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Signature-Based Trajectory Similarity Join
Na Ta Guoliang Li Yongqing Xie Changqi Li Shuang Hao Jianhua Feng

Abstract—Emerging vehicular trajectory data have opened up opportunities to benefit many real-world applications, e.g., frequent
trajectory based navigation systems, road planning, car pooling, etc. The similarity join is a key operation to enable such applications,
which finds similar trajectory pairs from two large collections of trajectories. Existing similarity metrics on trajectories rely on aligning
sampling points of two trajectories. However due to different sampling rates or different vehicular speeds, the sample points in similar
trajectories may not be aligned. To address this problem, we propose a new bi-directional mapping similarity (BDS), which allows a
sample point of a trajectory to align to the closest location (which may not be a sample point) on the other trajectory, and vice versa.
Since it is expensive to enumerate every two trajectories and compute their similarity, we propose Strain-Join, a signature-based
trajectory similarity join framework. Strain-Join first generates signatures for each trajectory such that if two trajectories do not
share common signatures, they cannot be similar. In order to utilize this property to prune dissimilar pairs, we devise several
techniques to generate high-quality signatures and propose an efficient filtering algorithm to prune dissimilar pairs. For the pairs not
pruned by the filtering algorithm, we propose effective verification algorithms to verify whether they are similar. Experimental results on
real datasets show that our algorithm outperforms state-of-the-art techniques in terms of both effectiveness and efficiency.

Index Terms—Trajectory, Similarity Join, Signature-Based Method, Trajectory Similarity, Filtering-Verification Framework
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1 INTRODUCTION

The advancement of vehicle positioning techniques have
produced high volume of trajectory data, where a ve-
hicular trajectory is a sequence of discrete sample points
(geo-locations) at sampling time of a running vehicle. For
example, a taxi or a Uber car will generate a trajectory
from the pick-up point to a drop-off point, which contains
a set of discrete sample points on the driving route at
every sampling time (e.g., every second). Trajectory data
can benefit many real-world applications, such as frequent
trajectory based navigation[22], taxi pick-up recommend-
ing system[27], trajectory interpreter[31], traffic condition
analysis[3] and adaptive trajectory storage system[8].

Trajectory similarity join, which, given two large collec-
tions of trajectories, finds all similar trajectory pairs from
the two collections, is an important operation in many ap-
plications. For example, in navigation systems, we can mine
the frequent routes from taxi trajectories and utilize them to
recommend better routes for ordinary users. In government
road planning, we can dig out the ‘heavy routes’ that are
covered by many trajectories and thus the government can
plan to construct new roads to ease the burden of the heavy
routes. Both applications require to compute the similarity
of trajectories and identify the most similar trajectories.

Existing trajectory similarity functions rely on aligning
the sample points between two trajectories, e.g., closest-pair
distance[25], edit distance on real sequence[6], edit distance
with real penalty[5], and one way distance[20]. However
due to different sampling rates or different vehicular speeds,
the sample points may not be well aligned. For example, in
Figure 1, trajectories Ti and Tj are similar. However, if we
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Fig. 1. Trajectory Similarity Functions.

align them based on closet sample point pairs as illustrated
in Figure 1(a), their similarity is rather small, because they
have different speeds in different time periods.

To address this problem, we propose a new bi-directional
mapping similarity (BDS), which allows a sample point of
a trajectory to align to the closet location(which may not
be a sample point) on the other trajectory, and vice versa.
For example, in Figure 1(b), we align points of Tj (Ti) to
their closest position on Ti (Tj) and get a larger similarity,
resulting in a more practical similarity measurement.

It is expensive to enumerate every two trajectories and
compute their similarity. To address this problem, we pro-
pose Strain-Join, a signature-based trajectory similar-
ity join framework. Strain-Join includes two steps: the
filtering step and the verification step. In the filter step,
Strain-Join first generates signatures for each trajectory
such that if two trajectories do not share common signatures,
they cannot be similar, where a signature captures positional
characteristics to uniquely identify a trajectory. We can
utilize this property to prune large numbers of dissimilar
pairs. To this end, we devise several filtering techniques to
generate high-quality signatures and propose an efficient fil-
tering algorithm to prune dissimilar pairs. In the verification
step, Strain-Join verifies whether the pairs that are not
pruned by the filtering algorithm are similar. It is expensive
to directly verify each pair, and we propose to utilize the
signatures to efficiently verify the pairs. We showcase how
Strain-Join works using trajectories in Figure 2, where
we simply take the grids having overlap with a trajectory as
its signature. In the filtering step, T1 in Figure 2(a) and T2 in
Figure 2(b) do not share common signatures, therefore they



are not similar. T3 in Figure 2(c) and T4 in Figure 2(d) both
have common signatures with T1, so 〈T1, T3〉 and 〈T1, T4〉
are two candidate similar pairs. In the verification step, we
compute the BDS similarity values and eliminate the false
positives, and the final answer is {〈T1, T3〉}.

To summarize, we make the following contributions.
(1) We propose a new similarity function and an efficient
signature-based framework to solve the trajectory similarity
join problem.
(2) We develop effective techniques to generate signatures.
We propose grid-based signatures that utilize the grids to
generate the signatures, and threshold-aware signatures that
uses the threshold to generate signatures. We devise a cost-
based model to select high-quality signatures. We propose
an efficient filtering algorithm that utilizes the signatures to
prune large numbers of dissimilar pairs.
(3) We devise efficient verification techniques. We propose
a signature-based method to reduce the complexity and an
expansion-based method to prune unnecessary signatures.
(4) We have conducted an extensive set of experiments
on real-world datasets. Experimental results show that our
algorithm achieves high quality and efficiency, and outper-
forms state-of-the-art approaches.

The rest of the paper is organized as follows. We for-
malize our problem in Section 2. Section 3 introduces the
framework. We propose filtering algorithms in Section 4 and
develop verification techniques in Section 5. Experimental
results are provided in Section 6. We review related work in
Section 7 and conclude the paper in Section 8.

2 PROBLEM FORMULATION

Given two collections of trajectories, a similarity join aims
to find all similar trajectory pairs from the two collections.
Before we formulate the trajectory join problem, we first
give a formal definition of a trajectory.

Definition 1 (Trajectory). A trajectory T is a sequence of sample
points, i.e., T = {p1, p2, · · · , p|T |}, where pk is a sample point
(i.e., a geo-location) and |T | is the number of sample points in T .

Two adjacent sample points on T form a line and any
location on such lines belongs to T . Thus T has |T | − 1 lines
and infinite numbers of locations.

Given two trajectories Ti and Tj , a sample point pki on Ti
may be aligned to a location on a line of Tj , and vice versa.
We want to align pki to the closet location on Tj . Denote by
DistPT(p

k
i , Tj) the minimal distance from a sample point pki

of trajectory Ti to a trajectory Tj , i.e.,
DistPT(p

k
i , Tj) = min

l∈Tj
DistPL(p

k
i , l), (1)

where l is any line on Tj and DistPL(p
k
i , l) is the minimal

distance from point pki to line l. If the perpendicular line
from pki to l has an intersection point p∗ with l, then
DistPL(p

k
i , l) is the distance between pki and p∗; otherwise,

DistPL(p
k
i , l) is the shorter distance between pki and the two

end points of l.
Basically, the closer two trajectories are, the shorter dis-

tances (e.g., DistPT(pki , Tj)) between each sample point of
one trajectory (e.g., pki ) and the other trajectory (e.g., Tj)
are. If DistPT(p

k
i , Tj) is large, pki will not be aligned to

any location at Tj . To address this issue, we set a maximal

distance bound Dmax, and use it to compute a normalized
distance dki→j , where

dki→j =

{
DistPT(p

k
i ,Tj)

Dmax
if DistPT(pki , Tj) ≤ Dmax

+∞ if DistPT(pki , Tj) > Dmax
(2)

Accordingly, the smaller dki→j (dkj→i) is, the larger simi-
larity Ti and Tj have. “Typically, the GPS nominal accuracy
is about 15m”[29]. If the distance of two points is larger
than the nominal accuracy, the two points cannot be aligned.
Thus we can set Dmax based on the GPS sampling error.

Next we propose the bi-directional similarity.

Definition 2 (Bi-Directional Similarity). The Bi-Directional
(BD) Similarity of trajectories Ti and Tj is

SIM(Ti, Tj) = 1−
∑|Ti|
k=1 d

k
i→j +

∑|Tj |
k=1 d

k
j→i

|Ti|+ |Tj |
(3)

Algorithm To Compute BD-Similarity of Two Trajectories.
Given two trajectories Ti and Tj , we first compute dki→j
for each sample point pki in Ti by first computing the
minimal distance from pki to each line l in Tj and then
selecting the minimal one. The complexity of computing the
minimal distance from each sample point in Ti to a line in
Tj is O(|Tj |) and the complexity of computing the minimal
distance from all sample points in Ti to Tj is O(|Ti||Tj |).
Next we compute dkj→i for each sample point in Tj to Ti.
Thus the overall complexity of the algorithm is O(|Ti||Tj |).

For example, in Figure 1(b), |Ti| = |Tj | = 8. For point p1j ,
d1j→i is the minimal normalized distance from p1j to its clos-
est position on line p1i → p2i of Ti, i.e., the first sample point
p1i of Ti. While for point p2j , d2j→i is computed using the
minimal distance from p2j to line p1i → p2i , which is on the
perpendicular line from p2j to p1i → p2i . For trajectory pair Ti
and Tj , SIM(Ti, Tj) = 1−(

∑8
k=1 d

k
i→j+

∑8
k=1 d

k
j→i)/(8+8).

If the similarity of Ti and Tj is not less than a specified
threshold τ , they are similar. Next we formalize the problem
of trajectory similarity joins.

Definition 3 (Trajectory Similarity Joins). Given two sets of
trajectories T and S , a similarity threshold τ , find all similar
trajectory pairs 〈T ∈ T , S ∈ S〉 such that SIM(T, S) ≥ τ .

Without loss of generality, we first focus on self join,
i.e., T = S . For example, given T = {T1, T2, T3, T4, T5} in
Figure 2, self similarity join returns 〈T1, T3〉 as the result. We
discuss how to join two different sets (T 6= S) in Section 3.
Remark. Although each sample point in a trajectory has
a sampling time, we focus on computing the similarity
trajectories with similar shape (as illustrated in Figure 1)
and do not consider the time information. Note that in
many applications, due to different traffic condiations, the
sampling points of similar trajectories may not be well
aligned, but they have similar shape. In this paper, we focus
on finding similar trajectories with similar shape.

Table 1 lists the notations we use in this paper.

3 SIGNATURE-BASED SIMILARITY JOIN

We propose a signature-based similarity join framework,
which first generates the signatures for each trajectory, then
utilizes the signature to prune dissimilar trajectory pairs that
do not share any common signature, and finally verifies the
pairs that are not pruned. We first present two methods
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Fig. 2. An Example of the Strain-Join Framework.

TABLE 1
Notations

Notation Description
Ti A raw trajectory, Ti = {p1i , p2i , · · · , p

|Ti|
i }

LEN (Ti) The length of Ti
DistPT(pki , Tj) The minimal distance from pki of Ti to Tj

dki→j The normalized distance of DistPT(pki , Tj)
Dmax The maximal trajectory distance bound

SIM(Ti, Tj) The Bi-Directional similarity of Ti and Tj
τ The similarity threshold
T , S The trajectory sets
Gp (pkj ) {g | MINDIST(pkj , g) ≤ Dmax}
Gx (Ti) {g | g ∩ Ti 6= φ}
L(g) Trajectories that take g as an indexing signature
dkj minl DistPL(p

k
j , l)/Dmax

Gτ (Tj) {g(pkj ) | k ≤ x+ 1}
Ckj The candidate set for point pkj

COR (pkj , pk+1
j ) Sample point correlation for pkj and pk+1

j

d̂ki→j [gx] The minimal distance from pki to lines of Tj in gx
lbki→j [gx] The lower bound of dki→j

ubki→j [gx] The upper bound of dki→j

to generate the signatures (Sections 3.1 and 3.2) and then
propose the similarity join framework (Section 3.3).

3.1 Grid-Based Signatures

Consider two trajectories Ti and Tj . For any sample point
pkj in Tj , if the minimal distance from pkj to Ti is larger
than Dmax, then dkj→i is rather large (Equation 2), and thus Ti
and Tj cannot be similar (Equation 3). However it is rather
expensive to compute the minimal distance dkj→i for every
two trajectories. To address this issue, we propose a grid-
based signature to check whether dki→j is larger than Dmax.
Grid Index Structure. We build a grid index G, where
grid cell width is w (we will discuss how to set w in
Section 3.3). In the sequel, we use ‘grid’ and ‘grid cell’
(denoted by g) interchangeably for ease of notation. Other
spatial indices such as R-Tree are less applicable because: (1)
the maintenance of an R-Tree is costly if the index structure
needs frequent updates, (2) the leaf nodes of an R-Tree
may overlap with each other, and (3) equal-sized grids can
facilitate the computation of distances.
Grids Whose Minimal Distances to A Sample Point Are
Not Larger Than Dmax. For each sample point pkj in Tj , we

pj
k
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Fig. 3. Illstration of signatures (w = Dmax)

compute the set of grids, Gp(pkj ), whose minimal distances
to pkj are not larger than Dmax, i.e.,

Gp(pkj ) = {g | MINDIST(pkj , g) ≤ Dmax}, (4)

MINDIST(pkj , g) =

{
0 if pkj ∈ g
minl DistPL(p

k
j , l) otherwise

(5)

where l is any side of grid cell g, and pkj ∈ g means that
point pkj is located within g.

Without loss of generality, we set w = Dmax in our
examples throughout the paper. For point pkj in Figure 3(a),
the red line from pkj to the lower-left vertex of grid g24
denotes MINDIST(pkj , g24); the nine shaded grids around pkj
are within Dmax distance to pkj and they compose Gp(pkj ), i.e.,
Gp(pkj ) = {g22, g23, g24, g32, g33, g34, g42, g43, g44}.
Grids Covering A Location on Ti. If any location at tra-
jectory Ti does not fall in any grid in Gp(pkj ), the minimal
distance from pkj to Ti is larger than Dmax, therefore Ti cannot
be similar to Tj . Next we discuss how to check whether Ti
has a location falling in a grid in Gp(pkj ). For Ti, we compute
the set of grids that cover any location of Ti to assist the
similarity check, i.e.,

Gx(Ti) = {g | g ∩ Ti 6= φ}. (6)

For example, in Figure 3(b), all the shaded grids along
Ti, namely, g31, g22, g23, g24, g35, g36, g26, g27, g17, compose
Gx(Ti) for the given trajectory Ti.
Pruning Strategy. If Gp(pkj ) ∩ Gx(Ti) = φ, the minimal dis-
tance from any point pkj to Ti is larger than Dmax, accordingly
Ti and Tj cannot be similar as stated in Lemma 1.

Lemma 1. Given two trajectories Ti and Tj , if Gp(pkj ) ∩
Gx(Ti) = φ, then Ti and Tj cannot be similar.
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For example, in Figure 2(a), all the shaded grids along

T1 compose Gx(T1). For trajectory T2 in Figure 2(b), none
of Gp(pk2)(1 ≤ k ≤ |T2|) overlaps Gx(T1), such as Gp(p12)
and Gp(p52) denoted by the shaded grids with bold-borders.
Therefore, T2 and T1 are not similar.
Computing Gp(pkj ). We first locate the grid where pkj resides
in O(1) time. Then we check each of its eight surrounding
neighbor grids. For each such grid g, if MINDIST(pkj , g) ≤
Dmax, we add it into Gp(pkj ) and visit its neighbor grids;
otherwise we skip the grid. Iteratively, we can compute
Gp(pkj ). The complexity is O(|Gp(pkj )|). As the minimal
distance from pkj to g is not larger than Dmax, there are at
most 2(d Dmaxw e+1)2 grids. Thus the complexity is O(d Dmaxw e

2).
In Figure 3(a), sample point pkj is located in grid g33, so

initially Gp(pkj ) = {g33}; then we check the eight neighbors
of g33: g22, g23, g24, g32, g34, g42, g43 and g44; and they are
added to Gp(pkj ) as their MINDIST’s to pkj are within Dmax.
Next, for each of these eight newly added grids, we check
their neighbors, e.g., g22’s neighbors g21, g11 and g22. This
time, all the newly checked neighbor grids are more than
Dmax away from pkj , so the final Gp(pkj ) is the nine shaded
grids around pkj in Figure 3(a).
Computing Gx(Ti). For each sample point pki , we compute
the grid that pki is located in O(1) time, denoted by g(pki ).
Then for pki and pk+1

i , we find the grids between grids
g(pki ) and g(pk+1

i ). As illustrated in Figure 4, we find all
the intersections of line pki → pk+1

i with the vertical lines of
the grid index between the x-coordinates of pki and pk+1

i

and get (xa, ya), (xb, yb), (xc, yc), then the grids covered
by coordinates ranges [(xki , y

k
i ), (xa, ya)], [(xa, ya), (xb, yb)],

[(xb, yb), (xc, yc)] and [(xc, yc), (x
k+1
i , yk+1

i )] are the grids
between grids g(pki ) and g(pk+1

i ). The complexity is
O(|Gp(Ti)|). As the number of grids covering Ti is at most
d LEN(Ti)

w e + 1, where LEN(Ti) is the length of Ti, the com-
plexity is O(d LEN(Ti)

w e).
SIGNATURE-BASED FRAMEWORK. We first define two
signatures of a trajectory.

Definition 4 (Probing Signatures). Given a trajectory Tj , for
each sample point pkj of Tj , girds in Gp(pkj ) are the probing
signatures of pkj .

Definition 5 (Indexing Signatures). Given a trajectory Ti,
grids in Gx(pki ) for each sample point pki of Ti are the indexing
signatures of Ti.

Indexing. We maintain two types of indices to organize
trajectories and signatures respectively. The first is the tra-
jectory index, which keeps a set of grids for each trajectory
that have overlap with the trajectory. It is utilized to get
the grids for each trajectory. The second is the signature
index, which keeps a set of trajectories for each indexing

signature that contain the indexing signature. It is used to
find the candidates. For each trajectory Ti, we find its similar
candidate as follows. For each sample point pki , we compute
its probing signature Gp(pki ) and find the trajectories whose
indexing signatures overlap with Gp(pki ). We utilize the
signature index to store the indexing signatures, where the
entries are indexing signatures and each indexing signature
maintains an inverted list of trajectories that contain the
indexing signature. We use L(g) to denote the set of tra-
jectories taking grid g as an indexing signature.
Filtering. Suppose we construct the inverted index for all
the indexing signatures of all trajectories. Then, given a
trajectory Tj , considering a sample point pkj , we compute its
probing signatures. For each grid g in the probing signature,
we access the inverted list L(g). Trajectories in L(g) may
be similar to Tj and we take them as candidates. Thus the
candidate set is ∪g∈Gp(pkj )L(g). For each candidate Ti, we
compute the similarity between Ti and Tj . If their similarity
is not smaller than τ , we take 〈Ti, Tj〉 as an answer.
Incremental Indexing and Filtering. The above method
may generate a candidate pair twice. For example, suppose
〈Ti, Tj〉 is an answer. When we use Ti to find the candidate,
we identify this candidate pair. We will find it again when
using Tj . To address this issue, we incrementally build the
index. We visit the trajectories in ascending order of sample
point numbers. When computing the answer of Tj , we only
consider the trajectories before Tj (i.e., with less or equal
numbers of sample points) and build the index for them.
After processing Tj , we generate its indexing signatures and
insert them into the index.

The framework functions as follows in Figure 2: we first
access trajectory T1, compute T1’s indexing signature and
build the inverted lists: L(g31) = {T1}, L(g22) = {T1},
. . .. Then we move on to the second trajectory T2. For p12,
Gp(p12) = {g61, g62, g71, g72, g81, g82}, we have L(g61) = φ,
L(g62) = φ, . . ., L(g82) = φ, which means that the candidate
set for point p12 is empty; the rest of T2’s sample points also
have empty candidate sets, thus there is no candidate for
T2 yet. We insert T2 into inverted lists of corresponding
grids: L(g71) = {T2}, L(g72) = {T2}, . . .. For the third
trajectory T3, we get a candidate {T1}. As SIM(T1, T3) > τ ,
〈T1, T3〉 is an answer. The index is again updated and the
rest trajectories are processed in the same manner.

3.2 Threshold-Aware Signatures
It can be seen that a large threshold τ corresponds to a
smaller number of answers. However the above method
does not utilize τ to prune dissimilar pairs. To address this
issue, we introduce a threshold-aware signature scheme, which
fully utilizes the threshold to prune dissimilar pairs.

Given a trajectory Tj , for each sample point pkj and its
corresponding grid g(pkj ), we compute the minimal dis-
tance, denoted by dkj , from pkj to a location outside g(pkj ),

dkj =
minl DistPL(p

k
j , l)

Dmax
, (7)

where l is a side of g(pkj ). Thus for any location outside
g(pkj ), its distance to pkj must be larger than dkj .

Take Figure 2(b) as an example. The minimal distance d21
from p21 in grid g(p21), i.e., g23, to any location outside g23, is
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Fig. 5. Threshold-Aware Signature.
denoted by the perpendicular line from p21 to the upper side
of g23; for any location outside g23, its minimal distance to
p21 should be larger than d21.

Given another trajectory Ti where |Ti| ≤ |Tj |, based on

Equation 3, if SIM(Ti, Tj) = 1 −
∑|Ti|
k=1 d

k
i→j+

∑|Tj |
k=1 d

k
j→i

|Ti|+|Tj | ≥ τ ,

then
∑|Ti|
k=1 d

k
i→j +

∑|Tj |
k=1 d

k
j→i ≤ (1− τ)(|Ti|+ |Tj |), and

|Tj |∑
k=1

dkj→i ≤ τj = 2(1− τ)|Tj |. (8)

If Ti does not have a location falling in g(pkj ), we have
dkj→i ≥ dkj . Thus if

∑|Tj |
k=1 d

k
j > τj , the similarity of Ti and

Tj is smaller than τ and they cannot be similar as proved by
Lemma 2.

Lemma 2. If
∑|Tj |
k=1 d

k
j > τj for Tj , for any Ti having no location

in any of g(pkj ), Ti and Tj cannot be similar.

Using this feature, we generate a threshold-aware signa-
ture as follows.
Threshold-Aware Signature. For each trajectory Tj , if∑|Tj |
k=1 d

k
j > τj , we generate its threshold-aware prob-

ing signatures Gτ (Tj) as follows. We sort d1j , d
2
j , · · · , d

|Tj |
j

in descending order. Without loss of generality, suppose
d1j ≥ d2j ≥ · · · ≥ d

|Tj |
j . We select the grids of the first

x+1 sample points as the threshold-aware signatures, where∑x
k=1 d

k
j ≤ τj and

∑x+1
k=1 d

k
j > τj . Thus

Gτ (Tj) = {g(pkj )|k ≤ x+ 1} (9)

where
∑x
k=1 d

k
j ≤ τj and

∑x+1
k=1 d

k
j > τj .

We can prove that given two trajectories Ti and Tj , if
Gx(Ti) ∩ Gτ (Tj) = φ, Ti and Tj cannot be similar. This is
because Ti and Tj have no common signature, thus dkj→i ≥
dkj for each k and

∑|Tj |
k=1 d

k
j→i > τj as stated in Lemma 3.

Lemma 3. Given two trajectories Ti and Tj , if Gx(Ti) ∩
Gτ (Tj) = φ, Ti and Tj cannot be similar.

In Figure 5, for trajectory T4, we have d14 + d24 + d34 +
d64 > τ4, thus T4 has a threshold-aware probing signature,
Gτ (T4) = {g11, g13, g14, g44}, denoted by the four bordered
grids. Since Gx(T1)∩ Gτ (T4) = φ, T1 and T4 are not similar.
Similarly, Gx(T2) ∩ Gτ (T4) = φ and Gx(T3) ∩ Gτ (T4) = φ,
thus there is no similar trajectory for T4 yet.

3.3 The Signature-Based Algorithm
Based on the signatures, we propose a filter-and-verification
framework.
(1) Sorting: We sort the trajectories by the number of sample
points in ascending order and create the trajectory index.
(2) Filtering: We access the trajectories in order. For each tra-
jectory Tj , if

∑|Tj |
k=1 d

k
j > τj , we generate its threshold-aware

signature Gτ (Tj). For each grid g ∈ Gτ (Tj), we retrieve its
inverted list L(g) and the trajectories on L(g) are candidates
of Tj . Thus the candidate set based on threshold-aware
signature is Cτj = ∪g∈Gτ (Tj)L(g). Then we generate the
probing signatures Gp(pkj ) for each sample point pkj in Tj ,
and Ckj = ∪g∈Gp(pkj )L(g) is a candidate set (1 ≤ k ≤ |Tj |).
Thus here we have |Tj |+ 1 candidate sets. We discuss how
to effectively use them to generate candidates in Section 4.
Here we compute their intersection as the candidate set, i.e.,

C = Cτj ∩
⋂

1≤k≤|Tj |

Ckj . (10)

(3) Indexing: We generate the indexing signature of Tj ,
Gx(Tj). For each indexing signature g of Tj , we insert 〈g, Tj〉
into the index, i.e., appending Tj to the inverted list of L(g).
(4) Verification: For each candidate Ti of Tj , we compute
their real similarity. If the similarity is not smaller than τ ,
we return 〈Ti, Tj〉 as an answer.

Algorithm 1 shows the pseudo code of our framework
and Figure 2 provides a running example. First we sort
trajectories to make sure Ti is always processed before Tj
if |Ti| < |Tj |. For trajectory T1, inverted lists of grids in T1’s
indexing signature are created and initialized to {T1}, e.g.,
L(g31) = {T1}. For T2, it does not have threshold-aware
signature, so we retrieve the inverted lists of grids contained
by the probing signature of T2’s sample points, e.g., L(g61),
L(g62), etc., and use their union set as T2’s candidate set,
which is empty, meaning there is no candidate for T2. Then
we update the index to contain T2, i.e., add T2 to inverted
lists of all grids in Gx (T2). Trajectory T3 has no threshold-
aware signature either. We retrieve inverted lists of T3’s
probing signature, e.g., L(g31), L(g32), etc., whose union is
{T1}, making T1 a candidate for T3. Since SIM(T1, T3) > τ ,
〈T1, T3〉 is an answer. Using probing signature, there is
one candidate (T1) for trajectory T4, although 〈T1, T4〉 is
not a qualified answer after verification. In fact, T4 has a
threshold-aware signature which can directly exclude T1
as candidate, as alternatively suggested by Figure 5. Thus,
we use the threshold-aware signature to avoid unnecessary
verification. The rest trajectories are processed in the same
manner util all trajectories are processed.
Complexity. We first analyze the space complexity. The
maximum number of grids a trajectory can cover is
O( LEN(Ti)

w ), where LEN (Ti) is the length of Ti. This is exactly
the number of indexing signature of Ti. As each indexing
signature is stored once, the overall space complexity is
O(
∑
Ti∈T

LEN(Ti)
w ).

Given a trajectory Tj , the cost of using the
threshold-aware signature to find the candidate is
O(
∑
g∈Gτ (Tj) |L(g)|), and the cost of using the probing

signature to find the candidate is O(
∑
g∈Gp(pkj )

|L(g)|).
The overall cost of filtering is O(

∑
g∈Gτ (Tj) |L(g)| +∑

1≤k≤|Tj |
∑
g∈Gp(pkj )

|L(g)|).
Suppose there are |C| candidates. The verification cost

is O(|C||Tmax|2), where |Tmax| is the maximal number of
sample points in a trajectory.
Discussion on Determining w. The larger w is, the larger
the number of trajectories in a grid is, the larger the number
of candidate is, and thus the larger the verification cost is.
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Algorithm 1: Strain-Join (T , τ, Dmax)
Input: T : a trajectory set

τ : similarity threshold
Dmax: maximal trajectory distance

Output: A = {〈Ti ∈ T , Tj ∈ T 〉|SIM(Ti, Tj) ≥ τ}
begin1

Sort T by |Ti| in ascending order;2

Construct grids with width w;3

for Tj ∈ T do4

C = CANDIDATESETGEN(Tj ,G, τ, Dmax);5

for Ti ∈ C do6

VERIFICATION(Ti, Tj , τ);7

UPDATEINDEX(Tj);8

return A;9

end10

Function CANDIDATESETGEN(Tj , G, τ , Dmax)
Input: Tj : a trajectory; G: the grid index;

τ : similarity threshold;
Dmax: maximal trajectory distance

Output: C: candidate set for Tj
begin1

if
∑|Tj |
k=1 d

k
j > τj then2

Generate threshold-aware signature set Gτ (Tj);3

Generate candidate set Cτj = ∪g∈Gτ (Tj)L(g);4

for pkj ∈ Tj do5

Generate probing signature set Gp(pkj );6

Generate candiate set Ckj = ∪g∈Gp(pkj )L(g);7

C = Cτj ∩
⋂

1≤k≤|Tj | C
k
j ;8

return C9

end10

Function UPDATEINDEX(Tj)

Input: Tj : a trajectory
Output: L: Inverted Index
begin1

Generate indexing signature set Gx(Tj);2

for g ∈ Gx(Tj) do L(g)← Tj ;3

end4

Function VERIFICATION(Ti, Tj , τ , A)
Input: Ti, Tj : candidate; τ : similarity threshold
Output: A = {〈Ti ∈ T , Tj ∈ T 〉 | SIM(Ti, Tj) ≥ τ}
begin1

if SIM(Ti, Tj) ≥ τ then A ← 〈Ti, Tj〉;2

end3

Fig. 6. Strain-Join Algorithm.

On the other hand, the smaller w is, the larger the number
of signatures is, the smaller the number of candidate is, and
thus the larger the filtering cost is. From the experimental
results in Section 6, we can see that w can be set as Dmax.

Discussion on T 6= S . We first generate indexing signatures
and build indexes for one set (e.g., T ). Then for each
trajectory in the other set (e.g., S), we generate its probing
signatures and threshold-aware signatures, and utilize the
cost-based algorithm to find its similar pairs using indexes.

4 COST-BASED FILTERING

To compute the candidates of a trajectory Tj , the framework
requires to compute Cτj and Ckj for 1 ≤ k ≤ |Tj |. The
computation of these candidate sets rely on calculating the
union of the inverted lists of threshold-aware signatures and
probing signatures in Tj . It is expensive to compute the
union if the candidate set is rather large. On the other hand,
any candidate set in Cτj and Ckj can be used to generate the
candidates. We can either use all of them or only utilize one
set to compute the candidate. The trade-off is that the more
candidate sets we use, the less candidates (by computing
their intersection) and the less verification cost. On the
contrary, the less candidate sets we use, the more candidates
and the more verification cost. Thus we want to select high-
quality candidate sets to achieve high overall performance.
To address this problem, we first propose a context-based
selection method (Section 4.1) and then present a cost-based
algorithm (Section 4.2).

4.1 Context-Based Candidate Set Selection
The sample points have some correlations: given two sam-
ple points pkj and pk

′

j , their candidate sets Ckj and Ck′j may
have large overlap, i..e, Ckj and Ck′j nearly have the same size
with Ckj ∩ Ck

′

j . Thus we do not want to use both Ckj and Ck′j .
To address this issue, we propose a context-based candidate
set selection method.

In Figure 2(e), for trajectory T3, we have C43 = {T1} for
p43, C53 = {T1} for p53, and we can use one of them. For
trajectory T5, we have C25 = {T1, T3, T4} for p25, and C65 =
{T2, T4} for p65, the intersection of these two candidate sets
only contains one element: {T4}, and we can use both C25
and C65 .
Sample Point Correlation. Given two adjacent points pkj
and pk+1

j on a trajectory Tj , if most trajectories containing
pkj also contain pk+1

j , then pkj and pk+1
j have high correlation.

Formally, let COR(pkj , p
k+1
j ) denote the correlation of pkj and

pk+1
j , which is defined as

COR(pkj , p
k+1
j ) =

CNTk,k+1

CNTk
, (11)

where CNTk is the number of trajectories containing sam-
ple point pkj and CNTk,k+1 is the number of trajectories
adjacently containing both pkj and pk+1

j . If COR(pkj , p
k+1
j )

is large, then pkj and pk+1
j are contextually correlated, and

we do not need to select both of them.
In Figure 2(c), for trajectory T3, COR(p43, p

5
3) = 1, thus

points p43 and p53 are highly correlated, there is no need to
select both points for candidate set generation. For trajectory
T5 in Figure 2(e), COR(p45, p

7
5) = 1/3, meaning if both points

are selected, the candidate set can be reduced to one third.
Context-Aware Candidate Set Selection. Given a trajectory
Tj , we group its sample points as follows. First, we generate
the group with the first sample point p1j , i.e., Z1

j = {p1j}.
Next if COR(p1j , p

2
j ) ≥ θ (we will introduce how to set

θ later), we add p2j into Z1
j and check whether p3j can

be added into Z1
j ; otherwise we generate a new group

Z2
j = {p2j} and check whether p3j can be added into Z2

j .
Iteratively we can group the sample points to different
groups Z1

j ,Z2
j , · · · ,Z

|Zj |
j . From each group, we can select
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the candidate set of any sample as a selected candidate set.
As the smaller the size of the candidate set, the better, we
want to select the candidate set with the minimal size. Thus
the selected candidate set is S = {S1j ,S2j , · · · ,S

|S|
j } where

Skj = arg min
Ck∗j ∈Zkj

|Ck∗j |. (12)

Computing The Correlation COR(pkj , p
k+1
j ). A brute-force

method first computes the frequency of every sample
point (CNTk), and then enumerates every pair of two ad-
jacent sample points in a trajectory and computes the fre-
quency of each pair (CNTk,k+1). However this method takes
O(
∑
Ti∈T |Ti|

2) space and time complexities. To address
this issue, we propose a linear approach.

Given a trajectory Tj , for each sample point pkj , we check
whether it is a turning point, i.e., whether there are more than
three outgoing points from pkj . If yes, pkj is a turning point
and pkj ’s outgoing points may have low correlation with pkj ;
otherwise, the trajectories passing pkj must pass its outgoing
points, and pkj ’s outgoing points have high correlation with
pkj . Thus we set θ = 1/2 to indicate that if more than half of
the trajectories pass both pkj and pk+1

j , then these two points
are highly correlated.

In road networks, each point has a limited number
of outgoing points, say 2-5. As the trajectory should be
aligned to the road network, the sample point also has a
limited number of outgoing points. Due to the trajectories
having measurement errors, we use eight directions around
a sample point to keep the outgoing points as follows.

For each point pkj , we consider the 8 grids around pkj .
We compute the number of pkj ’s subsequent sample points
that fall in these grids. For trajectory Tj , pk+1

j falls in one
of these grids and suppose pk+1

j falls in grid r. Let CNTr
denote the number of trajectories (visited before Tj) that
contain both point pkj ’s corresponding grid and grid r. Thus
we can utilize the ratio of sub-region’s frequency (CNTr) to
the frequency of pkj (CNTk) to estimate COR(pkj , p

k+1
j ), i.e.,

COR(pkj , p
k+1
j ) ≈ CNTr

CNTk
, (13)

The time and space complexity is O(
∑
Ti∈T |Ti|).

For example, consider T5 in Figure 2(e). The sam-
ple points are grouped into Z1

5 = {p15, p25, p35, p45} and
Z2

5 = {p55, p65, p75} according to the COR. Then we get
S51 = {T1, T3} and S52 = {T2}. As S51 ∩ S52 = φ, there is
no candidate for T5.

4.2 Cost-Based Candidate Set Selection
Given the threshold-aware candidate set Cτj and the context-
aware candidate set S , we consider how to utilize them to
generate the final candidate set. First, given a candidate set
Cτj or Skj , we need to compute the union of the inverted lists
of signatures. The complexities are respectively

∑
g∈Cτj

|g|
and

∑
g∈Skj

|g|. We sort the complexity in ascending order.
For simplicity, suppose the |S|+ 1 sorted candidate sets are
S0j ,S1j , · · · ,S

|S|
j . Note that we do not need to compute the

union and we only need to compute the sum of the inverted-
list size of grids in them. Thus it is efficient to get the order.

Then we propose a cost-based algorithm. We first com-
pute the union set of S0j with the minimal union cost. Next
we have two strategies to compute the final answer.

Algorithm 2: COSTBASEDFILTERING(Tj , G, τ , Dmax)
Input: Tj : a trajectory; G: the grid index;

τ : similarity threshold;
Dmax: maximal trajectory distance

Output: C: candidate set for Tj
begin1

if
∑|Tj |
k=1 d

k
j > τj then2

Generate candidate set Cτj = ∪g∈Gτ (Tj)L(g);3

Generate context-aware sets: S1j , · · · ,S
|Sj |
j ;4

Sort Cτj , Skj : |S0j | ≤ |S1j | ≤ · · · ≤ |S
|Sj |
j |;5

k = 0; C = S0j ;6

COSTV = |S0j ||Tmax|2;7

COSTF =
∑
g∈S1

j
|L(g)|+ |S0j ∩ S1j ||Tmax|2;8

while COSTV > COSTF do9

k = k + 1;10

C = C ∩ Skj ;11

COSTV = |C||Tmax|2;12

COSTF =
∑
g∈Sk+1

j
|L(g)|+ |C ∩ Sk+1

j ||Tmax|2;13

return C14

end15

Fig. 7. Cost-Based Filtering Algorithm.

Method 1: Direct Verification. We directly verify the candi-
dates in S0j , and the cost is

COSTV = |S0j ||Tmax|2. (14)

Method 2: Further Filtering. We compute the candidate set
S1j and intersect S1j with S0j to compute S0j ∩ S1j . Then we
verify candidates in S0j ∩ S1j , and the cost is

COSTF =
∑
g∈S1

j

|L(g)|+ |S0j ∩ S1j ||Tmax|2. (15)

In the equation, we can easily compute
∑
g∈S1

j
|L(g)|

but it is expensive to compute |S0j ∩ S1j | and we need to
estimate |S0j ∩ S1j |. To address this issue, we can utilize a
sampling based method by (1) selecting a sample of S1j and
(2) checking whether trajectories in the sample appear in S0j ;
if so, S0j and S1j have high possibility to overlap each other
and we do not have to compute their intersection set.
Cost-Based Method. If COSTV ≤ COSTF, we use the first
method and the algorithm terminates; otherwise, we em-
ploy the second method, and then iteratively check whether
we use S2j by comparing the two methods. Finally, we com-
pute all the answers. Algorithm 2 shows the pseudo code.
For example, consider a new trajectory T10. Suppose S010 =
{T1, T5, T8}, S110 = {T2, T3, T5, T8}, S210 = {T5, T7, T8, T9}
and S310 = {T1, T2, T4, T5, T8}. We use T2 and T5 as samples
from S110. As only T5 appears in S010, S010 and S110 do not
overlap much, and COSTF is cheaper, then the candidate set
C = S010 ∩ S110 = {T5, T8}. Next we check S210, we use T5
and T8 as samples and both are contained by C. Thus COSTV
is cheaper. We use C = {T5, T8} as the final candidate set.

5 EXPANSION-BASED VERIFICATION

To verify whether a candidate pair 〈Ti, Tj〉 is an answer, it
is expensive to directly compute the similarity. To address
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this issue, we first propose a signature-based method (Sec-
tion 5.1), which utilizes the signature to verify the candidate
pair. Since different signatures have different importances
on the verification, we propose an expansion based method
(Section 5.2), which only uses a subset of signatures to verify
a candidate pair. Finally, we propose a bound-based method
to further improve the performance (Section 5.3), which first
estimates the upper bound and lower bound of the real
similarity and then utilizes the two bounds to improve the
verification cost.

5.1 Signature-Based Framework
Consider a candidate pair 〈Ti, Tj〉. Based on the similarity
function (Equation 3), we only need to compute dki→j and
dkj→i, and if

|Ti|∑
k=1

dki→j +

|Tj |∑
k=1

dkj→i ≤ (1− τ)(|Ti|+ |Tj |), (16)

then Ti and Tj are similar; dissimilar otherwise.
We first discuss how to compute dki→j and the technique

can be used to compute dkj→i. We generate the indexing
signature of Tj , Gx(Tj), and build a hash table for Gx(Tj).
We then generate probing signature of each sample point pki
in Ti, Gp(pki ). Then we compute dki→j for pki .

For each grid g in Gp(pki ), if g is not in Gx(Tj), dki→j is
very large, and Ti and Tj are not similar. If g is in Gx(Tj),
we compute the minimal distance from pki to the lines of Tj
falling in g, i.e.,

DistPT(p
k
i , Tj |g) = min

l∈Tj∩g
DistPL(p

k
i , l). (17)

where l is a line in Tj falling in g.
If multiple grids appear in Gx(Tj), we compute the mini-

mal distance of DistPT(pki , Tj |g) among grids in Gp(pki ), i.e.,

dki→j = min
g∈Gp(pki )∩Gx(Tj)

DistPL(p
k
i , Tj |g)

Dmax
. (18)

Thus we do not need to consider all the lines in Tj for pki .
Instead we only consider the lines falling in Gp(pki )∩Gx(Tj).

For example, we want to compute d54→1 from point p54
of T4 to T1. As displayed in Figure 8(a), the nine grids are
Gp(p54) and the three shaded grids are Gp(p54) ∩ Gx(T1). As
T1 passes three of the nine grids of p54’s probing signature:
g23, g24 and g35, we only need to compute three distances
denoted by the three line from p54 to T1 in the figure:
DistPL(p

5
4, T1|g23), DistPL(p54, T1|g24)(the minimum) and

DistPL(p
5
4, T1|g35). Thus d54→1 = DistPL(p

5
4, T1|g24)/Dmax.

Complexity. The number of grids in Gp(pki ) is small, i.e.,
|Gp(pki )| = (2 Dmax

w + 1)2, which can be taken as an constant.
Thus Gp(pki ) ∩ Gx(Tj) is a constant. If each grid has only
one line in Tj , then the complexity to verify a candidate
pair is O(|Ti| + |Tj |). Note that a trajectory will not appear
many times in a grid, and thus this method is much faster
than the straightforward method that directly computes
DistPT(p

k
i , Tj).

5.2 Expansion-Based Method
The signature-based method requires to enumerate every
grid in Gp(pki ) ∩ Gx(Tj). However different grids have
different importances to compute dki→j . In other words,

for a grid, if its minimal distance to pki is already very
large, i.e., MINDIST(pki ,g)

Dmax
> dki→j , we do not need to compute

DistPT(p
k
i , Tj |g). For example, in Figure 8(b), the minimal

distance between grid g23 and point p54 (MINDIST (p54, g23))
is large and we can avoid the computation on such grids.

To this end, we can prioritize the girds based on the
distance to pki . We observe that the closer a grid is to pki ,
the smaller the distances of lines of Tj in the grid are to pki .
Thus we can simply use the nearby grids and prune the far
grids. Next we propose an expansion-based method.

Given a sample point pki , we access its probing signatures
in Gp(pki ) by MINDIST(pki , g ∈ Gp(pki )) in ascending order.
Suppose the ordered grids are g1, g2, · · · , g|Gp(pki )|. If g1 ∈
Gx(Tj), we compute DistPT(pki , Tj |g1).
(1) If DistPT(pki , Tj |g1) ≤ MINDIST(pki , g2),

dki→j =
DistPT(p

k
i , Tj |g1)

Dmax
;

(2) Otherwise we compute DistPT(p
k
i , Tj |g2). (2.1) If

min(DistPT(p
k
i , Tj |g1),DistPT(pki , Tj |g2))≤MINDIST(pki , g3),

dki→j = min(
DistPT(p

k
i , Tj |g1)

Dmax
,
DistPT(p

k
i , Tj |g2)

Dmax
);

(2.2) otherwise we need to compute DistPT(pki , Tj |g3).
Iteratively we can compute DistPT(p

k
i , Tj) without

needing to enumerate all grids. In Figure 8(b), grids are
ordered by MINDIST to p54 and labeled in the back-
ground accordingly, the grid in the center has the mini-
mal MINDIST to p54. T1 goes through three of p54’s prob-
ing signature, i.e., g35, g24 and g23 (the 3rd, 7th and
9th nearest grids). The expansion-based method only
uses two of them to compute d54→1: we first check the
3rd grid g35 and compute DistPT(p

5
4, T1|g35)(line ‘1’),

then we compare DistPT(p54, T1|g35) and MINDIST(p54, g24)
(line ‘3’). As DistPT(p

5
4, T1|g35) > MINDIST(p54, g24),

we compute DistPT(p
5
4, T1|g24)(line ‘2’), as it is smaller

than DistPT(p
5
4, T1|g35), we use it to compare with

MINDIST(p54, g23) (line ‘4’). As DistPT(p
5
4, T1|g24) <

MINDIST(p54, g23), we get d54→1 = DistPT(p
5
4, T1|g24)/Dmax.

DistPT(p
5
4, T1|g23) in grid g23 is thus avoided to calculate.

Get Ordred Grids. Given a point pki , the first grid is g(pki ).
Then we can get the ordered grids by visiting its eight
surrounding grids by computing the distance from pki to
the four sides and four end points of g (pki ), as shown in
Figure 8. Then based on the distances to the eight grids, we
can get next closest grids by visiting their neighbor grids.

5.3 Bound-Based Pruning
It is expensive to compute the real value of dki→j as it
involves complicated mathematical operations. Instead, we
can estimate a lower bound of dki→j , denoted by lbki→j , and
based on Equation 16, if the sum of the lower bound, i.e.,∑
k lb

k
i→j+

∑
k lb

k
j→i, is larger than (1− τ)(|Ti|+ |Tj |), the

pair cannot be similar and we can prune the pair. Similarly,
we can estimate an upper bound of dki→j , denoted by ubki→j ,
and based on Equation 16, if the sum of the upper bound,
i.e.,

∑
k ub

k
i→j+

∑
k ub

k
j→i, is smaller than (1−τ)(|Ti|+|Tj |),

the pair must be an answer and we do not need to compute
the real similarity. Next we discuss how to estimate the
lower bound and upper bound of dki→j .
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Fig. 8. Signature-Based Verification.

Distance from pki to lines of Tj in a grid g. Let d̂ki→j [gx]
denote the minimal distance from pki to lines of Tj in gx, i.e,

d̂ki→j [gx] = DistPT(p
k
i , Tj |gx). (19)

Estimating a lower bound of dki→j . Consider pki . Sup-
pose g1, g2, · · · , g|Gx(Tj)∩Gp(pki )| denote the grids in Gx(Tj)∩
Gp(pki ) sorted by MINDIST(pki , g) in an ascending order.

As MINDIST(pki , g1) ≤ MINDIST(pki , gx) ≤ d̂ki→j [gx] for
any x > 1, we can get a lower bound

lbki→j [g1] =
MINDIST(pki , g1)

Dmax
. (20)

Next for g2, we get a lower bound,

lbki→j [g2] = min(d̂ki→j [g1],
MINDIST(pki , g2)

Dmax
); (21)

If d̂ki→j [g1] ≤
MINDIST(pki ,g2)

Dmax
, dki→j = d̂ki→j [g1] and we

prune grids after g2 and do not need to estimate a lower
bound.

Let d̂ki→j [g1 · · · gt] = min1≤x≤t
MINDIST(pki ,gx)

Dmax
denote the

minimal distance from lines in the first t grids to pki . We can
estimate a lower bound,

lbki→j [gt+1] = min(d̂ki→j [g1 · · · gt],
MINDIST(pki , gt+1)

Dmax
). (22)

In Figure 8(c), we estimate the lower bound lb54→1

for point p54 of trajectory T4 to the line of T1 in g24.
The line from point p54 to the lower horizontal side
of g24 is MINDIST(p54, g24). We compare d̂54→1[g24] and
MINDIST(p54, g24). As MINDIST(p34, g24)/Dmax is smaller, it
is assigned to lb54→1[g24]. Iteratively, we can compute the
lower bound for every grid.
Estimating an upper bound of dki→j . For any grid g, we can
estimate an upper bound, MAXDIST(pki , g), from pki to any
location in g, where

MAXDIST(pkj , g) = max
v

DIST(pkj , v), (23)

where v is a vertex of g (g has four vertices).
Moreover, for any t, we can estimate a tighter upper

bound,

ubki→j [g1, · · · , gt] = min
1≤x≤t

MAXDIST(pkj , gx). (24)

Thus for g1, we can get an upper bound

ubki→j [g1] =
MAXDIST(pki , g1)

Dmax
. (25)

Next for g2, we get an upper bound,

ubki→j [g2] = min(d̂ki→j [g1],
MAXDIST(pki , g2)

Dmax
); (26)

Algorithm 3: SIGNATUREVERIFICATION(Ti, Tj , τ , A)
Input: Ti, Tj : candidate; τ : similarity threshold
Output: A = {〈Ti ∈ T , Tj ∈ T 〉 | SIM(Ti, Tj) ≥ τ}
begin1

Compute Gx(Ti) and Gx(Tj);2

Get ordered grids in Gp(pki ) ∩ Gx(Tj) by MINDIST;3

Get ordered grids in Gp(pkj ) ∩ Gx(Ti) by MINDIST;4

for 1 ≤ t ≤ maxk |Gp(pki ) ∩ Gx(Tj)| do5

for 1 ≤ k ≤ max(|Ti|, |Tj |) do6

if7 ∑
k lb

k
i→j [gt]+lb

k
j→i[gt]>(1−τ)(|Ti|+|Tj |)

then Ti and Tj cannot be similar, return; if∑
k ub

k
i→j [gi]+ub

k
i→j [gi]≤(1−τ)(|Ti|+|Tj |)

then A = A ∪ {〈Ti, Tj〉}, return;

SIM(Ti, Tj) = 1−
∑
k d̂

k
i→j [gt]+d̂

k
i→j [gt]

|Ti|+|Tj | ;8

if SIM(Ti, Tj) ≥ τ then9

A = A ∪ {〈Ti, Tj〉}, return;10

end11

Fig. 9. Signature-based Verification Algorithm.

Then for gt+1, we can estimate an upper bound,

ubki→j [gt+1] = min(d̂ki→j [g1 · · · gt],
MAXDIST(pki , gt+1)

Dmax
).

(27)
In Figure 8(c), we estimate the upper bound ub54→1 for

point p54 of T4 to the line of T1 in grid g24. The line from p54 to
the upper-right vertex of g24 represents MAXDIST(p54, g24),
and the upper bound ub54→1[g24] is directly computed using
Equation 25. For grid g23, since d̂54→1[g24] is smaller than
MAXDIST(p54, g23)/Dmax, we can get a tighter upper bound:
ub54→1[g23] = d̂ki→j [g24]. Iteratively, we can compute the
upper bound for every grid.
Bound-Based Algorithm. Based on the lower bounds and
upper bounds, we propose an expansion-based method.
For any point pki , we access its nearby grids in order by
MINDIST(pki , g) and remove the grids that are not in Gx(Tj).
Suppose the ordered grids are g1, g2, · · · .

Then we compute lbki→j [g1] and ubki→j [g1].

(1) Pruning: If
∑
k lb

k
i→j [g1]+

∑
k lb

k
j→i[g1] > (1−τ)(|Ti|+

|Tj |), 〈Ti, Tj〉 cannot be similar and we prune it.
(2) Early Termination: If

∑
k ub

k
i→j [g1] +

∑
k ub

k
i→j [g1] ≤

(1−τ)(|Ti|+|Tj |), 〈Ti, Tj〉 is similar, we can early terminate.
If we can neither early terminate nor prune, we compute

d̂ki→j [g1]. Next we compute lbki→j [g2] and ubki→j [g2], and
repeat above steps. Algorithm 3 shows the pseudo code. For
example, we verify candidate 〈T1, T3〉 in Figure 2. We first
prepare Gx(T1) and Gx(T3) and get grids in Gp(pk1)∩Gx(T3)
for pk1 ∈ T1 and Gp(pk3) ∩ Gx(T1) for pk3 ∈ T3 ordered
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by MINDIST. Then, we estimate upper bound for each
point’s nearest grid, as

∑
k ub

k
1→3[g1] +

∑
k ub

k
3→1[g1] is

already smaller than (1− τ)(|T1|+ |T3|), T1 and T3 must be
similar, and we can early terminate. For candidate 〈T1, T4〉,
we estimate lower bound for each point’s nearest grids in
ascending order. Suppose

∑
k lb

k
1→4[g2] +

∑
k lb

k
4→1[g2] is

larger than (1−τ)(|T1|+ |T4|), we can safely prune 〈T1, T4〉.
Comparison of three verification techniques. Figure 8(d)
illustrates the three verification techniques. We use gki [t]
to denote the tth nearest grids to pki . For candidate pair
〈Ti, Tj〉, the signature-based method computes distances
from each point pki of Ti to Tj in any grids in Gp(pki ) ∩
Gx(Tj). The expansion-based method can prune some un-
necessary grids. Both techniques work in a ‘vertical’ style, as
they examine sample points one by one. The bound-based
verification operates in a ‘horizontal’ style, and it uses grids
gki [t] for every k to get an overall upper/lower bound to
decide pruning or early termination.

6 EXPERIMENTS

We have implemented our method and conducted an ex-
tensive set of experimental studies, in order to (1) verify
our proposed techniques; and (2) compare our method with
state-of-the-art studies.
Datasets. We use two real vehicular datasets: Beijing
Taxi (Taxi, www.datatang.com/data/45888) and Shenzhou
Zhuanche (UCar, like Uber, zhuanche.zuche.com). Table 2
shows the statistics of the two datasets. Taxi contains
trajectories generated by more than 8,000 public taxicabs in
Beijing; UCar contains trajectories generated by nearly 2,000
cars within one week in Beijing. We also use the Australian
Sign Language (ASL) dataset, where 98 different signs such
as “all”, “go”, are expressed by hand movement trajectories.
Experimental Setting. All of the algorithms were imple-
mented in C++. All the experiments were conducted in a
machine with 2.10 GHz Intel Xeon CPU E5-2620, 64 GB
RAM, running Ubuntu 13.4.

6.1 Evaluating Filtering
In this section, we evaluate candidate set generation tech-
niques. We implement four strategies for Strain-Join:
(1) Use the probing signature of one sample point for
each trajectory (One-Sig). (2) Use probing signatures of all
sample points for each trajectory (All-Sig). (3) Use the
threshold-aware signature (τ-Sig). (4) Use the cost-based
candidate set selection method (Cost-Sig). We compare
candidate set size and running time by varying the three
parameters: threshold τ , maximal distance Dmax and grid
width w. Figures 10(a)-10(f) show the results on Taxi
dataset and Figures 11(a)-11(f) show the results on the UCar
dataset. Note that we use the best verification algorithm
(bound-based algorithm) to verify the candidate to report
the elapsed time.

We have the following observations. Firstly, One-Sig
generates the largest number of candidates and All-Sig
generates the smallest number of candidates. Cost-Sig
generates smaller number of candidates than τ-Sig (sub-
figures 10(a)-10(c) and 11(a)-11(c)). The results are consistent
with our theoretical analysis, because All-Sig utilizes all
signatures, One-Sig utilizes only one signature, and τ-Sig
and Cost-Sig selects high-quality signatures. Cost-Sig

TABLE 2
Trajectory Data Sets

Data Set # of Traj. Avg Point # Max Point # Min Point #
Taxi 200,000 27 50 5
UCar 120,000 16 20 3
ASL 6757 58 4494 1

is better than τ-Sig because it uses cost-based method to
select the best signatures.

Secondly, One-Sig takes the longest time, Cost-Sig
takes the shortest time, and τ-Sig is better than All-Sig
(sub-figures 10(d)-10(f) and 11(d)-11(f)). This is because
One-Sig generates huge number of candidates and it is
expensive to verify the candidates. All-Sig takes long time
as it is expensive to use all signatures and it is costly to com-
pute the union set of all signatures. Cost-Sig outperforms
others as it utilizes the cost model to trade-off the filtering
and verification time.

Thirdly, with the increase of threshold τ , the number
of candidates and elapsed time decrease (sub-figure(a) of
Figures 10-11), because for a larger threshold there are
smaller numbers of similar pairs. It is easier to find answers
for a larger threshold. Note with the increase of τ , the gap
between Cost-Sig and τ-Sig becomes smaller, because
for a larger threshold, τ-Sig could utilize the threshold
to select high-quality signatures. The larger τ , the better
quality of the selected signatures.

Fourthly, with the increase of Dmax, the number of candi-
dates and elapsed time increase (sub-figure(b) of Figures 10-
11), because there are more similar pairs for a large thresh-
old as we allow matching in a large region. Cost-Sig still
achieves the best performance.

Fifthly, with the increase of w, the number of candidates
increases (sub figure(c) of Figures 10-11), because the fine-
grained grids could reduce the number of candidates while
coarse-grained grids would increased the number of can-
didates (as a large grid covered more trajectories and had
larger possibilities to include more false positives). However
with the increase of w, the elapsed time first increases
and then decreases. This is consistent with our theoretical
analysis: the larger grids, the more candidates but smaller
filtering time; while the smaller grids, the less candidates
but larger filtering time. We could see when w is 80m or
100m, it achieves the best performance.

In all, Cost-Sig achieves the best performance and we
set w = Dmax. If we prefer recall, we set large Dmax and small
τ ; if we prefer efficiency, we set small Dmax and large τ .

6.2 Evaluating Verification
In this section, we evaluate our verification techniques. We
implement four methods: (1) The naive method (Naive),
which directly computes the similarity for each candidate
pair. (2) Signature-based verification (Signature), which
uses signature grids to compute similarity. (3) Expansion-
based verification (Expansion), which prunes distant sig-
nature grids to avoid unnecessary computation. (4) Bound-
based verification (Bound), which uses upper and lower
bounds to prune dissimilar pairs plus early termination
technique. We compare running time by varying the three
parameters: threshold τ , maximal distance Dmax and grid
width w. Figure 12 shows the results on Taxi dataset, UCar
has similar trends, and is omitted due to space constraint.
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Fig. 10. Evaluating Filtering: Candidate Set Size & Elapsed Time (Taxi).
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Fig. 11. Evaluating Filtering: Candidate Set Size & Elapsed Time (UCar).
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Fig. 12. Evaluating Verification: Elapsed Time (Taxi)
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Fig. 14. Comparison with State-of-the-art Methods.

We have the following observations. Firstly, the Naive
method has the worst performance, Bound is most effi-
cient, and Expansion is better than Signature. This is
because Naive needs to compute many unnecessary sim-
ilarity values. Signature is faster than Naive, because
Signature decreases the complexity from O(|Tmax|2) to
O(|Ti|+ |Tj |) as only grids in Gp(pki )∩Gx(Tj) that contains
lines of Tj are used to compute SIM(Ti, Tj). Expansion
runs faster than Signature, because Expansion could
avoid the calculation of distance between relatively far grids
in Gp(pki )∩Gx(Tj) to each sample point pki . Bound achieves
the best performance because it uses upper/lower bounds
to prune a great portion of candidate pairs.

Secondly, with the increase of threshold τ , the verifica-
tion time is reduced (Figure 12(a)), because larger thresholds
only allows matching in a small region and thus produces
smaller answer sets.

Thirdly, with the increase of Dmax, the verification costs
less time (Figure 12(b)), because larger Dmax allows matching
in a large region and thus produces larger answer sets.

Fourthly, with the increase of grid size, the verification
consumes less time (Figure 12(c)), because bigger grids
introduce more trajectories as candidates.

In all, Bound is the best verification technique.

6.3 Comparison with State-of-the-art Methods

In this section, we compare effectiveness of Strain-Join
with state-of-the-art approaches: DTW[34], EDwP[28] and
MA[30], on precision, recall, runtime efficiency, classification
accuracy, as well as the query performance.
Precision and recall. We randomly selected 1000 vehicular
trajectories from our dataset and manually labeled similar
pairs as the ground truth. We compare precision, which
is the portion of real similar trajectories (as indicated by
the ground truth) in all similar trajectories found by a
method; and recall, which is the ratio of the number of real
similar trajectories in the results reported by a method to
the number of real similar trajectories in the ground truth.
For EDwP, two trajectories are considered similar if their
EDwP score is less than a certain value s. We varied Dmax
from 20m to 100m. For Dmax = 20m or Dmax = 50m, we
present the precision and recall results for s = 100, 200, 500.
For Dmax = 100m, trajectories are more apart as 100m is a
rather large threshold, therefore, smaller s values are too
tight to generate similar trajectory pairs under the EDwP
measurement. Accordingly, we can find similar trajectories
for s = 500 but not for s = 100 or 200. An “x” symbol is
used to indicate that there is no such setting in our figures.
For MA, the four parameters are set as suggested in [30],
and the similarity threshold values tested are 0.001, 0.0005
and 0.0001. Figure 14(a)-(b) show the results.
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We could see that Strain-Join has the best perfor-
mance on both precision and recall. The reasons are as
follows. Firstly, our technique allows to align sampling
points to any locations (even non-sampling points) to cap-
ture the similarity while DTW cannot. Although MA uses
gap to capture dissimilar parts, the score for gaps are rather
low if the gap points should have been aligned elsewhere.
Secondly, for some apparent deviating sample points, DTW
stretches the trajectory to match them to another trajectory,
and EDwP attempts to use the replace/insert operations
which may result in low similarity, while our method can
exclude such trajectory pairs early in the filtering step. In
addition, a larger τ has better precision but low recall. For
example, as τ increases from 0.7 to 0.9, the precision values
at Dmax = 20m are 0.85, 0.89, 0.91, while the recall values
are 0.92, 0.905 and 0.88. This is because a larger τ reduces
the denominator of precision and the numerator of recall. In
contrast, a larger Dmax has lower precision but better recall,
because a larger Dmax finds more results using a larger region.
Runtime efficiency. We use a dataset of 200,000 vehicular
trajectories to test efficiency. For ease of presentation we
draw the performance of one threshold for both EDwP and
MA. Figure 14(c) indicates that Strain-Join runs much
faster than DTW and MA, and is comparable to EDwP due
to our high-quality signatures.
Classificaion accuracy. We use the ASL dataset and per-
form multi-class verification. First we randomly choose c
classes(i.e. c signs) and retrieve all the hand movement
trajectories under these classes. Then we perform 10-fold
cross-validation. We use the nearest neighbors returned by
the four metrics to label trajectories. The accuracy is the
portion of correctly labeled trajectories in all retrieved trajec-
tories. Figure 14(d) presents the variation of accuracy as the
number of classes increases from 5 to 25; for Strain-Join,
we set Dmax = w = 100m, τ = 0.8. We have the following
observations. First, our method outperforms others because
our method can widely capture the shape information.
Meanwhile, the recognition of gap points by MA, as well as
the cost of replace/insert operations of EDwP, may impact
the similarity results. Second, for all metrics, the accuracy
decreases since the searching gets harder as the number
of classes increases. Meanwhile, Strain-Join can always
achieve the highest accuracy in all cases.
Query performance. For the 200,000-trajectory dataset,
the average running time for a single top 1 query of
Strain-Join (Dmax = w = 100m, τ = 0.8), EDwP
(threshold set to 200), MA (threshold set to 0.001),
DTW are 7.01, 7, 86, 35.66, 38.26 milliseconds respectively.
Strain-Join is the most efficient method. The precision,
recall and accuracy performances have similar trends to the
experimental results of the join algorithms.

In all, our method outperforms DTW, EDwP and MA in
both quality and efficiency.

6.4 Scalability

In this section, we test the scalability of our method. We
vary the number of trajectories on the Taxi dataset. Fig-
ure 13 shows the results. We could see that our method
scales very well and achieves nearly linear scalability. For
Dmax = w = 100m, τ =0.7, the elapsed time for 100,000
trajectories, 300,000 trajectories, and 500, 000 trajectories are
respectively 884 seconds, 3804 seconds, and 9612 seconds.

7 RELATED WORK

7.1 Trajectory Similarity Metrics

A number of trajectory similarity measurement functions
have been proposed[1], [2], [5], [6], [7], [10], [11], [15], [23],
[20], [24], [25], [28], [30], [32], [34], which can be roughly
grouped into two types: (1)The spatial based metrics, such
as the Euclidean distance (ED)[10], the Closest-Pair Dis-
tance (CPD)[25] and the One Way Distance (OWD)[20].
These metrics directly use the Euclidean distance for cor-
responding sample point pairs or its variants to define
the similarity, and the temporal ordering of sample points
are not strictly required when calculating such similarity
metrics; and (2)The spatio-temporal metrics, such as the
Dynamic Time Warping (DTW)[1], [15], [34], the Longest
Common Sub Sequence (LCSS)[32], the Sequence Weighted
Alignment model (Swale)[24], the Most Similar Trajectory
(DISSIM)[11], the model-driven assignment (MA)[30], and
the Edit Distance with Projections (EDwP)[28]. In general,
this type of measurements require some form of sample
point alignment, i.e., points should be mapped according
to the temporal order, to calculate trajectory similarity. Still,
time-shifting is allowed, meaning sample points from two
trajectories do not need to have the same timestamp.
Spatial-Based Similarity. The Closest-Pair Distance
(CPD)[25] is a variation of Euclidean Distance which was
introduced to find closest trajectories for given query in
spatial networks. The One Way Distance (OWD)[20] focuses
on shape similarity for trajectories in grid representations.
OWD of two grid trajectories is the sum of distances from
the grids where one trajectory’s sample points reside in
to the grids of the other trajectory. The grid OWD is an
estimation of distances between two trajectories which
is sensitive to the grid size and was proposed to handle
similarity search problem, while our BDS metric measures
the exact similarity for two trajectories, the similarity of two
trajectories are not affected by the grid size.

They are different from ours: (1) Some of them require
uniform sampling rate, which is not practical for real-world
datasets; (2) Sample points in a trajectory have to be aligned
to sample points (not closest positions) in the other trajec-
tory. However, the vehicles may have different speeds in
different times, and thus the sample points may not be well
aligned even if two trajectories have the same sampling rate.
Our metrics can address these problems by aligning sample
points to close locations of other trajectories.
Spatio-Temporal Similarity. The Dynamic Time Wrapping
(DTW)[1], [15], [34] distance allows some sample points
to repeat in order to achieve the best alignment, i.e., one
point in one trajectory can match multiple points in another
trajectory. DTW was claimed to be vulnerable to noises since
some noise points can introduce large distance between
trajectories. However, the authors of [9] and [33] argued and
experimentally proved that DTW on average is comparative
to other similarity measurements on large data sets. The
Longest Common Sub Sequence (LCSS)[32] is used to elimi-
nate the effect of noise points. The LCSS method skips points
(taking them as noises) if their distance exceeds a matching
threshold. Similar to LCSS, Edit Distance with Real Penalty
(ERP)[5] uses a threshold ε to quantify a match, and gaps
between matched sub-trajectories are assigned penalties to
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reveal the dissimilarity. As an improvement, Edit Distance
on Real Sequence (EDR)[6] combines the strength of DTW
and ERP. It handles time shifting and computes distance
using a constant reference point. DISSIM[11] defines dis-
similarity of two trajectories as the definite integral of the
function of time of the Euclidean distance between two
trajectories, which are required to be valid during the
same period (i.e., sample points exist in both trajectories
for every sampling timestamp). Swale[24] penalizes un-
matched points (gaps) and rewards the matching ones.
Spatial Assembling Distance (SpADe)[7] is a pattern-based
measurement, which finds matching sub-sequences for the
whole series (patterns). Threshold Queries (TQuEST)[2] is a
threshold-based measurement. The Minkowski sum of two
sequences is thus the similarity of two time series. MA[30] is
an improvement of DTW, and it is more flexible in aligning
points. Similar parts of trajectories contribute a much higher
portion to the MA score than the dissimilar parts (gaps).
EDwP[28] uses the insert/replace operations to compute
similarities between trajectories generated with inconsistent
and variable sampling rates.

The difference between MA, EDwP and BDS are: (1) The
alignment strategies: MA aims to improve DTW to tolerate
the noisy points. To achieve this goal, in MA, sample points
of one trajectory can be either aligned to sample points of
another trajectory or do not align to any points (which are
taken as noisy points). EDwP extends the concept of edit
distance and utilizes the insertion operation to equalize the
sampling rate difference between trajectories (i.e., given a
point in one trajectory, if there is no aligned point in another
trajectory, it will insert a new point in the second trajec-
tory). It will give a penalty to an inserted point. Obviously,
due to sampling errors, trajectories may miss some points
and EDwP will give a high penalty. This will lead to low
similarity for two similar trajectories. Meanwhile BDS aligns
sample points of one trajectory to their closest locations (not
necessarily sample points) on other trajectories to widely
capture the shape information. (2)Parameters: MA uses
four parameters to compute similarity, which is non-trivial;
EDwP requires no parameter and BDS has only one easy-
to-set parameter Dmax. (3) Handling non-uniform sampling
rates: MA employs its asymmetry property, EDwP uses
the “insert” operation to equalize the sampling rate, and
BDS utilizes closest alignment. In EDwP, two trajectories
are aligned by the sampling point order. Given two similar
trajectories, if the sample points are out of order due to
transmission errors, EDwP will take them as different trajec-
tories. BDS can address this problem by mapping samples
to closed points. (4) The modeling of trajectories: for MA,
one trajectory is a sequence of discrete points in Rd; EDwP
and BDS uses linear interpolation. In fact, BDS can adopt
to other feasible interpolations. For example, in an urban
road network, we can use the map-matched trajectories to
compute similarity. (5) EDwP and MA are asymmetric while
BDS is symmetric.

We focus on identifying the trajectories with similar
shape. For example, two trajectories with very similar
shapes but having asynchronous sample points (due to
different traffic conditions) may not be identified as similar
by existing metrics; but BDS can address this problem
efficiently and effectively. BDS may not work well for the

scenarios where the time stamp is important. We leave
taking time stamps into consideration as future work.

BDS can handle the case that the trajectories have rather
different sampling rates as it aligns sample points to the
closest locations on other trajectories. Given varying sam-
pling rates, as long as all the sample points of one trajec-
tory are close enough to another trajectory(and vice versa),
the two trajectories are guaranteed to be similar. For low
sampling rate trajectories, it is important to match them
to road networks. For example, we could use the shortest
paths or the most frequent paths to recover the missing
parts between sampling points, trying to reveal the real
physical shape of each trajectory before we compute their
similarities. For vastly different sampling rates, it is rather
hard to align them, because a trajectory with low sampling
rate can correspond to many trajectories with high sampling
rate and it is hard to tell which is better. To address this
problem, a common technique is to adopt some assump-
tions, e.g., taking the shortest path or the most frequent path
as the actual path between two sampling points. This is an
interesting problem and we leave it as a future work.

7.2 Similarity-Based Trajectory Processing
Similarity join and search is widely studied [17], [14], [35],
[36], [18] and recently a number of works are extended to
support similarity-based trajectory processing [12], [21]. Lee
et. al.[16] propose a two-phase trajectory clustering frame-
work which first partitions trajectories into line segments
and then groups similar line segments to find common
sub-trajectories, which is helpful in applications such as
analysis of regions of interest, etc. The three-step approach
of [26] aims to deal with uncertainties in trajectories (such
as those introduced by GPS errors) when finding clusters
of trajectories. In [13] the convoy discovery in trajectory
databases is studied, where a convoy is a group of objects
traveling together for a while. Convoys are formalized using
density-based notations. Simplified trajectories first form
candidate sets and are then finalized if they are actually
convoys. The authors of [19] introduce the concept of
swarm, group of objects that move together but maybe non-
consecutively, to find moving-together objects with relaxed
conditions. Pruning strategies are proposed to reduce the
search space, and a closure checking rule helps to report
swarms on demand. Algorithms in [4] try to find similar
sub-trajectories with trajectory similarity measure being the
average distance at corresponding timestamps. The shortage
is if two objects travelled the exact route are at different
speeds at corresponding segments, these two trajectories
cannot be found as similar ones, while intuitively they are
similar trajectories. In contract, our BDS measurement can
overcome such issue.

8 CONCLUSION
In this paper, we have studied the trajectory similarity join
problem. We proposed a new trajectory similarity metric
that did not rely on aligning sample points of trajecto-
ries. We presented a signature-based method to address
the similarity join problem. We first generated high-quality
signatures for trajectories and pruned the dissimilar pairs
that did not share common signatures. We then devised
effective verification algorithms to verify the candidates that
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are not pruned. Experimental study on real datasets verified
the effectiveness and efficiency of our algorithms.
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