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Efficient Filtering Algorithms
for Location-Aware Publish/Subscribe
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Abstract—Location-based services have been widely adopted in many systems. Existing works employ a pull model or user-initiated

model, where a user issues a query to a server which replies with location-aware answers. To provide users with instant replies, a

push model or server-initiated model is becoming an inevitable computing model in the next-generation location-based services. In the

push model, subscribers register spatio-textual subscriptions to capture their interests, and publishers post spatio-textual messages.

This calls for a high-performance location-aware publish/subscribe system to deliver publishers’ messages to relevant subscribers. In

this paper, we address the research challenges that arise in designing a location-aware publish/subscribe system. We propose an

R-tree based index by integrating textual descriptions into R-tree nodes. We devise efficient filtering algorithms and effective pruning

techniques to achieve high performance. Our method can support both conjunctive queries and ranking queries. We discuss how to

support dynamic updates efficiently. Experimental results show our method achieves high performance which can filter 500 messages

in a second for 10 million subscriptions on a commodity computer

Ç

1 INTRODUCTION

L OCATION-BASED services (LBS) have attracted signifi-
cant attention from both industrial and academic

communities. Many LBS services such as Foursquare (four-
square.com) and Google Maps (maps.google.com) have
been widely accepted because they can provide users with
location-aware experiences. Existing LBS systems employ a
pull model or user-initiated model [8], [16], where a user
issues a query to a server which responds with location-
aware answers. For example, if a mobile user wants to find
seafood restaurants nearby, she issues a query “seafood
restaurant” to an LBS system, which returns answers
based on user’s location and keywords.

To provide users with instant replies, a push model or
server-initiated model is becoming an inevitable computing
model in next-generation location-based services. In the
push model, subscribers register spatio-textual subscrip-
tions to capture their interests, and publishers post spatio-
textual messages. This calls for a high-performance loca-
tion-aware publish/subscribe system to deliver messages to
relevant subscribers. This computing model brings new
user experiences to mobile users, and can help users retrieve
information without explicitly issuing a query.

There are many real-world applications using location-
aware publish/subscribe services. The first one is Groupon.
Groupon customers register their interests with locations

and keywords (e.g., “iphone4s” at NewYork). For each
Groupon message (e.g., “iphone4s AT&T package” at
Manhattan), the system provider sends the message to the
customers who may be potentially interested in the message
by evaluating the spatial proximity and textual relevancy
between subscriptions and the message. The second one is
location-aware AdSense, which extends traditional AdSense
(www.google.com/adsense) to support location-aware
services. The advertisers register their location-based adver-
tisements (e.g., “seafood” at Manhattan) in the system. The
system pushes relevant advertisements to mobile users
based on their locations and contents they are browsing
(e.g., webpages). The third one is tweet delivery. To receive
feedback of their products in a specific area from Twitter,
market analysts register their interests (e.g., “ipad2” at LA).
For each tweet (e.g., “ipad2 is expensive” at LA Airport),
the system pushes the tweet to relevant analysts whose
spatio-textual subscriptions match the tweet.

One big challenge in a publish/subscribe system is to
achieve high performance. A publish/subscribe system
should support tens of millions of subscribers and deliver
messages to relevant subscribers in milliseconds. Since mes-
sages and subscriptions contain both location information
and textual description, it is rather costly to deliver messages
to relevant subscribers. This calls for an efficient filtering tech-
nique to support location-aware publish/subscribe services.

To address the challenge, we propose a token-based R-
tree index structure (called Rt-tree) by integrating each R-
tree node with a set of tokens selected from subscriptions.
Using the Rt-tree, we develop a filter-and-verification
framework to efficiently deliver a message. To reduce the

number of tokens associated with Rt-tree nodes, we select
some high-quality representative tokens from subscriptions
and associate them with Rt-tree nodes. This technique not
only reduces index sizes but also improves the perfor-
mance. Experiments on large, real data sets show that our
method achieves high performance. We make the following
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contributions: (1) We introduce a new computing model
and formalize the location-aware publish/subscribe prob-
lem. (2) We propose a novel index structure, the Rt-tree, by
integrating high-quality representative tokens selected from
subscriptions into the R-tree nodes. Our method can
support both conjunctive queries and ranking queries.
(3) Using our proposed indexes, we develop efficient filter-
ing algorithms and effective pruning techniques to improve
the performance. (4) We present how to support dynamic
updates efficiently.

2 PRELIMINARIES

2.1 Problem Formulation

In a location-aware publish/subscribe system, subscribers
register subscriptions to capture their interests. A subscrip-
tion s includes a textual description s:T and spatial informa-
tion s:R, denoted by s ¼ ðT;RÞ. The spatial information is
used to capture a subscriber’s most interested region. We
use the well-known minimum bounding rectangle (MBR) to
denote a region s:R. The textual description is used to cap-
ture a subscriber’s content-based interests, denoted by a set
of tokens s:T ¼ ft1; t2; . . . ; tjs:T jg.

A message m posted by a publisher also contains a tex-
tual description m:T and spatial information m:R, denoted
by m ¼ ðT;RÞ, which respectively have the same meaning
as those of subscriptions. Note that the spatial information
m:R of a message can be a point, e.g., mobile user’s location.
If the spatial information of a message is a point, we call it
point message; otherwise we call it range message.

Let S ¼ fs1; s2; . . . ; sjSjg denote the set of subscriptions.
Given a subscription si 2 S and a message m, a location-
aware publish/subscribe system deliversm to si (si is called
an answer ofm), if they satisfy

1) Spatial Constraint. Message m and subscription si
have spatial overlap (i.e., si:R \m:R 6¼ f) and;

2) Textual Constraint. All tokens in subscription si are
contained in messagem (i.e., si:T � m:T ).

We first consider the conjunctive semantics for the tex-
tual constraints, that is any token in a subscription needs to
be contained in the message. Our method can also support
disjunctive semantics by decomposing a subscription to sev-
eral small subscriptions. For example, we can decompose a
subscription with tokens “(iphone4s or ipad2) and AT&T” to
two subscriptions with tokens “iphone4s and AT&T” and
“ipad2 and AT&T”. For the spatial constraint, we consider
the case that a message and a subscription have spatial over-
lap. We will discuss how to support ranking semantics
which finds subscriptions with similarity to the message
larger than a given threshold by considering both textual
relevancy and spatial proximity in Section 6. Based on these
notations, we formalize the location-aware publish/
subscribe problem as below.

Definition 1 (Location-aware Publish/Subscribe). Given a
set of subscriptions S and a messagem, a location-aware publish/
subscribe system delivers m to si 2 S if si:R \ m:R 6¼ f and
si:T � m:T .

Example 1. Consider the 12 subscriptions and 2 messages in
Fig. 1. For point message mp ¼ ðfiphone4s;ipad2; AT&T;

64GBg; PmÞ, subscription s12 ¼ ðf64GB; ipad2g; R12Þ is an
answer. s10 ¼ ðf32GB; AT&T; iphone4sg; R10Þ is not an
answer as it has a token “32GB” which does not appear in
mp. s7 ¼ ðfAT&T; ipad2g; R7Þ is not an answer as it has no
spatial overlap with mp. The answers of mp are s11 and
s12. For a range message mr ¼ ðfiphone4s; ipad2; AT&T;
64GBg; RmÞ, its answers are s8, s11, and s12.

2.2 Related Work

There are some studies on location-aware publish/
subscribe from a network perspective (e.g., routing,
mobile networks) [6], [9], [10], [12], [13], [17], [19]. Differ-
ent from these works, we focus on devising efficient algo-
rithms to improve the performance in a centralized
setting from a database perspective.

Spatial Keyword Search. There are many studies on spatial
keyword search [4], [5], [7], [8], [15], [16], [21], [23], [25],
[26], [29], [32], [33], [34], [35], [36]. The first problem is knn
based keyword search, which, given a location and a set of
keywords, finds top-k nearest neighbors by considering the
distance and textual relevancy. Felipe et al. [16] integrated
signature files and R-tree. Cong et al. [8] combined inverted
files and R-tree. Cong et al. [4] studied how to find top-k
prestige-based spatial objects. The second problem is region
based keyword search, which, given a region and a key-
word query, finds the relevant objects in this region. Zhou
et al. [36] discussed several strategies to combine R-tree and
inverted indexes. Hariharan et al. [21] integrated inverted
lists into R-tree nodes. Chen et al. [7] extended this problem
to support large numbers of “footprint representations.”
The third problem is collective keyword search, which,
given a set of keywords, finds a set of close objects that
match the keywords. Zhang et al. [33], [34] integrated key-
word bitmap and keyword MBR into R-tree nodes to find
the closest objects. Cao et al. [5] proposed several exact and
approximate algorithms.

Yao et al. [32] studied the problem of approximate string
match in spatial databases. Wu et al. [29] tackled the prob-
lem of spatial keyword search for moving objects. Lu et al.
[25] extended reversed knn techniques to support reverse
spatial and textual knn search. Roy and Chakrabarti [26]
proposed materialization-based techniques to support type-
ahead search. Leung et al. [22] used locations to improve
personalized search.

The above problems substantially differ from our
location-aware publish/subscribe problem, since they use a

Fig. 1. An example of subscriptions and messages.
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where a is a tuning parameter, cs is a spatial similarity
function and ct is a textual similarity function:

Spatial Similarity :csðs;mÞ ¼ js:R \m:Rj
js:Rj ;

Textual Similarity :ctðs;mÞ ¼
P

t2s:T\m:T vðtÞ
vðsÞ ¼Pt2s:T vðtÞ

;

where jsi:R \m:Rj is the size of the intersection of s:R and
m:R, vðtÞ is the weight of term t which can be set as the
inverse document frequency (idf) of t and vðsÞ is the total
token weight of subscription s. Existing spatial keyword
search methods also utilize parameter a to leverage the tex-
tual relevancy and spatial proximity [8], and we can use
these methods to tune parameter a.

Given a set of subscriptions S ¼ fs1; s2; . . . ; sjSjg, a mes-
sage m and a threshold u, a ranking based location-aware
publish/subscribe system delivers m to s 2 S if cðs;mÞ 
 u.

We extend Rt-tree, Rtþ-tree, and Rtþþ-tree to support the
ranking semantics.

6.1 Extending Rtt-tree

In the Rt-tree, besides the token sets in each node n, we also
maintain the minimal token weight (denoted by n.minv)
and the minimal region size (denoted by n.mins) of sub-
scriptions under node n. In addition, we also keep a global
token weight table to keep the weight of each token. Given
a messagem, for any subscription s under node n, we have

ctðs;mÞ � ctðn;mÞ ¼
P

t 2 n:T \ m:T vðtÞ
n:minv

;

and

csðs;mÞ � csðn;mÞ ¼ jn:R \m:Rj
n:mins

:

Thus we have

cðs;mÞ � cðn;mÞ ¼ acsðn;mÞ þ ð1� aÞctðn;mÞ: (4)

Obviously, for any node n, we can easily compute
cðn;mÞ. If cðn;mÞ � u, we prune the node; otherwise we
visit the children of the node. Thus we can traverse the Rt-
tree and utilize this property to prune unnecessary nodes
and iteratively we can get all answers.

6.2 Extending Rtþtþ-tree
The Rt-treewill index larger numbers of tokens in each node
and we extend Rtþ-tree to prune unnecessary tokens. For
each subscription s, its maximum spatial similarity to any
message is 1. If s is similar to a messagem, we can compute a
lower bound of the textual similarity between s andm, i.e.,

Bl
t ¼

u � a

1� a
: (5)

Obviously if their textual similarity is smaller than the lower

bound Bl
t, we can prune the subscription. Based on this

observation, we can prune some unnecessary tokens from s
and only keep a prefix token set of s, denoted by

PreðsÞ ¼ fs:T ½1	; s:T ½2	; . . . ; s:T ½i	g, where i is the maximum
number such that

X
j>i

vðs:T ½i	Þ � Bl
t � vðsÞ:

Thus if message m does not contain a token in PreðsÞ, the
textual similarity between m and s will be smaller than Bl

t

and thus m will not be similar to s and we can prune
subscription s.

If a message has no spatial overlap with a subscription,
we can deduce another tighter bound

Bu
t ¼ u

1� a
(6)

Similarly, we can get a shorter prefix token set
Pre0ðsÞ ¼ fs:T ½1	; s:T ½2	; . . . ; s:T ½t	g, where t is the maximum
number such that

X
j>t

vðs:T ½i	Þ � Bu
t � vðsÞ:

Obviously, Pre0ðsÞ is a subset of PreðsÞ. In this way, for each
subscription s, we only index the tokens in its prefix sets
PreðsÞ and Pre0ðsÞ. As Pre0ðsÞ � PreðsÞ, we only need to
maintain PreðsÞ and distinguish which tokens are in Pre0ðsÞ
or PreðsÞ. Similarly, for each node n, we also keep a prefix
set PreðnÞ which is the union of prefixes of subscriptions
under the node. Given a node n, (1) if messagem has spatial
overlap with n, we check whether m contains tokens in
PreðnÞ.3 If no, we prune the node; otherwise we access the
children of node n; (2) If the message has no spatial overlap
with the node, we check whether m contains tokens in
Pre0ðnÞ. If no, we prune the node; otherwise we access the
children of node n. We can utilize this property to find

answers on Rtþ-tree.

6.3 Extending Rtþþtþþ-tree
We select the same representative tokens as the Rtþþ-tree.
For each subscription s, we assign the ith token in s (s:T ½i	)
to its ancestor at the ith level. Different from the conjunctive
semantics, we also maintain an upper bound Bðs; nÞ.

Bðs; nÞ ¼
P

j>i vðs:T ½j	Þ
vðsÞ ; (7)

Next we discuss how to support ranking semantics. We
first consider the case that u > a. Given a message m and a
tree node n, for each token in t 2 n:T \m:T , we access
the inverted list of token t. For each subscription s on the
inverted list, if it is not added into the candidate set C, we
compute csðs;mÞ in Oð1Þ time. If acsðs;mÞ þ ð1� aÞ
vðtÞ þ Bðs;nÞ

vðsÞ 
 u, it is a candidate and we add hs;vðtÞi into the

candidate set. If s is already in the candidate set, we update
its textual score to CðsÞ ¼ CðsÞ þ vðtÞ, and if acsðs;mÞ þ
ð1� aÞ CðsÞ þ Bðs;nÞ

vðsÞ 
 u, it is a candidate and we add hs; CðsÞi
into the candidate set; otherwise we remove it from the

3. If PreðnÞ (or PreðsÞ) is empty, we need to visit the node (or
subscription).
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candidate set. After accessing the relevant leaf nodes, we get
all the answers.

If u � a, we need to made a minor change as a subscrip-
tion may be similar to a message even if they do not share
any common token. In this case, when accessing the root, we
need to visit all the subscriptions in the inverted lists of the
root. For other nodes, we do not need tomake any changes.

Discussion. The operations to updates, selecting represen-
tative tokens and selecting token order are the same as those
on Rt-tree, Rtþ-tree, and Rtþþ-tree.

7 EXPERIMENTAL STUDY

We compared with state-of-the-art method IRTree [8]. We
extended IRTree to support our problem as discussed in
Section 2.3. We used two datasets. The first one was a
real dataset Twitter. We collected 60 million tweets from
May 2011 to August 2011, in which 13 million tweets had
locations. We selected 10 million tweets with region infor-
mation as subscriptions and used the others as messages.
Each subscription contained an MBR and had 1-5 tokens
selected from the tweets. The average token number of
subscriptions was 3. The token distribution follows a
Zipf’s law. The number of subscription pairs with at least
one common token is 2 � 1011 and the number of pairs

with spatial overlap is 3:2 � 1011.
We generated four groups of messages as follows. (1) Short

PointMessages: Eachmessage contained 6-20 tokens and had a
point location. (2) Long Point Messages: Each message con-
tained 100-1000 tokens and had a point location. (3) Short
Range Messages: Each message contained 6-20 tokens and had
an MBR region. (4) Long Range Messages: Each message con-
tained 100-1000 tokens and had anMBR region.

Each group contained 10,000 messages. We generated
long messages by concatenating multiple tweets. We com-
puted the average filtering time. The number of pairs of
messages and subscriptions with at least a common token is

2:1 � 1010 and the number of pairs with spatial overlap is

2:3 � 1010. The average number of matched subscriptions of
each message is 313. For long region messages, short region
messages, long point messages, short point messages, the
numbers are respectively 912, 431, 243, and 142.

We also used a synthetic dataset by combing Point of Inter-
ests (POIs) in USA and publications in DBLP. The USA data-
set contained 17 million POIs and DBLP had 1.5 million
publications. We generated MBRs from the POIs by selecting
a POI as the center and extending a randomwidth and height.
Each subscription was generated by selecting an MBR and
1-5 tokens from DBLP. Each message was generated by

selecting an MBR and a publication. We also generated four
groups of messages and each group had 10,000 messages.
Table 1 summarized datasets and index sizes, where the sub-
scription length denotes the number of tokens in a
subscription.

In the experiments we set b ¼ 25 and B ¼ 50. We get sim-
ilar results on the two datasets. Due to space constraints, the
results on the USA dataset are shown in Section 7.3 for com-
paring with other methods.

All algorithms were implemented in C++. All experi-
ments were run on a Windows 2008 machine with an Intel
Core E5410 2.33 GHz CPU and 16 GB RAM.

7.1 Evaluating Different Sorting Strategies

We evaluated different sorting strategies: random, df, idf, and
locality-aware (We generated 10,000 grids and used the idf
order) on theRtþ-tree as discussed in Section 4.2. TheRtþ-tree
sizes for the four methods were respectively 0.76, 0.72, 0.79,
and 0.83 GB. This is because the df order shared many tokens
in upper-level nodes and the idf order and the locality-aware
method shared few tokens. Fig. 7 shows the results. We can
see idf outperformed dfwhich in turnswas better than random
as idf can prunemany unnecessary nodes as infrequent tokens
were on the upper-level nodes which had low probability to
be contained in messages. df reduced token-set sizes by shar-
ing common tokens, thus df outperformed random. The local-
ity-aware method was better than df and idf as it considered
the locality-aware token distributions to do pruning. For
example, in Fig. 7c, for messages with 20 tokens, random and
idf took more than 9 milliseconds, idf took 6 milliseconds, and
the locality-awaremethod took 4milliseconds.

7.2 Evaluating Rtt-tree with Different Token Sets

We evaluated Rt-tree with different token sets, i.e., Rt-tree

with token sets, Rtþ-tree with representative tokens, Rtþþ-
tree with multiple representative tokens. For Rtþ-tree and
Rtþþ-tree, we used the locality-aware method. Fig. 8 shows

TABLE 1
Dataset Statistics

Twitter USA

Subscription number 10 million 10 million
Subscription length 1-5 1-5
Avg Subscription length 3 3
Subscription size 0.54 GB 0.65 GB
Token distribution Zipf Uniform
Rt-tree size 1.63 GB 1.76 GB
Rtþ-tree size 0.79 GB 0.85 GB
Rtþþ-tree size 0.89 GB 0.92 GB

Fig. 7. Evaluation on different sorting strategies using Rtþ-tree on the Twitter dataset.
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the results. We can see that Rtþþ-tree outperformed Rtþ-tree
which was better than Rt-tree. This is because Rtþþ-tree had
larger pruning power and did not involve an expensive ver-
ification step. Rtþ-tree reduced the token-set sizes and

decreased the number of candidates against Rt-tree, thus it
achieved higher performance than Rt-tree. For example, in
Fig. 8d, for messages with 1,000 tokens, Rt-tree took 50 milli-

seconds, and Rtþ-tree decreased the time to 28 milliseconds,
and Rtþþ-tree further reduced the time to 12 milliseconds.
For short messages, e.g., tweets, in Figs. 8a and 8c, Rtþþ-tree
only took 1-2 milliseconds.

7.3 Comparison with Existing Methods

We compared our best method Rtþþ-tree with existing
approaches, the keyword-first method [31], the spatial-first
method [27], and state-of-the-art spatial keyword search
method IRTree [8] as discussed in Section 2.3. All algo-
rithms employed an in-memory setting. Figs. 9 and 10 show
the results on the Twitter and USA datasets respectively.

An observation is that the spatial-first method outper-
formed the keyword-first method for point messages
(Figs. 9a, 9b, 10a, 10b). The reason is that the spatial-first
method efficiently found candidate nodes using spatial
indexes while the keyword-first method had no spatial

pruning power. Another observation is that the spatial-
first method had lower performance than the keyword-
first method for range messages (Figs. 9c, 9d, 10c, 10d),
as the spatial-first method had no textual pruning power.

In addition, notice that IRTree also achieved low perfor-
mance and was even worse than the spatial-first method.
There are two main reasons. First, it associated each R-tree
node with a rather large inverted index and it was very
expensive to traverse the R-tree by using the large inverted
index. Second, it was designed for spatial keyword search
and had to access larger numbers of unnecessary nodes.
Thus IRTreewas inefficient for the filtering problem.

Our Rtþþ-tree based algorithm always achieved the high-

est performance for any types of messages, because Rtþþ-
tree seamlessly integrated the spatial and textual informa-
tion and had large pruning power.

7.4 Scalability

We evaluated the scalability of the Rtþþ-tree based algo-
rithm by varying the numbers of subscriptions. Fig. 11
shows the results. We can see that our method scaled very
well, and with the increase of the numbers of subscriptions,
the elapsed time increased sublinearly. This is because even
if the number of subscriptions increased, our indexes still
pruned large numbers of unnecessary subscriptions.

Fig. 8. Evaluation on Rt-tree by using different token sets on the Twitter dataset.

Fig. 9. Comparison with existing studies on the Twitter dataset.

Fig. 10. Comparison with existing studies on the USA dataset.
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7.5 Update and Query Throughput

We tested the throughput of the Rtþþ-tree based algorithm.
We generated 100,000 queries with 10% insertions of sub-
scriptions, 10 percent deletions of subscriptions and 80 per-
cent new messages. We evaluated the throughput, i.e., the
number of processed queries per second. Fig. 12 shows the
result. We can see for short point messages, the throughput
was 600-840; for long range messages and 60-120. We also
evaluated the effect on updates of token frequencies. With
the increase of frequencies, the performance slightly
decreased. With the decrease of frequencies, the perfor-
mance slightly increased. The new tokens had no effect on
performance as they only enlarge hash table and efficiency
of getting token frequency is not affected.

7.6 Ranking Semantics

We evaluated the ranking semantics. We first varied the
parameter a and evaluated the average filtering time. Fig. 13
shows the result. We can see that with the increase of a, the
performance first increased and then decreased, because for
smaller a, the textual relevancy is more important, we can
use prefix filtering to do effective pruning; for larger a, the
spatial relevancy is more important, we can use the spatial
filtering technique to prune irrelevant subscriptions.

Then we varied threshold u and compared with base-
line algorithms and IRTree. Fig. 14 shows the results. We
can see that with the increase of u, the performance
decreased, because for larger u, there are less results with
similarity not smaller than the threshold and the filtering
problem becomes easier.

8 CONCLUSION

In this paper,we study the location-aware publish/subscribe
problem. We propose an effective index structure Rt-tree
by integrating textual description into R-tree nodes. We
develop a filter-and-verification framework and devise effi-
cient filtering algorithms. We propose reducing the number

of tokens in each node which not only reduces index sizes
but improves performance. We devise an efficient algorithm
to directly find answers without the verification step. We
extend our algorithms to support both conjunctive queries
and ranking queries. We discuss how to support ranking
semantics. Experimental results on real datasets show our
method achieves high performance and good scalability.
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