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Crowdsourced Data Management: A Survey
Guoliang Li Jiannan Wang Yudian Zheng Michael J. Franklin

Abstract—Any important data management and analytics tasks cannot be completely addressed by automated processes. These
tasks, such as entity resolution, sentiment analysis, and image recognition can be enhanced through the use of human cognitive ability.
Crowdsouring platforms are an effective way to harness the capabilities of people (i.e., the crowd) to apply human computation for such
tasks. Thus, crowdsourced data management has become an area of increasing interest in research and industry.
We identify three important problems in crowdsourced data management. (1) Quality Control: Workers may return noisy or incorrect
results so effective techniques are required to achieve high quality; (2) Cost Control: The crowd is not free, and cost control aims to
reduce the monetary cost; (3) Latency Control: The human workers can be slow, particularly compared to automated computing time
scales, so latency-control techniques are required. There has been significant work addressing these three factors for designing
crowdsourced tasks, developing crowdsourced data manipulation operators, and optimizing plans consisting of multiple operators. In
this paper, we survey and synthesize a wide spectrum of existing studies on crowdsourced data management. Based on this analysis
we then outline key factors that need to be considered to improve crowdsourced data management.

Index Terms—Crowdsourcing, Human Computation, Data Management, Quality Control, Cost Control, Latency Control
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1 INTRODUCTION

Existing algorithms cannot effectively address computer-
hard tasks such as entity resolution [118], [121], [116], [122],
sentiment analysis [139], [74], [82], and image recogni-
tion [124], [104], [129], which can benefit from the use of
human cognitive ability. Crowdsourcing is an effective way
to address such tasks by utilizing hundreds of thousands
of ordinary workers (i.e., the crowd). Furthermore, access
to crowd resources has been made easier due to public
crowdsourcing platforms, such as Amazon Mechanical Turk
(AMT) [1], CrowdFlower [2] and Upwork [3]. As a result,
crowdsourcing has become an active area of research in the
data management community.

There are many successful applications that utilize
crowdsourcing to solve computer-hard tasks. For example,
Von Ahn et al. digitized printed material by getting In-
ternet users to transcribe words from scanned texts [117].
Their method achieved accuracy exceeding 99% and has
transcribed over 440 million words. As another example,
Eiben et al. utilized a game-driven crowdsourcing method
to enhance a computationally designed enzyme [31].

Crowdsourcing can also benefit data management ap-
plications, such as data cleaning [119], [93], data integra-
tion [58], [127], [73], knowledge construction [9], [12]. Con-
sider entity resolution as an example. Suppose a user (called
the “requester”) has a set of objects and wants to find the
objects that refer to the same entity, perhaps using different
names. Although this problem has been studied for decades,
traditional algorithms are still far from perfect [118]. Alter-
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natively, s/he can harness the crowd’s ability to identify
the same entity. To this end, the requester first designs
the tasks (e.g., a task for every pair of objects that asks
workers to indicate whether the two objects refer to the
same entity). Then the requester publishes their tasks on a
crowdsourcing platform such as AMT. Crowd workers who
are willing to perform such tasks (typically for pay or some
other reward) accept the tasks, answer them and submit
the answers back to the platform. The platform collects the
answers and reports them to the requester. As the crowd has
contextual knowledge and cognitive ability, crowdsourced
entity resolution can improve the quality [118], [121], [122].
We will discuss more about how a typical crowdsourcing
platform (i.e., AMT) works in Section 2.

There are several important problems in crowdsourced
data management as shown in Figure 1.
(1) Quality Control. Crowdsourcing may yield relatively
low-quality results or even noise. For example, a malicious
worker may intentionally give wrong answers. Workers
may have different levels of expertise, and an untrained
worker may be incapable of accomplishing certain tasks.
To achieve high quality, we need to tolerate crowd errors
and infer high-quality results from noisy answers. The first
step of quality control is to characterize a worker’s quality
(called worker modeling). Then based on the quality model
of workers, there are several strategies to improve quality.
We can eliminate the low-quality workers (called worker
elimination), assign a task to multiple workers and aggre-
gate their answers (called answer aggregation), or assign
tasks to appropriate workers (called task assignment). We
discuss quality-control methods in Section 4.
(2) Cost Control. The crowd is not free, and if there are
large numbers of tasks, crowdsourcing can be expensive.
For example, in entity resolution, if there are 10, 000 objects,
there will be about 50 million pairs. Even if the price per
pair is 1 cent, it still takes lots of money. There are several
effective cost-control techniques. The first is pruning, which
first uses computer algorithms to remove some unnecessary
tasks and then utilizes the crowd to answer only the nec-
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essary tasks. The second is task selection, which prioritizes
which tasks to crowdsource. The third is answer deduction,
which crowdsources a subset of tasks and based on the an-
swers collected from the crowd, deduces the results of other
tasks. The fourth is sampling, which samples a subset of
tasks to crowdsource. There are also some specialized cost-
control techniques mainly designed to optimize for specific
operators. We review cost-control methods in Section 5.
(3) Latency Control. Crowd answers may incur excessive
latency for several reasons: for example, workers may be
distracted or unavailable, the tasks may not be appealing
to enough workers, or the tasks might be difficult for
most workers. If the requester has a time constraint it is
important to control latency. There are several strategies
for latency control. The first is pricing [44], [39]. Usually
a higher price attracts more workers and can reduce the
latency. The second is latency modeling [115], [103]. There
are mainly two latency models: the round model and the
statistical model. (a) The round model leverages the idea
that tasks can be published in multiple rounds. If there are
enough active workers on the crowdsourcing platform, the
latency of answering tasks in each round can be regarded
as constant time. Thus the overall latency is modeled as the
number of rounds. (b) The statistical model is also used to
model latency, which leverages the collected statistics from
previous crowdsourcing tasks to build statistical models
that can capture the workers’ arrival time, the completion
time, etc. These derived models can then be used to predict
and perhaps adjust for expected latency. We review latency-
control methods in Section 6.

Three additional components of crowdsourced data
management are: task design, crowdsourced operator de-
sign, and optimization. Given a task (e.g., entity resolution),
task design aims to design effective task types (e.g., devising
a YES/NO question and asking workers to select an an-
swer). Task design also needs to set the properties of tasks,
e.g., deciding the prices, setting the time constraint, and
choosing quality-control methods. We discuss task-design

issues in Section 3. In addition, a crowdsourcing system
can provide specialized operators for certain purposes. For
example, entity resolution can use a crowdsourced join to
find objects referring to the same entity. In data extraction,
we need to use crowdsourced selection to select relevant
data. In subjective comparison scenarios we need to use
crowdsourced sort to rank the results. Many operator-
specific techniques have been proposed to optimize cost,
quality, or latency in crowdsourcing environments. We dis-
cuss crowdsourced operators in Section 7.

Furthermore for complicated queries with multiple op-
erators an optimizer that chooses operators and decides
their execution order is required. We review crowdsourced
optimization techniques and crowdsourcing systems in Sec-
tion 8. We then survey some widely-used crowdsourcing
platforms in Section 9. We propose research challenges in
Section 10 and finally conclude in Section 11.

To summarize, in this paper we survey a wide spectrum
of work on crowdsourced data management. We also pro-
vide some key factors that need to be considered to improve
the crowdsourced data management.

2 BACKGROUND
In terms of granularity, tasks can be classified into macro-
tasks (e.g., translating a paper) and micro-tasks (e.g., label-
ing an image). A micro-task usually takes several seconds
to finish while a macro-task may take several hours. As the
majority of existing crowdsourced data management works
are focused on micro-tasks, we restrict the scope of this
survey to micro-tasks as well. But we indeed believe that the
studies of macro-tasks should be an important research topic
in the future (see Section 10). In a crowdsourcing platform
(e.g., AMT [1]), there are two types of users, called workers
and requesters, who will deal with tasks. Requesters publish
tasks to the platform; Workers perform tasks and returns the
results. In the following, we describe the life-cycle of a task
from the individual perspective of requesters and workers.

Suppose a requester has an entity resolution problem to
solve, which aims to find the same entity from 1000 prod-
ucts. The requester needs to first design the user interface of
a task (e.g., showing a pair of products and asking the crowd
to choose between “the same” and “different”), and then set
up some properties of the tasks, e.g., the price of a task, the
number of workers to answer a task, the time duration to
answer a task. After that, the requester publishes the tasks
to the platform, and collects the answers from the crowd.
We will discuss task design and task settings in Section 3.

From workers’ perspective, they can browse and select
the available tasks published by requesters. When accepting
a task, they have to finish the task within the time duration
specified by requesters. If a worker has accomplished a
task, the requester who publishes the task can approve or
disapprove the worker’s answers. The approved workers
will get paid from the requester.

3 TASK DESIGN
We discuss how to design task types (Section 3.1) and set up
task settings (Section 3.2).

3.1 Task Types
There are several important task types that are widely used
in real-world crowdsourcing platforms.
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Single Choice. Workers select a single answer from multiple
options. For example, in entity resolution, given a pair of ob-
jects, it asks the worker to select whether or not they refer to
the same entity (options: Yes or No). In sentiment analysis,
given a review, it asks the worker to assess the sentiment of
the review (options: Positive, Neutral, Negative).
Multiple Choice. Workers select multiple answers from
multiple options. For example, given a picture, workers
select from a list, the objects (e.g., Monkey, Tree, Banana)
that appear in the picture.
Rating. Workers rate multiple objects. For example, given
several restaurants, it asks the crowd to give the ratings of
these restaurants.
Clustering. Workers group a set of objects into several
clusters. For example, in entity resolution, given several
objects, the task is to create groups of objects that refer to
the same entity.
Labeling. Workers provide a label for an object. For exam-
ple, given a picture of an object, workers are asked to label
the object, e.g., Apple, Banana. Note that labeling is different
from other task types, as it is an “open task” and the workers
can report any label instead of selecting some given labels.

In Section 7, we show that most operators can be imple-
mented using these task types.

3.2 Task Settings
The requester also needs to determine some task settings
based on her/his requirements. There are three main factors
that the requester needs to consider.

3.2.1 Pricing
The requester needs to price each task. Usually task prices
vary from a few cents to several dollars. Note pricing is a
complex game-theoretic problem. Usually, high prices can
attract more workers, thereby reducing the latency; but
paying more does not always improve answer quality [39].

3.2.2 Timing
The requester can set time constraints for a task. For each
task, the requester can set the time bound (e.g., 60 seconds)
to answer it, and the worker must answer it within this time
bound. The requester can also set the expiration time of the
tasks, i.e., the maximum time that the tasks will be available
to workers in the platform (e.g., 24 hours).

3.2.3 Quality Control
The requester can select the quality-control techniques pro-
vided by the crowdsourcing platform, or design her/his
own quality-control methods. We will discuss quality-
control techniques in the next section.

4 QUALITY CONTROL

The results collected from the crowd are inherently dirty
and ambiguous. Existing studies propose various quality-
control techniques to address these issues. The basic idea
of these works is to first characterize worker quality using
a certain type of worker model (Section 4.1), and then
based on the worker model, adopt different quality-control
strategies such as eliminating low quality workers and
spammers (Section 4.2), assigning a task to multiple workers
and aggregating their answers (Section 4.3), or assigning
informative tasks to high-quality workers (Section 4.4).

4.1 Worker Modeling
The first step of quality control is to characterize a worker’s
quality. We next discuss how existing works model a
worker’s quality (Section 4.1.1) and compute the parameters
defined in the worker’s model (Section 4.1.2).

4.1.1 Modeling a Worker
Existing works propose different ways to model the quality
(or characteristic) of a worker. We summarize the proposed
models as follows.
Worker Probability [49], [74], [133], [22], [138], [66]. Worker
probability models each worker’s quality as a single param-
eter q ∈ [0, 1], indicating the probability that the worker
correctly answers a task, i.e.,

q = Pr( the worker’s answer = task’s true answer ).

For example, if a worker has a probability of 70% to cor-
rectly answer a task, the worker’s quality is modeled as
q = 0.7.

As q is defined as a probability (i.e., constrained in a
range of [0, 1]), some works extend it in two ways:
(1) Wider Range [17], [64], [127] extends q ∈ [0, 1] to a score
in (−∞,+∞). A higher score means a higher ability to
correctly answer a task.
(2) Confidence [62], [61] extends the model by introducing an-
other parameter for a worker: the confidence interval (e.g.,
[0.4,0.8]), which captures how confident the computed q is.
Intuitively, as a worker answers more tasks, the worker’s
derived quality q becomes more confident (i.e., confidence
interval becomes tighter, e.g., [0.75,0.8]).
Confusion Matrix [15], [58], [127], [112], [100]. Confusion
matrix is commonly used to model a worker’s capability
for single choice tasks (with ` possible answers). For exam-
ple, a sentiment analysis task asks workers to answer the
correct sentiment (Positive, Neutral or Negative) of a given
sentence, thus the task contains ` = 3 possible answers. A
confusion matrix is an `× ` matrix:

Q =


Q1,1, Q1,2, . . . , Q1,`

Q2,1, Q2,2, . . . , Q2,`

...
...

. . .
...

Q`,1, Q`,2, . . . , Q`,`

 ,
where the j-th (1 ≤ j ≤ `) row, denoted as Qj =
[ Qj,1, Qj,2, . . . , Qj,` ], represents the probability distribu-
tion of the worker’s possible answers for a task if the
true answer of the task is the j-th answer. Then Qj,k
(1 ≤ j, k ≤ `) indicates that given the fact that the true
answer of a task is the j-th answer, the probability that the
worker gives the k-th answer, i.e., Qj,k =

Pr( the worker’s answer is k | task’s true answer is j ).

For example, suppose we model a worker’s quality for

sentiment analysis tasks as Q =

[
0.6 0.2 0.2
0.3 0.6 0.1
0.1 0.1 0.8

]
. If the first

answer is Positive, the second is Neutral, and the third is
Negative, then Q3,1 = 0.1 means that if the true answer of
a task is Negative, the probability that the worker answers
the sentiment as Positive is 0.1.
Bias and Variance [87]. Bias and variance are two statistical
parameters that model a worker’s capability of doing quan-
titative tasks. A quantitative task asks some quantitative
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truth, which is commonly a real value rather than a prede-
fined choice, e.g., counting the number of birds in an image.
Bias, denoted as ε ∈ (−∞,+∞), represents the average
estimation error of a worker. For example, if a worker
usually overestimates a quantity, then ε > 0; otherwise, if
the quantity is usually underestimated by a worker, then
ε < 0. Variance, denoted as σ2 ∈ [0,+∞), represents the
variation of errors around the bias. If the true quantity of a
task is t, then the worker’s quantity (denoted as o) follows
the Gaussian distribution: o ∼ N ( t+ ε , σ2 ). Intuitively, if
worker’s answers are stable around the mean (i.e., t + ε), σ
is close to 0; otherwise, σ deviates from 0.
Diverse Skills Across Tasks [35]. A worker may have
diverse skills (or accuracies) across different tasks. For ex-
ample, a worker may have high accuracies in answering
tasks related to Books while having low accuracies in an-
swering tasks related to Fitness. Inspired by this idea, Fan
et al. [35] assume that each worker has diverse accuracies
on different tasks and models a worker’s quality ~q as:
~q = [q1, q2, . . . , qn], where n is the number of tasks. Each pa-
rameter in ~q, i.e., qi (1 ≤ i ≤ n) models the probability that
the worker correctly answers the i-th task, i.e., qi ∈ [0, 1].
Diverse Skills Across Domains [137], [136], [54], [55]. Dif-
ferent from the above model, Ho et al. [54], [55] model each
worker’s quality across different domains. Suppose there
are n = 100 translation tasks, where 20 tasks are to translate
from German to English, while the remaining 80 tasks are to
translate from French to Chinese. This example has K = 2
known task domains. Generally, a worker’s quality ~q is
modeled with K ≤ n parameters: ~q = [q1, q2, . . . , qK ],
where each parameter qi ∈ [0, 1] represents the probability
that the worker correctly answers tasks in the i-th domain.

The model in [54], [55] assumes that each task is related
to a specific domain, which is known in advance. And a
worker is modeled as K parameters with known domains.
However, for complex tasks such as document review and
text analysis, the specific domain of a given task is hard to be
predefined, and a task may be related to multiple domains.
Thus Zhao et al. [137], [136] model latent domains of tasks
and the skills of workers for these latent domains. Then,
suppose there are K ′ latent domains (K ′ is predefined), and
each task is related to one latent domain (or combinations
of several latent domains). A worker’s quality is modeled as
~q = [ q1, q2, . . . , qK′ ], where qi ≥ 0 (1 ≤ i ≤ K ′) indicates
the worker’s ability in the i-th latent domain. Unlike the
above model, here the i-th domain cannot be explicitly
explained. Then, Zhao et al. [137], [136] develop methods
to iteratively derive each task’s relevance to these K ′ latent
domains (by exploiting their extracted features) and each
worker’s ability on these K ′ latent domains (by considering
their answers to the tasks).

4.1.2 Computation of Worker Model Parameters

To derive the parameters in worker model (e.g., parameters
in Confusion Matrix), the techniques used in existing works
can be generally classified into the following categories:
Qualification Test [1]. Qualification test contains a set of
golden tasks (tasks with known true answers). The workers
must pass the qualification test (e.g., achieving a good
quality on the golden tasks) before they can answer the
real tasks. Based on worker’s answers, the quality of the

worker can be derived. For example, if a worker is modeled
as Worker Probability and the worker correctly answers 8
out of 10 golden tasks, then the quality is q = 8/10 = 0.8.
Gold-Injected Method [74], [2]. The gold-injected method
mixes golden tasks with real tasks. For example, suppose
each time a worker is assigned with 10 tasks, where 20% of
the tasks (i.e., 2 tasks) are set as golden tasks. Based on the
worker’ answers for the golden tasks, the worker’s quality
can be computed. Different from qualification test, workers
do not know that some golden tasks are injected.
EM-Based Methods [139], [58], [15], [79], [118], [100], [127],
[112], [41], [70], [104]. The EM (Expectation Maximization)
algorithm is firstly proposed in [29], which leverages all
workers’ answers for all tasks, and iteratively updates each
worker’s quality and each task’s true answer until conver-
gence. The intuition is that the workers who frequently give
trustworthy answers will be assigned with high qualities,
and an answer supported by workers with high qualities
will be selected as the true answer. General EM framework
adopts an iterative approach, where each iteration takes E-
step and M-step as follows:
E-step: it computes the distribution of latent variables using
parameters derived from the previous M-step;
M-step: it computes parameters that maximize the expected
log-likelihood function. The function is constructed using
latent variables derived from the E-step.

For example, in [58], the latent variables contain the
probability distribution of each task’s true answers, and
the parameters contain workers’ qualities and the priors1. In
the E-step, the probability of each task’s true answers are
computed based on the workers’ qualities and the priors
(computed from the previous M-step); in the M-step, the
workers’ qualities and the priors are updated based on the
probability distribution of each task’s true answers (derived
from E-step).

Some existing works [139], [58], [15], [79], [118] directly
apply the EM algorithm to derive parameters in workers’
models. Other works [100], [127], [112], [41], [70], [84] study
the variants of the EM algorithm. For example, Whitehill et
al. [127] integrate tasks’ difficulties into the EM algorithm to
iteratively compute each worker’s model.
Graph-Based Methods [64], [26], [28], [137], [136], [112],
[22]. Existing works model a worker’s quality as a node
(or combinations of several nodes) in a defined graphical
model2 and leverage graphical model inference [68] to itera-
tively derive workers’ models, where a graphical model is a
graph, containing nodes and (directed or undirected) edges
between pairs of nodes. Each node represents a random
variable, which can be unknown parameters or observed
data, and each edge represents the possible relationship
(e.g., conditional dependency) between the linked pair of
nodes. For example, Karger et al. [64] model workers and
tasks using a bipartite graph, and propose an iterative ap-
proach based on Belief Propagation [94] to derive workers’
models. Liu et al. [73] model workers and tasks using a
directed graph, and apply variational inference methods to
iteratively derive workers’ models.

1. The priors are defined as a probability distribution of all tasks’ true
answers, which are global information.

2. Note that most models [127], [112], [124] solved by EM-based
methods can also be represented as a graphical model.
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4.2 Worker Elimination
Worker elimination, which eliminates low-quality workers
or spammers based on worker models, is a very common
strategy to improve quality [99], [58], [78]. There are differ-
ent ways to detect low-quality workers or spammers.

A simple way is to use qualification test [1] or gold-
injected method [2]. For example, before a worker an-
swers real tasks, a qualification test that consists of golden
tasks should be accomplished by the worker. Based on the
worker’s answers on the golden tasks, the worker’s quality
can be computed. Then, the workers with low qualities (e.g.,
Worker Probability < 0.6) are blocked to answer real tasks.

Other than worker probability model, there are some
spammer detection methods based on more complex worker
models. For example, Raykar et al. [99] and Ipeirotis et
al. [58] study how to detect spammers if each worker is
modeled as a Confusion Matrix (an `× ` matrix). The basic
idea is that for each worker, they compute a score based
on the worker’s Confusion Matrix, and the score represents
how indicative the worker’s answer is on a task’s true
answer. The higher the worker’s score is, the more indicative
her/his answer is on a task’s true answer, and the more
reliable s/he is. Then, they block the workers whose scores
are below a predefined threshold.

In addition to detect spammers based on worker models,
Marcus et al. [78] propose a detection method that is based
on inconsistent answers given by different workers. They
first compute the deviation of a worker’s answer from the
majority of other workers’ answers. If the worker’s answer
deviates a lot from the majority of other workers’ answers,
the worker will be blocked.

4.3 Answer Aggregation
As a single worker may be biased for some tasks, most
existing works [22], [69], [74], [139], [15], [58], [138] often
employ a quality-control strategy, called answer aggregation
(or voting strategy). The basic idea is to assign each task
to multiple workers, and infer its result by aggregating
all of its answers from these workers. Specifically, voting
strategy can be seen as a function that takes two sets of
parameters as input: (1) a task’s answers; (2) the quality
of each worker who answers the task. The output is the
task’s inferred result. Typical voting strategies include, Ma-
jority Voting [22], [69], Weighted Majority Voting [72], [54],
Bayesian Voting [74], [139], [58], etc.

Majority Voting selects the result that receives the high-
est number of votes. Suppose a task is to ask workers to
identify whether or not “IBM” is equal to “BIG BLUE”. If the
answers given by three workers (with qualities 0.2, 0.6 and
0.9) are Yes, Yes, and No, respectively, Majority Voting re-
turns Yes as the result since it receives the highest number of
votes (2 Yes vs. 1 No). A similar strategy, Weighted Majority
Voting, also takes each worker’ quality into account. A high-
quality worker will be assigned with a higher voting weight.
The answer with the highest aggregated weight will be
returned as the result. For the same example, the aggregated
weights of Yes and No are respectively 0.2+0.6=0.8 and 0.9,
thus No is returned as the result. Another voting strategy,
Bayesian Voting, which not only considers each worker’s
quality but also leverages Bayes’ Theorem to compute the
probability distribution of each answer being the true an-
swer. In this example, assuming uniform priors, we have:

Pr(true answer is Yes) ∝ 0.2 · 0.6 · (1 − 0.9) = 0.012,
Pr(true answer is No) ∝ (1− 0.2) · (1− 0.6) · 0.9 = 0.288.
By normalization, the probability distribution of
each answer (Yes or No) being the true answer is
( 0.012
0.012+0.288 ,

0.288
0.012+0.288 ) = (4%, 96%), and Bayesian

voting strategy will return No as the result as it has a higher
probability to be the true answer.

According to whether or not the returned result has
some randomness, Zheng et al. [138] classify voting strate-
gies into two categories: deterministic and randomized
voting strategies (A similar classification is also proposed
in [89]). Deterministic Voting Strategy returns an answer as
the result without any degree of randomness; Randomized
Voting Strategy returns an answer as the result with some
probability. In the above example, based on the computed
probability distribution (4%, 96%), Bayesian Voting, a de-
terministic voting strategy, will deterministically return No
as the result; while the Randomized Bayesian Voting, a
randomized voting strategy, will return Yes with probability
0.04 and No with probability 0.96. As reported in [72],
randomized voting strategies may improve the error bound
for worst-case analysis.

4.4 Task Assignment
Since workers have diverse qualities on different tasks,
a better task assignment strategy may lead to a higher
quality result. Existing works studied two task assignment
scenarios: (1) worker-based, i.e., given a task, which subset
of workers should be selected to answer the task; (2) task-
based, i.e., when a worker comes, which subset of tasks
should be assigned to the worker.

4.4.1 Worker-based
In the worker-based scenario, given a task and a set of work-
ers (with known qualities), intuitively the workers with
high qualities (or having matching skills [137], [136] to the
task) should be selected. In addition to these factors, worker
cost is another key factor for the worker-based task assign-
ment [138], [22], which is the monetary cost that each worker
requires to answer a task. The cost can be indicated by
the worker, or learned from the worker’s profiles [22] (e.g.,
registration date, academic degree). Considering worker
budget, Cao et al. [22] propose the Jury Selection Problem:

Given a task, a set of workers (with known qualities and costs)
and an overall budget, how to select a subset of workers in order to
maximize the task’s quality without exceeding the overall budget?

To address this problem, Cao et al. [22] first studies how
to compute the quality of a given subset of workers (before
anyone gives an answer), called Jury Quality (or JQ). To
characterize a worker’s quality, a model such as Worker
Probability can be used, indicating the worker’s probability
of correctly answering a task. However, to capture a set
of workers’ quality, it requires to aggregate all workers’
possible answers. Thus the definition of JQ is specific to a
voting strategy:

Given a set of workers with known qualities, how to compute
the Jury Quality (or JQ), i.e., the probability of correctly returning
a result w.r.t. a voting strategy?

Note that as workers’ answers are unknown, to solve the
problem, we need to consider all possible cases of workers’
answers. For example, given three workers’ qualities, we
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aim at computing the JQ of the three workers w.r.t. the
Majority Voting strategy. As in this case the Majority Voting
strategy returns a task’s result as the answer that receives
at least 2 votes (out of all 3 votes), so in order to compute
the JQ, i.e., the probability of correctly returning a result
based on the three workers’ answers w.r.t. Majority Voting
strategy, it can be computed as the probability that at least 2
workers (out of 3) correctly answer the task, by considering
all
(3
3

)
+
(3
2

)
=4 cases.

Cao et al. [22] propose an algorithm to compute JQ
w.r.t. the Majority Voting strategy. The algorithm has a time
complexity of O(|S| · log|S|), where S is the given set of
workers. Zheng et al. [138] prove that Bayesian Voting is the
optimal strategy under the definition of JQ. That is, given
any fixed S, the JQ of S w.r.t. the Bayesian Voting strategy
is not lower than the JQ of S w.r.t. any other strategy. So
given a set of workers, its collective quality (or JQ) w.r.t.
Bayesian Voting strategy is the highest among all voting
strategies. [138] further proves that the computation of JQ
w.r.t. the Bayesian Voting strategy is NP-hard. To reduce
the computational complexity, they propose an O(|S|3)
approximation algorithm, within 1% error bound. Based on
JQ computation, both of the two works [22], [138] give the
solution to the Jury Selection Problem.

4.4.2 Task-based
In the task-based scenario, when a worker comes, existing
works [74], [18], [139], [35] study how to select the most
informative tasks and assign them to the coming worker, to
achieve high overall quality. The problem is defined as:

Given n tasks, when a worker comes, which k tasks (k is
predefined) should be assigned to the coming worker?

When a worker comes, [74], [18] compute an uncertainty
score for each task based on its collected answers, select the
k most uncertain tasks, and assign them to the worker. There
are multiple ways to define the uncertainty. Liu et al. [74] use
a quality-sensitive answering model to define each task’s
uncertainty, and Boim et al. [18] leverage an entropy-like
method to compute the uncertainty of each task.

Recently, Zheng et al. [139] find that different crowd-
sourcing applications may have different ways to define
quality. In their approach, a crowdsourcing application first
specifies a quality metric (e.g., Accuracy, F-score) that it
would like to optimize on its data. To meet the requirement,
the assignment algorithm will decide which k tasks should
be assigned according to the specified metric. Specifically,
for each combination of k tasks, it computes how much
quality will be improved if they are assigned to a coming
worker, and selects the combination that can lead to the
maximum improvement in quality. There are some other
works [35], [137], [136] that model workers to have diverse
skills among different domains, and choose the tasks from
the domains that a coming worker is good at to assign.

There are some works that study the task assignment
problem in slightly different settings. Many machine learn-
ing [64], [54], [55] and active learning techniques [130], [82],
[37], [140] aim to assign a set of tasks to workers that are
most beneficial to their trained models. Budget allocation,
which assumes that there is a fixed cost budget, aims to
optimally allocate the budget to different tasks. Intuitively,
difficult tasks should be allocated with higher budgets.
Chen et al. [24] leverage the Markov Decision Process

(MDP) [107] to address the budget allocation problem. Gao
et al. [43] propose a cost-sensitive model to decide whether
a task can be better solved by humans or machines. Mo et
al. [81] study how to set the plurality (i.e., the number of
workers to answer each task) under a fixed budget.

5 COST CONTROL

Despite the availability of crowdsourcing platforms, which
provide a much cheaper way to ask humans to do some
work, it is still quite expensive when there is a lot of work
to do. Therefore, a big challenge for crowdsourced data
management is cost control. That is, how to reduce human
cost while still keeping good result quality. In this section,
we abstract five classes of techniques from existing works.
For each class of techniques, we will show how it can be
applied to reduce human cost, and discuss its pros and cons.

5.1 Pruning
The first class of techniques is to use computer algorithms
to pre-process all the tasks, and prune the tasks that do not
need to be checked by humans. The underlying idea of this
technique is that in many situations, there are a lot of tasks
that can be easily finished by computers, thus humans only
need to do most challenging ones. This idea has been widely
applied to crowdsourced join [118], [121], [28], [122], [125],
[116] and search [129]. For example, many crowdsourced
join algorithms often utilize a computer-based technique,
called similarity join [120], to remove the record pairs whose
similarity values are smaller than a threshold.

Pros & Cons. The pruning-based technique is a very ef-
fective idea for cost control. It can save human cost by
orders of magnitude with only a little loss in quality [118].
Furthermore, it is a very general idea because most crowd-
sourced operators have already had a lot of computer-only
implementations. We can easily design a pruning strategy
based on them. However, on the other hand, this process
can be a risky step because if an improper pruning strategy
is chosen, then for the tasks that are falsely pruned by
computers, they will never be checked by humans again.

5.2 Task Selection
Task selection has been introduced in Section 4.4 as an idea
to improve quality. From another point of view, this can
also be seen as a class of techniques to reduce cost. That is,
given a quality constraint, the task selection technique can
minimize human cost to meet the quality requirement, by
selecting most beneficial tasks for humans to do. Different
crowdsourced operators need different selection strategies.
Due to its effectiveness on cost control, it is a widely studied
topic for a large variety of crowdsourced operators, such as
join [59], [125], [114], [45], [82], top-k/sort [49], [23], [95],
[33], [131], [67], categorize [91], etc. Note that these works
are complimentary to the assignment strategies introduced
in Section 4.4 because for a given crowdsourced operator, a
task selection strategy is first used to decide a set of most
beneficial tasks; once these tasks are selected and sent to a
crowdsourcing platform, a task assignment strategy is then
used to collect high-quality answers from the crowd.

Pros & Cons. The task selection technique provides a flexi-
ble way to tune the trade-off between cost and quality. One
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can easily improve quality by using the technique to select
more tasks or reduce the selected tasks to save cost. A side
effect is that it might increase latency. This is because many
task selection techniques need to iteratively query the crowd
to decide which tasks can be selected next. In this iterative
process, the crowd can only do a small number of tasks per
iteration, which ignores the fact that there is a large pool of
crowd workers available.

5.3 Answer Deduction
In some cases, the tasks generated by crowdsourced op-
erators have some inherent relationships, which can be
leveraged for cost control. Specifically, given a set of tasks,
after getting some tasks’ results from the crowd, we can use
this information to deduce some other tasks’ results, saving
the cost of asking the crowd to do these tasks. Many crowd-
sourced operators have such property, e.g., join [121], [116],
[122], [48], planning [63], [134], mining [10]. For example,
suppose a crowdsourced join operator generates three tasks:
(A,B), (B,C), and (A,C). If we have already known that
A is equal to B, and B is equal to C , then we can deduce
that A is equal to C based on transitivity, thereby avoiding
the crowd cost for checking (A,C).

Pros & Cons. The deduction technique avoids the crowd
to do a lot of redundant work. This even works when
computers have already filtered a large number of easy tasks
and left some hard tasks which only humans can finish. The
deduction technique can further reduce human cost in this
situation. However, the downside is that human errors can
be amplified compared to not using the deduction. Consider
the above example. If the crowd made a mistake in (B,C),
the error would also be propagated to (A,C).

5.4 Sampling
A sampling-based technique only uses the crowd to process
a sample of data and then utilizes the crowd’s answers
on the sample to extrapolate their answers on the full
data. This class of techniques has been shown to be very
effective in crowdsourced aggregation [78], [52], and data
cleaning [119]. For example, Wang et al. [119] propose a
sample-and-clean framework that allows the crowd to only
clean a small sample of data and uses the cleaned sample to
obtain high-quality results from the full data.

Pros & Cons. Sampling is a very powerful tool for cost
control. Decades of research on sample estimates has built
good theories that can effectively bound the statistical error
of the estimates. However, the sampling idea does not
work for all crowdsourced operators. For example, when
applying sampling to a crowdsourced max operator, the
estimated max from the sample can deviate a lot from the
true max value.

5.5 Miscellaneous
There are some specialized cost-control techniques that are
mainly designed to optimize cost for a particular operator.
For example, Marcus et al. [78] propose a count-based
user interface to reduce the number of tasks required for
crowdsourced count. The task interface is to ask the crowd
to provide an approximate count for the number of items

that satisfy a given constraint, instead of asking them to ex-
actly label whether each item satisfies the constraint or not.
Trushkowsky et al. [110] propose a pay-as-you-go approach
for crowdsourced enumeration. They estimate how much
result quality can be improved by asking the crowd to do
more tasks. If the improved quality is not satisfactory, it will
stop sending tasks to the crowd, thus saving the cost. More
details about these techniques will be covered in Section 7.

Pros & Cons. Compared to the other more general cost-
control techniques in this section, this class of techniques
makes better use of the characteristics of individual oper-
ator to optimize crowd cost. But, the limitation is that this
technique is restricted to a particular operator and does not
work for a large variety of crowdsourced operators.

5.6 Cost vs. Quality

Some cost-control techniques are used before a requester
publishes tasks, e.g., pruning and sampling; while some
techniques can be used iteratively, e.g., answer deduction
and task selection. For example, answer deduction often em-
ploys an iterative way to publish tasks, which first publishes
some tasks to a crowdsourcing platform, and then based on
the results of the tasks from the crowd, decides which of the
remaining tasks should be published in the next round. This
iterative process will continue until all the tasks are finished.

In fact, these cost-control techniques can be used to-
gether. For example, we can first use the pruning idea to
prune a lot of easy tasks. Then, for the remaining tasks,
we can utilize the task-selection idea to decide which tasks
should be selected for the crowd.

In addition, there is a tradeoff between quality and cost.
The cost-control techniques may sacrifice the quality. For
example, the answer deduction may reduce the quality if
the crowd makes some mistakes in their answers, and the
pruning can decrease the quality if some important tasks are
pruned as discussed above. Thus, when using a cost-control
technique, it is important to consider how to balance the
trade-off between quality and cost [118], [121], [23].

6 LATENCY CONTROL

To control latency, a direct way is to set tasks at a higher
price, as a higher price can attract more workers, reducing
the time of accepting and accomplishing tasks [39]. Based
on this idea, existing works [93], [44] dynamically update
the price for each task. Intuitively, as the tasks are gradually
answered, the more urgent tasks are set at a higher price
while the not-so-urgent tasks are set at a lower price.

Recently, Daniel et al. [51] systematically survey the
dominant sources of latency in a data-labeling system, and
propose three novel techniques to address the latency issue
of each source: (1) Straggler mitigation uses redundant tasks
to mitigate the impact of slow workers on latency; (2) Pool
maintenance dynamically maintains a pool of fast workers;
(3) Hybrid learning combines active and passive learning to
avoid idle workers in the pool.

In addition, there are some latency models (round model
and statistical model).
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6.1 Round Model
Sometime, tasks are processed in multiple rounds, where
in each round, a number of selected tasks are published to
the crowd, and after their answers are collected, another
set of selected tasks can be published in the next round.
Suppose there are enough active workers, Sarma et al. [103]
simplify the definition of latency by assuming that each
round spends 1 unit time, and then the latency (or the total
required time) is modeled as the number of rounds.

Some existing works [103], [115] use the round model to
do latency control. Suppose there are n tasks and each round
selects k tasks, then it requires n/k rounds in total to finish
all tasks. To improve latency, they [103], [115] can use the
answer-deduction idea in Section 5.3 to reduce the number
of published tasks, that is, tasks may have relationships
and the answers of tasks received in previous rounds can
be leveraged to decide the chosen tasks in the next round.
Thus the tasks can be saved for asking, for those whose
results can be deduced based on the answers of other tasks
collected from previous rounds. This in fact decreases the
total number of tasks to be asked (i.e., < n), and if each
round selects k tasks that cannot be deduced, the total
number of rounds is < n/k, thus reducing the latency.

6.2 Statistical Model
Some existing works [129], [39] collect statistics from real-
world crowdsourcing platforms and use such information
to model workers’ behaviors. Yan et al. [129] build statistical
models to predict the time of answering a task. They con-
sider two delays: delay for the arrival of the first response,
and the inter-arrival times between two responses. (1) The
first delay captures the interval starting from the time of
posting a task to the time of receiving the first answer. (2)
The second delay, i.e., inter-arrival time, models the interval
from receiving adjacent answers of a task. Faradani et al. [39]
use statistical models to predict worker’s arrival rate in
a crowdsourcing platform and characterize how workers
select tasks from the platform. With the assistance of the
statistical models, some works [129], [44] study latency
control by considering whether or not a task can be accom-
plished within a time constraint, and evaluating the benefit
of publishing a new task w.r.t. particular goals.

6.3 Latency vs. Quality vs. Cost
There is a trade-off between latency and cost. For exam-
ple, in order to reduce cost, some cost-control techniques
(e.g., answer detection) have to publish tasks in multiple
rounds. However, increasing the number of rounds will lead
to long latency. The similar trade-off also exists between
latency and quality. For example, to increase quality, task
assignment, a quality-control technique, assigns hard tasks
to more workers and easy tasks to fewer workers. To do so, it
needs to select tasks in multiple rounds to better understand
the tasks. Thus, a large number of rounds can improve the
quality but reduce the latency.

In order to balance the trade-off among quality, cost,
and latency, existing studies focus on different problem
settings, including optimizing the quality given a fixed
cost, minimizing the cost with a little sacrifice of quality,
reducing the latency given a fixed cost, minimizing the
cost within latency and quality constraints, optimizing the
quality without taking too much latency and cost, etc.

7 CROWDSOURCED OPERATORS

There are many crowdsourced operators proposed for im-
proving real-world applications. Various techniques are
adopted to optimize the operator’s trade-off among three
factors: cost, quality and latency. In this section, we review
how these operators can be implemented. Specifically, for
each operator, we list its task type (Section 3.1), the opti-
mization goal (cost, quality, or latency), and the techniques
used to achieve the goal. Table 1 summarizes existing stud-
ies on crowdsourced operators.

7.1 Selection
Given a set of items, crowdsourced selection selects the
items that satisfy some constraints. One example is to select
the images that have both mountains and humans. Existing
works on crowdsourced selection include three operators:
Crowdsourced Filtering [89], [88], Crowdsourced Find [103],
and Crowdsourced Search [129]. The difference is that their
targeted sizes of returned results are different:
Crowdsourced Filtering [89], [88] (or All-Selection) returns
all items that satisfy the given constraints;
Crowdsourced Find [103] (or k-Selection) returns a predeter-
mined number of (denoted as k) items that satisfy the given
constraints;
Crowdsourced Search [129] (or 1-Selection) returns only one
item that satisfies the given constraints.

For example, given 100 images, suppose there are 20 im-
ages that have both mountains and humans. Crowdsourced
Filtering selects all 20 targeted images, Crowdsourced Find
requires to select a bounded number of (say, 5) targeted
images, and Crowdsourced Search only selects one targeted
image. Next we respectively introduce how existing works
deal with these three crowdsourced operators.

7.1.1 Crowdsourced Filtering
Parameswaran et al. [89] first focus on a simplified crowd-
sourced filtering problem with only a single constraint (e.g.,
selecting the images that have mountains), and then extend
their solution to multiple constraints. The task type used
by their work is to ask the crowd whether or not an item
satisfies a given constraint (e.g., “Does the following image
contain mountains?”), and the possible answer is Yes or No.
Their target is to study the trade-off between quality and
cost. To achieve this goal, a strategy function is defined on
each task. The strategy function takes the answers collected
for each task (the number of Yes/No) as input, and outputs
one of the following decisions: (1) the item satisfies the given
constraint, (2) the item does not satisfy the given constraint,
(3) the item should be asked again. For an item, the cost
is defined as the number of workers answering its corre-
sponding task and the quality is defined as the probability
of correctly answering the item. Based on the strategy’s
definition, Parameswaran et al. [89] study how to find an
optimal strategy that satisfy cost and error constraints:

Given an error threshold τ , find an optimal strategy that
minimizes the expected cost w.r.t. the error constraint (expected
error < τ ).

To solve the problem, Parameswaran et al. propose a
brute-force algorithm for the problem, and then develop
an efficient approximate algorithm that performs well in
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TABLE 1
Crowdsourced Operators

Operators Task Type Goal Techniques

Selection

Filtering [89], [88] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Find [103] Single Choice
Quality Answer Aggregation, Task Assignment

Cost Task Selection
Latency Round Model

Search [129] Single Choice
Quality Answer Aggregation, Task Assignment

Cost Task Selection
Latency Statistical model

Collection

Enumeration [110] Labeling Quality Answer Aggregation
Cost Miscellaneous (Pay-as-you-go Approach)

Fill [93] Labeling
Quality Answer Aggregation

Cost Miscellaneous (Compensation Scheme)
Latency Pricing

Join

CrowdER [118] Single Choice & Clustering Quality Worker Elimination, Answer Aggregation
Cost Pruning, Miscellaneous (Task Design)

Transitivity [121], [116], [122] Single Choice Quality Answer Aggregation, Task Assignment
Cost Pruning, Answer Deduction

[45], [125] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Topk/Sort

Heuristics-Based [49] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Machine Learning [23], [95] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Iterative Reduce [33], [49] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Heap-Based [27] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Hybrid [131], [67] Single Choice & Rating Quality Answer Aggregation, Task Assignment
Cost Task Selection

Categorize [91] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Aggregation

Max [49], [113] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Count [78] Single Choice, Labeling Quality Worker Elimination, Answer Aggregation
Cost Sampling, Miscellaneous (Task Design)

Median [52] Single Choice Quality Answer Aggregation
Cost Sampling

Group By [27] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Skyline
[75], [76] Labeling Quality Answer Aggregation, Task Assignment

Cost Task Selection

[47] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Planning

CrowdPlanr [63], [77] Labeling Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Route Planning [134] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

CrowdPlanner [105], [106] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection

Schema Matching [133], [86], [36] Single Choice Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Mining
CrowdMiner [12], [13] Labeling Quality Answer Aggregation, Task Assignment

Cost Task Selection

OASSIS [10], [11] Labeling Quality Answer Aggregation, Task Assignment
Cost Task Selection, Answer Deduction

Spatial [109] Labeling Quality Answer Aggregation, Task Assignment
Cost Task Selection

practice. They also extend the output of a strategy to a
probability distribution (rather than a single choice), and
study how to find an optimal probabilistic strategy. In this
work [89], they make two assumptions: (1) all workers are
of equal quality to answer a given task, and (2) all items are
of equal difficulty to satisfy a given constraint. They relax
these assumptions in a follow-up paper [88].

7.1.2 Crowdsourced Find

As Crowdsourced Find cares more about how fast k qual-
ified items can be selected, Sarma et al. [103] mainly focus
on the trade-off between cost and latency. Specifically, they
define latency as the number of rounds (See Section 6.1) and
cost as the number of tasks asked. The task type used is the

same as that in Crowdsourced Filtering, i.e., to ask if an item
satisfies a given constraint. Assuming that workers always
give true answers, Sarma et al. study a sequential algorithm
that asks one task at each round, and stops if k qualified
items are observed. It is easy to see that the sequential algo-
rithm requires the least cost. Using the sequential algorithm
as a baseline, they further study how to improve its latency
without increasing the cost:

For any given problem instance J , find an algorithm T such
that (1) T correctly returns a solution and the cost is optimal (i.e.,
the cost is the same as the sequential algorithm on J ); (2) no other
algorithm has a lower latency than T that can correctly return a
solution with optimal cost.

To address the problem, Sarma et al. develop an efficient
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algorithm that selects tasks for the next round based on the
answers collected from previous rounds. By releasing the
requirement that an algorithm should have the optimal cost,
they study other problem formulations with additive and
approximation error bounds on the cost constraint.

7.1.3 Crowdsourced Search
Crowdsourced Search, which requires only one qualified
item to be returned, is specifically studied in [129]. It focuses
on a real-world application: search a target image in real
time on mobile phones. For example, given a target image
with a building, and a set of candidate images, the query is
to search an image in the candidate images that contains the
same building. Each task is to put a candidate image and
the target image together, and ask workers whether the two
images contain the same building. Workers will select Yes
or No as the answer. Each search query has a deadline, and
the objective of the query is defined as below:

Given a target image and a deadline, select at least one correct
image from a set of candidate images before the deadline while
minimizing the cost.

The above objective considers the trade-off among three
factors: cost, quality and latency. The cost is defined as the
number of answers collected. The quality is defined as the
probability of correctly selecting one image out, where a
majority-5 rule3 is used to decide the result. The latency
is predicted using a statistical model (see Section 6.2). Yan
et al. [129] consider all these three factors, and design an
efficient and effective algorithm to meet the objective.

7.2 Collection
Different from the above-mentioned selection operator
which select items from a given set of known items (closed-
world assumption), Crowdsourced Collection tries to collect
unknown items from the crowd (open-world assumption).
Typical Crowdsourced Collection operators contain Crowd-
sourced Enumeration [110] and Crowdsourced Fill [93]. The
former asks the crowd to enumerate a list of objects that
satisfy a constraint and the latter asks the crowd to fill
missing values in a table.

7.2.1 Crowdsourced Enumeration
An example of crowdsourced enumeration is to find all
states in the US, where each task with the description
“Please name one or more states in the US.” is assigned
to workers. If two workers’ answers are (Texas, Utah) and
(Utah, Arizona) respectively, then the returned result will be
(Texas, Utah, Arizona). As workers’ answers are collected,
an important problem is: When is the result set complete?,
that is, to estimate when the result size is equal to the total
number of states, which is unknown in advance. To solve
the problem, Trushkowsky et al. [110] consider a similar
problem studied in biology and statistics, called Species
Estimation problem, which counts the number of unique
species of animals on an island by putting out traps each
night, and in the next morning, the collected animals are
counted and released, and then the process is repeated

3. Each task is assiged to 5 workers at most, and Majority Voting is
used to aggregate answers, i.e., the result is returned upon getting three
consistent answers.

daily. However, directly using the estimator (which esti-
mates the total number of species in the species estimation)
may not well capture or even contradict human behavior.
One typical difference is that species estimation problem
samples animals with replacement, while in crowdsourcing,
each worker “samples” their answers without replacement
from some underlying distribution. Moreover, the under-
lying distributions of different workers may vary a lot, and
the estimator in the species estimation cannot capture the
worker skew and arrival rates. That is, if a worker (called
streaker) arrives and suddenly dominates the number of
answers, then the result size will be overestimated.

Trushkowsky et al. [110] propose a new estimator to
overcome the limitations. The estimator especially solves
the overestimation issues caused by the existence of streak-
ers. The way to find streakers is based on an observation
that streakers give many unique answers (i.e., answers not
provided by others). Trushkowsky et al. consider the effect
of streakers in developing the new estimator. Furthermore,
they propose a pay-as-you-go approach to balance the trade-
off between cost and quality (See Section 5.5).

7.2.2 Crowdsourced Fill
Crowdsourced fill [93] provides workers with a partially-
filled table and asks the workers to fill the missing values or
update the existing wrong answers in the table. To balance
the trade-off between cost, latency and quality, it targets at

Exploiting workers’ desire to earn money in order to obtain a
table with high quality, while without taking too much cost and
latency.

To achieve the goal, Park and Widom [93] develop a
system that works as follows: (1) each worker cannot only
fill the table, but also upvote or downvote the values in a
row; (2) requesters can set specific constraints in the values
of the table (e.g., collecting any football player with position
=“FW” and height≥190cm); (3) the system can support real-
time collaboration among different workers and handle con-
currency well; (4) when a table is finalized, the system will
allocate the total monetary award to all workers, and the
award to each worker is proportional to the contributions
made by the worker.

7.3 Join/Entity Resolution
Join is a very important operator in relational database
systems. There are many different types of join operators,
such as Cross join, Theta-join, and Outer join. Existing
crowdsourcing works mainly focus on Equi-join. Given a
table (or two tables), an equi-join is to find all equal record
pairs in the table (or between the two tables). Note that
when we say two records are equal, it does not only mean
that they are identical records, but also means that they
are different but refer to the same real-world entity (e.g.,
“iPhone Four” and “iPhone 4th Gen”, or two different
pictures of the same person). This problem is also known as
entity resolution (ER), which has been studied for decades,
but machine-based methods are still far from perfect. There-
fore, applying crowdsourcing to solving this problem has
recently attracted significant attention.

7.3.1 Background
In fact, incorporating humans into the ER process is not a
new idea. As early as 2002, a user interactive ER approach
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has been proposed [101]. However, what’s new for crowd-
sourced ER is that humans can not be simply modeled as
a few domain experts, who never make mistakes. Instead,
there are hundreds of thousands of ordinary workers (i.e.,
the crowd) available. They may even provide worse results
than machines (without a careful system design). In other
words, both humans and machines can make mistakes, thus
it is unclear if we can still combine them together such
that the combined one is able to achieve better performance
than human-only or machine-only alternatives. In 2012, two
research groups [118], [28] answered this question inde-
pendently by building entity-resolution systems on a real-
world crowdsourcing platform (i.e., AMT [1]). Both of their
systems validated that such goal could be achieved through
a good workflow design and quality-control mechanism.

In the following, we will review the recent work on
crowdsourced ER. A human-only solution is to ask the
crowd to check all n2 pairs of records. Even with a modest
table size (e.g., n = 100, 000), this method will be very
expensive. Hence, most existing works adopt a two-phase
framework, where in the first phase, a pruning method is
used to generate a candidate set of matching pairs using
an inexpensive machine-based technique, and in the second
phase, the crowd are leveraged to check which candidate
pairs are really matching.

7.3.2 Candidate Set Generation
For the candidate set generation phase, a similarity-based
method is often adopted [118], [121], [125], [116], [71],
[38], which computes a similarity value for each pair of
records using a similarity function and takes the pairs whose
similarity values are above a threshold as candidate pairs.
The method has many advantages when being applied in
practice. First, it only needs two input parameters (i.e., a
similarity function and a threshold), which does not require
a lot of human work for parameter tuning. Second, there
are many similarity-join algorithms [120] proposed to effi-
ciently find similar pairs that are above a threshold without
enumerating all n2 pairs.

If ER tasks become very complex, where a simple
similarity-based method cannot generate a very good can-
didate set, people tend to manually specify domain-specific
rules, called blocking rules. For example, the following
blocking rule states that if the product names match but the
color does not match, then the two products do not match:(

name match = Y
)
∧
(
color match = N

)
−→ NO.

Although the use of blocking rules can result in a more satis-
factory candidate set, the design of high-quality rules often
takes a lot of time. To overcome this limitation, Gokhale et
al. [45] propose a crowd-based rule generation approach.
Their basic idea is to think a blocking rule as a path in
a decision tree, from root to one of the leaf nodes whose
label is “NO”. Based on this idea, they first apply an active-
learning technique to learn a collection of decision trees
from the crowd, and after that, they use the crowd again
to check which paths in the decision trees (i.e., candidate
blocking rules) make sense.

7.3.3 Candidate Set Verification
In the candidate set verification phase, the goal is to decide
which pairs in the candidate set are really matching. Because

we need to pay the crowd for doing tasks, existing works
explore different perspectives to reduce crowd cost while
still keeping good result quality, e.g., task design [79], [118],
[126], leveraging transitive relations [121], [116], [48], [122],
and task selection [45], [82], [125], [114], [59].
Task Design. Task design mainly involves two problems:
user interface (UI) design and task generation.

The single-choice task type is one of the most widely
used UIs for crowdsourced ER. It contains a pair of
records and asks the crowd to choose “matching” or “non-
matching” for the pair. Even for this simple UI, there are
many different design choices [126], [79]. For example, we
may want to provide a “maybe” option that the crowd can
select when they are not sure about their answer, or we can
put multiple pairs instead of just a single pair into a task,
etc. In addition, the clustering task type has also been used
by some works to reduce the cost [79], [118].

Once a particular UI is chosen, the next important ques-
tion is how to generate tasks for the UI such that all the
candidate pairs can be checked. This is a trivial problem for
some types of UIs (e.g., single choice), but can be very tricky
for others. For example, it has been shown that the cluster-
based task generation problem, which aims to generate the
minimum number of cluster-based tasks to check a set of
candidate pairs, is NP-Hard [118].
Leveraging Transitive Relations. Leveraging transitive rela-
tions is another hot topic for candidate set verification. It is
an answer-deduction technique discussed in the previous
cost-control section. For entity resolution, there are two
types of transitive relationships: (1) if A = B and B = C ,
then A = C ; (2) if A = B and B 6= C , then A 6= C . After the
crowd labels some pairs (e.g., A = B, B 6= C), we may be
able to use the transitive relationships to deduce the labels
of some other pairs (e.g., A 6= C), thereby saving crowd
cost. However, this may not always be true. Consider the
same three record pairs. If we label them in a different order
(e.g., A 6= C and B 6= C), we cannot use transitivity to
deduce the label of (A,B), thus still requiring the crowd
to label it. Therefore, one natural question is what is the
optimal labeling order that can maximize the benefit of
using transitivity.

In an ideal case, it is optimal to first present match-
ing pairs to the crowd, and then present non-matching
pairs [121]. But, this cannot be achieved in practice because
it is unknown which pairs are matching or non-matching
upfront. Hence, a heuristic approach [121] is proposed to
approximate this ideal case, which first computes a similar-
ity value for each candidate pair and then presents the can-
didate pairs to the crowd in a decreasing order of similarity
values. This approach works very well when there exists a
good similarity function to compute the similarity values. To
handle the case that such similarity function does not exist,
some other heuristic approaches have been proposed [116],
which can provide a better worst-case performance guaran-
tee than the similarity-based one.

Although transitivity is good for reducing cost, it may
have some negative effects on quality and latency. In terms
of quality, transitivity will amplify the impact of crowd
errors on ER results. For example, suppose A = B and
B = C . If the crowd falsely label them as A = B and
B 6= C , such error will be propagated through transitivity,
resulting in an erroneous label ofA 6= C . Some ideas such as
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using correlation clustering [122] or designing new decision
functions [48] have been explored to tackle this issue. In
terms of latency, in order to leverage transitivity, we cannot
present all candidate pairs to the crowd at the same time.
Instead, it should be an iterative process, where only a single
pair or a few pairs can be presented to the crowd at each
iteration. As a result, the iterative process may take much
longer time to complete because it does not fully utilize
all available crowd workers. This is considered as a main
challenge in the use of transitivity for crowdsourced ER and
various parallel algorithms are proposed to accelerate the
process [121], [122].
Task Selection. Because the crowd is costly, sometimes it
may be infeasible to ask them to check all candidate pairs.
When there is only a limited amount of monetary budget
for crowdsourcing, a natural idea is to explore how to select
most valuable candidate pairs for the crowd to check. Exist-
ing works on this topic have different selection objectives:
query-workload driven [59], ER-result driven [125], [114],
and classifier driven [45], [82].

A query-workload driven approach assumes the exis-
tence of a query workload, and it aims to select those pairs
such that when they are checked by the crowd, it will have
the most benefit for the query workload. Inspired by the
concept of the value of perfect information (VPI), Jeffrey
et al. [59] develop a decision-theoretic framework in data-
space systems to achieve this goal.

Unlike the workload driven approach, an ER-result
driven approach has a different optimization goal. It aims
to select those pairs that are most valuable to the ER result
quality. The approach often models candidate pairs as a
probabilistic graph, where each edge in the graph represents
a candidate pair and the probability of each edge represents
the probability that the corresponding candidate pair is a
matching pair. The probabilistic graph is used to measure
the quality of the current ER results and then predicate
which pairs should be selected that can maximize the im-
provement of the quality [125], [114].

A classifier-driven approach uses the crowd to train
a classifier. Its goal is to select the candidate pairs that
are most beneficial to the training process of the classifier.
According to different characteristics of the classifiers, they
have different selection strategies. The random forest clas-
sifier selects the pairs based on the percentage of decision
trees that have contradictory classification results [45]; the
SVM classifier uses the distance of each pair to the decision
hyperplane to decide which pairs to choose [82].

7.4 Top-k and Sort
Given a set of items O = {o1, o2, · · · , on}, where the
items are comparable but hard to compare by machines,
crowdsourced top-k aims to find a k-size item set R =
{o1, o2, · · · , ok} where oi is preferred to oj (denoted by
oi � oj) for oi ∈ R and oj ∈ O − R, and crowd-
sourced sort aims to sort the items and gets a sorted list
o1 � o2 � · · · � on. Zhang et al. [135] give an experimental
survey on this problem.

7.4.1 Workflow
To utilize the crowd to find top-k items, we need to generate
crowdsourced tasks. There are two widely-used ways to

generate crowdsourced tasks. The first is single choice,
which selects two items and asks the crowd to select the
preferred one (a.k.a., pairwise comparison). The second is
rating, which selects multiple items and asks the crowd
to assign a rate to each item. The rating-based method
has some weaknesses. First, the crowd prefers pairwise
comparisons than ratings as the former is much easier.
Second, it is rather hard for the crowd to assign an accu-
rate rate, and items in different rating groups may not be
correctly compared. Thus the rating-based method usually
has a lower accuracy than pairwise comparison [67], [79].
Most of existing works use pairwise comparisons. Next we
introduce the pairwise comparison based framework.

7.4.2 Pairwise Comparisons
Pairwise comparison methods use the single-choice task
type, where each task is to compare two items. To reduce
the monetary cost, existing methods employ a task selection
strategy, where b pairs are crowdsourced in each round.
Based on the comparison answers of the crowdsourced
pairs, it decides how to select b pairs in next round. To re-
duce crowd errors, each task is assigned to multiple workers
and the final result is aggregated based on the answers of
these workers, e.g., weighted majority vote. To model the
results, a directed graph is constructed where nodes are
items and edges are aggregated comparison answers. For
each pair (oi, oj), if the aggregated result is oi � oj , there
is a directed edge from oi to oj where the weight is the
aggregated preference.

7.4.3 Result Inference
Given the answers for the generated tasks, the Result In-
ference tries to infer the query results, i.e., top-k items or a
sorted list. There are five types of methods: (1) score-based
methods, (2) iterative reduce methods, (3) machine learning
methods, (4) heap-based methods, and (5) hybrid methods.
(1) Score-Based Methods

Guo et al. [49] prove that finding the top-1 item with
the largest probability is NP-Hard by a reduction from
Kemeny rankings. Thus inferring the top-k items is also NP-
Hard and some score-based algorithms are proposed, which
assign each item oi with a score si and select the k items
with the largest scores as top-k results (or sort them based
on the scores). Next we discuss how to assign scores.
BordaCount [6]. The score of item oi is its out-degree (i.e.,
the number of wins compared with its out-neighbors).
Copeland [96]. The score of item oi is its out-degree minus
its in-degree (i.e., the number of wins minus the number of
losses).
Local [49]. The above two methods only consider the neigh-
bors of each item and cannot capture more information.
Local top-k algorithm [49] is proposed to address this
problem by considering 2-hop neighbors. Obviously if an
item has more 2-hop out-neighbors (i.e., its out-neighbors’
out-neighbors), the item will beat more items (based on
transitivity), and thus the item has a larger score. Similarly, if
an item has more 2-hop in-neighbors (i.e., its in-neighbors’
in-neighbors), the item will be beaten by more items, and
thus the item has a lower score.
Indegree [49]. It computes the score based on the Bayesian
model. It first computes the probability of oi � oj given
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the aggregated preference, and then uses the probability to
compute the score.
Modified PageRank(MPageRank) [49]. It extends the orig-
inal PageRank by considering the crowdsourced compar-
isons and computes the score of each item.
RankCentrality [85]. It uses the random walk to compute
the score of each item.
ELO [32]. It is a chess ranking system and can be used to
compute the score si. The basic idea is that, if item oi with
higher ranking beats another lower one oj , only a few scores
will be added to si; on the contrary, if oj wins, a lot of scores
will be added to sj .
Balanced Rank Estimation(BRE)/Unbalanced Rank Esti-
mation(URE) [123]. The score is computed based on the
probability theory. The balanced rank estimation (BRE) con-
siders both incoming and outgoing edges to compute the
score, which computes the relative difference of the number
of items proceeding and succeeding it. The unbalanced
rank estimation (URE) only considers the number of items
proceeding oi to compute the score of oi.
(2) Iterative Reduce Methods

The iterative-reduce methods adaptively eliminate the
low rank items that have small possibilities in the top-k
results, until k items left.
Iterative [49]. It first utilizes the score-based methods to
compute the scores of each item and then removes a half
of items with the smallest scores. Next it re-computes the
scores on the survived items and repeats the iterations until
k items left.
PathRank [33]. The main idea of PathRank is to perform
a “reverse” depth first search (DFS) for each node, which
traverses the graph by visiting the in-neighbors of each
node. If it finds a path with length larger than k, it eliminates
the item as k items have already been better than the item.
AdaptiveReduce [33]. Initially there are n items. Then it
selects an informative set and utilizes the set to eliminate
items with small possibilities in the top-k answers. It repeats
this step using the survived items until finding top-k items.
Bound-Based Methods [21]. The bound-based methods
build a stochastic matrix, and use several algorithms to
identify the top-k results based on the matrix: i) Sampling
Strategy with Copeland’s Ranking (SSCO). It selects the top-
k rows with most entries above 0.5 as the top-k results. ii)
Sampling Strategy with Sum of Expectations (SSSE). It selects
the top-k rows with the largest average value as the top-k
results. iii) Sampling Strategy based on Random Walk (SSRW).
It first computes a stochastic matrix and then derives its
principal eigenvectors (that belong to the eigenvalue 1).
Then it identifies the top-k rows with the largest eigenvalues
as the top-k answers.
(3) Machine Learning Methods

These methods assume that each item has a latent score
which follows a certain distribution. Then they utilize ma-
chine learning techniques to estimate the score. Finally, they
use the latent scores to sort the items or get top-k items.
CrowdBT with Bradley-Terry Model [20]. The Bradley-
Terry (BT) model can be used to estimate the latent
score [20]. In the BT model, the probability of oi � oj
is assumed as esi

esi+esj
. Then based on the crowdsourced

comparisons, it computes the latent scores by maximizing

∑
oi�oj∈L log( esi

esi+esj
), where L is a set of crowdsourced

comparison answers. But the BT model does not consider
the workers’ qualities. To address it, Chen et al. [23] propose
the CrowdBT model, assuming that each worker has a
quality ηw as discussed in Worker Probability (Section 4).
CrowdGauss with Gaussian Model [95]. It assumes that the
score follows the Gaussian distribution, where the score is
the mean of the distribution. The probability of oi � oj , i.e.,
P (oi � oj), can be computed by the cumulative distribution
function (Φ) of the two standard Gaussian distributions, i.e.,
P (oi � oj) = Φ(si − sj). Then CrowdGauss computes the
scores by maximizing

∑
oi�oj∈LMij · log(Φ(si−sj)). where

Mij is the number of workers reporting oi � oj .
HodgeRank [60]. In order to estimate a global order for
n items, HodgeRank [60] utilizes a matrix decomposition
based techniques to compute the score.
TrueSkill [53]. TrueSkill improves ELO by reducing the
repeated times as ELO needs to repeat many times to
convergence. Different from ELO, the score of each item oi
is represented by a Gaussian distribution N(si, δi), where si
is the estimated score for oi and δi is the deviation of si. For
each crowdsourced answer oi � oj , it updates the scores
and deviations.

(4) Heap-Based Methods
TwoStageHeap [27]. In the first phase, the items are divided
into n

X buckets (where X = xn
k2 ) such that the probability of

two top-k items appearing in the same bucket is at most x.
In each bucket, a tournament based max algorithm [27] is
conducted to select the best item in the bucket. Each pair on
top levels of the tournament is compared multiple times and
each pair on low levels of the tournament is compared only
once. The second phase utilizes a heap-based method [40] to
identify the top-k results from these best items. To tolerate
errors, when constructing and re-heapifying the heap, each
pair is compared by multiple workers and the algorithm
uses the majority voting to obtain a combined preference.
After popping an item from the heap, the algorithm asks
next pairs following the re-heapifying order.

(5) Hybrid Methods
There are two algorithms [131], [67] that combine rating

and comparison tasks. They utilize the rating and compar-
ison answers to learn the score. For rating, they pre-define
τ categories and each category χc has a range (γc−1, γc],
where γ0 < γ1 < · · · < γτ . If the score of item oi falls in
(γc−1, γc], oi is in category χc.
Combine [131]. It first selects some rating and comparison
tasks, and then infers the scores based on these results.
The score for each item oi is modeled by si + εi, where
εi ∼ N(0, δ2), which is utilized to tolerate crowd errors. For
rating, it computes the probability of oi being in the category
χc by standard Gaussian distribution. For comparison, it
constructs the comparison matrix M and computes the
probability of observing M based on the Bayesian theory.
Then it combines rating and comparison to infer the results.
Hybrid [67]. It first crowdsources all rating tasks and then
selects some candidate items with higher ratings. Next it
chooses some pairs from the candidates as comparison
tasks. The score of each item oi is modeled as a normal vari-
able N(si, δ

2). Given the rating results ER and comparison
answers EC , it assumes that these results are gotten inde-
pendently, and computes the scores based on the results.
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However, the maximum likelihood estimation is rather ex-
pensive, thus a modified PageRank approximation [67] is
proposed to estimate the score for each item.

7.4.4 Task Selection

The Task Selection decides which candidate pair of items
should be asked next. There are three types of methods: (1)
heuristic-based methods, (2) bound-based methods, and (3)
active learning methods.

(1) Heuristic-Based Methods
Guo et al. [49] prove that selecting the pairs to maximize

the probability of obtaining the top-k results given the
comparison answers of arbitrary crowdsourced pairs is NP-
Hard and propose four heuristics, which are designed for
selecting max (top-1) result. The algorithms first compute
a score si for item oi as discussed above. Suppose the
sorted items based on the scores are o1, o2, · · · , on. Then,
the algorithms select the next b pairs as follows.
Max. It selects b pairs: (o1, o2), (o1, o3), · · · , (o1, ob+1).
Group. It groups the i-th item with the (i + 1)-th item and
selects (o1, o2), (o3, o4), · · · , (o2b−1, o2b).
Greedy. It selects the pairs based on si × sj in descending
order, and selects b pairs with the largest value.
Complete. It first selects x items with the highest scores,
where x is the largest number satisfying x∗(x+1)

2 ≤ b. The
selected pairs include two parts. The first part includes all(x
2

)
pairs among these x items. The second part contains

(o1, ox+1), (o2, ox+1), · · · , (o
b− x∗(x+1)

2
, ox+1).

(2) Bound-Based Methods
SSCO and SSSE [21] estimate a bound for each pair and

utilize the bound to select next pairs. They first compute
a confidence interval [lij , uij ], where lij (uij) is the lower
(upper) bound of the probability of oi � oj . Based on the
confidence interval, they select a set S and discard a set
D. Since the relationships between pairs in S ∪D have been
effectively captured, these pairs do not need to be compared.
Thus they select pairs that are not in S ∪D. In comparison,
SSRW [21] selects the next pairs by random walk on the
stochastic matrix.

(3) Active Learning Methods
CrowdGauss [95]. The scores can be modeled by a multi-
variate Gaussian distribution N(ŝ, C), where ŝ is a 1 × n
matrix indicating the score for all the items (initialized by
random values), and C is the covariance matrix of ŝ (Cij is
the value at i-th row and j-th column). In each round of
pair selection, the expected information gain for each pair
(oi, oj) is computed, and it selects the pair with the largest
expected information gain and updates ŝ and C.
CrowdBT [23]. The above method does not consider the
worker quality. Chen et al. [23] propose an active learning
method by taking into account the worker quality. The
score of item oi is modeled by a Gaussian distribution
N(si, δi) and the quality of worker w is modeled by Worker
Probability (see Section 4).
Combine [131]. Instead of just utilizing pairwise compar-
isons, Ye et al. [131] propose an active-learning strategy by
combining rating and comparison together. Given a bud-
get, it selects some rating-based questions and comparison-
based questions to maximize the expected information gain.

7.5 Aggregation

Aggregation queries are widely used in data analysis. We
will first describe how to use the crowd to deal with various
aggregation functions, and then discuss how to support the
Group By clause.

7.5.1 Max

Crowdsourced max is a problem that finds the max item
in a dataset. The item comparison is often based on hu-
man subjectivity. For example, finding the most beautiful
picture about the Golden Gate Bridge; returning the best
Chinese restaurant in San Francisco. There are two types
of solutions to crowdsourced max: structured [113] and
unstructured [49].

The structured solution generates tasks in a predefined
structure. It is guaranteed that after tasks are finished using
the structure, the max item can be directly deduced based on
transitivity (i.e., if A is better than B, and B is better than C,
then A is better than C). Venetis et al. [113] propose two max
algorithms based on this idea: (1) The bubble max algorithm
is derived from the well-known bubble sort algorithm. It
first asks the crowd to compare (A,B). Suppose A is better
than B. Then, it asks the crowd to compare the better
one (i.e. A) with C . Similarly, after the crowd compare all
n − 1 pairs, the final item will be considered as the best
one. (2) The tournament max algorithm is a tournament-
like algorithm that is widely used in sports for choosing
the best team. It first generates n

2 pairs, i.e., (A,B), (C,D),
(E,F ), etc, and asks the crowd to compare them. Then,
it chooses the better one of each pair and generates n

4
new pairs. Iteratively, when there is only one item left, it
will be considered as the best one. It has been shown that
the tournament max algorithm performs better than the
bubble max algorithm. To further improve the performance,
Venetis et al. also develop a hill climbing based approach to
adaptively tune two parameters used in the max algorithms.

Unlike the structured solution, the unstructured solution
generates tasks in a dynamic way. It utilizes the results of
finished tasks to dynamically decide which tasks should be
generated next. Guo et al. [49] identify two main problems
(Result Inference and Task Selection) in this setting and
formalize them based on Maximum Likelihood. See the
detailed solution to these problems in Section 7.4.

7.5.2 Count

Crowdsourced count is a problem that counts the number
of items in a dataset that satisfy some given constraints. At
first glance, this is quite similar to crowdsourced filtering.
But, the difference is that the crowdsourced count does not
require returning the satisfied items but only a number, thus
there are some interesting new ideas.

The first idea is to use sampling [78]. Instead of checking
all the items in the entire dataset, this idea only checks
the items in a random sample. Sample estimation is a well
studied topic in statistics. Let |D| be the data size, |S| be
the sample size, and k be the number of the items in the
sample that satisfy the constraints. The count w.r.t the full
data can be estimated from the sample as k · |D||S| . This is an
unbiased estimate, and the error of the estimate decreases
proportional to 1√

|S|
.
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In addition to sampling, another interesting idea is a new
user interface, called count-based interface [78]. Recall that
crowdsourced filtering mainly uses a single-choice interface,
which asks the crowd to choose “Yes” or “No” for an
item, indicating whether the item satisfies the constraints.
In comparison, a count-based interface shows a small batch
of items (e.g., ten photos) to the crowd and asks them to
approximately estimate the number of items that satisfy the
constraints, e.g., counting how many of the ten photos con-
tain mountains. Interestingly, the two interfaces are suitable
for different situations. The count-based interface is more
suitable for images, but the single-choice interface performs
better for text. This might be because that humans are better
at processing batches of images than strings of text.

A slight variant of the counting problem is to count
the number of objects in a single photo (e.g., how many
persons are there in one photo?). In this problem, a new
challenge is how to split the photo into small segments such
that each segment only contains a small number of objects.
The reason for doing that is that humans are often good
at batch counting, but the batch size cannot be very large.
For example, showing a photo with hundreds of people to a
worker to count will lead to long waiting time and low-
quality answers. To address this problem, [102] explores
two scenarios. One assumes that there is no good computer
vision approach available that can help to identify the ob-
jects in the photo and a top-down algorithm is proposed to
generate image segments; the other is a bottom-up approach
which first uses a computer vision approach to identify
the objects in the photo, and merges the image segments
containing an identified object into bigger ones.

7.5.3 Median
A median operator aims to find the centroid in a set of items.
It is a key operation in various clustering algorithms (e.g.,
k-means). One simple crowdsourced implementation is to
apply a crowdsourced sort operator to the set of the items
and then return the middle item in the sorted list. Because
the median operator only needs to return the centroid, the
expensive sorting process can actually be avoided using
the crowd-median algorithm [52]. The algorithm presents
a task with three items to the crowd and asks them to
pick the item (called outlier) that is different from the other
two. If the underlying data follows a univariate normal
distribution, the centroid often has the highest probability of
being an outlier. Thus, the problem is reduced to finding the
item with the highest probability. Note that the algorithm
does not enumerate all

(n
3

)
possible tasks to compute the

probabilities, and instead it uses sampling to estimate the
probability for each item.

7.5.4 Group By
A crowdsourced group-by operator can group a set of
items based on their unknown type. It is often used with
aggregation functions (e.g., COUNT, MAX) to enable more
advanced data analysis. For example, the following group-
by aggregation query

SELECT BEST-LOOKING(photo) FROM table
GROUP BY PERSON(photo)

will find the best looking photo of each individual person.
In the database community, prior work [27] assumes that

there is an underlying ground truth for the type of each
item. For example, the ground truth of the above query is
a person’s name. Based on this assumption, they can derive
good theoretical bounds on the minimum number of tasks
that are required to ask for crowds. In the machine learning
community, there are some works that do not need to make
this assumption. Their basic idea is to treat group-by as a
clustering problem and to study how to incorporate crowd-
sourcing into existing clustering algorithms [132], [46], [52].

7.6 Categorize
Given a set of categories and a set of uncategorized (i.e.,
unlabeled) objects, the object categorization problem aims to
ask the crowd to find the most suitable category (i.e., label)
for each object [91]. Each task is a single choice question.
Given an object and a category, it asks if the object belongs
to the category.

There are three dimensions that characterize the different
instances of the category problem. Dimension 1: Single or
Multiple target categories. In the single case, each object has
a single target category; while in the multiple case, each
object has multiple target categories. Dimension 2: Bounded
or Unlimited number of tasks. In the bounded case, a budget
is given and only a number of tasks can be asked. In this
case, it aims to find the category as accurately as possible
within the budget. In the unlimited case, it aims to ask the
minimal number of questions to precisely identify the target
categories. Dimension 3: Tree (or forest, which is a set of
trees) or directed acyclic graph (DAG) . The categories are
not independent and can be organized by a tree or DAG.

Parameswaran et al. [91] give the complexities of the
category problems for all combinations. They further prove
that the problems with the DAG model are NP-hard and
the problems with the tree model can be solved in poly-
nomial time. For the DAG model, they design brute-force
algorithms to find the optimal solutions; and for the tree
model, they propose dynamic programming algorithms.

7.7 Skyline
Given a collection of items, a skyline operator aims to find
all the items in the collection that are not dominated by
others. Here, each item has n attributes, and we say an item
o1 is dominated by another item o2 if and only if o1 is not
as good as o2 for any attribute. For example, suppose we
want to find the best hotel in a city by considering three
attributes: price, distance, and rating. There might be a lot
of hotels in the city. Using a skyline operator, we can remove
those hotels that cannot be our optimal choice.

Machine-based skyline algorithms have been extensively
studied for more than a decade [19]. However, there are
still some limitations that are not easy to overcome without
human involvement. For example, when data has missing
values, it is difficult to obtain high-quality skyline results
without asking humans to fill those missing values; when
data contains some attributes that are hard to compare (e.g.,
deciding which photo looks more beautiful), we need to
ask humans to make such comparisons. These limitations
motivate two research directions for crowdsourced skyline.
Skyline on Incomplete Data. One direction is to study how
to leverage crowdsourcing to obtain high-quality skyline
answers from incomplete data. It is expensive to ask the

15



crowd to fill all missing values. In fact, some missing values
are not necessary to be filled. For example, suppose we
want to know whether an item A dominates another item
B. If we can derive from incomplete data that B has one
attribute that is better than A, then we will know that A
does not dominate B, without filling any missing value.
Existing works [75], [76] adopt a hybrid human-machine
workflow, which first uses machines to fill all missing values
in a heuristic way, and then asks the crowd to examine those
items that are most beneficial to improve the skyline quality.
Skyline with Crowdsourced Comparisons. Another idea
that incorporates crowdsourcing into the skyline compu-
tation is to use the crowd to compare those challenging
attributes. Because the crowd are very likely to make mis-
takes, the skyline algorithm has to handle noisy comparison
answers. [47] studies how many comparisons are required
to return the correct skyline with a high probability.

7.8 Planning
Crowdsourced planning query [63] aims to find an ordered
sequence of items. For example, when a tourist visits a
new city, s/he wants to travel all the scenic spots in that
city. A better plan should consider the distance between
scenic spots, and the best visiting time and duration of each
scenic spot. Different from traditional planning query which
is automatically solved by computers [83], crowdsourced
planning query is more difficult in terms of involved com-
putational complexity (e.g., finding the best plan by con-
sidering many factors) and hard-to-understand goals (e.g.,
satisfying the personalized requirement).

The crowdsourced planning query is formally de-
fined [63] as below.

Given a large set of items, the target is to choose a subset
of items, and then order the chosen items in a sequence (called
“plan”) with the best quality.

For example, considering visiting four scenic spots (For-
bidden City, Summer Palace, Great Wall, Olympic Park) in
Beijing, a good plan is 〈Great Wall, Summer Palace, Olympic
Park, Forbidden City〉. The set of all possible plans can be
modeled as a tree, and a plan is a root-to-leaf path. The
tree can be incrementally built by asking workers to do
some tasks, e.g., “given the sequence 〈Great Wall, Summer
Palace〉, what is the next scenic spot that I should visit?”.
Each edge in the tree has a score, which indicates the
confidence of the edge derived from workers’ answers. The
quality of a plan is defined as the product of the scores of
all the edges in the plan. The target of the problem is to
derive the plan with the best quality. To balance cost and
quality, Kaplan et al. [63] formally define that a plan is a
correct answer to the query if the quality of the plan is close to
(within ε) the best quality. Then, they develop an algorithm
to address the problem of which task to ask next and when
to stop asking tasks. Finally, they prove that the developed
algorithm is instance-optimal [34] w.r.t. the cost.

How crowdsourcing can assist artificial intelligence in
addressing planning query is studied in [141], [108]. A spe-
cific planning application: route planning is studied in [134],
[105], and they both focus on the cost and quality trade-off.
Given the candidate routes generated from existing route
recommendation systems, Zhang et al. [134] study how
to select tasks to reduce uncertainty in the routes. Each

route has a probability to be the best route. They use the
entropy of all the routes to characterize the uncertainty. By
carefully selecting tasks, where a task can be “Starting from
A, following which direction in (C, D, E) that I can get to
B?”, the uncertainty can be reduced and the best route is
easier to be selected. Su et al. [105] take candidate routes as
input, and select significant locations (called “landmarks”)
to distinguish different routes. An example task is “Do you
prefer the route passing landmark A at 2:00 pm?”. They
study two main problems in this setting: task generation
(how to automatically generate user-friendly tasks) and
worker selection (how to choose a set of suitable works for a
given task), to get a good trade-off between cost and quality.

7.9 Schema Matching

Schema matching aims to find the attribute mappings
between different database schemas. For example, given
two relational tables: Table Professor with attributes (Name,
Phone) and Table ProfInfo with attributes (Profname, Fax, Tel),
the target is to find a correct matching between the attributes
in the two tables. A possible matching is {(Professor.Name,
ProfInfo.Profname), (Professor.Phone, ProfInfo.Tel)}. Existing
works [98] develop automatic algorithms to generate a
set of possible matchings, by considering linguistic and
structural information. However, it is rather hard to remove
the ambiguity using machine-only approaches. Thus recent
works [133], [86], [36] leverage human insights (or crowd-
sourcing) to reduce the uncertainty in schema matching.

Given two schemas, Zhang et al. [133] propose a hy-
brid (human-machine) approach to address the schema
matching problem. Specifically, they first use machine-based
approaches to generate a set of possible matchings, where
each matching (containing a set of correspondences) has
a probability to be the correct matching. Then they define
the uncertainty in schema matching as the entropy of all
possible matchings. To reduce the uncertainty, they gener-
ate some tasks for the crowd, where each task is to ask
whether or not a given correspondence is a correct match-
ing. For example, “Is the correspondence (Professor.Name,
ProfInfo.Profname) correct?”. In order to balance cost and
quality, they develop effective task selection techniques,
with the target of reducing the most uncertainty of schema
matching with the lowest cost.

Rather than matching over two schemas, Hung et al. [86]
consider a setting where the matching is conducted in a
network of multiple schemas. To reduce the uncertainty of
the whole schema network, they first build a probabilistic
matching network, where each attribute correspondence
is associated with a probability. The built network con-
forms to some specified integrity constraints, e.g., the 1-
to-1 constraint, which regulates that each attribute of one
schema can be matched to at most one attribute of another
schema. The uncertainty of the schema network is defined
as the entropy of a set of random variables, where each one
denotes whether a given correspondence exists in the correct
matching. Then the target is to select correspondences to ask
the crowd, such that the uncertainty of the schema network
is reduced the most. They also study how to approximate a
correct matching based on workers’ answers, i.e., deciding
whether or not each correspondence is correct by consider-
ing the specified integrity constraints.
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Different from relational tables which give relatively
complete schema information, Ju et al. [36] study how to
match web tables, which are rather dirty and incomplete.
They leverage the power of knowledge bases, which can
offer concepts with wide coverage in a high accuracy. Their
approach first maps the values in each table column to
one or more concepts, and the columns (in different tables)
that represent the same concept are matched with each
other. Then, they adopt a hybrid approach: machines do
the easy work of matching pairs of columns based on the
concepts, while the crowd will discern the concepts for the
columns that are regarded as difficult by machines. Each
task presents workers with values in a column as well as a
set of candidate concepts, then workers will decide which is
the best concept for the column. In terms of task selection, a
utility function is defined over columns, considering the fac-
tors such as the columns’ difficulties, and effective solutions
are proposed next, targeting at selecting which columns to
ask so that the expected utility is maximized.

7.10 Mining
Crowd Mining tries to mine significant patterns from work-
ers’ behaviors. In this section, we first present crowd mining
formulation [12] and complexity [8]. Then we discuss two
studies on leveraging ontology to assist crowd mining [10],
[14]. Finally, a generic mining architecture is described [9].

7.10.1 Formulation and Complexity
To capture significant patterns, association rule [7] in data
mining is widely used, where an association rule, denoted
as r : A → B indicates that A implies B. An example
rule r : flu→garlic means that if having flu (a disease),
then taking garlic (a treatment). Traditional approaches in
association rule mining, however, cannot be directly applied
to crowdsourcing settings, as the traditional approaches
depend on the fact that the rules are mined from a database
with transactions (e.g., list of treatments for each disease).
But, in a crowdsourcing environment, it is hard to ask a
worker to provide extensive transactions (e.g., telling all
of her/his past treatments for each disease). To address
the issue, Amsterdamer et al. [12] point out that social
studies have shown that although people cannot recall all
treatments in their transactions, they can provide simple
summaries, e.g., they may know “When I have flu, most
of the times I will take garlic.”. So the problem is defined as

How to aggregate simple summaries from crowd workers and
find the overall significant rules?

There are two parameters defined on a rule r : A → B,
support and confidence, where the support indicates the
probability that A and B occur together, and the confidence
indicates that given A occurs the conditional probability
that B occurs. Given a rule r, its support and confidence
can be answered by workers. For example, a task asking
the support of r is “How often do you have flu and use
garlic as the treatment?” and a task asking its confidence
is “When you have the flu, how often do you take garlic?”
Furthermore, there is another task type: open task, which
asks the crowd to provide a possible rule with support and
confidence. For example, an example task is “Tell about
an illness, the way you treat it and how often they both
occur.” Amsterdamer et al. study three problems in order to

balance quality and cost: (1) the aggregation problem: how
to compute the significant rules based on workers’ answers,
(2) the assignment problem: which rule should be chosen
as the next task, and (3) the trade-off between asking open
tasks to obtain possibly new information, and asking tasks
of existing rules to improve estimation.

Following the crowd mining definition, Amarilli et al. [8]
study the complexity of frequent itemset mining. The fre-
quent itemset mining is to mine the combination of items
that are frequent enough in crowd’s behaviors. For example,
a task trying to find whether or not sport and tennis are
frequent items for a worker will ask “Do you usually play
tennis as a sport?”, and a possible answer of Yes or No
will be reported by the worker. Amarilli et al. consider two
complexities: (1) Crowd Complexity, which measures the
number of tasks that need to be asked in order to compute
all frequent itemsets; (2) Computational Complexity, which
measures the computational effort required to choose the
tasks. They theoretically study the two complexities under
the defined model.

7.10.2 Leveraging Ontology
Based on [12], a system called OASSIS is then devel-
oped [10], which targets at

Enabling requesters to pose general queries, such that the
relevant answers representing frequent patterns can be returned.

An example query to the system is “Finding popular
combinations of an activity in a child-friendly attraction
in NYC and a restaurant nearby.” OASSIS combines the
ontology (general knowledge) and the crowd (personal
knowledge) together. The ontology contains a number of
triples (called facts), and an example fact (Central Park,
inside, NYC) indicates that Central Park is inside NYC.
The crowd is asked with two task types: (1) concrete task
asks the frequency of a combination of facts from a worker,
e.g., “How often do you go biking in Central Park and
eat Falafel at Maoz Veg?” (2) specification task asks the
crowd to give more facts, e.g., “Other than biking, what
type of sport do you also do in Central Park and how often
do you do that?” OASSIS uses the ontology to reduce the
number of tasks. For example, if doing sports in Central
Park is regarded as infrequent, then it is not worth asking
the crowd the frequency of riding bicycle in Central Park.
OASSIS contains a query language called OASSIS-QL (based
on the SPARQL), and it asks requesters to formulate the
query using the provided tools.

However, OASSIS-QL is too hard for most requesters
without technical backgrounds. Based on this observation,
Amsterdamer et al. [14] further consider the problem of
how to translate the Natural Language (NL) query to a
formal, declarative OASSIS-QL query. Given an NL query,
e.g., “What are the most interesting places near the Forest
Hotel, Buffalo, we should visit in the fall?” Their approach
decomposes the NL query into two parts: the general
knowledge part, which can be matched to ontology (in the
example, it corresponds to “What places are near Forest
Hotel, Buffalo?”) and the individual knowledge part, which
can express personal knowledge (in the example, it corre-
sponds to “interesting places” and “we should visit in the
fall”). Then, it translates the general knowledge part (us-
ing existing General Query Generators) and the individual
knowledge part (using self-defined Individual Expressions
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tools) to corresponding sub-queries. Finally a combination
tool is designed to construct a formal OASSIS-QL query by
combining the two generated sub-queries.

7.10.3 A Generic Mining Architecture
A generic crowd mining architecture is described in [9],
which summarizes six important components: (1) Data
Repositories, which store external knowledge (e.g., ontology)
and the crowd’s answers; (2) Query Engine, which aims at
computing a query plan that can minimize the crowd’s
effort and machine’s execution time; (3) Crowd Task Manager,
which processes the crowd’s answers and decides the tasks
that will be assigned to coming workers; (4) Inference and
Summarization, which aggregates the crowd’s answers with
the assistance of external knowledge (e.g., ontology); (5)
Crowd Selection, which selects appropriate workers to assign
tasks; (6) NL Parser/Generator, which translates the natural
language (NL) given by a requester to a formal declarative
query (e.g., SPARQL query).

7.11 Spatial Crowdsourcing
Many crowdsourced tasks contain spatial information, e.g.,
labeling a restaurant and taking a photo in a specified loca-
tion. Spatial crowdsourcing has a significant difference from
other operators: the workers can answer most of the tasks in
other operators while workers can only answer some spatial
tasks whose locations are close to the workers. Thus most
of studies focus on how to effectively assign the tasks to
appropriate workers based on spatial proximity [65], [66],
[30], [111], [97], [109], [106], [25], [16], [134], [56], [57].

7.11.1 Spatial Crowdsourcing with Euclidean Space
In euclidean space, the locations of both spatial tasks and
workers are represented by geo-coordinates with longitudes
and latitudes. Spatial tasks can be assigned to workers
with two different modes [65]: (1) Worker Selection Model,
where the spatial crowdsourcing server (SC-server) publicly
publishes the tasks on a crowdsourcing platform, and online
workers can voluntarily choose the nearby spatial tasks; (2)
Server Assignment Model, where all online workers send
their locations to the SC-server, and the SC-server assigns
the tasks to workers.
(1) Worker Selection Model

The advantage of the worker selection task mode is its
simplicity and that it is easy to implement. Deng et al. [30]
study the maximum task scheduling problem, which aims to
recommend a longest valid sequence of tasks for a worker.
Given a worker and a set of tasks where each task has
an expiration time, a worker is asked to do a sequence of
tasks. To be specific, after finishing one task, the worker is
required to travel to the location of the next task, which may
incur some time cost. The goal is to find the longest valid
sequence for the worker that all the tasks in the sequence
are completed within the expiration time. The problem is
proved to be NP-hard, and a dynamic-programming algo-
rithm is proposed to find the exact optimal answer with
time complexity of O(2n · n2), where n is the number of
available tasks. Since the exact algorithms cannot scale to
large number of tasks, effective approximation algorithms
are proposed by greedily picking the tasks with the least
expiration time or the smallest distance.

However, this model has some limitations. First, the SC-
server does not have any control over tasks and workers,
which may result in the case that some spatial tasks will
never be assigned, while others are assigned redundantly.
Second, a single worker does not have a global knowledge
of all the tasks, and thus tasks are blindly selected without
considering the overall travel cost and task expiration time.

(2) Server Assignment Model
The server assignment model overcomes the limitations

of worker selection model, which assigns tasks to nearby
workers while optimizing overall objectives.
Maximize the Number of Assigned Tasks [65]. Kazemi
et al. [65] assume that every worker has a spatial region
and can accept at most T tasks within the region. For
each time instance t, it runs an assignment algorithm to
assign available tasks to workers under above constraints.
Given a time interval consisted of several continuous time
instances t1, t2, · · · , tn, it aims to maximize the total number
of assigned tasks during the time interval. The problem is
proved to be NP-hard. To solve the problem, it first proposes
a greedy strategy to do the maximum assignment at every
time instance by reducing the problem to the maximum
flow problem on a transformed graph. Then it improves the
performance by giving high priorities to the tasks with high
location entropy during the assignment, where a high loca-
tion entropy indicates that there are many workers around
the area of the task which can be more easily assigned.
Maximize the Number of Correctly Assigned Tasks [66].
Kazemi et al. [66] assume that (a) each task has a confidence
score; (b) each worker has a reputation score and a group
of workers have an aggregated reputation score, which can
be computed based on the reputation scores of individual
workers in the group. The problem aims to maximize the
number of tasks assigned to workers or groups, satisfying
that (a) the task is in the spatial region of the worker;
(b) for a task, the reputation score of the assigned worker
or the aggregation score of the assigned group must be
larger than the confidence score; (c) a worker can only
accept at most T tasks. The problem is proved to be NP-
hard, and a greedy algorithm is proposed by iteratively
assigning tasks to workers or groups until no more valid
assignments exist. It also proposes an incremental search
strategy which removes a single task-worker (task-group)
assignment generated by the greedy algorithm and replaces
it with assignments of more tasks. The incremental search
process is computationally expensive, and heuristics are
proposed to improve its efficiency.
Maximize Successful Rate [111]. Note that some tasks may
not be able to be successfully completed. For example, a
worker may give up a task, and the task can only be
completed successfully with a certain probability. Hassan et
al. [111] aim to maximize the successful rate under limited
budget. The problem is analogous to the well-known multi-
armed bandit problem where each worker is considered
as an arm and each assignment is equivalent to paying
an arm. The probability of being successful is the same as
the resulting reward. It extends the traditional multi-armed
bandit algorithms to the spatial assignment problem.

A drawback of the server assignment model is that
workers should report their locations to the SC-server,
which can pose privacy issues [109], [97].
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7.11.2 Spatial Crowdsourcing with Road Network
There are several works on road network. We have shown
that [106] and [134] study the route planning problem in
Section 7.8. Artikis et al. [16] utilize spatial crowdsourcing
to manage urban traffic on road network, where the crowd-
sourcing component is used to supplement the data sources
by querying human volunteers. If two sensors disagree on
a traffic situation, e.g., the same bus within a small time
period reports two different congestion degrees, they will
search workers close to the location with disagreements, and
ask them about the real traffic situation.

8 CROWDSOURCED OPTIMIZATION AND SYSTEMS
There are several crowdsourcing systems that integrate
crowdsourcing into relational database management sys-
tems (RDBMS) and enable RDBMS to process computer-
hard queries. The basic workflow of query processing con-
sists of query parser, query plan generation, optimization,
and execution. Given a query, a parser is first applied
and multiple plans can be generated. Then the query op-
timization selects the best query plan, and finally, the plan
is executed with both machines and the crowd. Existing
crowdsourcing database systems focus on query model,
query operators, and query optimization techniques. Next
we discuss different existing crowdsourced systems.

8.1 CrowdDB
CrowdDB [42] extends SQL and defines a new query lan-
guage, called CrowdSQL, that is used to define which
table or attribute should be crowdsourced. In query pro-
cessing, CrowdDB introduces three crowd operators. (1)
CrowdProbe: collect missing information of attributes or
new tuples from the crowd. The typical user interface of
CrowdProbe is a form with several fields for collecting
information from the crowd. (2) CrowdJoin: implement an
index nested-loop join over two tables, where at least one
of which is crowdsourced. In particular, the inner relation
must be a Crowd table and the user interface is used to
crowdsource new tuples of inner relation which can be
joined with the tuples in outer relation. (3) CrowdCom-
pare: This operator is designed to implement two functions,
Crowd-Equal and Crowd-Order, defined in the CrowdDB’s
query model. The interface of the operator crowdsources
two tuples and leverages the crowd to compare these tuples.
Crowd-Equal compares two values and asks the crowd to
decide whether they have the same value. Crowd-Order
asks the crowd to give an order according to a predefined
attribute. CrowdDB also proposes rule-based optimization
techniques for processing queries with multiple operators.

8.2 Qurk
Qurk [80] uses a SQL-based query language with user-
defined functions (UDFs) to enable crowdsourced data man-
agement. To facilitate users to implement the UDFs, Qurk
has several pre-defined task templates that can generate the
UIs for posting different kinds of tasks to the crowd. Typical
crowdsourcing tasks include: 1) Filter: produce tuples that
satisfy the conditions specified in the UDF. 2) Sort: rank
the input tuples according to the UDFs specified in the
order-by clause. 3) Join: compare input tuples and perform
join according to the UDF. 4) Generative: allow workers to
generate data for multiple fields.

In query processing, Qurk focuses on implementing join
and sort. (1) CrowdJoin: Similar to CrowdDB, Qurk also
implements a block nested loop join and crowdsources
the tuples from two tables for evaluating if they satisfy
join conditions. In particular, Qurk studies the techniques
for batching multiple comparisons to reduce the cost. (2)
CrowdSort: Qurk implements two basic approaches to exe-
cute sort. The comparison-based approach solicits the crowd
to directly specify the ordering of items. This approach
may be expensive for large datasets due to the quadratic
comparison. Another task type, rating, is used to reduce the
cost using a well-defined interface (see Section 7.4).

Qurk has two important components for cost optimiza-
tion: task cache and task model. Task cache maintains the
crowdsourced answers from previous tasks, and task model
trains a model to predict the results for the tasks based on
the data that are already collected from the crowd. So if
one task can get necessary information from task cache or
task model, it will not be published to the crowdsourcing
platform. Once the task cannot get useful information from
task cache and task model, it will be pushed to the task
complier. The complier generates and publishes the tasks to
the crowdsourcing platform. Statistic manager determines
the number of tasks, assignment and the cost for each task.

8.3 Deco
Deco [90] separates the user view and system view. The
logical relations are specified by a schema designer and
queried by an end-user. Raw schema is stored in the RDBMS
and it is invisible to the schema designer and users. Deco
focuses on crowdsourcing missing values or new tuples
based on the defined fetch rules. Deco designs fetch rules
that allow the schema designers to specify how data are
collected from the crowd. Given a fetch rule: get the value of
attribute A2 given the value of attribute A1, Deco presents
the values of attributes in A1 and asks the crowd to give
the values of attributes in A2. For instance, given “China→
Capital”, Deco collects the capital of China from the crowd.
In particular, if A1 is empty, the system fetchs new values of
attributes in A2. As inconsistency may exist in the collected
data, Deco can also specify resolution rules such as de-
duplication and majority voting to resolve inconsistencies
in the collected data. Deco also supports other operators,
such as Dependent Left Outer Join, Filter and Scan.

Based on the defined operators, given a complicated
query, a fundamental query optimization problem is [92]

How to find the best query plan to the query, which has the
least estimated monetary cost across all possible query plans.

To solve the problem, [92] first defines the monetary cost.
Considering the fact that the existing data in the database
can be leveraged, the cost is formally defined as the new
data that needs to be obtained from the crowd. In order
to find the best query plan with the minimum cost, there
are two problems addressed in [92]. (1) Cost Estimation:
how to estimate the cost of a query plan. As a query plan
is executed, the database may collect new data from the
crowd, which may affect the cost estimation of subsequent
processes. By considering this effect, [92] proposes an it-
erative approach to estimate the cost for a query plan.
(2) Optimal query plan generation. Simply enumerating all
possible query plans is computationally expensive, and [92]
considers to reuse the common sub-plans in order to reduce
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the redundant computation. Then the best query plan, i.e.,
with least estimated cost, can be returned.

9 CROWDSOURCING PLATFORMS
We introduce crowdsourcing platforms that can be used to
evaluate crowdsourced data management techniques.

9.1 Amazon Mechanical Turk (AMT)
AMT [1] is a widely used crowdsourcing platform. AMT
focuses on micro-tasks, e.g., labeling an image. A requester
can group multiple micro-tasks as a Human Intelligence
Task (called HIT). The requester can also set some require-
ments, e.g., the price of a HIT, the time constraint for
answering a HIT, the expiration time for a job to be available
on AMT, and the qualification test.

A requester can build HITs from several different ways.
(1) The requester user interface. AMT provides many tem-
plates, such as categorization, data collection, sentiment
analysis and image tagging. After designing the worker
interface, requesters need to upload the task files. The user
interface is very easy to use, even for untrained requesters.
(2) AMT Command Line Tools (CLT). AMT predefines a set
of commands in CLT, such as loadHITs, getResults, grant-
Bonus, blockWorker and so on. Requesters can utilize CLT
to easily build HITs by specifying three files: the data file,
the task file to specify user interface for the tasks, and the
property file to add the title, description, keywords, reward
and assignments for the HIT. The CLT is suitable when a
requester has a relatively small number of assignments. (3)
AMT APIs. There are many APIs in AMT, including the cre-
ation of HITs, block/unblock the workers, collection of the
finished answers and statistics collection for the requester
and workers. There are three steps to use the APIs to publish
tasks: (i) download the SDK for a specified language, e.g.,
python and java; (ii) specify the title, description, reward,
the content of tasks and the detailed properties for the HIT;
(iii) publish the HITs to the platform. (4) Requesters can
build their own server to manage the tasks and embed their
tasks into AMT using innerHTML. When a worker requires
a task, AMT transforms the requirement to the requester’s
server and then the requester can decide how to assign tasks
to the server. When a worker submits an answer to AMT,
AMT also transforms the result to the requester.

A worker can browse HITs on AMT. Each HIT has
some information, e.g., the description of the task, the price,
the keywords, the qualification test if required, and the
requester’s id. After a worker submits the answers of HITs
to the platform, s/he can find the total earnings and the
status of the submitted HITs on the platform.

9.2 CrowdFlower
CrowdFlower [2] has similar functionalities with AMT, but
they still have some differences. First, CrowdFlower has
a quality-control component, and it leverages the Gold-
Injected method (Section 4) to block low-quality workers.
Second, besides publishing the tasks on its own platform,
CrowdFlower also publish the tasks on other platforms.

9.3 Other Platforms
There are other crowdsourcing platforms. ChinaCrowd [4]
is a multilingual crowdsourcing platform, which supports
Chinese and English. Upwork [3] can support macro-tasks,
e.g., developing a mobile application. gMission [25] is a
spatial crowdsourcing platform that supports spatial tasks.

10 RESEARCH CHALLENGES

In this section, we discuss some research challenges and
opportunities in crowdsourced data management.
Query Plan. Because SQL is a declarative query language,
a single query often corresponds to multiple query plans; it
relies on a query optimizer to select the best plan. Tradition-
ally, the way a query optimizer works is to estimate the com-
putation cost of each query plan and choose the one with the
minimum estimated cost. However, this process turns to be
quite challenging in a crowdsourcing environment because
(1) there are three optimization objectives (result quality,
monetary cost, and latency) that need to be considered and
(2) humans are much more unpredictable than machines.
Benchmark. A large variety of TPC benchmarks (e.g., TPC-
H for analytic workloads, TPC-DI for data integration) stan-
dardize performance comparisons for database systems and
promote the development of database research. Although
there are some open datasets (http://dbgroup.cs.tsinghua.
edu.cn/ligl/crowddata), there is still lack of standardized
benchmarks available. In order to better explore the research
topic, it is important to study how to develop evalua-
tion methodologies and benchmarks for crowdsourced data
management systems.
Big Data. In the big data era, data volumes are increasing
very fast. Compared to machines, humans are a lot more
expensive, thus it would be increasingly more costly to
apply crowdsourcing to emerging big data scenarios. There
are some existing works that aim to address this problem,
but they only work for some certain data processing tasks,
such as data cleaning [119], data labeling [82]. Therefore,
it is important to continue this study and to develop new
techniques that work for all kinds of data processing tasks.
Macro-Tasks. Most of existing studies focus on micro-tasks,
which can be easily assigned to workers and instantly an-
swered by workers. However many real applications need
to use macro-tasks, such as writing a paper. Macro-tasks
are hard to be split and accomplished by multiple workers,
because they will loose the context information if they are
split [50]. Workers are not interested in answering a whole
macro-task as each macro-task will take a long time. Thus it
is rather challenging to support macro-tasks, including au-
tomatically splitting a macro-task, assigning tasks to crowd
or machines, and automatically aggregating the answers.
Privacy. There are several types of privacy issues in crowd-
sourcing. First, the requester wants to protect the privacy of
their tasks [128]. The tasks may contain sensitive attributes
and could cause privacy leakage. Malicious workers could
link them with other public datasets to reveal individual
private information. Although the requester can publish
anonymity data to the workers using existing privacy tech-
niques, e.g., K-Anonymity, it may lower down the quality
as the workers cannot get the precise data. Thus it is chal-
lenging to trade-off the accuracy and privacy for requesters.
Second, the workers have privacy-preserving requirement.
Personal information of workers can be inferred from the
answers provided by the workers, such as their location,
profession, hobby. On the other hand, the requester wants
to assign their tasks to appropriate workers that are skilled
at their tasks (or close to the tasks). And it is challenging to
devise privacy-preserving task assignment techniques.
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Mobile Crowdsourcing. With the growing popularity of
smartphones, there are emerging more and more mobile
crowdsourcing platforms, e.g., gMission [25], Waze [5],
ChinaCrowd [4]. These mobile platforms pose many new
challenges for crowdsourced data management. First, many
more factors (e.g., spatial distance, mobile user interface)
will affect workers’ latency and quality. It is more challeng-
ing to control quality, latency and cost for mobile platforms.
Second, traditional crowdsourcing platforms adopt worker
selection model to assign tasks; however mobile crowd-
sourcing requires to support server assignment model (see
Section 7.11). It calls for new task assignment techniques.

11 CONCLUSION
In this paper, we review extensive studies on crowdsourced
data management. Most of existing algorithms focus on
balancing quality, cost, and latency, and we summarize all of
existing techniques to address these challenges. For quality
control, we review the worker modeling, worker elimina-
tion, answer aggregation, and task assignment techniques;
for cost control, we discuss the pruning, task selection,
answer deduction, sampling, and miscellaneous techniques;
for latency, we discuss the pricing, latency models including
round model and statistical model. Next, we discuss the task
types that are widely used to support various applications
in crowdsourcing platforms, and review the techniques to
support various crowdsourced operators. We also review
existing crowdsourced data management systems and op-
timization techniques. Finally, we discuss crowdsourcing
platforms and provide the challenges to improve crowd-
sourced data management.
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Zürich.

[49] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who
won?: dynamic max discovery with the crowd. In SIGMOD,
pages 385–396, 2012.

[50] D. Haas, J. Ansel, L. Gu, and A. Marcus. Argonaut: Macrotask
crowdsourcing for complex data processing. PVLDB, 8(12):1642–
1653, 2015.

[51] D. Haas, J. Wang, E. Wu, and M. J. Franklin. Clamshell: Speeding
up crowds for low-latency data labeling. PVLDB, 9(4):372–383,
2015.

[52] H. Heikinheimo and A. Ukkonen. The crowd-median algorithm.
In HCOMP, 2013.

[53] R. Herbrich, T. Minka, and T. Graepel. Trueskill: A bayesian skill
rating system. In NIPS, pages 569–576, 2006.

[54] C.-J. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment
for crowdsourced classification. In ICML, pages 534–542, 2013.

[55] C.-J. Ho and J. W. Vaughan. Online task assignment in crowd-
sourcing markets. In AAAI, 2012.

[56] H. Hu, G. Li, Z. Bao, and J. Feng. Crowdsourcing-based real-time
urban traffic speed estimation: From speed to trend. In ICDE,
2016.

[57] H. Hu, Y. Zheng, Z. Bao, G. Li, and J. Feng. Crowdsourced poi
labelling: Location-aware result inference and task assignment.
In ICDE, 2016.

[58] P. Ipeirotis, F. Provost, and J. Wang. Quality management on
amazon mechanical turk. In SIGKDD Workshop, pages 64–67,
2010.

[59] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go
user feedback for dataspace systems. In SIGMOD, pages 847–
860, 2008.

[60] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical ranking and
combinatorial hodge theory. Math. Program., pages 203–244, 2011.

[61] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Eval-
uating the crowd with confidence. In SIGKDD, pages 686–694,
2013.

[62] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Com-
prehensive and reliable crowd assessment algorithms. In ICDE,
pages 195–206, 2015.

[63] H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov. Answering
planning queries with the crowd. PVLDB, 6(9):697–708, 2013.

[64] D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable
crowdsourcing systems. In NIPS, pages 1953–1961, 2011.

[65] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering
with spatial crowdsourcing. In SIGSPATIAL, pages 189–198.
ACM, 2012.

[66] L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd: trustworthy
query answering with spatial crowdsourcing. In SIGSPATIAL,
pages 304–313, 2013.

[67] A. R. Khan and H. Garcia-Molina. Hybrid strategies for finding
the max with the crowd. Technical report, 2014.

[68] D. Koller and N. Friedman. Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

[69] L. I. Kuncheva, C. J. Whitaker, and C. A. Shipp. Limits on the
majority vote accuracy in classifier fusion. Pattern Anal. Appl.,
6(1):22–31, 2003.

[70] A. Kurve, D. J. Miller, and G. Kesidis. Multicategory crowd-
sourcing accounting for variable task difficulty, worker skill, and
worker intention. TKDE, 27(3):794–809, 2015.

[71] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-
based method for similarity joins. PVLDB, 5(3):253–264, 2011.

[72] N. Littlestone and M. K. Warmuth. The weighted majority
algorithm. Information and computation, 108(2):212–261, 1994.

[73] Q. Liu, J. Peng, and A. T. Ihler. Variational inference for crowd-
sourcing. In NIPS, pages 701–709, 2012.

[74] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: A
crowdsourcing data analytics system. PVLDB, 5(10):1040–1051,
2012.

[75] C. Lofi, K. E. Maarry, and W. Balke. Skyline queries in crowd-
enabled databases. In EDBT, pages 465–476, 2013.

[76] C. Lofi, K. E. Maarry, and W. Balke. Skyline queries over
incomplete data - error models for focused crowd-sourcing. In
ER, pages 298–312, 2013.

[77] I. Lotosh, T. Milo, and S. Novgorodov. Crowdplanr: Planning
made easy with crowd. In ICDE, pages 1344–1347. IEEE, 2013.

[78] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. PVLDB, 6(2):109–120, 2012.

[79] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[80] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages 211–
214, 2011.

[81] L. Mo, R. Cheng, B. Kao, X. S. Yang, C. Ren, S. Lei, D. W. Cheung,
and E. Lo. Optimizing plurality for human intelligence tasks. In
CIKM, 2013.

[82] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden.
Scaling up crowd-sourcing to very large datasets: a case for active
learning. PVLDB, 8(2):125–136, 2014.

[83] D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory
& Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[84] R. Neal and G. E. Hinton. A view of the em algorithm that
justifies incremental, sparse, and other variants. In Learning in
Graphical Models, pages 355–368. Kluwer Academic Publishers,
1998.

[85] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-
wise comparisons. In NIPS, pages 2483–2491, 2012.

[86] Q. V. H. Nguyen, T. T. Nguyen, Z. Miklós, K. Aberer, A. Gal, and
M. Weidlich. Pay-as-you-go reconciliation in schema matching
networks. In ICDE, pages 220–231. IEEE, 2014.

[87] W. R. Ouyang, L. M. Kaplan, P. Martin, A. Toniolo, M. B. Sri-
vastava, and T. J. Norman. Debiasing crowdsourced quantitative
characteristics in local businesses and services. In IPSN, pages
190–201, 2015.

[88] A. G. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom. Optimal crowd-powered rating and
filtering algorithms. PVLDB, 7(9):685–696, 2014.

[89] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering
data with humans. In SIGMOD, pages 361–372, 2012.

[90] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: declarative crowdsourcing. In CIKM, pages
1203–1212. ACM, 2012.

[91] A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzo-
tis, and J. Widom. Human-assisted graph search: it’s okay to ask
questions. PVLDB, 4(5):267–278, 2011.

[92] H. Park and J. Widom. Query optimization over crowdsourced
data. PVLDB, 6(10):781–792, 2013.

[93] H. Park and J. Widom. Crowdfill: collecting structured data from
the crowd. In SIGMOD, pages 577–588, 2014.

[94] J. Pearl. Reverend bayes on inference engines: A distributed
hierarchical approach. In AAAI, pages 133–136, 1982.

[95] T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand. Adaptive
polling for information aggregation. In AAAI, 2012.

[96] J.-C. Pomerol and S. Barba-Romero. Multicriterion decision in
management: principles and practice, volume 25. Springer, 2000.

[97] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka. Spatial
task assignment for crowd sensing with cloaked locations. In
MDM, volume 1, pages 73–82. IEEE, 2014.

[98] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDBJ, 10(4):334–350, 2001.

22



[99] V. C. Raykar and S. Yu. Eliminating spammers and ranking
annotators for crowdsourced labeling tasks. Journal of Machine
Learning Research, 13:491–518, 2012.

[100] V. C. Raykar, S. Yu, L. H. Zhao, A. K. Jerebko, C. Florin, G. H.
Valadez, L. Bogoni, and L. Moy. Supervised learning from
multiple experts: whom to trust when everyone lies a bit. In
ICML, pages 889–896, 2009.

[101] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. In SIGKDD, pages 269–278, 2002.

[102] A. D. Sarma, A. Jain, A. Nandi, A. Parameswaran, and J. Widom.
Jellybean: Crowd-powered image counting algorithms. Technical
report, Stanford University.

[103] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and A. Y.
Halevy. Crowd-powered find algorithms. In ICDE, pages 964–
975, 2014.

[104] P. Smyth, U. M. Fayyad, M. C. Burl, P. Perona, and P. Baldi.
Inferring ground truth from subjective labelling of venus images.
In NIPS, pages 1085–1092, 1994.

[105] H. Su, K. Zheng, J. Huang, H. Jeung, L. Chen, and X. Zhou.
Crowdplanner: A crowd-based route recommendation system.
In ICDE, pages 1144–1155. IEEE, 2014.

[106] H. Su, K. Zheng, J. Huang, T. Liu, H. Wang, and X. Zhou. A
crowd-based route recommendation system-crowdplanner. In
ICDE, pages 1178–1181, 2014.

[107] R. S. Sutton and A. G. Barto. Reinforcement learning: An in-
troduction. IEEE Transactions on Neural Networks, 9(5):1054–1054,
1998.

[108] K. Talamadupula, S. Kambhampati, Y. Hu, T. A. Nguyen, and
H. H. Zhuo. Herding the crowd: Automated planning for
crowdsourced planning. In HCOMP, 2013.

[109] H. To, G. Ghinita, and C. Shahabi. A framework for protect-
ing worker location privacy in spatial crowdsourcing. PVLDB,
7(10):919–930, 2014.

[110] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowd-
sourced enumeration queries. In ICDE, pages 673–684, 2013.

[111] U. ul Hassan and E. Curry. A multi-armed bandit approach to
online spatial task assignment. In UIC, 2014.

[112] M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi.
Community-based bayesian aggregation models for crowdsourc-
ing. In WWW, pages 155–164, 2014.

[113] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max
algorithms in crowdsourcing environments. In WWW, pages 989–
998, 2012.

[114] V. Verroios and H. Garcia-Molina. Entity resolution with crowd
errors. In ICDE, pages 219–230, 2015.

[115] V. Verroios, P. Lofgren, and H. Garcia-Molina. tdp: An optimal-
latency budget allocation strategy for crowdsourced MAXIMUM
operations. In SIGMOD, pages 1047–1062, 2015.

[116] N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing
algorithms for entity resolution. PVLDB, 7(12):1071–1082, 2014.

[117] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum.
recaptcha: Human-based character recognition via web security
measures. Science, 321(5895):1465–1468, 2008.

[118] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:
crowdsourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.

[119] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate
query processing on dirty data. In SIGMOD, pages 469–480, 2014.

[120] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In SIGMOD,
pages 85–96, 2012.

[121] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In SIGMOD, 2013.

[122] S. Wang, X. Xiao, and C. Lee. Crowd-based deduplication: An
adaptive approach. In SIGMOD, pages 1263–1277, 2015.

[123] F. L. Wauthier, M. I. Jordan, and N. Jojic. Efficient ranking from
pairwise comparisons. In ICML, pages 109–117, 2013.

[124] P. Welinder and P. Perona. Online crowdsourcing: rating an-
notators and obtaining cost-effective labels. In CVPR Workshop
(ACVHL), pages 25–32. IEEE, 2010.

[125] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selec-
tion for crowd entity resolution. PVLDB, 6(6):349–360, 2013.

[126] S. E. Whang, J. McAuley, and H. Garcia-Molina. Compare me
maybe: Crowd entity resolution interfaces. Technical report,
Stanford University.

[127] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan.
Whose vote should count more: Optimal integration of labels
from labelers of unknown expertise. In NIPS, pages 2035–2043,
2009.

[128] S. Wu, X. Wang, S. Wang, Z. Zhang, and A. K. H. Tung. K-
anonymity for crowdsourcing database. TKDE, 26(9):2207–2221,
2014.

[129] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting
crowds for accurate real-time image search on mobile phones.
In MobiSys, pages 77–90, 2010.

[130] Y. Yan, G. M. Fung, R. Rosales, and J. G. Dy. Active learning from
crowds. In ICML, pages 1161–1168, 2011.

[131] P. Ye, U. EDU, and D. Doermann. Combining preference and ab-
solute judgements in a crowd-sourced setting. In ICML Workshop,
2013.

[132] J. Yi, R. Jin, A. K. Jain, S. Jain, and T. Yang. Semi-crowdsourced
clustering: Generalizing crowd labeling by robust distance metric
learning. In NIPS, pages 1781–1789, 2012.

[133] C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao. Reducing
uncertainty of schema matching via crowdsourcing. PVLDB,
6(9):757–768, 2013.

[134] C. J. Zhang, Y. Tong, and L. Chen. Where to: Crowd-aided path
selection. PVLDB, 7(14):2005–2016, 2014.

[135] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms: An
experimental evaluation. PVLDB, 9(4), 2015.

[136] Z. Zhao, F. Wei, M. Zhou, W. Chen, and W. Ng. Crowd-selection
query processing in crowdsourcing databases: A task-driven
approach. In EDBT, pages 397–408, 2015.

[137] Z. Zhao, D. Yan, W. Ng, and S. Gao. A transfer learning based
framework of crowd-selection on twitter. In SIGKDD, pages
1514–1517, 2013.

[138] Y. Zheng, R. Cheng, S. Maniu, and L. Mo. On optimality of jury
selection in crowdsourcing. In EDBT, pages 193–204, 2015.

[139] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A
quality-aware task assignment system for crowdsourcing appli-
cations. In SIGMOD, pages 1031–1046, 2015.

[140] J. Zhong, K. Tang, and Z. Zhou. Active learning from crowds
with unsure option. In IJCAI, pages 1061–1068, 2015.

[141] H. H. Zhuo. Crowdsourced action-model acquisition for plan-
ning. In AAAI, 2015.

Guoliang Li is currently working as an asso-
ciate professor in the Department of Computer
Science, Tsinghua University, Beijing, China.
He received his PhD degree in Computer Sci-
ence from Tsinghua University, Beijing, China in
2009. His research interests mainly include data
cleaning and integration, spatial databases and
crowdsourcing.

Jiannan Wang is a tenure-track assistant pro-
fessor in the School of Computing Science, Si-
mon Fraser University, Burnaby, Canada. He
was a Postdoctoral Associate in the AMPLab
at UC Berkeley during 2013-2015. He received
his PhD degree in Computer Science from Ts-
inghua University, Beijing, China in 2013. His
research interests mainly include data cleaning
and crowdsourcing.

Yudian Zheng received his B.E. degree in Soft-
ware Institute from Nanjing University in 2013.
He is currently a PhD student at the Department
of Computer Science in The University of Hong
Kong. His main research interests include data
analysis and data management in crowdsourc-
ing.

Michael J. Franklin received his PhD degree
in computer science from the University of
Wisconsin-Madison in 1993. He is the Thomas
M. Siebel professor of computer science at UC
Berkeley, where he also serves as a director of
the Algorithms, Machines and People Lab (AMP
Lab). His research interests include large-scale
data management and analytics, data integra-
tion, and hybrid human/computer data process-
ing systems. He was a cofounder and CTO of
Truviso, a real-time data analytics company ac-

quired by Cisco Systems in 2012. He is a fellow of the ACM and two-time
winner of the ACM SIGMOD Test of Time Award (2013 and 2004).

23


	Introduction
	Background
	Task Design
	Task Types
	Task Settings
	Pricing
	Timing
	Quality Control


	Quality Control
	Worker Modeling
	Modeling a Worker
	Computation of Worker Model Parameters

	Worker Elimination
	Answer Aggregation
	Task Assignment
	Worker-based
	Task-based


	Cost Control
	Pruning
	Task Selection
	Answer Deduction
	Sampling
	Miscellaneous
	Cost vs. Quality

	Latency Control
	Round Model
	Statistical Model
	Latency vs. Quality vs. Cost

	Crowdsourced Operators
	Selection
	Crowdsourced Filtering
	Crowdsourced Find
	Crowdsourced Search

	Collection
	Crowdsourced Enumeration
	Crowdsourced Fill

	Join/Entity Resolution
	Background
	Candidate Set Generation
	Candidate Set Verification

	Top-k and Sort
	Workflow
	Pairwise Comparisons
	Result Inference
	Task Selection

	Aggregation
	Max
	Count
	Median
	Group By

	Categorize
	Skyline
	Planning
	Schema Matching
	Mining
	Formulation and Complexity
	Leveraging Ontology
	A Generic Mining Architecture

	Spatial Crowdsourcing
	Spatial Crowdsourcing with Euclidean Space
	Spatial Crowdsourcing with Road Network


	Crowdsourced Optimization and Systems
	CrowdDB
	Qurk
	Deco

	Crowdsourcing Platforms
	Amazon Mechanical Turk (AMT)
	CrowdFlower
	Other Platforms

	Research Challenges
	Conclusion
	References
	Biographies
	Guoliang Li
	Jiannan Wang
	Yudian Zheng
	Michael J. Franklin


