3, we propose two types of
methods to support search-as-you-type for single-keyword
queries, based on whether they require additional index
structures stored as auxiliary tables. We discuss the methods
that use SQL to scan a table and verify each record by calling a
user-defined function (UDF) or using the LIKE predicate. We
study how to use auxiliary tables to increase performance.

In Section 4, we study how to support fuzzy search for
single-keyword queries. We discuss a gram-based method
and a UDF-based method. As the two methods have a low
performance, we propose a new neighborhood-generation-
based method, using the idea that two strings are similar
only if they have common neighbors obtained by deleting
characters. To further improve the performance, we
propose to incrementally answer a query by using
previously computed results and utilizing built-in indexes
on key attributes.

In Section 5, we extend the techniques to support
multikeyword queries. We develop a word-level incremen-
tal method to efficiently answer multikeyword queries.
Notice that when deployed in a Web application, the
incremental-computation algorithms do not need to main-
tain session information, since the results of earlier queries
are stored inside the database and shared by future queries.
We propose efficient techniques to progressively find the
first-N answers in Section 6. We also discuss how to support
updates efficiently in Section 7.

We have conducted a thorough experimental evaluation

using large, real data sets in Section 8. We compare the

advantages and limitations of different approaches for

search-as-you-type. The results show that our SQL-based

techniques enable DBMS systems running on a commodity

computer to support search-as-you-type on tables with

millions of records.
It is worth emphasizing that although our method shares

an incremental-search idea with the earlier results in [24],

developing new techniques in a DBMS environment is

technically very challenging. A main challenge is how to

utilize the limited expressive power of the SQL language

(compared with other languages such as C++ and Java) to

support efficient search. We study how to use the available
resources inside a DBMS, such as the capabilities to build

auxiliary tables, to improve query performance. An inter-

esting observation is that despite the fact we need SQL

queries with join operations, using carefully designed

auxiliary tables, built-in indexes on key attributes, foreign-

key constraints, and incremental algorithms using cached

results, these SQL queries can be executed efficiently by the

DBMS engine to achieve a high speed.

2 PRELIMINARIES

We first formulate the problem of search-as-you-type in

DBMS (Section 2.1) and then discuss different ways to

support search-as-you-type (Section 2.2).

2.1 Problem Formulation

Let T be a relational table with attributes A1; A2; . . . ; A‘. Let

R ¼ fr1; r2; . . . ; rng be the collection of records in T , and

ri½Aj� denote the content of record ri in attribute Aj. Let W

be the set of tokenized keywords in R.

2.1.1 Search-as-You-Type for Single-keyword Queries

Exact Search: As a user types in a single partial (prefix)

keyword w character by character, search-as-you-type on-

the-fly finds the records that contain keywords with a prefix

w. We call this search paradigm prefix search. Without loss of

generality, each tokenized keyword in the data set and

queries is assumed to use lower case characters. For

example, consider the data in Table 1, A1 ¼ title, A2 ¼
authors, A3 ¼ booktitle, and A4 ¼ year. R ¼ fr1; . . . ; r10g.
r3[booktitle] ¼ ‘‘sigmod’’.

462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

TABLE 1
Table dblp: A Sample Publication Table (about “Privacy”)

W ¼ fprivacy; sigmod; sigir; . . .g:

If a user types in a query “sig,” we return records r3, r6, and
r9. In particular, r3 contains a keyword “sigmod” with a
prefix “sig.”

Fuzzy Search: As a user types in a single partial keywordw
character by character, fuzzy search on-the-fly finds records
with keywords similar to the query keyword. In Table 1,
assuming a user types in a query “corel,” record r7 is a
relevant answer since it contains a keyword “correlation”
with a prefix “correl” similar to the query keyword “corel.”

We use edit distance to measure the similarity between
strings. Formally, the edit distance between two strings s1

and s2, denoted by ed(s1, s2), is the minimum number of
single-character edit operations (i.e., insertion, deletion, and
substitution) needed to transform s1 to s2. For example,
ed ðcorelation; correlationÞ ¼ 1 a n d ed ðcoralation,
correlationÞ ¼ 2. Given an edit-distance threshold � , we
say a prefix p of a keyword in W is similar to the partial
keywordw if edðp; wÞ � � . We say a keyword d inW is similar
to the partial keyword w if d has a prefix p such that
edðp; wÞ � � . Fuzzy search finds the records with keywords
similar to the query keywords.

2.1.2 Search-as-You-Type for Multikeyword Queries

Exact Search: Given a multikeyword query Q with m
keywords w1; w2; . . . ; wm, as the user is completing the last
keyword wm, we treat wm as a partial keyword and other
keywords as complete keywords.2 As a user types in query
Q character by character, search-as-you-type on-the-fly finds
the records that contain the complete keywords and a
keyword with a prefix wm. For example, if a user types in a
query “privacysig,” search-as-you-type returns records r3,
r6, and r9. In particular, r3 contains the complete keyword
“privacy” and a keyword “sigmod” with a prefix “sig.”

Fuzzy Search: Fuzzy search on-the-fly finds the records
that contain keywords similar to the complete keywords and a
keyword with a prefix similar to partial keyword wm. For
instance, suppose edit-distance threshold � ¼ 1. Assuming
a user types in a query “privicycorel,” fuzzy type-ahead
search returns record r7 since it contains a keyword
“privacy” similar to the complete keyword “privicy”
and a keyword “correlation” with a prefix “correl”
similar to the partial keyword “corel.”

2.2 Different Approaches for Search-as-You-Type

We discuss different possible methods to support search-as-
you-type and give their advantages and limitations.

The first method is to use a separate application layer,
which can achieve a very high performance as it can use
various programming languages and complex data struc-
tures. However, it is isolated from the DBMS systems.

The second method is to use database extenders. How-
ever, this extension-based method is “not safe” to the query
engine, which could cause reliability and security problems
to the database engine. This method depends on the API of
the specific DBMS being used, and different DBMS systems
have different APIs. Moreover, this method does not work if
a DBMS system has no this extender feature, e.g., MySQL.

The third method is to use SQL. The SQL-based method is
more compatible since it is using the standard SQL. Even if

DBMS systems do not provide the search-as-you-type
extension feature (indeed no DBMS systems provide such
an extension), the SQL-based method can also be used in this
case. Thus, the SQL-based method is more portable to a
different platform than the first two methods.

In this paper, we focus on the SQL-based method and
develop various techniques to achieve a high interactive
speed.

3 EXACT SEARCH FOR SINGLE KEYWORD

This section proposes two types of methods to use SQL to
support search-as-you-type for single-keyword queries. In
Section 3.1, we discuss no-index methods. In Section 3.2, we
build auxiliary tables as index structures to answer a query.

3.1 No-Index Methods

A straightforward way to support search-as-you-type is to
issue an SQL query that scans each record and verifies
whether the record is an answer to the query. There are two
ways to do the checking: 1) Calling User-Defined Functions
(UDFs). We can add functions into databases to verify
whether a record contains the query keyword; and 2) Using
the LIKE predicate. Databases provide a LIKE predicate to
allow users to perform string matching. We can use the LIKE
predicate to check whether a record contains the query
keyword. This method may introduce false positives, e.g.,
keyword “publication” contains the query string “ic,” but
the keyword does not have the query string “ic” as a prefix.
We can remove these false positives by calling UDFs. The two
no-index methods need no additional space, but they may
not scale since they need to scan all records in the table
(Section 8 gives the results.).

3.2 Index-Based Methods

In this section, we propose to build auxiliary tables as index
structures to facilitate prefix search. Some databases such as
Oracle and SQL server already support prefix search, and we
could use this feature to do prefix search. However, not all
databases provide this feature. For this reason, we develop a
new method that can be used in all databases. In addition, our
experiments in Section 8.3 show that our method performs
prefix search more efficiently.

Inverted-index table. Given a table T , we assign unique
ids to the keywords in table T , following their alphabetical
order. We create an inverted-index table IT with records in
the form hkid; ridi, where kid is the id of a keyword and rid

is the id of a record that contains the keyword. Given a
complete keyword, we can use the inverted-index table to
find records with the keyword.

Prefix table. Given a table T , for all prefixes of keywords
in the table, we build a prefix table PT with records in the
form hp; lkid; ukidi, where p is a prefix of a keyword, lkid is the
smallest id of those keywords in the table T having p as a
prefix, andukid is the largest id of those keywords having p as
a prefix. An interesting observation is that a complete word
with p as a prefix must have an ID in the keyword range
½lkid; ukid�, and each complete word in the table T with an ID
in this keyword range must have a prefix p. Thus, given a
prefix keyword w, we can use the prefix table to find the
range of keywords with the prefix.

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 463

2. Our method can be easily extended to the case that every keyword is
treated as a partial keyword.

For example, Table 2 illustrates the inverted-index table
and the prefix table for the records in Table 1.3 The inverted-
index table has a tuple hk8; r3i since keyword k8 (“sigmod”) is
in record r3. The prefix table has a tuple h‘‘sig’’k7; k8i since
keyword k7 (“sigir”) is the minimal id of keywords with a
prefix “sig,” and keyword k8 (“sigmod”) is the maximal id of
keywords with a prefix “sig.” The ids of keywords with a
prefix “sig” must be in the range ½k7; k8�.

Given a partial keyword w, we first get its keyword range
½lkid; ukid�using the prefix tablePT , and then find the records
that have a keyword in the range through the inverted-index
table IT as shown in Fig. 1. We use the following SQL to
answer the prefix-search query w:

SELECT T:� FROM PT ; IT ; T

WHERE PT .prefix ¼ “w” AND

PT :ukid � IT :kid AND PT :lkid � IT :kid AND

IT :rid ¼ T:rid.

For example, assuming a user types in a partial query
“sig” on table dblp (Table 1), we issue the following SQL:

SELECT dblp:� FROM Pdblp; Idblp; dblp

WHERE Pdblp.prefix ¼ “sig” AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid,

which returns records r3, r6, and r9. The SQL query first finds
the keyword range ½k7; k8� based on the prefix table. Then it
finds the records containing a keyword with ID in ½k7; k8�
using the inverted-index table.

To answer the SQL query efficiently, we create built-in
indexes on attributes prefix, kid, and rid. The SQL could first
use the index on prefix to find the keyword range, and then
compute the answers using the indexes on kid and rid. For
example, assuming a user types in a partial query “sig” on
table dblp (Table 1), we first get the keyword range of “sig”
(½k7; k8�) using the index on prefix and then find records r3, r6,
and r9 using the index on kid.

4 FUZZY SEARCH FOR SINGLE KEYWORD

4.1 No-Index Methods

Recall the two no-index methods for exact search in
Section 3.1. Since the LIKE predicate does not support fuzzy
search, we cannot use the LIKE-based method. We can use

UDFs to support fuzzy search. We use a UDF PEDðw; sÞ that
takes a keyword w and a string s as two parameters, and
returns the minimal edit distance betweenw and the prefixes
of keywords in s. For instance, in Table 1,

PEDð‘‘pvb’’; r10½title�Þ
¼ PEDð‘‘pvb’’; ‘‘privacy in database publishing ’’Þ ¼ 1

as r10 contains a prefix “pub” with edit distance of 1 to the
query. We can improve the performance by doing early
termination in the dynamic-programming computation [30]
using an edit-distance threshold (if prefixes of two strings are
not similar enough, then the two substrings cannot be
similar), and devise a new UDF PEDTHðw; s; �Þ. If there is a
keyword in string s having prefixes with an edit distance tow
within � , PEDTH returns true. In this way, we issue an SQL
query that scans each record and calls UDF PEDTH to verify
the record.

4.2 Index-Based Methods

This section proposes to use the inverted-index table and
prefix table to support fuzzy search-as-you-type. Given a
partial keyword w, we compute its answers in two steps.
First we compute its similar prefixes from the prefix table
PT , and get the keyword ranges of these similar prefixes.
Then we compute the answers based on these ranges using
the inverted-index table IT as discussed in Section 3.2. In
this section, we focus on the first step: computing
w’s similar prefixes.

4.2.1 Using UDF

Given a keyword w, we can use a UDF to find its similar
prefixes from the prefix table PT . We issue an SQL query
that scans each prefix in PT and calls the UDF to check if the
prefix is similar to w. We issue the following SQL query to
answer the prefix-search query w:

SELECT T:� FROM PT ; IT ; T

WHERE PEDTHðw;PT ; prefix; �Þ AND

PT :ukid � IT :kid AND PT :lkid � IT :kid AND

IT :rid ¼ T:rid.

We can use length filtering to improve the performance,
by adding the following clause to the where clause:

“LENGTH(PT :prefix) � LENGTHðwÞ þ �AND

LENGTH(PT :prefix) � LENGTHðwÞ � �”.

4.2.2 Gram-Based Method

There are many q-gram-based methods to support approx-
imate string search [17]. Given a string s, its q-grams are its

464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

TABLE 2
The Inverted-Index Table and Prefix Table

Fig. 1. Using inverted-index table and prefix table to support search-as-
you-type.

3. Here, we only use several keywords for ease of presentation.

substrings with length q. Let GqðsÞ denote the set4 of its
q-grams and jGqðsÞj denote the size of GqðsÞ. For example,
for “pvldb” and “vldb,” we have G2ðpvldbÞ ¼ fpv, vl, ld,
db} and G2(vldbÞ ¼ fvl; ld; dbg. Strings s1 and s2 have an
edit distance within threshold � if

jGqðs1Þ \Gqðs2Þj � maxðjs1j; js2jÞ þ 1� q � � � q ½17�;

where js1j and js2j are the lengths of string s1 and s2,
respectively. This technique is called count filtering.

To find similar prefixes of a query keyword w, besides
maintaining the inverted-index table and the prefix table, we
need to create a q-gram table GT with records in the form
hp; qgrami, where p is a prefix in the prefix table and qgram is a
q-gram of p. Given a partial keyword w, we first find the
prefixes in GT with no smaller than jwj þ 1� q � � � q grams
in GqðwÞ. We use the following SQL with “GROUP BY”
command to get the candidates of ws similar prefixes:

SELECT PT .prefix FROM GT ; PT
WHERE GT .prefix ¼ PT .prefix AND GT .qgram IN GqðwÞ
GROUP BY GT .prefix

HAVING COUNT (GT .qgram) � jwj þ 1� q � � � q.
As this method may involve false positives, we have to

use UDFs to verify the candidates to get the similar prefixes
of w. Fig. 2 illustrates how to use the gram-based method to
answer a query. We can further improve the query
performance by using additional filtering techniques, e.g.,
length filtering or position filtering [17].

It could be expensive to use “GROUP BY” in databases,
and the q-gram-based method is inefficient, especially for
large q-gram tables. Moreover, this method is rather
inefficient for short query keywords [46], as short keywords
have smaller numbers of q-grams and the method has low
pruning power.

4.2.3 Neighborhood-Generation-Based Method

Ukkonen proposed a neighborhood-generation-based meth-
od to support approximate string search [45]. We extend this
method to use SQL to support fuzzy search-as-you-type.

Given a keyword w, the substrings of w by deleting i
characters are called “i-deletion neighborhoods” of w. Let
DiðwÞ denote the set of i-deletion neighborhoods of w and
D̂�ðwÞ ¼ [�i¼0DiðwÞ. For example, given a string “pvldb,”
D0ðpvldbÞ ¼ fpvldbg, and D1ðpvldbÞ ¼ fvldb; pldb; pvdb,
pvlb; pvldg. Suppose � ¼ 1, D̂�ðpvldbÞ ¼ fpvldb; vldb;

pldb; pvdb; pvlb; pvld}. Moreover, there is a good property
that given two strings s1 and s2, if edðs1; s2Þ � � , D̂�ðs1Þ \
D̂�ðs2Þ 6¼ � as formalized in Lemma 1.

Lemma 1. Given two strings s1; s2, if edðs1; s2Þ � � , D̂� ðs1Þ \
D̂�ðs2Þ 6¼ �.

Proof. We can use deletion operations to replace the
substitution and insertion operations as follows: suppose
we can transform s1 to s2 with ddeletions, i insertions, and
r substitutions, such that edðs1; s2Þ ¼ dþ iþ r � � . We
can transform s1 and s2 to the same string by doing dþ r
deletions on s1 and iþ r deletions on s2, respectively.
Thus, D̂�ðs1Þ \ D̂�ðs2Þ 6¼ �. tu

We use this property as a filter to find similar prefixes of
the query keyword w. We can prune all the prefixes if they
have no common i-deletion neighborhoods with w. To this
end, for prefixes in the prefix table PT , we create a deletion-
based neighborhood-generation tableDT with records in the
form hp, i-deletion, ii, where p is a prefix in the prefix tablePT
and i-deletion is an i-deletion neighborhood of p ði � �Þ. For
example, Table 3 gives a neighborhood-generation table.

Given a query keyword w, we first find the similar
prefixes in DT which have i-deletion neighborhoods in
D̂�ðwÞ. Then we use UDFs to verify the candidates to get
similar prefixes. Formally, we use the following SQL to
generate the candidates of w s similar prefixes:

SELECT DISTINCT prefix FROM DT

WHERE DT :i-deletion IN D̂� ðwÞ.
Assuming a user types in a keyword “pvldb,” we find

the prefixes in DT that have i-deletion neighborhoods in
{“pvldb,” “vldb,” “pldb,” “pvdb,” “pvlb,” “pvld”}. Here we
find “vldb” similar to “pvldb” with edit distance 1.

This method is efficient for short strings. However, it is
inefficient for long strings, especially for large edit-distance
thresholds, because given a string with length n, it has ðniÞ-
deletion neighborhoods and totally Oðminðn� ; 2nÞÞ neigh-
borhoods. It needs large space to store these neighborhoods.

As the three methods have some limitations, we propose
an incremental algorithm which uses previous computed
results to answer subsequence queries in Section 4.3.

4.3 Incrementally Computing Similar Prefixes

The previous methods have the following limitations. First,
they need to find similar prefixes of a keyword from scratch.
Second, they may need to call UDFs many times. In this
section, we propose a character-level incremental method to
find similar prefixes of a keyword as a user types character by
character. Chaudhuri and Kaushik [14] and Ji et al. [24]

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 465

Fig. 2. Using the q-gram table and the neighborhood generation table to
support fuzzy search.

TABLE 3
Neighborhood-Generation Table ð� ¼ 1Þ

4. We need to use multisets to accommodate duplicated grams.

proposed to use a trie structure to incrementally compute
similar prefixes. While adopting a similar incremental-search
framework, we focus on the challenge of how to use SQL to
do it. We develop effective index structures using auxiliary
tables and devise pruning techniques to achieve a high
speed. We develop novel techniques on how to use auxiliary
tables, built-in indexes on key attributes, and pruning
techniques. We also provide theoretical correctness.

4.3.1 Incremental-Computation Framework

Assume a user has typed in a keyword w ¼ c1c2 � � � cx
character by character. For each prefix p ¼ c1c2 � � � ciði � xÞ,
we maintain a similar-prefix table SpT with records in the
form hprefix; edðp; prefixÞi, which keeps all the prefixes
similar to p and their corresponding edit distances. As the
similar-prefix tables are small (usually within 1,000 records),
we can use in-memory tables to store them. The similar-
prefix table is shared by different queries. If the table gets too
big, we can periodically remove some of its entries. In other
words, the incremental-computation algorithm does not
need to maintain session information for different queries.

Suppose the user types one more character cxþ1 and
submits a new query w0 ¼ c1c2 � � � cxcxþ1. We use table SwT to
compute Sw

0

T (Section 4.3.2), find the keyword ranges of
similar prefixes in Sw

0

T by joining the similar-prefix table Sw
0

T

and the prefix table PT , and compute the answer of w0 using
the inverted-index table IT (Fig. 3).

Based on similar-prefix table Sw
0

T of keyword w0, we use
the following SQL to answer the single-keyword query w0:

SELECT T:� FROM Sw
0

T ; PT ; IT ; T

WHERE Sw
0

T .prefix ¼ PT .prefix AND

PT :ukid � IT :kid AND PT :lkid � IT :kid AND

IT :rid ¼ T:rid.

We can create indexes on the attribute prefix of the prefix

table PT and the similar-prefix table Sw
0

T , and in this way the

SQL can be executed efficiently.
For example, suppose � ¼ 1. Assume a user has typed in a

keyword “vld” and its similar-prefix table Svld
dblp ¼ fhvl; 1i;

hvld; 0i; hvldb; 1i; hpvld; 1ig has been computed and cached.

Suppose the user types in one more character “b.” We first

generate the similar-prefix table Svldb
dblp ¼ fhvldb; 0i; hvld; 1i;

hpvldb; 1i; hvldbj; 1ig based on Svld
dblp (Section 4.3.2), as shown

in Table 4, and then issue the following SQL to answer the

query “vldb”:

SELECT dblp:� FROM Svldb
dblp; Pdblp; Idblp; dblp

WHERE Svldb
dblp:prefix ¼ Pdblp:prefix AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid,

which returns records r1, r4, and r8.

4.3.2 Incremental Computation Using SQL

In this section, we discuss how to incrementally compute

the similar-prefix table SwT .
Initialization. For the empty string �, its similar-prefix

table S�T has all the prefixes with a length within the edit-

distance threshold � , and we can compute such prefixes and

their corresponding edit distances using the following SQL:

SELECT prefix, LENGTH(prefix) AS ed FROM PT
WHERE LENGTH(prefix) � � .

For example, consider the prefix table with prefixes {“�,

p; pv; pvl; pvld; pvldb; v; vl; vld; vldb”}. Suppose � ¼ 1. This

SQL returns S�T ¼ fh�; 0i, hp; 1i; hv; 1ig, as shown in Table 5a.

We can precompute and materialize the similar-prefix table

of the empty string.
Then, we discuss how to use SwT to compute Sw

0
T . We have

an observation that only those prefixes having a prefix in SwT
could be similar-prefixes of w0 based on Lemma 2.

Lemma 2. If hv0; e0i 2 Sw0T , then 9hv; ei 2 SwT such that v is a

prefix of v0 and e � e0.

466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

Fig. 3. Using character-level incremental method to support fuzzy
search.

TABLE 4
Similar-Prefix Table Svldb

dblpð� ¼ 1Þ

TABLE 5
Similar-Prefix Tables of a Prefix Table with Strings in {“�, v; vl; vld; vldb, p; pv; pvl; pvld; pvldb”}

(� ¼ 1. For ease of presentation, we add two columns “from” and “op,” where column “from” denotes where the record is derived from, and column
“op” denotes operations—m:match, d:deletion, i:insertion, s:substitution.)

Proof. Consider a transformation from node v0 to keyword
w0 with edðv0; w0Þ operations. In the transformation, we
consider the last match case between two characters in v0

and w0. Let pv and pw be, respectively, the prefixes of v0

and w0 before the last match characters (including the
two characters).

If pv ¼ pw ¼ �,5 we have e0 ¼ edðv0; w0Þ¼ maxðjv0j; jw0jÞ.
Let v and w, respectively, denote the prefixes of v0 and w0

without the last characters. We have e ¼ edðv; wÞ ¼
maxðjv0j; jw0jÞ � 1. Thus, v is a prefix of v0, e � e0, and
hv; ei must be in SwT . Otherwise pv ¼ pw 6¼ �. Let v and w,
respectively, denote the prefixes of pv and pw without the
last characters. We have e ¼ edðv; wÞ ¼ edðv0; w0Þ ¼ e0.
Thus, v is a prefix of v0, e � e0, and hv; eimust be in SwT . tu

Based on this property, for a new prefix query w0 ¼ wcxþ1

by concatenating query w and a new character cxþ1, we
construct Sw

0

T by checking each record in SwT as follows: for
hv; ei 2 SwT ðedðv; wÞ ¼ eÞ, we consider the following basic
edit operations (as illustrated in Fig. 4).

Deletion. We can transform w0 ¼ wcxþ1 to v by first
transforming w to v (with e operations) and then deleting
cxþ1 from w0. The transformation distance (the number of
operations in the transformation) is eþ 1.6 If eþ 1 � � , v is
similar to w0. We get such prefixes using the following SQL:

SELECT prefix, edþ 1 as ed FROM SwT WHERE ed < � .

For example, suppose w0 ¼ ‘‘v’’; w ¼ �, and S�T is the one
shown in Table 5a. Since only h�; 0i 2 S�T satisfies the SQL
condition, this SQL returns h�; 1i. Apparently � is similar to
the new query “v” with an edit distance 1.

Match. Let vm be the concatenated string of string v and
character cxþ1, i.e., vm ¼ vcxþ1. We can transform w0 to vm by
first transforming w to v (with e operations) and then
matching the last character. Thus, the transformation dis-
tance is e. As e � � , v is similar to w0, and we can get all such
similar prefixes using the following SQL:

SELECT PT .prefix, ed FROM SwT ; PT
WHERE PT .prefix ¼ CONCATðSwT :prefix; cxþ1Þ,

where CONCAT(s; t) concatenates two strings s and t. In the
SQL, SwT :prefix corresponds to v and PT :prefix corresponds
to vm. In our example, as h�; 0i 2 S�T and hp; 1i 2 S�T satisfy
the SQL condition, this SQL returns hv; 0i and hpv; 1i.

Insertion. If vm is in PT , the strings with vm as a prefix
could also be similar to w0. For each such string vi, we can
transform w0 to vi by first transforming w0 to vm (with e
operations) and then inserting jvij � jvmj ¼ jvij � jvj � 1
characters after vm. Thus, the transformation distance is
eþ jvij � jvj � 1. If eþ jvij � jvj � 1 � � , vi is similar to w0.
We can get such similar prefixes using the following SQL:

SELECT PT .prefix, LENGTH(PT :prefix)-

LENGTH(SwT .prefix)-1+ed AS ed FROM SwT ; PT
WHERE LENGTH(PT .prefix)> LENGTH

(SwT .prefix)þ1 AND

edþ LENGTH ðPT :prefixÞ-LENGTH(SwT .prefix)-1

� � AND

SUBSTRðPT .prefix, 1, LENGTH ðSwT .prefixÞ þ 1Þ ¼
CONCAT ðSwT .prefix,cxþ1Þ,

where SUBSTRðstr; pos; lenÞ returns a substring with “len”
characters from the string str, starting at position pos. In the
SQL statement, SwT :prefix, ed, and PT :prefix, respectively,
correspond to v, e, and vi. In our running example, as only
h�; 0i 2 S�T satisfies the SQL condition, this SQL returns
hvl; 1i. Note that “v” matches the query keyword and we can
do an insertion “l” after “v,” thus “vl” is similar to the query
“v” with an edit distance of 1.

Substitution. Let vs be the concatenated string of v and
character c0 where c0 6¼ cxþ1, i.e., vs ¼ vc0. We can transform
w0 to vs by first transforming w to v (with e operations) and
then substituting cxþ1 for c0. Thus, the transformation
distance is eþ 1. If eþ 1 � � , vs is similar to w0, and we
can get all such prefixes using the following SQL:

SELECT PT .prefix, ed+1 AS ed FROM SwT ; PT
WHERE ed < �

AND SUBSTRðPT .prefix, 1, LENGTHðPT .prefixÞ-1Þ ¼
SwT .prefix AND PT .prefix != CONCATðSwT .prefix, cxþ1Þ.
In the SQL, PT :prefix and SwT :prefix, respectively, corre-

spond to vs and v. In our running example, as h�; 0i 2 S�T ,
this SQL returns hp; 1i since we can use “p” to replace “v.”

We insert the results of these SQL queries into the similar-
prefix table Sw

0
T . During the insertion, it is possible to add

multiple pairs hv0; e01i and hv0; e02i for the same similar prefix
v0. In this case, only the one with the smallest edit operation
should be inserted in Sw

0

T . The reason is that we only keep the
minimum number of edit operations to transform the string
v0 to the string w0. To this end, we can first insert all strings
generated by the above SQL queries, and then use the
following SQL to prune the nodes with larger edit distances
by doing a postprocessing:

DELETE FROM Sw
0

T AS S1, Sw
0

T AS S2

WHERE S1.prefix ¼ S2.prefix AND S1:ed > S2:ed.

Theorem 1 shows the correctness of our method.

Theorem 1. For a query string w ¼ c1c2 � � � cx, let SwT be its

similar-prefix table. Consider a new query string w0 ¼ c1c2 � � �
cxcxþ1. Sw

0

T is generated by the above SQL queries based on SwT .

1) Completeness: Every similar prefix of the new query string

w0 will be in Sw
0

T . 2) Soundness: Each string in Sw
0

T is a similar

prefix of the new query string w0.

Proof. 1) We first prove the completeness. We prove it by
induction. This claim is obviously true when w ¼ w0 ¼ �.

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 467

Fig. 4. Incrementally computing similar prefixes. (d is a string with length
jdj no larger than � � e.)

5. The operation between the empty string and the root node is also a
match case.

6. For each similar string of w0, we can compute its real edit distance to w0

by keeping the smallest one as discussed later.

Suppose the claim is true for wx ¼ w with x characters.
We want to prove this claim is also true for a new query
string wxþ1, where wxþ1 ¼ w0 ¼ wxcxþ1.

Suppose v is a similar prefix of wxþ1. If v ¼ �, then by
definition edðv; wxþ1Þ ¼ edð�; wxþ1Þ ¼ xþ 1 � � , and x �
� � 1 < � . Thus, edðv; wxÞ ¼ edð�; wxÞ ¼ x � � , and v is
also a similar prefix of wx. When we consider this node v,
we add the pair hv; xþ 1i (i.e., hv; edðv; wxþ1Þi) into Swxþ1

T .
Now consider the case where the similar prefix v of

wxþ1 is not the empty string. Let v ¼ nyþ1 ¼ nyd, i.e., it
has yþ 1 characters, and is concatenated from a string
ny and a character d. By definition, edðnyþ1; wxþ1Þ � � .
We want to prove that hnyþ1; edðnyþ1; wxþ1Þi will be
added to Swxþ1

T .
Based on the idea in the classic dynamic-program-

ming algorithm, we consider the following four cases in
the minimum number of edit operations to transform
nyþ1 to wxþ1.

Case 1: Deleting the last character cxþ1 from wxþ1, and
transforming nyþ1 to wx. Since edðnyþ1; wxþ1Þ ¼ edðnyþ1;
wxÞ þ 1 � � , we have edðnyþ1; wxÞ � � � 1 < � . Thus, nyþ1

is a similar prefix of wx. Based on the induction
assumption, hnyþ1; edðnyþ1; wxÞimust be in SwxT . From the
node nyþ1, our method considers the deletion case when it
considers the node ny, and adds hnyþ1; edðnyþ1; wxÞ þ 1i to
Swxþ1

T , which is exactly hnyþ1; edðnyþ1; wxþ1Þi.
Case 2: Substituting the character d of nyþ1 for the last

character cxþ1 of wxþ1. Since edðnyþ1; wxþ1Þ ¼ edðny; wxÞ þ
1 � � , we have edðny; wxÞ � � � 1 < � . Thus, ny is a similar
prefix of wx. Based on the induction assumption,
hny; edðny; wxÞimust be in SwxT . From node ny, our method
considers the substitution case when it considers this child
node (nyþ1) of the node ny, and adds hnyþ1; edðny; wxÞ þ 1i
to Swxþ1

T , which is exactly hnyþ1; edðnyþ1; wxþ1Þi.
Case 3: The last character cxþ1 ofwxþ1 matching the character

d of nyþ1. Since edðnyþ1; wxþ1Þ ¼ edðny; wxÞ � � , then ny is a
similar prefix of nx. Based on the induction assumption,
hny; edðny; wxÞimust be in SwxT . From node ny, our method
considers the match case when it considers this child node
(nyþ1) of the node ny, and adds hnyþ1; edðny; wxÞi to Swxþ1

T ,
which is exactly hnyþ1; edðnyþ1; wxþ1Þi.

Case 4: Transforming ny to wxþ1 and inserting character d
of nyþ1. For each transformation from ny to wxþ1, we
consider the last character cxþ1 ofwxþ1. First, we can show
that this transformation cannot delete the character cxþ1,
since otherwise we can combine this deletion of cxþ1 and
the insertion of d into one substitution, yielding another
transformation with a smaller number of edit operations,
contradicting to the minimality of edit distance. Thus,
we can just consider two possible operations on the
character cxþ1 in this transformation. 1) Matching cxþ1 for
the character of an ancestor na of nyþ1: in this case, since
edðnyþ1; wxþ1Þ ¼ edðna�1; wxÞ þ y� aþ 1 � � , we have
edðna�1; wxÞ � � , and na�1 is a similar prefix of wx. Based
on the induction assumption, hna�1; edðna�1; wxÞimust be
in SwxT . From node na�1, the algorithm considers the
matching case, and adds hnyþ1; edðna�1; wxÞ þ y� aþ 1i
to Swxþ1

T , which is hnyþ1; edðnyþ1; wxþ1Þi. 2) Substituting
cxþ1 for the character of an ancestor na of nyþ1: in this case,
instead of substituting c for the character of na and
inserting the character d, we can insert the character of na

and substitute cxþ1 for the last character d. Then we get
another transformation with the same number of edit
operations. (Characters c and d cannot be the same, since
otherwise the new transformation could have fewer
edit operations, contradicting to the minimality of edit
distance.) We use the same argument in “Case 2” to show
that our method adds hnyþ1; edðnyþ1; wxþ1Þi to Swxþ1

T .
In summary, for all cases the algorithm adds hnyþ1;

edðnyþ1; wxþ1Þi to Swxþ1

T .
2) Then we prove the soundness. By definition, a

transformation distance of two strings in each added tuple
by the algorithm is no less than their edit distance. That is,
edðn;w0Þ � � . Thus, n must be a similar prefix of p. tu

4.3.3 Improving Performance Using Indexes

As we can create indexes on the attribute prefix of the prefix
table PT and the similar-prefix table SwT , the SQL statements
for the deletion and match cases can be efficiently executed
using the indexes. However, for the SQL of the substitution
case, the SQL contains a statement SUBSTRðPT :prefix;
1;LENGTHðPT :prefixÞ � 1Þ ¼ SwT :prefix. Although we can
create an index on the attribute prefix of the similar prefix
table SwT , if there is no index to support the predicate
SUBSTRðPT :prefix; 1;LENGTH ðPT :prefixÞ � 1Þ, it is rather
expensive to execute the SQL. To improve the performance,
we can alter table PT by adding an attribute parent ¼
SUBSTRðPT :prefix; 1;LENGTHðPT :prefixÞ � 1Þ, and create a
table PT hprefix; lkid; ukid; parenti. Using this table, we
propose an alternative method and use the following the
SQL for the substitution case:

SELECT PT .prefix, ed+1 AS ed FROM SwT ; PT
WHERE PT :parent ¼ SwT .prefix AND ed < � AND

PT .prefix! ¼ CONCAT ðSwT :prefix; cxþ1Þ.
We can create an index on attribute parent of prefix table

PT to increase search performance.
Similarly, it is inefficient to execute the SQL for the

insertion case as it contains a complicated statement

SUBSTR
�
PT :prefix; 1;LENGTHðSwT :prefixÞ þ 1

�

¼ CONCATðSwT :prefix; cxþ1Þ:

Next we discuss how to improve the SQL using indexes. Let
Y0 be the similar-prefix table of the results of the SQL for the
match case. For insertions, we need to find the similar
strings with prefixes in Y0. Let Yiþ1 be the similar-prefix
table composed of prefixes by appending one more
character to those prefixes in Yi for 0 � i � � � 1. Obviously
[�i¼1Yi is exactly the result of the SQL for the insertion case.
Note that Y0 can be efficiently computed as we can use
the SQL for the match case to generate it. Iteratively, we
compute Yiþ1 based on Yi using the following SQL:

SELECT PT .prefix, ed+1 AS ed FROM Yi; PT
WHERE PT :parent ¼ Yi.prefix AND ed < � .

We can create indexes on the parent attribute of the prefix
table PT and the prefix attribute of Yi to improve the
performance. In our running example, Y0 ¼ fhv; 0i; hpv; 1ig.
As only hv; 0i 2 Y0 satisfies the SQL condition, this SQL
returns hvl; 1i. Thus, we can use several SQL statements that
can be efficiently executed to replace the original complicated
SQL statement for the insertion case.

468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

5 SUPPORTING MULTIKEYWORD QUERIES

In this section, we propose efficient techniques to support
multikeyword queries.

5.1 Computing Answers from Scratch

Given a multikeyword query Q with m keywords w1;
w2; . . . ; wm, there are two ways to answer it from scratch.
1) Using the “INTERSECT” Operator: a straightforward way
is to first compute the records for each keyword using the
previous methods, and then use the “INTERSECT” operator
to join these records for different keywords to compute the
answers. 2) Using Full-text Indexes: we first use full-text
indexes (e.g., CONTAINS command) to find records match-
ing the first m� 1 complete keywords, and then use our
methods to find records matching the last prefix keyword.
Finally, we join the results. These two methods cannot use
the precomputed results and may lead to low performance.
To address this problem, we propose an incremental-
computation method.

5.2 Word-Level Incremental Computation

We can use previously computed results to incrementally
answer a query. Assuming a user has typed in a queryQwith
keywords w1; w2; . . . ; wm, we create a temporary table CQ to
cache the record ids of query Q. If the user types in a new
keyword wmþ1 and submits a new query Q0 with keywords
w1; w2; . . . ; wm;wmþ1, we use temporary table CQ to incre-
mentally answer the new query.

Exact search. As an example, we focus on the method that
uses the prefix table and inverted-index table. As CQ
contains all results for query Q, we check whether the
records in CQ contain keywords with the prefix wmþ1 of new
query Q0. We issue the following SQL query to answer
keyword query Q0 using CQ:

SELECT T:� FROM PT ; IT ; CQ; T

WHERE PT .prefix ¼ “wmþ1” AND

PT :ukid � IT :kid AND PT :lkid � IT :kid AND

IT :rid ¼ CQ:rid AND CQ:rid ¼ T:rid.

For example, suppose a user has typed in a query Q ¼
“privacysigmod” and we have created a temporary table
CQ ¼ fr3; r6g. Then the user types in a new keyword “pub”
and submits a new query Q0 ¼ “privacysigmodpub.” We
check whether records r3 and r6 contain a keyword with the
prefix “pub.” Using CQ, we find that only r6 contains a
keyword “publishing” with the prefix “pub.”

Fuzzy search. As an example, we consider the character-
level incremental method. We first compute Swmþ1

T using the
character-level incremental method for the new keyword
wmþ1, and then use Swmþ1

T to answer the query. Based on the
temporary table CQ, we use the following SQL query to
answer Q0:

SELECT T:� FROM Swmþ1

T ; PT ; IT ; CQ; T

WHERE Swmþ1

T .prefix ¼ PT .prefix AND

PT :ukid � IT :kid AND PT :lkid � IT :kid AND

IT :rid ¼ CQ:rid AND CQ:rid ¼ T:rid.

If the user modifies the keyword wm of query Q to w0m
and submits a query with keywords w1; w2; . . . ; wm�1; w

0
m,

we can use the cached result of query w1; w2; . . . ; wm�1 to
answer the new query using the above method. Similarly, if

the user arbitrarily modifies the query, we can easily extend
this method to answer the new query.

6 SUPPORTING FIRST-N QUERIES

The previous methods focus on computing all the answers.
As a user types in a query character by character, we usually
give the user the first-N (any-N) results as the instant
feedback. This section discusses how to compute the first-N
results.

Exact first-N queries. For exact search, we can use the
“LIMIT N” syntax in databases to return the first-N results.
For example, MYSQL uses “LIMIT n1; n2” to return n2 rows
starting from the n1th row. As an example, we focus on how
to extend the method based on the inverted-index table and
the prefix table (Section 3.2). Our techniques can be easily
extended to other methods.

For a single-keyword query, we can use “LIMIT 0; N” to
find the first-N answers. For example, assume a user types
in a keyword query “sig.” To compute the first-2 answers,
we issue the following SQL:

SELECT dblp:� FROM Pdblp; Idblp; dblp

WHERE Pdblp.prefix ¼ “sig” AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid

LIMIT 0; 2,

which returns records r3 and r6.
For multikeyword queries, if we use the “INTERSECT”

operator, we can use the “LIMIT” operator to find the first-N
answers. But it is not straightforward to extend the word-
level incremental method to support first-N queries, since
the cached results of a query Q with keywords
w1; w2; . . . ; wm have N records, instead of all the answers.
For a queryQ0 with one more keywordwmþ1, we may not get
N answers for Q0 using the cached results CQ, and need to
continue to access records from the inverted-index table. To
address this issue, we first use the incremental algorithms as
discussed in Section 5 to answer Q0 using CQ. Let RðCQ;Q0Þ
denote the results. If the temporary table CQ has smaller
than N records or RðCQ;Q0Þ has N records, RðCQ;Q0Þ is
exactly the answers. Otherwise, we continue to access
records from the inverted-index table. Fig. 5 shows how to
incrementally find first-N results.

We progressively access the records that contain the first
keyword w1. Suppose we have accessed the records of w1

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 469

Fig. 5. Incrementally computing first-N answers.

from the 0th row to the ð� � 1Þst row for answering query Q.

Then for query Q0, we continue to access the records of w1

from the �th row. To get enough answers, we access � records

for each SQL query, where � is a parameter depending on the

keyword distribution (usually set to m �N).
Next we discuss how to assign � iteratively. Initially, for

m ¼ 1, that is, the query Q has only one keyword and Q0 has
two keywords. When answering Q, we have visited N

records for w1, and we need to continue to access � records
starting from the Nth record. Thus, we set � ¼ N . If we
cannot getN answers, we set � ¼ � þ � until we getN results
(or we have accessed all of the records).

For example, assume a user types in a query “privacyic”
character by character, and N ¼ 2. When the user types in
keyword “privacy,” we issue the following SQL:

SELECT dblp:� FROM Pdblp; Idblp; dblp

WHERE Pdblp.prefix ¼ “privacy” AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid

LIMIT 0; 2,

which returns records r1 and r2. We compute and cache
CQ ¼ fr1; r2g. When the user types in another keyword “ic”
and submits a query “privacyic,” we first use CQ to
answer the query and get record r2. As we want to compute
first-2 results, we need to issue the following SQL:

SELECT dblp:� FROM Pdblp; Idblp; dblp

WHERE Pdblp.prefix ¼ “privacy” AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid

LIMIT 2; 2�2

INTERSECT

SELECT dblp:� FROM Pdblp; Idblp; dblp

WHERE Pdblp.prefix ¼ “ic” AND

Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid AND

Idblp:rid ¼ dblp:rid,

which returns records r5. Thus, we get first-2 results

(records r2 and r5) and terminate the execution.
Fuzzy first-N queries. The above methods cannot be easily

extended to support fuzzy search, as they cannot distinguish
the results of exact search and fuzzy search. Generally, we
need to first return the “best results” with smaller edit
distances. To address this issue, we propose to progressively
compute the results. As an example, we consider the
character-level incremental method (Section 4.3).

For a single-keyword queryw, we first get the results with
edit distance 0. If we have gotten N answers, we terminate
the execution; otherwise, we progressively increase the edit-
distance threshold and select the records with edit-distance
thresholds 1; 2; . . . ; � , until we get N answers.

For example, suppose � ¼ 2. Considering a keyword

“vld,” to get the first-3 answers, we first issue the following

SQL:

SELECT dblp:� FROM Svld
dblp; Pdblp; Idblp; dblp

WHERE Svld
dblp:ed ¼ 0 AND Svld

dblp.prefix ¼ Pdblp.prefix

AND Pdblp:ukid � Idblp:kid AND Pdblp:lkid � Idblp:kid

AND Idblp:rid ¼ dblp:rid

LIMIT 0; 3,

which returns records r4 and r8. As we only get two results,
we increase the edit-distance threshold to 1, and issue a new
SQL, which returns record r1. Thus, we get first-3 results
and terminate the execution. We do not need to consider the
case that � ¼ 2 as we have gotten the first-3 results.

7 SUPPORTING UPDATES EFFICIENTLY

We can use a trigger to support data updates. We consider
insertions and deletions of records.

Insertion. Assume a record is inserted. We first assign it
a new record ID. For each keyword in the record, we insert
the keyword into the inverted-index table. For each prefix of
the keyword, if the prefix is not in the prefix table, we add
an entry for the prefix. For the keyword-range encoding of
each prefix, we can reserve extra space for prefix ids to
accommodate future insertions. We only need to do global
reordering if a reserved space of the insertion is consumed.

Deletion. Assume a record is deleted. For each keyword
in the record, in the inverted-index table we use a bit
to denote whether a record is deleted. Here we use the bit to
mark the record to be deleted. We do not update the table
until we need to rebuild the index. For the range encoding of
each prefix, we can use the deleted prefix ids for future
insertions.

The ranges of ids are assigned-based inverse document
frequency (idf) of keywords. We use a larger range for a
keyword with a smaller idf. In most cases, we can use the
kept extra space for update. But in the worst case, we need
to rebuild the index. The problem of the range selection and
analysis is beyond the scope of this paper.

8 EXPERIMENTAL STUDY

We implemented the proposed methods on two real data
sets. 1) “DBLP”: It included 1.2 million computer science
publications.7 2) “MEDLINE”: It included 5 million biome-
dical articles.8 Table 6 summarizes the data sets and index
sizes. We see that the size of inverted-index table and prefix
table is acceptable, compared with the data set size. As a
keyword may have many deletion-based neighbors, the size
of prefix-deletion table is rather large. The size of q-gram
table is also larger than that of our method, since a substring

470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

TABLE 6
Data Sets and Index Costs

7. http://dblp.uni-trier.de/xml/.
8. http://www.ncbi.nlm.nih.gov/pubmed/.

has multiple overlapped q-grams. Note that the size of
similar-prefix table is very small as it only stores similar
prefixes of a keyword.

We used 1,000 real queries for each data set from the logs

of our deployed systems. We assumed the characters of a

query were typed in one by one. Table 7 gives ten example

queries.
We used a Windows 7 machine with an Intel Core 2

Quad processor (X5450 3.00 GHz and 4 GB memory).

We used three data bases, MYSQL, SQL Server 2005, and

Oracle 11g. By default, we used MYSQL in the experiments.

We will compare different data bases in Section 8.3.

8.1 Exact Search

Single-keyword queries. We implemented three methods

for single-keyword queries: 1) using UDF; 2) using the LIKE

predicate; and 3) using the inverted-index table and the

prefix table (called “IPTables”). We compared the perfor-

mance of the three methods to compute the first-N answers.

Unless otherwise specified, N ¼ 10. Fig. 6 shows the results.
We see that both the UDF-based method and the LIKE-

based method had a low search performance as they

needed to scan records. IPTables achieved a high perfor-

mance by using indexes. As the keyword length increased,

the performance of the first two methods decreased, since

the keyword became more selective, and the two methods

needed to scan more records in order to find the same

number (N) of answers. As the keyword length increased,

IPTables had a higher performance, since there were fewer

complete keywords for the query and the query needed

fewer join operations.
Multikeyword queries. We implemented six methods

for multikeyword queries:

1. using UDF;
2. using the LIKE predicate;
3. using full-text indexes and UDF (called “FI+UDF”);
4. using full-text indexes and the LIKE predicate (called

“FIþLIKE”);
5. using the inverted-index table and prefix table

(IPTables);

6. using the word-level incremental method (called
“IPTablesþ”)

Fig. 7 shows the results. We only show the results of four

methods as the UDF-based method and the LIKE-based

method achieved similar results and the two methods

using full-text indexes got similar results.
We see that the LIKE-based method had the worst

performance. The method using the full-text indexes

achieved a better performance. For example, on the MED-

LINE data set, the LIKE-based method took 5,000 ms to

answer a query, and the latter method reduced the time to

150 ms. IPTablesþ achieved the highest performance. It could

answer a query within 10 ms for the DBLP data set and 30 ms

for the MEDLINE data set, as it used an incremental method

to find first-N answers and did not scan all records.
Varying the number of answers N . We compared the

performance of the methods to compute first-N answers by

varying the number of first results. Fig. 8 shows the

experimental results. We can see that IPTables achieved

the highest performance for single-keyword queries and

IPTablesþ outperformed other methods for multiple-key-

word queries, for different N values. For example, IPTables

computed 100 answers for single-keyword queries within

2 ms on the DBLP data set and IPTablesþ computed

100 answers for multikeyword queries within 60 ms on the

MEDLINE data set. This difference shows the advantages of

our index structures and our incremental algorithms.

8.2 Fuzzy Search

Single-keyword queries. We first evaluated the perfor-

mance of different methods to compute similar keywords of

single-keyword queries. We implemented four methods:

1. using UDF;
2. using the gram-based method (called “Gram”)

described in [30]9;

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 471

TABLE 7
Ten Example Keyword Queries

Fig. 6. Exact-search performance for answering single-keyword queries
(varying keyword length).

Fig. 7. Exact-search performance of answering multikeyword queries
(varying keyword numbers).

Fig. 8. Exact-search performance of computing first-N answers by
varying different N values. (a) Single keywords—DBLP. (b) Multi-
keywords—MEDLINE.

9. We set q ¼ 2 and used the techniques of count filtering, length
filtering, and position filtering.

3. using the neighborhood-generation-based method
(called “NGB”); and

4. using the character-level incremental algorithms
(called “Incre”) to compute similar keywords for a
given query keyword using the prefix table as
discussed in Section 4.2.

Fig. 9 shows the results.
As the keyword length increased, the running time of

Gram, UDF, and NGB increased while that of Incre
decreased. The main reason was the following: first, the
UDF-based method needed more time for computing edit
distances for longer strings. Second, long strings have many
more i-deletion neighborhoods, and NGB needed longer
time to find an i-deletion neighborhood of the query string
from the deletion table. Third, there were more grams for
longer strings and Gram needed longer time to process large
numbers of grams. Besides the inverted-index table and
prefix table, Gram and NGB maintained additional indexes.
Fourth, Incre can incrementally compute the similar prefixes
and longer strings have a smaller number of similar prefixes,
thus its running time decreased.

Multikeyword queries. We evaluated the performance of
different methods to compute first-N answers for multikey-
word queries. Gram and the UDF-based methods were too
slow to support search-as-you-type. We implemented two
algorithms using NGB and Incre to find similar keywords on
top of the prefix table, and then computed the answers
based on the inverted-index table. For multikeyword
queries, we also implemented their word-level incremental
algorithms, called NGBþ and Increþ, respectively.

Fig. 10 shows the results. We see that the word-level
incremental algorithms can improve the performance for
multikeyword queries by using previously computed results
to answer queries. For example, Increþ achieved a very high
performance; it could answer a query within 50 ms for the
DBLP data set and 100 ms for the MEDLINE data set.

In addition, we evaluated the running time in two
steps: 1) finding similar keywords (called “NGB-SP” and

“Incre-SP”); 2) computing first-N answers (called “NGB-
R” and “Incre-R”). Fig. 11 shows the results. We see that
NGB needed more time for finding similar keywords and
Incre needed nearly the same amount time for the two
steps. For example, on the MEDLINE data set, NGB
needed 200 ms to compute similar prefixes and 50 ms to
compute the answers for queries with six keywords. Incre
reduced the time to 50 ms for computing similar prefixes.

Varying the number of returned results (N). We
compared the performance of different algorithms to
compute first-Nanswers by varying N . Fig. 12 shows the
results. We can see that both Increþ and NGBþ can efficiently
compute the first-N answers for different N values.

8.3 Comparisons of Different Approaches

We compared different methods to support search-as-you-
type. The first method uses existing built-in functionalities
(e.g., full-text indexes and the CONTAINS command) in
Oracle and SQL Server. We used their indexes to maximize
their performance. The second method builds a separate
application layer on the DBMS using techniques in [24],
namely “StandAlone.” For the extender-based method, we
implemented the proposed techniques in [24] and added
them as extenders of Oracle Cartridge in Oracle 11g and
CLR in Microsoft SQL Server. The fourth method is based
on SQL. We evaluated the scalability for both exact search
and fuzzy search. We set � ¼ 2 and N ¼ 100. Figs. 13 and 14
show the results.

472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

Fig. 10. Fuzzy-search performance (overall) of computing first-N
answers for multikeyword queries by varying the keyword number in a
query (� ¼ 2).

Fig. 11. Fuzzy-search performance (2 steps) of computing first-N
answers for multiple-keyword queries by varying keyword numbers in a
query (� ¼ 2).

Fig. 12. Fuzzy-search performance of computing first-N answers by
varying different N values.

Fig. 9. Fuzzy-search performance of computing similar keywords for
single-keyword queries by varying the query keyword length ð� ¼ 2Þ.

Fig. 13. Comparison of different methods (SQL Server).

We see that the StandAlone method achieved the highest
performance as it used in-memory data index structures,
while the SQL-based method (DB-SQL) had a lower but
comparable performance. DB-SQL outperformed the built-in
support of Oracle and SQL Server, since we can incrementally
compute answers using effective index structures, which is
very important for search-as-you-type. For exact search, all
these methods achieved a high performance and scaled well
as the data set increased. For example, for exact search, DB-
SQL could answer a query within 2 ms for 100,000 records
and 18 ms for one million records. For fuzzy search,10 DB-
SQL outperformed the built-in support in Oracle and SQL
Server by 1-2 orders of magnitude. DB-SQL scaled well as
data sizes increased, which reflects the superiority of our
techniques. For example, the methods using built-in capabil-
ities of Oracle and SQL Server took about 1,000 milliseconds
to answer a query. DB-SQL could answer a query within
20 ms for one million records and 100 ms for five million
records. This is because they cannot incrementally answer a
query. Note that Oracle and Microsoft took fuzzy search as a
black box and we do not know how they support fuzzy
search. Here we took them as a baseline. The results
suggested that practitioners need to consider both the
performance and other system aspects to decide the best
approach for search-as-you-type.

8.4 Data Updates

We tested the cost of updates on the DBLP data set. We
first built indexes for 1 million records, and then inserted
10,000 records at each time. We compared the performance
of the three methods on inserting 10,000 records. Fig. 15
shows the results. It took more than 40 seconds to reindex
the data, while our incremental-indexing method only took
0.5 seconds.

Summary. 1) In order to achieve a high speed, we have to
rely on index-based methods. 2) The approach using
inverted-index tables and the prefix tables can support prefix,
fuzzy search, and achieve the best performance among all
these methods and outperform the built-in methods in SQL
Server and Oracle. 3) Our SQL-based method can achieve a
high interactive speed and scale well.

9 RELATED WORK

Autocompletion and search-as-you-type. An autocomple-
tion system can predict a word or phrase that a user may type
in next based on the partial string the user has already typed
[40]. Nandi and Jagadish studied phrase prediction, which
took the query string as a single keyword and computed all

sentences with a phrase of the query string. Bast et al.
proposed HYB indexes to support search-as-you-type [4], [5],
[6]. Ji et al. [24] extended autocompletion to support fuzzy,
full-text instant search. Chaudhuri and Kaushik [14] studied
how to find similar strings interactively as users type in a
query string, and they did not study how to support
multikeyword queries. Li et al. [34] studied search-as-you-
type on a data base with multiple tables by modeling
relational data as graphs. Qin et al. [42] proposed to use
SQL to answer traditional keyword search, taking the query
keywords as complete keywords. Li et al. [32] proposed to
suggest SQL queries based on keywords. Different from
existing studies [24], we study how to use SQL to support
search-as-you-type. We proposed to use the available
resources inside a DBMS and develop effective pruning
techniques to improve the performance.

Approximate string search and similarity join. There
have been recent studies to support efficient approximate
string search [9], [26], [3], [13], [11], [18], [30], [31], [27], [50],
[19], [45], which, given a set of strings and a query string, all
strings in the set that are similar to the query string. Many
studies used gram-based index structures to support
approximate string search (e.g., [30], [28], [18]). The
experiments in [24] and [14] showed that these approaches
are not as efficient as trie-based methods for fuzzy search.
Similarity joins are extensively studied [17], [3], [7], [12],
[43], [48], [49], [46], which given two sets of strings, find all
similar string pairs from the two sets. Gravano et al. [17]
proposed to use DBMS capabilities to support fuzzy joins of
strings. Their methodology (q-gram-based techniques) has a
low performance to support search-as-you-type (the experi-
mental results in Section 8). Jestes et al. [23] proposed to use
min-hash to improve performance. Chaudhuri et al. [10]
studied data cleansing operators in Microsoft SQL Server.
There are also some studies on estimating selectivity of
approximate string queries [20], [28], [29] and approximate
entity extraction [1], [9], [47].

Keyword search in data bases. There are many studies
on keyword search in data bases [22], [2], [8], [25], [36], [37],
[35], [44], [15], [16], [37], [21], [39], [41], and [33].

Our work complements these earlier studies by investi-
gating how to support search-as-you-type inside DBMS. To
our best knowledge, our work is the first study on
supporting search-as-you-type inside a DBMS using SQL,
even supporting multikeyword queries and fuzzy search.

10 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of using SQL to
support search-as-you-type in data bases. We focused on
the challenge of how to leverage existing DBMS function-
alities to meet the high-performance requirement to achieve

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 473

Fig. 15. Performance of updates (10,000 records).
Fig. 14. Comparison of different methods (Oracle).

10. In Oracle one can set a fuzzy score between 0 and 80 to do fuzzy
search, we used the default value 60.

an interactive speed. To support prefix matching, we
proposed solutions that use auxiliary tables as index
structures and SQL queries to support search-as-you-type.
We extended the techniques to the case of fuzzy queries,
and proposed various techniques to improve query perfor-
mance. We proposed incremental-computation techniques
to answer multikeyword queries, and studied how to
support first-N queries and incremental updates. Our
experimental results on large, real data sets showed that
the proposed techniques can enable DBMS systems to
support search-as-you-type on large tables.

There are several open problems to support search-as-
you-type using SQL. One is how to support ranking queries
efficiently. Another one is how to support multiple tables.

ACKNOWLEDGMENTS

Guoliang Li and Jianhua Feng are partially supported by
the National Natural Science Foundation of China under
Grant No. 61003004 and 61272090, the National Grand
Fundamental Research 973 Program of China under Grant
No. 2011CB302206, and National S&T Major Project of
China under Grant No. 2011ZX01042-001-002. Chen Li is
partially supported by the NIH grant 1R21LM010143-01A1
and the NSF grant IIS-1030002. Chen Li declares financial
interest in Bimaple Technology Inc., which is commercializ-
ing some of the techniques used in this publication.

REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti, “Scalable
Ad-Hoc Entity Extraction from Text Collections,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 945-957, 2008.

[2] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for
Keyword-Based Search over Relational Data Bases,” Proc. 18th
Int’l Conf. Data Eng. (ICDE ’02), pp. 5-16, 2002.

[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-Similarity
Joins,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06),
pp. 918-929, 2006.

[4] H. Bast, A. Chitea, F.M. Suchanek, and I. Weber, “ESTER: Efficient
Search on Text, Entities, and Relations,” Proc. 30th Ann. Int’l ACM
SIGIR Conf. Research and Development in Information Retrieval
(SIGIR ’07), pp. 671-678, 2007.

[5] H. Bast and I. Weber, “Type Less, Find More: Fast Autocomple-
tion Search with a Succinct Index,” Proc. 29th Ann. Int’l ACM
SIGIR Conf. Research and Development in Information Retrieval
(SIGIR ’06), pp. 364-371, 2006.

[6] H. Bast and I. Weber, “The Complete Search Engine: Interactive,
Efficient, and Towards IR & DB Integration,” Proc. Conf. Innovative
Data Systems Research (CIDR), pp. 88-95, 2007.

[7] R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all Pairs Similarity
Search,” Proc. 16th Int’l Conf. World Wide Web (WWW ’07), pp. 131-
140, 2007.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Data Bases
Using Banks,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 431-
440, 2002.

[9] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An Efficient
Filter for Approximate Membership Checking,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’08), pp. 805-
818, 2008.

[10] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya, and
T. Vassilakis, “Data Cleaning in Microsoft SQL Server 2005,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’05),
pp. 918-920, 2005.

[11] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
Efficient Fuzzy Match for Online Data Cleaning,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), pp. 313-
324, 2003.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for
Similarity Joins in Data Cleaning,” Proc. 22nd Int’l Conf. Data Eng.
(ICDE ’06), pp. 5-16, 2006.

[13] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust Identification of
Fuzzy Duplicates,” Proc. 21st Int’l Conf. Data Eng. (ICDE), pp. 865-
876, 2005.

[14] S. Chaudhuri and R. Kaushik, “Extending Autocompletion to
Tolerate Errors,” Proc. 35th ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’09), pp. 433-439, 2009.

[15] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword Search on
External Memory Data Graphs,” Proc. VLDB Endowment, vol. 1,
no. 1, pp. 1189-1204, 2008.

[16] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
Top-K Min-Cost Connected Trees in Data Bases,” Proc. IEEE 23rd
Int’l Conf. Data Eng. (ICDE ’07), pp. 836-845, 2007.

[17] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins in
a Data Base (Almost) for Free,” Proc. 27th Int’l Conf. Very Large
Data Bases (VLDB ’01), pp. 491-500, 2001.

[18] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava,
“Fast Indexes and Algorithms for Set Similarity Selection
Queries,” Proc. IEEE 24th Int’l Conf. Data Eng. (ICDE ’08),
pp. 267-276, 2008.

[19] M. Hadjieleftheriou, N. Koudas, and D. Srivastava, “Incremental
Maintenance of Length Normalized Indexes for Approximate
String Matching,” Proc. 35th ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’09), pp. 429-440, 2009.

[20] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava,
“Hashed Samples: Selectivity Estimators for Set Similarity Selec-
tion Queries,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 201-212,
2008.

[21] H. He, H. Wang, J. Yang, and P.S. Yu, “Blinks: Ranked Keyword
Searches on Graphs,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’07), pp. 305-316, 2007.

[22] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search
in Relational Data Bases,” Proc. 28th Int’l Conf. Very Large Data
Bases (VLDB ’02), pp. 670-681, 2002.

[23] J. Jestes, F. Li, Z. Yan, and K. Yi, “Probabilistic String Similarity
Joins,” Proc. Int’l Conf. Management of Data (SIGMOD ’10), pp. 327-
338, 2010.

[24] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword
Search,” Proc. 18th ACM SIGMOD Int’l Conf. World Wide Web
(WWW), pp. 371-380, 2009.

[25] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional Expansion for Keyword Search on
Graph Data Bases,” Proc. 31st Int’l Conf. Very Large Data Bases
(VLDB ’05), pp. 505-516, 2005.

[26] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee, “N-Gram/2l: A
Space and Time Efficient Two-Level N-Gram Inverted Index
Structure,” Proc. 31st Int’l Conf. Very Large Data Bases (VLDB ’05),
pp. 325-336, 2005.

[27] N. Koudas, C. Li, A.K.H. Tung, and R. Vernica, “Relaxing Join and
Selection Queries,” Proc. 32nd Int’l Conf. Very Large Data Bases
(VLDB ’06), pp. 199-210, 2006.

[28] H. Lee, R.T. Ng, and K. Shim, “Extending Q-Grams to Estimate
Selectivity of String Matching with Low Edit Distance,” Proc. 33rd
Int’l Conf. Very Large Data Bases (VLDB ’07), pp. 195-206, 2007.

[29] H. Lee, R.T. Ng, and K. Shim, “Power-Law Based Estimation of
Set Similarity Join Size,” Proc. VLDB Endowment, vol. 2, no. 1,
pp. 658-669, 2009.

[30] C. Li, J. Lu, and Y. Lu, “Efficient Merging and Filtering
Algorithms for Approximate String Searches,” Proc. IEEE 24th
Int’l Conf. Data Eng. (ICDE ’08), pp. 257-266, 2008.

[31] C. Li, B. Wang, and X. Yang, “VGRAM: Improving Performance of
Approximate Queries on String Collections Using Variable-
Length Grams,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB
’07), pp. 303-314, 2007.

[32] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng, “Dbease: Making Data
Bases User-Friendly and Easily Accessible,” Proc. Conf. Innovative
Data Systems Research (CIDR), pp. 45-56, 2011.

[33] G. Li, J. Feng, X. Zhou, and J. Wang, “Providing Built-in Keyword
Search Capabilities in Rdbms,” VLDB J., vol. 20, no. 1, pp. 1-19,
2011.

[34] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search on
Relational Data: A Tastier Approach,” Proc. 35th ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’09), pp. 695-706, 2009.

474 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

[35] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou, “EASE: An Effective
3-in-1 Keyword Search Method for Unstructured, Semi-Structured
and Structured Data,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’08), pp. 903-914, 2008.

[36] F. Liu, C.T. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Data Bases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’06), pp. 563-574, 2006.

[37] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-K Keyword
Query in Relational Data Bases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’07), pp. 115-126, 2007.

[38] R.B. Miller, “Response Time in Man-Computer Conversational
Transactions,” Proc. AFIPS ’68: Fall Joint Computer Conf., Part I,
pp. 267-277, 1968.

[39] S. Mitra, M. Winslett, W.W. Hsu, and K.C.-C. Chang, “Trust-
worthy Keyword Search for Compliance Storage,” VLDB J.—Int’l
J. Very Large Data Bases, vol. 17, no. 2, pp. 225-242, 2008.

[40] A. Nandi and H.V. Jagadish, “Effective Phrase Prediction,” Proc.
33rd Int’l Conf. Very Large Data Bases (VLDB ’07), pp. 219-230, 2007.

[41] L. Qin, J. Yu, and L. Chang, “Ten Thousand Sqls: Parallel
Keyword Queries Computing,” Proc. VLDB Endowment, vol. 3,
no. 1, pp. 58-69, 2010.

[42] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Data Bases: The
Power of Rdbms,” Proc. 35th ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’09), pp. 681-694, 2009.

[43] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity
Predicates,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’04), pp. 743-754, 2004.

[44] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-K
Exploration of Query Candidates for Efficient Keyword Search
on Graph-Shaped (RDF) Data,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE ’09), pp. 405-416, 2009.

[45] E. Ukkonen, “Finding Approximate Patterns in Strings,”
J. Algorithms, vol. 6, no. 1, pp. 132-137, 1985.

[46] J. Wang, G. Li, and J. Feng, “Trie-Join: Efficient Trie-Based String
Similarity Joins with Edit-Distance Constraints,” Proc. VLDB
Endowment, vol. 3, no. 1, pp. 1219-1230, 2010.

[47] W. Wang, C. Xiao, X. Lin, and C. Zhang, “Efficient Approximate
Entity Extraction with Edit Distance Constraints,” Proc. 35th ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’09), pp. 759-
770, 2009.

[48] C. Xiao, W. Wang, and X. Lin, “Ed-Join: An Efficient Algorithm for
Similarity Joins with Edit Distance Constraints,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 933-944, 2008.

[49] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-K Set Similarity
Joins,” Proc. IEEE Int’l Conf. Data Eng. (ICDE ’09), pp. 916-927,
2009.

[50] C. Xiao, W. Wang, X. Lin, and J.X. Yu, “Efficient Similarity Joins
for Near Duplicate Detection,” Proc. 17th Int’l Conf. World Wide
Web (WWW ’08), 2008.

Guoliang Li received the PhD degree in
computer science from Tsinghua University in
2009, and the bachelor’s degree in computer
science from Harbin Institute of Technology in
2004. He is an assistant professor in the
Department of Computer Science, Tsinghua
University, Beijing, China. His research interests
include integrating data bases and information
retrieval, data cleaning, data base usability, and
data integration.

Jianhua Feng received the BS, MS, and PhD
degrees in computer science and technology
from Tsinghua University. He is currently work-
ing as a professor in the Department of
Computer Science and Technology at Tsinghua
University. His main research interests include
data bases, native XML data bases, and key-
word search over structured data. He is a
member of the ACM and the IEEE, and a senior
member of China Computer Federation (CCF).

Chen Li received the BS and MS degrees in
computer science from Tsinghua University,
China, in 1994 and 1996, respectively, and the
PhD degree in computer science from Stanford
University in 2001. He is an associate professor
in the Department of Computer Science at the
University of California, Irvine. He received a US
National Science Foundation (NSF) CAREER
Award in 2003 and a few other NSF grants and
industry gifts. He was once a part-time visiting

research scientist at Google. His research interests include the fields of
data management and information search. He is the founder of
Bimaple.com. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: SUPPORTING SEARCH-AS-YOU-TYPE USING SQL IN DATABASES 475

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

