
KEMB: A Keyword-Based XML Message Broker
Guoliang Li, Jianhua Feng, Member, IEEE, Jianyong Wang, Senior Member, IEEE, and Lizhu Zhou

Abstract—This paper studies the problem of XML message brokering with user subscribed profiles of keyword queries and presents a

KEyword-based XML Message Broker (KEMB) to address this problem. In contrast to traditional-path-expressions-based XML

message brokers, KEMB stores a large number of user profiles, in the form of keyword queries, which capture the data requirement of

users/applications, as opposed to path expressions, such as XPath/XQuery expressions. KEMB brings new challenges: 1) how to

effectively identify relevant answers of keyword queries in XML data streams; and 2) how to efficiently answer large numbers of

concurrent keyword queries. We adopt compact lowest common ancestors (CLCAs) to effectively identify relevant answers. We devise

an automaton-based method to process large numbers of queries and devise an effective optimization strategy to enhance

performance and scalability. We have implemented and evaluated KEMB on various data sets. The experimental results show that

KEMB achieves high performance and scales very well.

Index Terms—Keyword search, XML data stream, XML message brokers, compact lowest common ancestor (CLCA).

Ç

1 INTRODUCTION

EXTENSIBLEMarkup Language (XML) is a standard for data
exchange on the Internet. Steam-based XML query

processing is an emerging query paradigm, where XML
data continuously arrives from different sources, and XML
queries are evaluated each time when a new document is
received. An important feature of stream-based processing is
to efficiently process data as it arrives. The XML message
broker is an application of stream-based XML query
processing where messages need to be filtered and trans-
formed on-the-fly. In contrast to publisher-subscriber sys-
tems, XMLmessage brokers select a relevant part of the XML
document, instead of the whole matched XML document.

XML message brokers have attracted great interest from
academic and industrial communities [2], [4] since they
have a lot of applications on the web and have become
mediators between the applications and users. An impor-
tant application is personalized content delivery, where
users register with the broker by providing their interests,
the applications send messages to the broker, the broker
filters these messages based on the user interests, and sends
the personalized relevant data to each user.

The existing XML message brokers [2], [4], [6], [9], [13],
[16], [24], [26], [38] usually use path expressions, such as
XPath/XQuery expressions, to specify user interests. How-
ever, users are usually interested in the content of XML
streams instead of the structures. Moreover, most of internet
users cannot write valid path expressions since 1) XPath/
XQuery is very complicated and hard to comprehend, and
2) XPath/XQuery depends on the underlying, sometimes
complex, schemas which are usually unknown for internet

users. Fortunately, keyword search has been proposed as an
alternative means of querying XML documents [15], [28],
[41], which is simple and yet familiar to most internet users
as it only requires the input of some keywords.

In this paper, we study the problem of keyword-based
XML message brokering, where message brokers store a
large number of user profiles, in the form of XML keyword
queries that capture the data requirement of users/
applications. We propose a KEyword-based XML Message
Broker (called KEMB) to effectively identify users’ inter-
ested data, by addressing the recent trends of seamlessly
integrating databases and information retrieval. KEMB uses
the concept of compact lowest common ancestors (CLCAs) to
effectively identify relevant answers of keyword queries
over XML data streams. KEMB adopts an automaton-based
method to facilitate the processing of large numbers of
keyword queries and employs an optimization technique
by effectively indexing the queries to enhance the perfor-
mance and scalability. To the best of our knowledge, this is
the first attempt to address the problem of keyword-based
XML message brokering. To summarize, we make the
following contributions:

. We propose KEMB to address the problem of
keyword-based XML message brokering with user
subscribed profiles of keyword queries. We adopt
the concept of CLCAs to effectively identify relevant
answers of keyword queries over XML data streams.

. We devise an automaton-based method to process
large numbers of keyword queries. We propose
maximal coverage rules and coverage graph to
accelerate the processing of large numbers of
concurrent keyword queries by effectively indexing
the keyword queries.

. We have conducted an extensive experimental study
and the experimental results show that KEMB
achieves high performance and scales very well.

The remainder of this paper is organized as follows: We
survey related works in Section 2. We present how to
effectively answer keyword search in XML data streams in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011 1035

. The authors are with the Tsinghua National Laboratory for Information
Science and Technology, Department of Computer Science and Technology,
Tsinghua University, Room 10-204, East Main Building, Beijing 100084,
China. E-mail: {liguoliang, fengjh, jianyong, dcszlz}@tsinghua.edu.cn.

Manuscript received 15 Apr. 2008; revised 14 Jan. 2009; accepted 20 Jan.
2010; published online 2 Sept. 2010.
Recommended for acceptance by M. Garofalakis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-04-0201.
Digital Object Identifier no. 10.1109/TKDE.2010.159.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Section 3 and propose an automation-based method to
process large numbers of concurrent keyword queries in
Section 4. We conduct extensive experimental studies in
Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 XML Message Filtering/Brokering

In this section, we focus our discussion on the work that is
most closely related to our approach XML message
brokering. The alternative approaches can be broadly
classified into two categories: the automaton-based meth-
ods and the index-based approaches.

Automaton-based approaches [2], [9], [13], [16] build an
automaton based on the XPath/XQuery expressions pro-
cessed by the system. The transitions in the automaton are
triggered by the tags of the XML document being
processed. XFilter [2] treats each XPath as a finite state
machine (FSM). This approach is not able to fully handle
overlap, especially prefix overlap, between expressions. To
address this problem, YFilter [9] extends XFilter by building
a nondeterministic finite automaton (NFA) for all XPath
expressions in the system. Another automaton-based
approach, XPush [16], lazily constructs a single determinis-
tic pushdown automaton for XPath expressions.

The index-based algorithms [4], [6], [24], [26], [38] take
advantage of precomputed schemes on either XML
documents or XPath expressions. XTrie [6] proposes a
trie-based index structure, which decomposes the XPath
expressions to substrings that only contain parent-child
operators to share common substrings among queries.
Index-Filter [4] addresses the problem of obtaining all
matches for each expression stored in the system. It
answers multiple XML path queries by building indexes
over the XML document elements to avoid processing
large portions of the input document. Filtering by Sequen-
cing Twigs (FiST) [24] is the first-sequence-based XML
document filtering system. FiST encodes XML documents
and twig patterns into Prüfer sequences and holistically
matches twig patterns with coming documents. A branch-
ing-sequencing-based XML message broker is proposed
[38] to match twig patterns holistically.

In addition, Lakshmanan and Parthasarathy [26] pro-
posed an index structure that manages XPath expressions
for solving the filtering problem. Kwon et al. [25] devised a
method to take advantage of overlaps in different XPath
expressions by using a novel encoding scheme. Fabret et al.
[11] provided an implementation that uses a relational
database as the matching engine to address the XML
message brokering problem. Candan et al. [5] presented
AFilter to leverage both prefix and suffix commonalities
over filter statements for reducing the overall filtering time.
Chan and Ni [7] proposed to optimize the performance of
content-based dissemination of XML data by piggybacking
useful annotations to the document being forwarded so that
a downstream router can leverage the processing done by
its upstream router to reduce its own overhead.

However, the path-expressions-based XML message
brokers are powerful but unfriendly for internet users.
First, users are usually interested in the contents of XML
documents instead of the structures. Second, the path
expressions are hard to comprehend for nondatabase users.

For example, XPath/XQuery expressions are fairly compli-
cated to grasp. Finally, the path expressions require the
underlying, sometimes complex, database schemas, which
are usually unaware for internet users. Fortunately, key-
word search [8], [15], [34] provides an alternative means for
querying XML data.

2.2 Keyword Search in XML Data

Keyword search is a proven and popular mechanism for
querying in document systems and World Wide Web and
has been extensively applied to extract useful and relevant
information from the Internet. The database research
community has recently recognized the benefits of keyword
search and has been introducing keyword search capability
into relational databases [1], [3], [10], [14], [18], [20], [33], [36],
[37], [39], XML databases [8], [15], [19], [21], [29], [32], [34],
[40], [41], [42], [35], graphs [17], [22], [31], and heterogenous
data sources [27], [30]. Markowetz et al. [37] process
keyword queries on relational streams, and our method is
orthogonal to [37]. First, [37] focuses on relational data
streams and we emphasize on XML data streams. Second,
[37] considers join conditions and generates operate trees to
find relevant answers. We use stack-based algorithms to
identify compact trees. Third, [37] uses schema information
to generate operator trees while we find answers based on
XML data without using schema information.

The research most related to our work is the computation
of lowest common ancestor (LCAs) to answer keyword
queries in XML data, which has been extensively studied in
[8]. As an extension of LCA, XRank [15], meaningful LCA
(MLCA) [32], smallest LCA (SLCA) [41], grouped distance
minimum connecting tree (GDMCT) [19], valuable LCA
(VLCA) [29], multiway-SLCA (MSLCA) [40], RACE [28],
and XSeek [34] have been proposed to answer keyword
queries in XML data.

There are two baseline approaches for determining query
results adopted in the existing works. One is to return the
subtrees rooted at LCAs (or its variants) [15], [41], named as
subtree return. The other one is to return the paths in the XML
tree from each LCA to its descendants that match an input
keyword [19], [21], namely path return. XSeek [34] generates
return nodes, which can be explicitly inferred from key-
words or dynamically constructed according to the entities
in the data that are relevant to the search. XSeek is not easy
to adapt to XML data streams as it highly depends on the
underlying XML schemas, and thus, it is rather hard to infer
entities from XML data streams. Liu and Chen [35] proposed
a new semantics by considering monotonicity and consis-
tency to reason and identify relevant matches.

Generally, the existing XML keyword search methods
need first index XML elements (as inverted lists), and then,
answer keyword queries based on the indices. They are
hard to adapt to keyword search over XML data streams.
Inspired by path-expressions-based XML message brokers
and keyword search, we study the problem of keyword-
based XML message brokering in this paper.

3 KEYWORD SEARCH IN XML STREAMS

3.1 Notations

For ease of presentation, we briefly outline the XML data
model and introduce some notations in this section. An

1036 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

XML document can be modeled as a rooted, ordered, and
labeled tree. Nodes in this rooted tree correspond to
elements in the XML document. For any two nodes u and
v, u � v (u � v) denotes that node u is an ancestor
(descendant) of node v; u � v denotes that u � v or u ¼ v.
We call node u that directly contains input keywords a
content node. Node u is called to (directly or indirectly)
contain keyword k if u directly contains k or u has a
descendant v that directly contains k. Fig. 1b gives the
tree model of the XML document in Fig. 1a, where b1
denotes the first element of tag b. To support metadata
search, the tag names (e.g., “b” in Fig. 1) are also taken as
keywords.

3.2 Query Semantics

We first briefly review the concepts of LCA [8] and SLCA
[41] and then introduce our methodology CLCA.

Definition 1 (LCA). Given m nodes, n1; n2; . . . ; nm, ca is a
common ancestor (CA) of thesem nodes, if ca is an ancestor of
each ni for 1 � i � m. lca is the LCA of these m nodes,
denoted as lca ¼ LCAðn1; n2; . . . ; nmÞ, if lca is a CA of
these m nodes and 6 9u, u � lca, which is also a CA of these
m nodes.

Existing methods usually compute the LCAs of content
nodes to answer keyword queries in XML documents.
However, it is inefficient to compute all the LCAs as there
may be large numbers of content nodes. To address this
problem, SLCA [41] is proposed to improve search
efficiency. The basic idea behind SLCA is that, if node v
contains all input keywords, its ancestors will be less
meaningful than v. Hence, SLCA introduces the concept of
smallest tree, which is a tree that contains all keywords but
contains no subtrees that also contain all keywords.
However, SLCA wrongly prunes some LCAs, which have
descendants that are also LCAs, and causes a serious
problem—negative, which is not an adhoc problem but
ubiquitous in the XML documents with nested structures.
For example, consider query {a; c; d} and the XML docu-
ment in Fig. 1, the LCAs are a1 and a2, but a1 is a false
negative for SLCA as a1 has a LCA descendant a2.
However, a1 should contribute to an answer as {a1; d1; c2}
contains the three input keywords. To address this problem
and effectively answer queries, we adopt the concept of
CLCA [12], [28].

Definition 2 (CLCA). Given a query K ¼ fk1; k2; . . . ; kmg, and
suppose vi is a content node w.r.t. ki for 1 � i � m. w ¼
LCAðv1; v2; . . . ; vmÞ is said to dominate vi w.r.t. K, if, 8v0j, a
content node w.r.t. kj(j 6¼ i), w � LCAðv01; . . . ; v0i�1; vi;

v0iþ1; . . . ; v
0
mÞ. w is a CLCA w.r.t. K, if w dominates each vi

for 1 � i � m.

A CLCA is the LCA of some relevant nodes, and the
irrelevant nodes cannot share a CLCA. For instance, recall
query {a; c; d} although a1 is the LCA of a1; c1, and d1, it is
not their CLCA as c1 is dominated by a2 while d1 is
dominated by a1. It is easy to figure out that a1 is the CLCA
of a1; d1, and c2; and a2 is the CLCA of a2; c1, and d2. Note
that SLCA wrongly prunes some LCAs which have LCA
descendants and CLCA can avoid such false negatives
introduced by SLCA. Moreover, the false negative problem
is not an adhoc problem but ubiquitous over the XML
documents with nested structures. For example, recall
query {a; c; d}, the CLCAs are a1 and a2, but a1 is not a
valid SLCA as it has a LCA descendant a2.

In terms of “AND” semantics, CLCA is the same as
exclusive LCA (ELCA) [42] and XRank [15]. In terms of
“OR” semantics, they are different and CLCA captures
more compact structures. For example, in Fig. 1, suppose
node e has two children b3 and c3 with keywords b; c,
respectively. Consider “OR” semantics, node e is not an
ELCA for query fa; b; c; dg, but it is a CLCA. We have
compared different semantics [12]. Interested readers are
referred to [12] for more details. In this paper, we use CLCA
semantics and identify path returns (the subtrees rooted at
CLCAs and containing the paths from each CLCA to its
descendants that are dominated by the CLCA) as answers.
For example, the path returns of query fa; c; dg are
<a1><d1=><c2=><=a1> and <a2><c1=><d2=><=a2>.
We first consider “AND” semantics, and then, extend to
support “OR” semantics.

3.3 Keyword Search in XML Streams

In this section, we propose KALE to effectively process
keyword search over XML streams. Different from KEMB,
KALE answers one keyword query at a time, as opposed to
simultaneously answering large numbers of concurrent
keyword queries.

We adopt a stack-based method for event-driven proces-
sing. Arriving XML documents are parsed with an event-
based SAXParser. The events raised during parsing are used
to drive the execution; in particular, 1) “start-of-document”
events driveKALE to initialize the stack, 2) “start-of-element”
events cause KALE to push elements, and 3) “end-of-
element” events drive KALE to pop elements. During
elements processing, if the element in the stack contains all
input keywords, it is a CLCA and we identify the answer. If
the element contains a part of input keywords, KALE takes
the subtree rooted at it as a subtree of its parent, i.e., the
element directly below it in the stack; otherwise, we discard
such element. We present Lemma 1 to identify CLCAs and
construct the answers rooted at CLCAs.

Lemma 1. Given a keyword query in KALE, an element e in the

stack is a CLCA, if during execution, e contains all input

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1037

Fig. 1. (a) An XML Document and (b) the tree model.

keywords. The subtree associated with emust be a path return
which matches the keyword query.

Proof. Given any element in the runtime stack, e, and for
any children of e, d, if d contains all the keywords, the
descendants of d must have been popped out from the
runtime stack. As e contains all keywords, and any
children of e cannot dominate the keywords denoted by
e, e must be a CLCA. Hence, the subtree associated with
e must be a path return. tu

Based on above observations, we devise a stack-based
algorithm in an event-driven fashion (Fig. 2). KALE first
parses the XML documents using SAXParser (line 2), and
then, for each incoming element e, if e is a type of “start-of-
document,” KALE initializes the stack (line 6); if e is a type of
“start-of-element,” KALE pushes e into the stack (line 8); if e
is a type of “end-of-element,” KALE calls its subroutine EoE
to check whether this element is a CLCA (line 10). EoE pops
the topmost element e from the stack (line 2). If e contains all
keywords, emust be a CLCA and the subtree associatedwith
it must be a path return (Lemma 1). EoE outputs the result
(lines 3-5). If e contains some input keywords, the ancestors
of e may constitute an answer with subsequent elements.
EoE takes the subtree associated with e as a subtree of its
parent (lines 6-9). It is easy to figure out that the time
complexity of the algorithm is OðD �NÞ, where D is the
depth of the XMLdocument andN is the number of elements
in the XML document. To further go into our algorithm, we
walk through our algorithm with a running example.

Example 1. Consider the XML document in Fig. 1 and a
keyword query K ¼ fa; c; dg. When elements <a1> and
<b1> arrive, KALE pushes them into the stack. Upon the

coming of <=b1>, as b contains no keyword, KALE pops
it from the stack. Upon the coming of <=d1>, KALE
pops d from the stack. As d is an input keyword, KALE
takes the subtree rooted d as a subtree of its parent a1.
When <=a2> arrives, KALE pops a2 from the stack. As
the subtree associated with a2 contains all keywords, a2
must be a CLCA and the subtree associated with a2 (as
circled by the rectangle) must be a path return (Lemma 1).
We can proceed to walk through our algorithm and get
two results (Fig. 3).

4 KEYWORD-BASED XML MESSAGE BROKER

4.1 Problem Statement

XML message brokers take user profiles of keyword queries
and XML data streams as input, filter XML subtrees that
contain input keywords and satisfy search semantics (such
as CLCA), and finally, deliver the relevant answers to
corresponding users. As XML message brokers should
provide fast, on-the-fly matching of XML subtrees to large
numbers of user profiles, we propose a Keyword-based
XML Message Broker (KEMB) to address this issue. A
formal description of keyword-based XML message brokers
is defined as follows:

Definition 3 (Keyword-based XML Message Brokers).

Given 1) a set Q ¼ fQ1;Q2; . . . ;Qng of keyword queries and
2) a stream of XML documents, compute, for each document
D, the complete set of path returns corresponding to the
subtrees of D, which match Qi for 1 � i � n.

Different from XML document filtering, KEMB should
identify all path returns as query results, which satisfy the
CLCA semantics, as opposed to the whole XML document
that matches user profiles. In contrast to KALE, KEMB
should provide the capability of effectively processing large
numbers of concurrent keyword queries.

Note that, during the KEMB execution to answer multi-
ple keyword queries, although an element e in the runtime
stack is a CLCA for a query, KEMB cannot discard the
elements in the subtree rooted at e as they may answer
other queries with subsequent elements; similarly, even if e
contains all input keywords for query Qi, e may not be a
CLCA of Qi, as one of e’s children may be the CLCA if the
child contains all input keywords of Qi.

For example, consider the four queries in Table 1 and the
XML document in Fig. 1. When <=a2> arrives although a2
contains all the input keywords of Q3 and is a CLCA, its
descendant d2 cannot be discarded as it may answer Q2

with subsequent elements b2 and a2. Upon the coming of

1038 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

Fig. 2. KALE algorithm.

a
b
a a

e
d
a

d
a

f
d
a

d
a

d
a a d a

b
d da

b
a

da
b
a
c

da
b
a c

da
b

da
b
a
d

c a
c

d

da
b

a d a d
c

a d

c

< >a b /b d e / f /f /d< > < > < > < > < > < > < > < >e < > < >b a

< > </ > < >c c d </ >d b</ > </ > < > </ > </ >a c c a

Fig. 3. A running example on query {a; c; d}.

<=b2> although b2 contains “a; d,” b2 is not a CLCA of Q3 as
a2 is the CLCA.

Accordingly, it is not straightforward to process large
numbers of concurrent keyword queries and KEMB raises
new challenges: 1) how to efficiently identify CLCAs and
path returns for large numbers of keyword queries; 2) how to
take full advantage of the overlaps of large numbers of
concurrent keyword queries; and 3) how to discard the
outdated elements in an eager manner. That is, once finding
some outdated elements, which will not answer any query
with subsequent elements, throwing them away from the
runtime stack immediately. We propose Lemma 2 to check
whether an element is a CLCA to address the first
challenge. We will discuss how to address the other two
challenges in Sections 4.2 and 4.3, respectively.

Lemma 2. Given an element in an XML document D, e, and any
keyword query Qi in Q. e is a CLCA w.r.t. Qi, if e contains all
the keywords in Qi after removing e’s children, which also
contain all the keywords in Qi.

Proof. Given an element in the runtime stack, e, if e contains
all keywords in Qi after removing e’s children that also
contain all such keywords, any children of e cannot
dominate those keywords denoted by e. Thus, e must be
a CLCA. tu

Example 2. Consider the four queries in Table 1 and the
XML document in Fig. 1. For query Q2, as a1 contains all
input keywords of Q2 after removing its child b2, which
also contains all the keywords, a1 is a CLCA as
formalized in Lemma 2.

4.2 Query Indexing

To effectively index keyword queries by sharing their
overlaps, in this section, we present an effective mechanism
to process large numbers of keyword queries.

Automaton-based approaches [2], [9], [13], [16] have
been proposed to utilize the overlaps of path queries. We
also adopt nondeterministic finite automaton to process
multiple keyword queries. However, KEMB is different
from the existing path-expressions-based methods as
1) KEMB should effectively and efficiently identify path
returns rooted at CLCAs as the answer; and 2) KEMB is
more difficult than path-expressions-based XML message
brokers as there is no constraint between input keywords in
KEMB while XPath expressions are labeled and ordered,
and must follow XPath-constraints.

KEMB uses an NFA-based approach to identify com-
monalities among keyword queries and share the proces-
sing among them. In our approach, rather than representing
each path query as a FSM individually, KEMB combines all
queries into a single FSM in the form of a NFA. The NFA
has two key features: (1) there is one accepting state for each

keyword query; and (2) the common subqueries of keyword
queries are represented only once.

Fig. 4 shows an example of such an NFA representing
the four queries in Table 1. The NFA represents multiple
keyword queries. Each query in the NFA has only a single
accepting state and the NFA contains multiple accepting
states. Note that the common subqueries are shared. A
circle denotes a state and each state is assigned with a
unique number (SID), the shaded circle represents the
initial state, and two concentric circles denote an accepting
state and such states are also marked with the queries they
represent [9]. A directed edge represents a transition, and
the symbol on an edge represents the input that triggers the
transition [9]. The output function of the NFA is a mapping
from the set of accepting states to a partitioning of the
queries in the system, where each partition contains the
queries that share the accepting state [9]. Once arriving at
an accepting state, we identify path returns and deliver them
to corresponding users as stated in Lemma 2.

Having presented the basic NFA model used by KEMB,
we describe an incremental process for NFA construction
and maintenance. Given a keyword query Qi, we construct
an FSM as follows: Each of its subsets represents a state. The
empty set represents the initial state andQi itself denotes an
accepting state. Given two subsets of Qi, S1 and S2, if S1 	
S2 and jS1j ¼ jS2j � 1, there is a transition from S1 to S2

with the trigger of keyword k, where k 62 S1 and k 2 S2, i.e.,
fkg ¼ S2 � S1. Given multiple keyword queries, we first
create their corresponding FSMs individually, and then,
combine them by sharing the common states to construct
the NFA. Note that each state in the combined NFA has a
self-loop (which denotes that it can transit to itself) with a
trigger of “�” as shown in Fig. 4, which will be explained in
detail later. It is easy to figure out that NFA supports
update, insertion, and deletion of keyword queries well. For
deletion of a query, we first locate the accepting state for the
query. Then, we remove the previous states of the accepting
state iteratively. For each of the previous states, if it is not an
accepting state and has only one transition, we remove it
from the NFA and process its previous states similarly;
otherwise, we keep it and terminate.

Having described the logical construction of the NFA,
we present how to implement the NFA. For efficient
execution, the NFA is implemented using a hash table-
based approach, which has been shown to have low time

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1039

TABLE 1
User Subscribed Profiles, Q

a

s

b

c

d

ef

a,b

a,c

a,d

b,c

b,d

e,f

a,b,c

a,b,db

a

c
d
e

a

a

a

b

b

b

f

f

e

c

d

d

c

c

b

b

a

a

d

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n
*

n

Fig. 4. An NFA on top of queries in Table 1.

complexity for inserting/deleting states, inserting/deleting

transitions, and performing transitions [9]. In our approach,

a data structure is created for each state, including: 1) the

SID of the state; and 2) a small hash table that contains all

legal transitions from the state. The transition hash table for

each state contains [keyword, SID] pairs where keyword (the

key) indicates the trigger of the outgoing transition and SID

identifies the child state that the transition can lead to.
KEMB executes the NFA in an event-driven fashion; as

an arriving document is parsed, the events raised by the
parser callback the handlers and drive the transitions in the
NFA. KEMB employs a stack-based mechanism to execute
the event-based NFA. In contrast to KALE, KEMB maintains
“active states” associated with an element in the runtime
stack, which may contribute to answers with subsequent
elements. Different from YFilter, KEMB avoids backtracking
to process branches and predicates. KEMB employs the
following handlers:

1. Start Document Handler: When an XML document
arrives to be parsed, the NFA execution begins at the
initial state.

2. Start Element Handler: When a new element is read
from the stream, the NFA execution transits the
initial state to “active states” with the trigger of
keywords directly contained in the element. KEMB
pushes the element and “active states” into the
runtime stack. Note that the initial state is also
added to the set of “active states” as there is a self-
loop with trigger of “�.” This is because some
subsequent elements may trigger the initial state to
other states and thus may generate potential query
results. For example, in Fig. 5, when <b1> arrives,
KEMB pushes b1 associated with two active states 1
and 3 into the stack. As some subsequent elements,
such as e and f , may transit the initial state to states
6, 7, 13 and get an answer of query Q4.

3. End Element Handler: When an “end-of-element” is
encountered, KEMB checks whether there are some
accepting states associated with the topmost element
e in the stack. For each accepting state (if any), KEMB
checks whether e is a CLCA based on Lemma 2. If it
is, KEMB constructs path return and delivers the
result to corresponding users. It is important to note

that, unlike a traditional NFA, whose goal is to find
one accepting state for an input, the NFA execution
must find all matching queries. Thus, even after an
accepting state has been reached for a document, the
execution must continue until the document has
been completely processed. Then, KEMB pops the
topmost element e from the stack. If the subtree,
denoted as T , associated with e contains input
keywords, KEMB takes T as a subtree of e’s parent,
p, i.e, the element directly below it in the stack.
Subsequently, KEMB updates “active states” asso-
ciated with p as follows: For each keyword in T , k,
and each active state associated with p, �, KEMB
checks: 1) k is looked up in �’s hash table. If it is
present, the corresponding SID is added to a set of
“target states,” which will be the “active states” for
the next element. 2) As there is a self-loop for symbol
“�,” � is also added to the set of “target states,” as
some subsequent elements may trigger the state to
other active states. 3) After all current active states
have been checked in this manner, the set of “target
states” is pushed onto the top of the runtime stack.
They then become “active states” for the next event.

Example 3. Consider the XML document in Fig. 1 and user
profiles in Table 1. When <b1> arrives, KEMB pushes b1
associated with two active states 1 and 3 into the stack.
When <=b1> arrives, KEMB pops b1 from the stack and
takes it as a subtree of its parent a1. Then, KEMB updates
the active states w.r.t. a1, i.e., {1,2}, by triggering the two
states with keyword b. We get two target states 3 and 8
by, respectively, triggering states 1 and 2 with b. We note
that each state has a self-loop marked with “�” as
subsequent elements may trigger the state to some other
active states. Thus, we should keep the original states 1
and 2 active. Because other elements, such as d, may
transit states 1 and 2 to active states 5 and 10,
respectively. Accordingly, we get the target states,
f1; 2; 3; 8g, i.e., “active states” for the next element a.
Similarly, we proceed to walk through the running
example as illustrated in Fig. 5.

The order of keywords to trigger the active states is
nondetermined, that is, the elements with different order

1040 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

Fig. 5. A running example of KEMB on queries in Table 1.

will not result in different “target states.” Lemma 3
guarantees the correctness. In this paper, we select key-
words in document order to transit “active states.”

Lemma 3. Consider a set of active states A (including the initial
state), T 1 and T 2 are target sets by triggering A with ordered
keywords L1 ¼ ‘‘k1; . . . ; ki; . . . ; kj; . . . ; kn’’ and L2 ¼ ‘‘k1;
. . . ; kj; . . . ; ki; . . . ; kn; ’’ respectively, we have T 1 ¼ T 2.

Proof. Suppose the keyword set associated with A is K, and
the keyword sets w.r.t. L1 and L2 are K1 and K2,
respectively. It is easy to figure out T 1 and T 2 are,
respectively, the sets of the states for all the subsets of
K [K1 and K [K2. As K1 ¼ K2, K [K1 ¼ K [K2. Hence,
we have T 1 ¼ T 2. tu

For each element, when pushing it into the stack, we
need generate its active states; when popping it from the
stack, we need compute its parent’s active states. Thus,
the time complexity of KEMB is OðD �N �ASÞ, where AS
is the average number of active states for each element, D
is the depth of the XML document, and N is the number
of elements in the XML document.

Note that if the number of keywords in a query is too
large, for example, larger than 10, KEMB is inefficient and
we will not add it into the NFA. Instead, we use KALE to
answer such queries, which need not construct an NFA.
Thus, for the queries with small lengths, we combine them
into an NFA and use KEMB to answer the queries. For the
queries with large lengths, we use KALE.

The big difference between KALE and KEMB is that
1) KEMB should maintain “active states” during the NFA
execution; and 2) when an “end-of-element,” e, arrives,
KEMB checks whether there are some accepting states
associated with e. If so, KEMB identifies CLCAs, constructs
path returns, and delivers the results to corresponding users.
However, even if e is a CLCA, KEMB cannot discard its
descendants as they may answer other queries with sub-
sequent elements. Recall Example 3, consider that <=a2>
arrives although a2 is a CLCAw.r.t.Q3, we cannot discard d2
as it will answer Q2 with subsequent elements a2 and b2. In
addition, consider that <=b2> arrives although b2 contains a
and d, it is not a CLCA of Q2 as its child a2 is the CLCA.

KEMB is suboptimal as during NFA execution it cannot
discard outdated elements, which will not answer any query
with subsequent elements, in an eager manner. That is, once
finding outdated elements, KEMB does not need to
maintain useless elements and should throw them away
from the stack. For example, recall Example 3, when <=d1>
arrives, as d1 is a CLCA w.r.t. Q4, we discard e and f as they
will not answer any query with subsequent elements.
Hence, how to discard outdated elements in an eager
manner is a challenge. To address this issue, we introduce
an effective strategy in Section 4.3.

4.3 Maximal Coverage Rule

In this section, we devise a novel strategy to identify and
discard outdated elements and corresponding states in an
eager manner. We note that this strategy can facilitate the
processing of large numbers of keyword queries, as KEMB
need not maintain the outdated elements and transit the
useless states in the runtime stack. We will experimentally

prove that this strategy can improve search performance in
Section 5.

For ease of presentation, we begin by introducing some
notations. Given a set Q ¼ fQ1;Q2; . . . ;Qng of keyword
queries, an XML data stream D and an element in D, e, let
� ¼ [n

i¼1Qi denote the input keyword set and CK(e) denote
the set of keywords which are contained in the subtree
rooted at e. 8k 2 �, Sk ¼ fQijk 2 Qig, which is the set of
keyword queries that contain input keyword k.
Ck ¼ [Qi2Sk

Qi, which denotes the set of input keywords that
are contained in a same keyword query with input keyword
k. Ck is called a coverage for k. Kk ¼ fljl 2 � and Cl ¼ Ckg,
which is a set of keywords with the same coverage. For
example, considering the four keyword queries in Table 1,
we have � ¼ fa; b; c; d; e; fg, Sd ¼ fQ2;Q3g, Cd ¼ fa; b; dg,
Ce ¼ fe; fg, Cf ¼ fe; fg, and Kk ¼ fe; fg. Consider the XML
document in Fig. 1, CKðd1Þ ¼ fd; e; fg. CKða2Þ ¼ fa; c; dg.

Based on above notations, we are ready to introduce the
concept of maximal coverage rule (MCR).

Definition 4 (Maximal Coverage Rule). Given a set Q ¼
fQ1;Q2; . . . ;Qng of keyword queries. 8k 2 �, Ck ! k is called

a coverage rule. Ck) Kk is called a maximal coverage rule.

Lemma 4. Given two keywords ki and kj, if Cki ¼ Ckj , we have,
1) Kki ¼ Kkj and 2) Cki) Kki
 Ckj) Kkj .

Proof. We first prove 1), and then, 2) is obvious.
We begin by proving that 8k 2 Kki , k 2 Kkj as follows:

If k 2 Kki , we have Ck ¼ Cki based on Definition 4. Thus,
Ck ¼ Ckj ¼ Cki . Hence, k 2 Kkj based on Definition 4.
Similarly, we can prove that 8k 2 Kkj , k 2 Kki . Therefore,
Kki ¼ Kkj . tu

Note that if Cki ¼ Ckj , then Kki ¼ Kkj (Lemma 4). Thus,
Cki) Kki is equivalent to Ckj) Kkj . We denote Ck) Kk as
C) K if there is no ambiguous in the context.

The novel idea behind MCR is that, given an input
keyword k, only the input keywords in Ck are highly
relevant to k. Similarly, given a coverage Ck, only the
keywords in Kk are highly relevant to Ck. Given an MCR

C) K, if element e in the runtime stack contains all
keywords in C (CKðeÞ � C), we can discard e descendant d if
CKðdÞ � K, as d will not contribute to any answer with
subsequent elements. This is because CKðeÞ contains all
related keywords of CKðdÞ and the answers for d must be in
the subtree rooted at e. On the contrary, we cannot discard
them as they may contribute to other potential answers.
Therefore, we can use such features to identify the outdated
elements. For example, recall Example 3, consider that
<=d1> arrives, as CKðd1Þ ¼ fd; e; fg, CKðe1Þ ¼ feg, CKðf1Þ ¼
ffg and there is an MCR fe; fg) fe; fg, e1 and f1 can be
discarded as they will not answer any keyword query.

Based on above observations, we propose Lemma 5 to
discard the outdated elements in an eager manner. If some
elements do not satisfy the conditions of Lemma 5, we must
keep them in the runtime stack as they may contribute to
other answers.

Lemma 5. Given an element of an XML data stream, e, KEMB

can directly discard e’s descendant d in an eager manner, if

9 C) K, 1) CKðeÞ � C and 2) CKðdÞ � K.

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1041

Proof. Suppose k 2 K, we have C ¼ Ck. As Sk ¼ fQijk 2 Qig
and Ck ¼ [Qi2Sk

Qi, all the keyword queries which contain
k must be in Sk and Ck contains all the corresponding
keywords. As CKðeÞ � C and CKðdÞ � K, d cannot answer
any keyword query with subsequent elements, as the
answers associated with d have been already identified.
Therefore, we can discard d safely. tu

To effectively generate MCRs, we first construct
the coverage rules for every k 2 �, and then, merge the
coverage rules with the same coverage to generate the
MCRs. For example, recall the four queries in Table 1.
Consider keyword a, we have Ca ¼ Q1 [Q2 [Q3 ¼ fa; b;
c; d} and fa; b; c; dg ! a. Similarly, fa; b; c; dg ! b, fa;
b; cg ! c, fa; b; dg ! d, fe; fg ! e, and fe; fg ! f . We
merge the coverage rules with the same coverage to
generate MCRs, fa; b; c; dg) fa; bg, fa; b; cg) fcg, fa; b;
dg) fdg, and fe; fg) fe; fg. It is easy to figure out that
the number of MCRs is no larger than j�j.

We propose an effective algorithm MCRGen to generate
MCRs (Fig. 7). MCRGen first initializes a set (denoted as
MCRSet) of MCRs as � (line 2). Then, for each input
keyword, MCRGen constructs its coverage C (line 5-line 7),
if there is a same coverage in MCRSet, we update the
coverage rule by inserting the keyword into the coverage
rule (line 9); otherwise, MCRGen inserts it into MCRSet
(line 11). It is easy to figure out that the complexity of the
algorithm is Oðj [Qij2Þ.

4.4 Coverage Graph

During the NFA execution, if finding an accepting state, we
can utilize Lemma 5 to discard outdated elements. How-
ever, given an element e in the runtime stack, it is still a
challenge to efficiently identify the relevant MCRs, the
coverages of which are contained by CKðeÞ

�
C � CKðeÞ

�
. To

address this issue, we propose to construct a coverage graph.
For ease of presentation, we introduce some notations.

C) K is called to cover Qi 2 Q if Qi � C; C) K is called to
directly cover Qi, if Qi � C and 6 9C0) K0, Qi � C0 and
C0 	 C. C) K is called to be covered by a set of keywords S,
if C � S. Given two MCRs, Ru ¼ Cu) Ku and Rv ¼
Cv) Kv, Ru is called to contain Rv if Cv 	 Cu. Ru is called
to directly contain Rv if Cv 	 Cu and 6 9Rw ¼ Cw) Kw, Cv 	
Cw and Cw 	 Cu. Based on these notations, we introduce the
concept of coverage graph.

Definition 5 (Coverage Graph). The coverage graph is a
directed acyclic graph, where vertexes are MCRs. Given two
vertexes u and v, there is an arc from u to v, iff, theMCR w.r.t.
u, denoted as Ru, directly contains Rv. It is obvious that there
is a path from u to v, denoted as u e> v, iff, Ru contains Rv.

To efficiently construct the coverage graph, we first sort
MCRs according to their sizes in descending order, where
the size of an MCR C) K refers to the number of keywords
in C. We then always select MCRmax with maximal size and
insert it into the coverage graph as follows: We add a new
vertex ! which maintains MCRmax into the coverage graph,
and identify the vertexes, the MCRs of which directly
containMCRmax. For each such vertex v, we add an arc from
v to !. Fig. 6b gives the coverage graph on top of queries in
Table 1.

Note that we discard outdated elements only if there are
some accepting states for an element in the runtime stack.
Thus, in the NFA, each accepting state preserves some
pointers to the vertexes in the coverage graph, the MCRs
of which directly cover the keyword query for the
accepting state (the dotted lines in Fig. 6). Such vertexes
are called source vertexes for the accepting state. Given a
source vertex s, we classify MCRs in the coverage graph
into three categories:

1042 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

Fig. 6. (a) An NFA and (b) the coverage graph.

Fig. 7. MCRGen algorithm.

1. O ¼ fRdjs e> dg. Rd 2 O may be a relevant MCR.
Moreover, there is a salient feature that, if Rd is a
relevantMCR,Rrð8r; d e> rÞmust be a relevantMCR.

2. I ¼ fRaja e> sg. Ra 2 I may be a relevant MCR.
There is a key feature that, if Ra is not a relevant
MCR, Rv(8v; v e> a) cannot be a relevant MCR for s.

3. N ¼ fRuju 6e> s and s 6e>ug. Ru 2 N cannot be a
relevant MCR for s.

Based on these categories, we only need to check

whether the MCRs of vertexes in {uju e> s or s e> u} are

relevant MCRs. Moreover, we can skip many irrelevant

MCRs based on 1 and 2 so as to efficiently identify relevant

MCRs. We devise an effective algorithm FindRMCR to

identify relevant MCRs according to the three categories as

shown in Fig. 8.
Given an accepting state � and an element in the runtime

stack e, FindRMCR first locates to the source vertexes
according to the NFA and the coverage graph based on the
links as illustrated in Fig. 8 (line 3). Then, for each source
vertex s, if Cs � CKðeÞ (Cs) Ks denotes the MCR for s),
the MCRs of such vertexes in fRdjs e> dg must be relevant
MCRs (line 6), and FindRMCR identifies other relevant
MCRs, the corresponding vertexes of which have paths to e,
calling its subroutine FindAncestors (line 7); otherwise,
identifies other MCRs by calling subroutine FindDescen-

dants (line 9).

FindAncestors identifies relevant MCRs among the
vertexes which have paths to e iteratively. It first finds the
vertexes (line 2), which have arcs to e, and then, for each
such vertex a, if Ca � CKðeÞ, FindAncestors adds Ra into the
result set (line 5) and identifies other relevant MCRs by
calling itself (line 6); otherwise, there are no relevant MCRs.
Similar to FindAncestors, FindDescendants also identifies
relevant MCRs iteratively. It first finds the vertexes (e has
arcs to such vertexes in line 2), and then, for each such
vertex d, if Cd � CKðeÞ, FindAncestors adds the relevant
MCRs in fRd0 jd e> d0g into the result set (line 5); otherwise,
identifies other relevant MCRs by calling itself (line 7). The
complexity of FindAncestors is OðDCGÞ, where DCG is the
depth of the coverage graph that is no larger than the
number of queries. The complexity of FindAncestors is
OðCGÞ, where CG is the number of nodes in the coverage
graph. The complexity of FindRMCR is OðAV � ðCG þ
DCGÞÞ, where AV is the average number of vertexes of a
given state.

4.4.1 Update of Coverage Graph

When a query is added, for each query keyword, we first
locate the maximal coverage rule for the keyword. If the
coverage does not contain the query keyword, we update
the coverage by adding the query keyword; otherwise, we
need not do any update. When a query is removed, for each
query keyword, we first locate the maximal coverage rule
for the keyword. If the occurrence number of the keyword
in the coverage is larger than one (the occurrence number is
the number of queries than contain the keyword, which can
be kept in the coverage graph), we decrease the occurrence
number by one; otherwise, we update the coverage by
removing the query keyword. If a maximal coverage rule is
updated, we only need update its associated edges on the
coverage graph.

4.5 KEMB Algorithm

We present how to incorporate MCRs and the coverage
graph into KEMB so as to efficiently discard outdated
elements in an eager manner. In contrast to KALE algorithm,
during the NFA execution, when an “end-of-element” e
arrives, KEMB checks whether there are accepting states for
e. If so, for each accepting state �, KEMB checks whether e is
a CLCA for �, constructs path returns, and delivers the result
to corresponding users. Then, KEMB locates to the source
vertexes and identifies the relevant MCRs based on the
coverage graph. If e and each relevantMCR satisfy Lemma 5,
KEMB discards outdated elements.

We devise an effective algorithm KEMB to answer large
numbers of concurrent keyword queries (Fig. 10). KEMB
first constructs the NFA, generates MCRs, and constructs
the coverage graph in line 2 (i.e., the step ofQuery Indexing
in KEMB, which can be performed offline). Then, KEMB
parses the XML document (line 3). For each incoming event,
if it is “start-of-document,” KEMB initializes the stack and
begins at the initial state (line 7; if it is “start-of-element,”
pushes e and “active states” by triggering the initial state
with keywords directly contained in e (line 9); if it is “end-
of-element,” calls its subroutine EoEþ to identify results and
discards outdated elements (line 11). EoEþ first pops the
topmost element e (line 2). For each accepting state of e,

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1043

Fig. 8. FindRMCR algorithm.

denoted by �, KEMB constructs the path returns rooted at e
and delivers the results to corresponding users (line 4),
identifies the relevant MCRs (line 5), and discards outdated
elements as stated in Lemma 5 (line 6). Then, EoEþ takes T e

(the subtree rooted at e by eliminating the outdated
elements) as a subtree of the top element (line 7) and
triggers each active state of the topmost element with
keywords contained in K to generate “active states” for the
next element, where K is the keyword set contained in T e

(lines 9-11).
In the algorithm, we need visit each XML element and

generate active states. Then, for each accepting state, we
need discard outdated elements, thus the complexity is

O
�
D �N �AS þAns �AV � ðCGþDCGÞ

�
, where D is the

depth of the input XML document, N is the number of XML
elements, AS is the average number of active states for each
element, Ans is the number of answers, AV is the average
number of source vertexes for each accepting state, CG is
the number of nodes in the coverage graph, and DCG is the
depth of the coverage graph. Having walked through the
logical construction and physical implementation of KEMB,
we give a running example.

Example 4. Recall Example 3, when <=d1> arrives, as state
13 is an accepting state, KEMB identifies MCR fe; fg)
fe; fg in the coverage graph and discards elements e; f .
When <=b2> arrives, as states 10,14,15 are accepting
states, KEMB identifies MCRs fa; b; cg) fcg, fa; b;
c; dg) fa; bg, fa; b; dg) fdg and discards a; b; c; d. We
walk through the example as shown in Fig. 9. We see that
our strategy discards many outdated elements by
comparing Fig. 9 with Fig. 5. We will experimentally
show the benefits of our methods in Section 5.

4.6 Supporting OR Semantics Efficiently

In this section, we discuss how to extend our method to
support the OR semantics efficiently. In the runtime stack,
the above-discussed method can generate all CLCAs in
terms of the AND semantics. To support the OR semantics,
when finding a CLCA in the runtime stack satisfying the
AND semantics, we check each of its children c as follows: If
we remove all of c’s descendants, the CLCA still contains
the same keywords, then c may be a CLCA in terms of the
OR semantics [12], and we still keep the subtree rooted at c
in the stack. We will compute CLCAs in terms of the OR
semantics under the subtree rooted at c later. After
generating all CLCAs satisfying the AND semantics, the
runtime stack still contains some keyword information, and
we identify other CLCAs in terms of the OR semantics as

1044 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

Fig. 10. KEMB algorithm.

Fig. 9. A running example of KEMB with discarding outdated elements on queries in Table 1.

TABLE 2
Characteristics of Three DTDs

follows: For each element in the stack from the bottom to
the top, e, if we remove its children which contain the same
keywords as e, e still contains the same keywords, then e

must be a CLCA in terms of the OR semantics. We generate
the path tree rooted at e including e’s descendants which
contain smaller number of distinct keywords than e [12],
and take it as an answer. Similarly, we can generate all
CLCAs in terms of the OR semantics.

5 EXPERIMENT STUDY

In this section, we examine the performance of KEMB. We
employed the news industry text format (NITF) DTD1 as a
data set. We used IBM’s XML Generator2 to generate 100
XML documents based on the NITF DTD. The sizes of all
the generated XML documents are in the range of 100-2,000
KB. We also used the real data set TreeBank3 and DBLP4 in
our experiments. For DBLP and TreeBank data sets, we
extracted data from the XML document to form 100 small
documents. The sizes of the extracted documents are about
1-10 MB.

We used the selected DTDs, NITF, DBLP, and TreeBank
(extracted from the data set) to generate the workloads for
our experiments. We used the tools provided in YFilter [9]
to generate XPath queries. Some characteristics of these
DTDs are shown in Table 2. Note that all of the DTDs
allow an infinite level of nesting due to loops involving
multiple elements.

Given a DTD, the tools used to run the experiments
include a DTD parser, a query generator, an XML generator,
and an event-based XML parser supporting the SAX
interface. The DTD parser which was developed using a
WUTKA DTD parser5 outputs parent-child relationships
between elements, and statistical information for each

element including the probability of an attribute occurring
in an element (randomly chosen between 0 and 1) and the
maximum number of values an element or an attribute can
take (randomly chosen between 1 and 20). The output of the
DTD parser is used by the query generator and the
document generator. YFilter provides a query generator
that creates a set of XPath queries based on the workload
parameters and we used the default parameters in our
experiments. For each data set, we generated 10 sets of
XPath queries by varying query numbers from 10,000 to
100,000. Then, we generated the keyword queries by taking
terms of each XPath query as keywords of the transformed
keyword query.

To offer insight into the comparison between XPath-
based methods and keyword-based methods, we compared
KEMB with YFilter [9] to show the benefits of our method.
We evaluated YFilter on the XPath queries and KEMB on
the corresponding keyword queries.

All the algorithms were implemented in Java. The codes
of YFilter were provided by YFilter group.6 We ran all the
experiments on an Intel(R) Core(TM) 2.0 GHz CPU machine
with 2 GB memory running windows XP.

5.1 Indexing Keyword Queries

This section evaluates the performance of indexing large
numbers of keyword queries. We show the elapsed time of
indexing keyword queries (including constructing the NFA
and generating MCRs and the coverage graph) in Fig. 11.

We observe that the elapsed time of KEMB scales well
with the number of keyword queries. KEMB also outper-
forms YFilter. Because YFilter has to deal with the branch
nodes, predicates, wildcard, “/” and “//” in XPath queries
while KEMB only needs to index simple input keywords.
Moreover, KEMB can share many overlaps among keyword
queries, and thus, achieves much better performance. For
example, in Fig. 11, the elapsed time of indexing keyword
queries on NITF data set varies a little with the increase of

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1045

Fig. 11. Elapsed time of indexing queries. (a) # of queries (*10,000) - NITF. (b) # of queries (*10,000) - DBLP. (c) # of queries (*10,000) - TreeBank.

Fig. 12. Elapsed time of the NFA execution. (a) # of queries (*10,000) - NITF. (b) # of queries (*10,000) - DBLP. (c) # of queries (*10,000) - TreeBank

1. http://www.nitf.org/.
2. http://www.alphaworks.ibm.com/tech/xmlgenerator.
3. http://www.cs.washington.edu/research/xmldata sets/.
4. http://dblp.uni-trier.de/xml.
5. http://www.wutka.com/dtdparser.html. 6. http://yfilter.cs.umass.edu/.

the number of keyword queries; while YFilter performs
substantially worse than KEMB as it needs to index the
XPath queries and cannot share the overlaps of keywords.

5.2 Efficiency of KEMB

This section evaluates the filter efficiency ofKEMB onvarious
data sets. We computed the elapsed time of KEMB with/
withoutdiscardingelements, andcomparedwithYFilter. The
experimental results obtainedare shown inFig. 12.Moreover,
we give the number of discarded elements in Fig. 13.

We see that KEMB scales well with the number of
keyword queries. We note that KEMB with discarding
elements based on MCRs and the coverage graph indeed
improves the performance. Because KEMB need not
maintain the outdated elements and transit the useless
states. For example, on TreeBank data set, KEMB with
discarding elements only costs 400 ms to answer 100,000
keyword queries and discards about 45,000 outdated
elements.7 While YFilter costs nearly 2,000 ms. KEMB
achieves much higher performance than YFilter, as it is
rather expensive to deal with complicated XPath queries,
which involve branch nodes, predicates, wildcard “�,”
double slash “//,” and slash “/.”

To offer insight into the performance, we evaluated our
algorithms by varying the number of keywords. We

grouped the generated keyword queries according to the
number of keywords in each query. There are eight groups
with the numbers of keywords varying from 3 to 10. Each
group has 20,000 queries. Fig. 14 gives the elapsed time of
processing such queries and Fig. 15 illustrates the number
of discarded elements.

We observe that with the increase of the numbers of
input keywords, KEMB can discard more outdates ele-
ments, and thus, achieves much higher efficiency than
YFilter. This is because the keyword queries with more
keywords will result in more relevant elements, and thus,
more outdated elements will be involved. Thus, KEMB
varies slightly with the increase of the numbers of input
keywords, while the performance of YFilter drops down
sharply. For example, on DBLP data set, KEMB only costs
420 ms when the number of keywords is 10, while YFilter

1046 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

Fig. 13. # of discarded elements. (a) # of queries (*10,000) - NITF. (b) # of queries (*10,000) - DBLP. (c) # of queries (*10,000) - TreeBank.

Fig. 14. Elapsed time by varying # of keywords (# of Queries ¼ 20;000). (a) # of keywords - NITF. (b) # of keywords - DBLP. (c) # of keywords -
TreeBank.

Fig. 15. # of discarded elements by varying # of keywords (# of Queries ¼ 20;000). (a) # of keywords - NITF. (b) # of keywords - DBLP. (c) # of
keywords - TreeBank.

Fig. 16. Elapsed time of the NFA execution (DBLP).
7. The numbers of elements in the selected documents on NITF, DBLP,

and TreeBank are, respectively, 19340, 151003, and 170164.

costs nearly 1,000 ms. Moreover, KEMB can discard 13,000
outdated elements.

We also used the DBLP data set (470 MB) as a single,
really huge document to test our algorithm. Fig. 16 gives the
experimental results. We can see that our method can
efficiently identify relevant answers on a large document.

5.3 Effectiveness of KEMB

This section evaluates the filter effectiveness of KEMB on
various data sets. We took the results of XPath queries as
the accurate answers to evaluate the effectiveness. We used
the well-known metrics precision and recall to evaluate
our algorithms. Fig. 17 illustrates the precision of KEMB by
varying different numbers of queries and Fig. 18 shows the
precision with different numbers of keywords. We observe
that KEMB achieves high precision on NITF and DBLP
data sets and gets good quality on TreeBank data set.
Although KEMB has few false positives since keyword
queries are not as powerful as XPath queries, keyword
search is user friendly.

In addition,we compared ourmethodwith SLCA [41].We
evaluate the answer by human judgement. A group of users
(20 people from different research areas) participated in the
user study.An answer is deemed to be relevant if themajority
of the users think it is relevant. To assess recall, the users
browsed the entire XMLdocument to verifywhether relevant
results were missed by the search. As the XML documents
used in this experiment were small (about 1 MB), the users
can compute the real recall through browsing the data.
Table 3 gives the average precision and recall for all queries.
We note that our method outperforms SLCA as our method
can avoid false negatives introduced by SLCA, especially on
TreeBank data set with highly nested structures.

5.4 Usability Study

To evaluate the usability of different algorithms, we used
the INEX 2005 data set.8 The INEX corpus is composed of

the full texts, marked up in XML, consisting of 16,819 arti-
cles of the IEEE Computer Society’s publications from
12 magazines and six transactions, covering the period of
1995-2004, and totaling 735 megabytes in size. The collec-
tion has a suitably complex XML structure (192 different
models in DTD) and contains scientific articles of varying
length. On average an article contains 1,532 XML nodes,
where the average depth of a node is 6.9.

The INEX 2005 collection consists of 47 content and
structure (CAS) topics and 40 Content-Only + Structure
(CO+S) topics. Here, we focus on the CO+S topics. For each
CO+S topic, we generated a keyword query by selecting
some keywords from the title. For example, we generate the
keyword query of topic 231 as “markov chains graph
related algorithms.”

INEX 2005 proposes a new set of measures, the eXtended
Cumulated Gain (XCG) measures. The XCG measures are a
family of evaluation measures that are an extension of the
cumulated gain (CG)-based metrics and which aim to
consider the dependency of XML elements (e.g., overlap
and near misses) within the evaluation [23]. We used the
normalized extended cumulated gain (nxCG) to evaluate an
answer.We comparedwith the best results at INEX 2005 and
gave the virtual rank of our method at INEX 2005. Table 4
illustrates the results. We see that our method achieves high
performance at the Focused task. This is because the Focused
retrieval requires the results with the right granularity, and
without overlap, and our method generates overlap-free
subtrees rooted CLCAs as answers. In addition, CLCAs
emphasize on the structural information to answer keyword

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1047

TABLE 3
Precision/Recall on Various Data Sets

Fig. 17. Precision on different numbers of queries. (a) # of queries (*10,000) - NITF. (b) # of queries (*10,000) - DBLP. (c) # of queries (*10,000) -
TreeBank.

Fig. 18. Precision on different numbers of keywords (# of Queries ¼ 20;000). (a) # of keywords - NITF. (b) # of keywords - DBLP. (c) # of keywords -
TreeBank.

8. http://inex.is.informatik.uni-duisburg.de/2005/.

queries and the Focused retrieval strategy benefits more
from the structural hints.

6 CONCLUSIONS

In this paper, we have studied the problem of keyword-
based XMLmessage brokering with user subscribed profiles
of keyword queries. We have presented an algorithm KALE

to efficiently and effectively answer keyword queries in
XML data streams. We have devised an automaton-based
algorithm KEMB to answer large numbers of concurrent
keyword queries. We have demonstrated techniques to
effectively index large numbers of queries by sharing the
overlaps for improving the performance and scalability. We
have demonstrated an effective mechanism to discard
outdated elements in an eager manner. We have conducted
an extensive experimental study, and the results show that
KEMB achieves high performance and scales very well.

ACKNOWLEDGMENTS

This work is partly supported by the National Natural
Science Foundation of China under Grant No. 61003004, the
NationalGrandFundamentalResearch973ProgramofChina
under Grant No. 2011CB302206, and National S & T Major
Project of China under Grant No. 2011ZX01042-001-002.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A System for
Keyword-Based Search over Relational Databases,” Proc. Int’l
Conf. Data Eng. (ICDE), pp. 5-16, 2002.

[2] M. Altinel and M.J. Franklin, “Efficient Filtering of XML
Documents for Selective Dissemination of Information,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), pp. 53-64, 2000.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Databases
Using Banks,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 431-440, 2002.

[4] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava, “Navigation-
vs. Index-Based XML Multi-Query Processing,” Proc. Int’l Conf.
Data Eng. (ICDE), pp. 139-150, 2003.

[5] K.S. Candan et al, “Afilter: Adaptable XML Filtering with Prefix-
Caching and Suffix-Clustering,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 559-570, 2006.

[6] C.Y. Chan, P. Felber, M.N. Garofalakis, and R. Rastogi, “Efficient
Filtering of XML Documents with XPath Expressions,” Proc. Int’l
Conf. Data Eng. (ICDE), pp. 235-244, 2002.

[7] C.-Y. Chan and Y. Ni, “Efficient XML Data Dissemination with
Piggybacking,” Proc. ACM SIGMOD, 2007.

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “XSearch: A Semantic
Search Engine for XML,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2003.

[9] Y. Diao, P.M. Fischer, M.J. Franklin, and R. To, “YFilter: Efficient
and Scalable Filtering of XML Documents,” Proc. Int’l Conf. Data
Eng. (ICDE), 2002.

[10] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
Top-k Min-Cost Connected Trees in Databases,” Proc. Int’l Conf.
Data Eng. (ICDE), 2007.

[11] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, and D.
Shasha, “Implementing a Scalable XML Publish/Subscribe System
Using a Relational Database System,” Proc. ACM SIGMOD,
pp. 479-490, 2004.

[12] J. Feng, G. Li, J. Wang, and L. Zhou, “Finding and Ranking
Compact Connected Trees for Effective Keyword Proximity
Search in XML Documents,” Proc. Information System, http://dx.
doi.org/10.1016/j.is.2009.05.004, 2009.

[13] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu, “Processing
XML Streams with Deterministic Automata,” Proc. Int’l Conf.
Database Theory (ICDT), pp. 173-189, 2003.

[14] L. Guo, J. Shanmugasundaram, and G. Yona, “Topology Search
over Biological Databases,” Proc. Int’l Conf. Data Eng. (ICDE), 2007.

[15] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “XRank:
Ranked Keyword Search over XML Documents,” Proc. ACM
SIGMOD, pp. 16-27, 2003.

[16] A.K. Gupta and D. Suciu, “Stream Processing of XPath Queries
with Predicates,” Proc. ACM SIGMOD, pp. 419-430, 2003.

[17] H. He, H. Wang, J. Yang, and P. Yu, “Blinks : Ranked Keyword
Searches on Graphs,” Proc. ACM SIGMOD, 2007.

[18] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-
Style Keyword Search over Relational Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 850-861, 2003.

[19] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava,
“Keyword Proximity Search in XML Trees,” IEEE Trans. Knowl-
edge and Data Eng., vol. 18, no. 4, pp. 525-539, Apr. 2006.

[20] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search
in Relational Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 670-681, 2002.

[21] V. Hristidis, Y. Papakonstantinou, and A. Balmin, “Keyword
Proximity Search on XML Graphs,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 367-378, 2003.

[22] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional Expansion for Keyword Search on
Graph Databases,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 505-516, 2005.

[23] G. Kazai and M. Lalmas, “INEX 2005 Evaluation Measures,” Proc.
INitiative for the Evaluation of XML Retrieval (INEX), http://www.
dcs.gla.ac.uk/mounia/Papers/inex-2005-metrics.pdf., 2005.

[24] J. Kwon, P. Rao, B. Moon, and S. Lee, “FiST: Scalable XML
Document Filtering by Sequencing Twig Patterns,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 217-228, 2005.

[25] J. Kwon, P. Rao, B. Moon, and S. Lee, “Predicate-Based Filtering of
XPath Expressions,” Proc. Int’l Conf. Data Eng. (ICDE), 2006.

[26] L.V.S. Lakshmanan and S. Parthasarathy, “On Efficient Matching
of Streaming XML Documents and Queries,” Proc. Int’l Conf.
Extending Database Technology (EDBT), pp. 142-160, 2002.

[27] G. Li, J. Feng, J. Wang, X. Song, and L. Zhou, “Sailer: An
Effective Search Engine for Unified Retrieval of Heterogeneous
XML and Web Documents,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 1061-1062, 2008.

[28] G. Li, J. Feng, J. Wang, B. Yu, and Y. He, “Race: Finding and
Ranking Compact Connected Trees for Keyword Proximity Search
over XML Documents,” Proc. Int’l Conf. World Wide Web (WWW),
pp. 1045-1046, 2008.

[29] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective Keyword Search
for Valuable LCAs over XML Documents,” Proc. Conf. Information
and Knowledge Management (CIKM), pp. 31-40, 2007.

[30] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An Effective
3-In-1 Keyword Search Method for Unstructured, Semi-Structured
and Structured Data,” Proc. ACM SIGMOD, pp. 903-914, 2008.

1048 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011

TABLE 4
Evaluation Results on INEX 2005 CO+S Topics: (a) Thorough

Retrieval Strategies and (b) Focused Retrieval Strategies

[31] G. Li, X. Zhou, J. Feng, and J. Wang, “Progressive Top-k Keyword
Search in Relational Databases,” Proc. Int’l Conf. Data Eng. (ICDE),
2009.

[32] Y. Li, C. Yu, and H.V. Jagadish, “Schema-Free XQuery,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 72-84, 2004.

[33] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Databases,” Proc. ACM SIGMOD, pp. 563-574,
2006.

[34] Z. Liu and Y. Chen, “Identifying Meaningful Return Information
for XML Keyword Search,” Proc. ACM SIGMOD, 2007.

[35] Z. Liu and Y. Chen, “Reasoning and Identifying Relevant Matches
for XML Keyword Search” Proc. Very Large Data Bases Endowment,
vol. 1, no. 1, pp. 921-932, 2008.

[36] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-k Keyword
Query in Relational Databases,” Proc. ACM SIGMOD, 2007.

[37] A. Markowetz, Y. Yang, and D. Papadias, “Keyword Search on
Relational Data Streams,” Proc. ACM SIGMOD, 2007.

[38] A. Raj and P. Kumar, “Branch Sequencing Based XML Message
Broker Architecture,” Proc. Int’l Conf. Data Eng. (ICDE), 2007.

[39] M. Sayyadian, H. Le Khac, A. Doan, and L. Gravano, “Efficient
Keyword Search across Heterogeneous Relational Databases,”
Proc. Int’l Conf. Data Eng. (ICDE), 2007.

[40] C. Sun, C.Y. Chan, and A.K. Goenka, “Multiway SLCA-Based
Keyword Search in XML Data,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 1043-1052, 2007.

[41] Y. Xu and Y. Papakonstantinou, “Efficient Keyword Search for
Smallest LCAs in XML Databases,” Proc. ACM SIGMOD, pp. 527-
538, 2005.

[42] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based Keyword
Search in XML Data,” Proc. Int’l Conf. Extending Database
Technology (EDBT), pp. 535-546, 2008.

Guoliang Li received the PhD degree in
computer science from the Tsinghua University,
Beijing, China, in 2009. Since then, he has
worked as an assistant professor in the Depart-
ment of Computer Science and Technology,
Tsinghua University, Beijing, China. His re-
search interests mainly include integrating data-
bases and information retrieval, data cleaning,
and data integration.

Jianhua Feng received the BS, MS and PhD
degrees in computer science and technology
from the Tsinghua University. He is currently
working as a professor in the Department of
Computer Science and Technology in Tsinghua
University. His main research interests include
native XML database, data mining, and keyword
search over structure and semistructure data.
He has published papers in the international top
conferences and top journals, such as ACM

SIGMOD, ACM SIGKDD, VLDB, IEEE ICDE, WWW, ACM CIKM, ICDM,
SDM, IEEE TKDE, Data Mining and Knowledge Discovery, Information
Systems, and so on. He is a member of the IEEE and a senior member
of the China Computer Federation (CCF).

Jianyong Wang received the PhD degree in
computer science from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
in 1999. He is currently an associate professor in
the Department of Computer Science and
Technology, Tsinghua University, Beijing, Chi-
na. He was ever an assistant professor at the
Peking University and visited Simon Fraser
University, University of Illinois at Urbana-
Champaign, and University of Minnesota at Twin

Cities before joining Tsinghua University in Dec. 2004. His research
interests mainly include data mining and knowledge discovery, and web
information management. He has coauthored more than 40 research
papers in some leading international conferences, such as ACM
SIGKDD, ACM SIGMOD, VLDB, IEEE ICDE, SIAM SDM, IEEE ICDM,
EDBT, IEEE IPDPS, and ACM CIKM, and some top international
journals, such as ACM TODS, DMKD, and IEEE TKDE. According to
Google Scholar, all his coauthored papers have attracted more than
2,200 citations. He is a recipient of the 2009 HP Labs Innovation
Research Award, the 2009 Okawa Foundation Research Grant (Japan),
WWW ’08 best posters award, and the Year 2007 Program for New
Century Excellent Talents in University, State Education Ministry of
China. He is a senior member of the IEEE and a member of the ACM
SIGKDD.

Lizhu Zhou received the master of science
degree from the University of Toronto, in 1983.
Currently, he is a full professor at the Tsinghua
University, China. His major research interests
include database systems, web data processing,
and digital resource management. He is a
member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: KEMB: A KEYWORD-BASED XML MESSAGE BROKER 1049

