
Finding Top-k Answers in Keyword Search
over Relational Databases Using Tuple Units

Jianhua Feng, Member, IEEE, Guoliang Li, and Jianyong Wang, Senior Member, IEEE

Abstract—Existing studies on keyword search over relational databases usually find Steiner trees composed of connected database

tuples as answers. They on-the-fly identify Steiner trees by discovering rich structural relationships between database tuples, and

neglect the fact that such structural relationships can be precomputed and indexed. Recently, tuple units are proposed to improve

search efficiency by indexing structural relationships, and existing methods identify a single tuple unit to answer keyword queries.

However, in many cases, multiple tuple units should be integrated to answer a keyword query. Thus, these methods will involve false

negatives. To address this problem, in this paper, we study how to integrate multiple related tuple units to effectively answer keyword

queries. To achieve a high performance, we devise two novel indexes, single-keyword-based structure-aware index and keyword-pair-

based structure-aware index, and incorporate structural relationships between different tuple units into the indexes. We use the

indexes to efficiently identify the answers of integrated tuple units. We develop new ranking techniques and algorithms to progressively

find the top-k answers. We have implemented our method in real database systems, and the experimental results show that our

approach achieves high search efficiency and result quality, and outperforms state-of-the-art methods significantly.

Index Terms—Keyword search, relational databases, single-keyword-based index, keyword-pair-based index, tuple units.

Ç

1 INTRODUCTION

KEYWORD search is a proven and widely accepted
mechanism for querying in textual document systems

and the World Wide Web. The database research commu-
nity has recently recognized the benefits of keyword search
and has been introducing keyword-search capabilities into
relational databases [5], [20], [41], [29], [7], XML databases
[8], [16], graph databases [17], [23], [9], [14], and hetero-
genous data sources [30]. Keyword search provides an
alternative means of querying relational databases, which is
simple to people who are familiar with using web search
engines. One important advantage of keyword search is
that it enables users to search for information without
having to know complex structured query languages (e.g.,
SQL) or prior knowledge about the structures of the
underlying data.

Keyword search over relational databases finds the
answers of tuples in the databases which are connected
through primary/foreign keys and contain query keywords.
Existing studies can be broadly classified into three types of
methods: candidate-network-based methods [18], [20], [39],
Steiner-tree-based algorithms [5], [10], [17], [23], and tuple-
unit-basedapproaches [28], [45]. The former twomethodson-
the-fly discover the connections (primary/foreign keys)
between tuples to find the connected tuples. As there are
usually large numbers of tuples in the databases, these
methods are rather expensive to find answers by on-the-fly

enumerating the connections. In otherwords, these two types
of methods neglect the fact that the connections between
relevant database tuples can be precomputed and indexed.

To address this problem, Li et al. [28] proposed tuple
units to efficiently answer keyword queries. A tuple unit is a
set of highly relevant tuples which contain query keywords.
Moreover tuple units can be precomputed and indexed, and
we can use the indexed tuple units to efficiently answer a
keyword query. Existing methods only identify a single
tuple unit to answer keyword queries. However, they
neglect the fact that in many cases, we need to integrate
multiple related tuple units to answer a keyword query. To
address this problem, in this paper, we propose a structure-
aware-index-based method to integrate multiple related
tuple units to effectively answer keyword queries.

We devise two structure-aware indexes, single-keyword-
based structure-aware index (SKSA-Index) and keyword-pair-
based structure-aware index (KPSA-Index), to capture struc-
tural relationships between tuple units. We use the indexes
to on-the-fly integrate multiple tuple units to answer a
keyword query. We develop new ranking techniques and
efficient algorithms to efficiently and progressively find the
top-k answers. To summarize, we make the following
contributions:

. We propose a tuple-unit-based method for effective
keyword search over relational databases, which
integrates multiple relevant database tuple units to
effectively answer keyword queries.

. We propose two structure-aware indexes and store
the structural relationships between different tuple
units into the indexes. We use the indexes to
efficiently find the relevant answers.

. We develop effective ranking techniques to rank the
tuple units by taking into account both the structural
compactness of answers from the database point of
view and the textual relevancy from the information

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011 1781

. The authors are with the Department of Computer Science and Technology,
Tsinghua University, Room 10-204, East Main Building, Beijing 100084,
China. E-mail: {fengjh, liguoliang, jianyong}@tsinghua.edu.cn.

Manuscript received 30 Apr. 2010; revised 29 Oct. 2010; accepted 23 Jan.
2011; published online 3 Mar. 2011.
Recommended for acceptance by S. Chaudhuri, Y. Chen, and J.X. Yu.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2010-04-0251.
Digital Object Identifier no. 10.1109/TKDE.2011.61.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

retrieval viewpoint. We devise efficient algorithms
to progressively find top-k answers.

. We have implemented our method in MYSQL. The
experimental results show that our method achieves
high efficiency and result quality, and outperforms
state-of-the-art methods significantly.

The remainder of this paper is organized as follows:
Section 2 presents the concept of tupleunits and gives an
overview of our method. We discuss how to model the tuple
units in Section 3. Section 4 gives several effective ranking
functions to rank tuple units. We propose effective indexing
techniques in Section 5, and discuss how to use the index
structures to answer queries in Section 6. Section 7 reports
experimental results. We review related works in Section 8
and make a conclusion in Section 9.

2 OVERVIEW OF OUR APPROACH

We first give some notations (Section 2.1) and then
introduce the concept of tuple units (Section 2.2). Finally,
we present the overview of our method (Section 2.3).

2.1 Notations

For ease of presentation, we first introduce some notations.

Given a database D withm tables, R1;R2; . . . ;Rm. Let Ri !�
Rj denote that table Ri has a foreign key � referring to the

primary key of table Rj. Two tables Ri and Rj are

connected, denoted by, Ri <e> Rj, if , 1) Ri !� Rj;

2) Rj !� Ri; or 3) 9Rk, Ri <e> Rk and Rk <e> Rj. For example,

given a database with three tables in Table 1, we have

Author-Paper �!AID
Authors, Author-Paper �!PID Papers,

Authors <e> Author-Paper, Author-Paper <e> Papers, and

Authors <e> Papers.
Without loss of generality, we suppose any two rela-

tional tables in the given database are connected. If some
relational tables are not connected, we first decompose the
tables into some groups of connected tables and then apply
our method on the decomposed groups.

2.2 Tuple Units

Given a database with m connected tables, the tuples that
can be joined together through the primary/foreign keys

must be very relevant with each other. Based on this
observation, Li et al. [28] proposed the concept of tupleunits
to answer keyword queries.

Definition 1 (Tuple Units). Given a database D with m

connected tables,R1;R2; . . . ;Rm, for each tuple ti in tableRi,
let Rti denote the table with the same primary/foreign keys as
Ri, having a single tuple ti. The joined result of table Rti and
other tables Rjðj 6¼ iÞ based on foreign keys,1 denoted by
< ¼fflj6¼i Rj ffl Rti , is called a tupleset. Given two tuple sets
t1 and t2, if any tuple in t2 is contained in t1, we call that t1
covers t2 (t2 is covered by t1). A tuple set is called a tuple unit
if it is not covered by any tuple set.

To better understand the notation of tuple unit, we give a
running example.

Example 1. Consider a publication database in Table 1. For
each tuple in a table, we join the three tables and get the
tuple sets as shown in Table 2. Tuple set Ta1 is not a tuple
unit as it is coveredbyTp1 .Ta2 is a tupleunit as any tuple set
does not cover it. In this way, we can find all tuple units as
shown in Table 2. Each tuple unit can represent a
meaningful and integral information unit, and can be
taken as an answer of a keyword query. Considering a
keyword query {relational, database, keyword,

search, Hristidis}, the underlined tuple unit Tp5

(Table 2) contains all the input keywords.We can take this
tuple unit as an answer. Note that we do not need to on-
the-fly identify structural relationships between tuples in
different tables, and the tuple-unit-based method can
improve search performance.

The tuple-unit-based method has the following features:

1. Tuple units are effective to answer keyword queries
as they capture structures and can represent a
meaningful and integral information unit.

2. The relationships between tuples connected through
primary/foreign keys can be identified and indexed,
and thus we can efficiently answer keyword queries
by using such indexed structural information.

3. The number of tuple units will not be large, which is
not larger than that of the total tuples in the under-
lying database. If each value of the primary key is
referred by the foreign key, the number of tuple units
is the same as the number of tuples in the tables with
foreign keys. In practice, the number of tuple units is
much smaller than the total number of tuples in the
underlyingdatabase as experimentally proved in [28].

4. We can employ database capabilities to generate and
materialize the tuple units by creating a view on top
of the underlying relational tables. We need no
additional indexes to maintain tuple units. Inter-
ested readers are referred to [28] for more details
about how to generate and materialize tuple units
for answering a keyword query.

1782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

TABLE 1
An Example Database

1. Note that we will employ left join/right join in some cases to avoid
missing tuples in the table with primary keys. For example, given two
relational tables, Ri, Rj, and Ri !� Rj. If there exists a value v in attribute �
of Rj and v is not referred by any value of attribute � in Ri, we will employ
the right join on Ri and Rj.

Li et al. [28] have studied how to generate andmaterialize

tuple units using database capabilities, and how to identify
and rank a single tuple unit to answer keyword queries.

However, noticed that multiple tuple units may be inter-
related and can be integrated together to answer a query. For
example, consider the database in Table 1. Suppose a user

issues a query “Zhou Yu.” There is no tuple unit containing
the two keywords. We can integrate the tuples Tp1 and Tp2 in

Table 2 to answer the query. To address this problem, in this
paper, we study effective ranking functions, index struc-

tures, and efficient algorithms for integrating multiple
relevant tuple units to answer keyword queries.

2.3 Architecture

This section gives an overview of our proposed method,

namely, SAINT (Structure-Aware INdexing for finding and
integrating Tuple units for effective keyword search over
relational databases). Fig. 1 depicts the overall architecture

of SAINT.
SAINT takes the underlying relational databases and

keyword queries as input, materializes the tuple units, and

integrates the highly relevant tuple units connected by the
primary/foreign key relationships to answer keyword

queries. Finally, we rank the answers and deliver the top-k
relevant answers with the highest scores to corresponding

users. The basic components of SAINT are as follows:

. Summarization. Summarization generates and ma-
terializes the tuple units offline.

. Indexing. Indexing constructs structure-aware in-
dexes on top of the summarized tuple units.

. Progressive rank-aware answer extraction. Extrac-
tion identifies the most relevant top-k answers with
the highest scores to answer keyword queries using
the structure-aware indexes.

3 TUPLE UNIT MODELING

We model the tuple units w.r.t. a relational database as a
graph G ¼ ðV; EÞ, where nodes ðVÞ are tuple units and edges
ðEÞ are the relationships between two tuple units. Given two
tuple units, if they share the same value on any primary key
attribute, they will be related, and thus we connect the two
tuple units. Different from Steiner-tree-based graphs in
which nodes are tuples in relational tables and edges are
primary/foreign key relationships [5], note that the graph
we construct has much smaller size, as we group many
tuples into a compact tuple unit. In other words, our
constructed graph has smaller numbers of nodes and edges
than the Steiner-tree-based graph, and thus is much easier to
be manipulated. For example, consider the data in Table 1.
The Steiner graph contains 24 nodes, and our graph has only
nine nodes.

For ease of presentation, we use a boolean adjacency
matrix (BAM) to represent the modeled graph. The rows or
columns ofBAM are tuple units, and the value at the ith row
and the jth column is 1 if and only if there is an edge between
tuple unit ui and tuple unit uj; otherwise, the value is 0. For
example, considering thedatabase inTable 1,we first identify
the tuple units as shown in Table 2 and then transform the
tuple units into a graph as illustrated in Fig. 2. For instance,
tuple unit T1 and tuple unit T2 are connected as they share the
same vale on the primary key AID of table Author.

Notice that in the implementation, we use the adjacency
list to represent all edges in the graph, which only keeps the

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1783

Fig. 2. Graph built from tuple units in Table 2.

TABLE 2
Tuple Sets and Tuple Units (Tuple Unit

p
; Nontuple Unit �)

Fig. 1. The overall architecture of SAINT.

pairs of two nodes with an edge. As a database graph is
typically a sparse graph, the indexing cost is acceptable
(experimentally proved in Section 7).

As an another example, we model the graph in Fig. 3 as a
BAM as shown in Table 3a, where the italic characters
denote the keywords contained in the corresponding tuple
unit. For instance, u4 contains four keywords of a; c; c; d. We
will take this graph as a running example throughout this
paper. In the matrix (Table 3a), the cell for tuple unit u3 and
tuple unit u4 is 1 as there is an edge between the two tuple
units in the graph (Fig. 3).

To evaluate the relationship between two tuple units, we
use their minimal distance to capture their relevancy. To
keep such information, we use another matrix, minimal
distance matrix, abbreviated as MDM. Different from
BAM, the value of the ith row and the jth column of
MDM is the minimal distance of the two tuple units ui and
uj. In order to preserve the paths between two tuple units
with minimal distance, we use a minimal path matrix,
abbreviated as MPM. The entry of <ui; uj> in MPM
preserves the path with minimal distance between ui and
uj. For example, we can construct MDM and MPM of the
graph in Fig. 3 as illustrated in Tables 3b and 3c,
respectively. In MDM, the value of entry <u4; u2> is 3.
This means that the minimal distance from u4 to u2 is 3. In
MPM, the value of entry <u4; u2> is u3; u1. This means that
the minimal path from u4 to u2 is u4-u3-u1-u2.

Although many existing literatures also model the tuples
in the underlying databases as a graph and identify the
Steiner trees as the answers [5], these methods are very
inefficient. The reason is that it is rather hard to identify the
Steiner trees by discovering the structural relationships
between tuples, and such relationships are very rich in
relational databases. As opposed to traditional Steiner-tree-
based methods, we proposed to store the relationships
between tuple units into structure-aware indexes and

identify answers based on the indexes. Next, we study
how to evaluate the importance of a tuple unit.

4 RANKING

In this section, we study several effective ranking functions
to rank tuples units.

4.1 Structure-Aware Ranking

In this section, we discuss how to seamlessly incorporate
the structural relationships between tuples into the ranking
functions.

4.1.1 Directly Scoring

Traditional methods employ TF � IDF -based methods in IR
literature to score tuple units (or documents). In this section,
we also use this technique to score a tuple unit w.r.t. an
input keyword that is directly contained by the tuple unit.
We model every tuple unit as a document and take the
terms in the tuple units as keywords. Accordingly, the
TF � IDF -based methods can be borrowed to score tuple
units as follows:

Suppose that we have the set (denoted as U) of the tuple
units in a given underlying relational database, and there
are p distinct tuple units and q keywords in U. Given a
tuple unit u 2 U and a keyword kið1 � i � qÞ in u, we
denote tfðki; uÞ as the term frequency of ki in u, which is
the number of occurrences of ki in u; we denote idfðkiÞ as
the inverse document frequency of ki, where idfðkiÞ ¼ pþ1

Oki
þ1

and Oki is the number of such tuple units which directly
contain ki; we denote ntlðuÞ as the normalized term length
of u, where ntlðuÞ ¼ juj

1
p�
P

u02U ju0 j and juj denotes the number
of terms in u.

In IR literature, the ranking methods usually integrate
the three parameters to score a tuple unit w.r.t. a query
K ¼ fk1; k2; . . . ; kng as illustrated in (1) and (2), where s is a
constant and usually set to 0.2 [35].

SCOREIRðu; kiÞ ¼ lnð1þ tfðki; uÞÞ � lnðidfðkiÞÞ
ð1� sÞ þ s � ntlðuÞ ; ð1Þ

SCOREIRðK; uÞ ¼
Xn
k¼1

SCOREIRðu; kiÞ: ð2Þ

For example, considering the tuple units in Fig. 3, we can
compute the scores according to (1) as illustrated in Table 4d.
Especially, we give the tf , idf , and ntl in Tables 4a, 4b, and 4c
to help users understand. For instance, idf of keyword a is
5þ1
2þ1 , since there are totally five nodes and two nodes contain
the keyword.

1784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Fig. 3. A running example graph.

TABLE 3
Graph Matrix

Although the TF � IDF -based scoring method in IR
literature can rank the tuple units which directly contain
input keywords, it cannot rank the tuple units that indirectly
contain input keywords. Note that even if a tuple unit
indirectly contains an input keyword, this tuple unit may
also be relevant to the input keyword through the primary/
foreign key relationships. For example, in Fig. 3, although
node u3 does not contain keywords a and b, it can connect the
nodes u4 and u5 which contain the keywords. Thus, u3

should also be relevant to the keywords. Considering
another example, although a paper entitled with “Data
Warehousing and Multidimensional Data Models”
does not contain keyword “OLAP,” this paper may also be
relevant to “OLAP” as it cites a paper with keyword “OLAP.”

However, traditional ranking methods [28] cannot
capture the structural compactness between relevant tuple
units. Most importantly, the structural information between
relevant tuple units is at least as important as the textual
information, and is even much more crucial in many cases.
To address this issue, we propose a novel scoring method in
Section 4.1.2.

4.1.2 Indirectly Scoring

This section proposes to rank tuple units w.r.t. input
keywords that are indirectly contained by the tuple units
and extends the score functions in (1).

For ease of presentation, we first introduce a notion of
pivotal tuple unit, which can be used to measure the relation-
ship between a keyword and a tuple unit that indirectly
contains this keyword.

Definition 2 (Pivotal Tuple Unit). Given a keyword kj and a
tuple unit ui that indirectly contains kj, the tuple unit
kuðkj;uiÞ, which directly contains kj and has the minimal
distance with ui in the corresponding graph, is called a pivotal
tuple unit.2 That is, kuðkj;uiÞ 2 argminurf�ður; uiÞ, where ur

directly contains kj and �ður; uiÞ denotes the distance between
ur and ui}.

It is obvious that the smaller the distance between two
tuple units, the more the relevancy between them. Based on
this observation, given a keyword kj and a tuple unit ui that
indirectly contains kj, we first identify the pivotal tuple unit
kuðkj;uiÞ w.r.t. ui and kj, which directly contains kj and has
the minimal distance with ui among all the tuple units. Then,
we score ui w.r.t. kj by combining SCOREIRðkuðkj;uiÞ; kjÞ and
the distance between ui and kuðkj;uiÞ. There are many ranking
functions to combine them as long as the score increases
with SCOREIRðkuðkj;uiÞ; kjÞ and decreases with �ðkuðkj;uiÞ; uiÞ.

As an example, we give the following score function, which
is effective as proved in our experiments.

SCOREIRðui; kjÞ ¼
SCOREIRðkuðkj;uiÞ; kjÞ
ð�ðkuðkj;uiÞ; uiÞ þ 1Þ2 : ð3Þ

Wenote that SCOREIRðkuðkj;uiÞ; kjÞ can be computed using
(1) as kuðkj;uiÞ directly contains kj. �ðkuðkj;uiÞ; uiÞ can be derived
from theminimal distancematrix. Accordingly, based on the
minimal distance matrix and the scores of tuple units which
directly contain input keywords, we can efficiently score the
tuple units that indirectly contain the keywords.

To maintain the scores w.r.t. every tuple unit and every
input keyword, we construct a score matrix, where each
row is a tuple unit and each column is a keyword. The value
at the ith row and the jth column of score matrix is denoted
by SCOREIRðui; kjÞ, which is the score of ui directly or
indirectly containing keyword kj. If ui directly contains kj,
we compute the score according to (1); otherwise, we
compute the score of ui indirectly containing kj by using (3).

In order to identify and construct the relevant answers
composed of interrelated tuple units, we introduce another
matrix, pivotal tuple unit matrix, where each row is the tuple
unit and each column is a keyword, and the value at the ith
row and the jth column is the path with minimal distance
from tuple unit ui to the pivotal tuple unit kuðkj;uiÞ.
Accordingly, the path from ui to the corresponding pivotal
tuple unit is preserved in pivotal tuple unit matrix, which
can be used to reconstruct the answers of keyword queries.
Note that, pivotal tuple unit matrix and score matrix can be
obtained according toMDM,MPM, and the traditional IR
scores as described in (1) and (2).

For example, considering the tuple unit u1 and keyword
b, as u1 does not directly contain b, we identify the pivotal
tuple unit u2, which directly contains b and has the minimal
distance with u1. According to (3), we have

SCOREIRðu1; bÞ ¼ SCOREIRðu2; bÞ
ð�ðu1; u2Þ þ 1Þ2 ¼ 0:48

22
¼ 0:12:

Although this structure-aware model can capture the
structural compactness between tupleunits, it cannot capture
the structural relevancy between input keywords.Moreover,
the relevancyof inputkeywords is at least as important as that
of tuple units, even more crucial in some cases. For example,
considering that a user searches for a paper written by
“Guoliang Feng,” although the paper coauthored by
“Guoliang Li” and “Jianhua Feng” contains all the input
keywords, it is less relevant to the query than the paper
written by “Guoliang Feng.” This is not an adhoc problem
as the traditional methods may mistakenly take input
keywords in different irrelevant nodes as an answer. Based

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1785

2. If there are more than one tuple unit that contains kj and has the
minimal distance with ui, we randomly select one of them. Usually, we
select the tuple unit with the highest IR score w.r.t. kj.

TABLE 4
Directly Scoring

on this observation, we introduce another structure-aware
index to address this issue.

4.2 Keyword-Pair-Based Ranking

Given two keywords ki and kj, and a tuple unit u which
directly or indirectly contains the two keywords, it is obvious
that if ki and kj are in the same pivotal tuple unit, they will be
relevant to each other. Moreover, the smaller the distance
between the pivotal tuple units w.r.t. ki and kj, the higher the
relevancy between them. There are many similarity func-
tions for computing the score as long as the score decreases
with the distance between ki and kj. As an example, we use
the following equation to measure the keyword-pair-based
structural relevancy between any pair of two keywords
<ki; kj> w.r.t. a tuple unit u, RELð<ki; kj>juÞ,

RELð<ki; kj>juÞ ¼ 1

ð�ðkuðki;uÞ; kuðkj;uÞÞ þ 1Þ2 ; ð4Þ

where kuðki;uÞ denotes the pivotal tuple unit w.r.t. ki and u,
and �ðkuðki;uÞ; kuðkj;uÞÞ denotes the minimal distance between
kuðki;uÞ and kuðkj;uÞ.

We note that if RELð<ki; kt>juÞ and RELð<kt; kj>juÞ are
large, RELð<ki; kj>juÞ must be also large, and thus ki, kj,
and kt must be very relevant with each other w.r.t. u.
Accordingly, we can use the keyword-pair relevancy
between any two input keywords to capture the overall
structural relevancy of an input keyword query. Lemma 1
describes the key feature of the keyword-pair relevancy: the
keyword-pair relevancy can capture the overall structural
relevancy of all input keywords.

Lemma 1.

RELð<ki; kj>juÞ > 1

4
�minðRELð<ki; kt>juÞ;

RELð<kt; kj>juÞÞ:

Proof. Let �ði;jÞ ¼ �ðkuðki;uÞ; kuðkj;uÞÞ. If �ði;tÞ � �ðt;jÞ, we have

�ði;tÞ þ �ðt;jÞ þ 2 � 2 � ð�ðt;jÞ þ 1Þ;
if �ðt;jÞ � �ði;tÞ, we have

�ði;tÞ þ �ðt;jÞ þ 2 � 2 � ð�ði;tÞ þ 1Þ:
Based on the two equations, we have

�ði;tÞ þ �ðt;jÞ þ 2 � maxf2 � ð�ði;tÞ þ 1Þ; 2 � ð�ðt;jÞ þ 1Þg:
Based on the triangle inequality of the distances

between nodes in a graph, we have �ði;jÞ � �ði;tÞ þ �ðt;jÞ,
and �ði;jÞ þ 1 < �ði;tÞ þ �ðt;jÞ þ 2. Thus,

�ði;jÞ þ 1 < maxf2 � ð�ði;tÞ þ 1Þ; 2 � ð�ðt;jÞ þ 1Þg:
As RELð<ki; kj>juÞ ¼ 1

ð�ði;jÞþ1Þ2 , we have

RELð<ki; kj>juÞ >
1

4
�minðRELð<ki; kt>juÞ;RELð<kt; kj>juÞÞ:

ut
The keyword-pair relevancy can help to capture the

rather rich structural information between two input

keywords. Based on this good metric, we propose (5) to
compute the structure-aware score of u w.r.t. keyword-pair
<ki; kj> from the DB viewpoint, i.e., SCOREDBð<ki; kj>; uÞ,
by combining the two IR scores, SCOREIRðu; kiÞ and
SCOREIRðu; kjÞ.

SCOREDBð<ki; kj>; uÞ ¼ RELð<ki; kj>juÞ�
ðSCOREIRðu; kiÞ þ SCOREIRðu; kjÞÞ:

ð5Þ

According to the structure-aware keyword-pair scores,
we propose the overall DB score by considering the
structural relevancy of keyword pairs as below:

SCOREDBðK; uÞ ¼
X

1�i<j�n

SCOREDBð<ki; kj>; uÞ: ð6Þ

4.3 Score Expectation

To answer keyword queries effectively, we combine the IR
score and the DB score, and propose the concept of SCORE

EXPECTATION to score a keyword query K ¼ fk1; k2; . . . ; kn}
w.r.t. a tuple unit u as described in (7), which is inspired
from mathematical expectation.

EXPECTATIONðK; uÞ ¼ SCOREðK; uÞ

¼
Xn
i¼1

ðwki � SCOREIRðu; kiÞÞ;
ð7Þ

where

wki ¼
Xn
j¼1

RELð<kj; ki>juÞ: ð8Þ

In the formula, wki is the weight of ki among the input
keywords in K, which is the same as the probability in
mathematical expectation. Moreover, the score expectation
can be computed by summing up the IR score and the DB
score as formalized in Lemma 2.

Lemma 2.

SCOREðK; uÞ ¼ SCOREIRðK; uÞ þ SCOREDBðK; uÞ:

Proof.

SCOREðK; uÞ ¼
Xn
i¼1

RELð<ki; ki>juÞ � SCOREIRðu; kiÞ

þ
Xn
i¼1

X
j6¼i

RELð<kj; ki>juÞ � SCOREIRðu; kiÞ
 !

¼
Xn
i¼1

1 � SCOREIRðu; kiÞ

þ
Xn
i¼1

X
j6¼i

RELð<kj; ki>juÞ � SCOREIRðu; kiÞ
 !

¼
Xn
i¼1

1 � SCOREIRðu; kiÞ

þ
X

1�i<j�n

SCOREDBð<ki; kj>; uÞ

¼ SCOREIRðK; uÞ þ SCOREDBðK; uÞ:
ut

1786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

4.4 Top-k Answers of Keyword Queries

Given a keyword query K ¼ fk1; k2; . . . ; kn} and a relational
database, we first identify the tuple units with the top-k
highest scores (using the scoring function SCOREðK; uÞ).
Then, we construct the subtrees which are rooted at each
identified tuple unit and contain the paths from the tuple
unit to the corresponding pivotal tuple units for each
keyword. Finally, we take the subtrees as the answers. Note
that the subtree is composed of multiple highly relevant
tuple units. We introduce how to efficiently answer queries
in the following sections.

5 INDEXING

This section proposes two structure-aware indexes for
efficiently answering a keyword query.

5.1 SKSA-Index

To efficiently retrieve IR scores, we propose a single-
keyword-based structure-aware index, called SKSA-Index,
which is similar to the traditional inverted index. The entries
of SKSA-Index are also the keywords that are contained in
the underlying database. Different from inverted indexes
which only maintain the tuple units that directly contain the
keyword, each entry ofSKSA-Index preserves the tuple units
that directly or indirectly contain the keyword in the form of
a triple <TupleUnit, Score, TupleUnitLists>, where the Score
is the assigned score of the keyword in the tuple unit
TupleUnit, and TupleUnitLists preserves the tuple unit lists
from Unit to the corresponding pivotaltupleunits, which can
be obtained from the pivotal tuple unit matrix. The tuple
units are sorted by the corresponding scores in descending
order. Most importantly, SKSA-Index captures the rich

structural relationships, as each entry preserves the paths
from a given tuple unit to the corresponding pivotal tuple
unit and also keeps the structure-aware scores of tuple units
indirectly or directly containing keywords.

Based on the SKSA-Index, given a relevant tuple unit u,
it is easy to get SCOREIRðu; kiÞ for each ki 2 K. Thus, we
can efficiently compute the overall IR score, SCOREIRðK; uÞ,
by summing up SCOREIRðu; kiÞ for every ki 2 K. To better
understand how to construct and use the SKSA-Index, we
walk through our method with a running example as
follows:

Example 2. Considering the graph in Fig. 3, suppose that we
have computed the IR scores, and stored the scores in
Table 4d, the minimal distance matrix in Table 3b, the
pivotal tuple unit matrix in Table 5a, and the score
matrix in Table 5b, respectively. We construct the SKSA-
Index as illustrated in Table 6a.

Then, suppose that a user issues a keyword query
K ¼ fa; c; dg. We compute the IR scores of tuple units
w.r.t. K using the SKSA-Index as follows:

SCOREIRðK; u1Þ ¼ 0:48þ 0:28þ 0:13 ¼ 0:89;

SCOREIRðK; u2Þ ¼ 0:12þ 0:28þ 0:06 ¼ 0:46;

SCOREIRðK; u3Þ ¼ 0:12þ 0:09þ 0:53 ¼ 0:74;

SCOREIRðK; u4Þ ¼ 0:40þ 0:37þ 0:40 ¼ 1:17;

SCOREIRðK; u5Þ ¼ 0:05þ 0:04þ 0:13 ¼ 0:22:

ut
For each keyword, the SKSA-index keeps the tuple units

that directly/indirectly contain the keyword. Suppose there
areN tuple units and the number of distinct keywords isM.

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1787

TABLE 5
Indirectly Scoring

TABLE 6
Structure-Aware Indexes

The maximal size of SKSA-index is OðM �NÞ. Actually,
given any term contained in the database, we can only keep
the tuple units, which have scores larger than a given
threshold � . For example, for each term t, we only preserve
the tuple units which have a score (w.r.t. t) larger than
� ¼ 0:2. This strategy can prune many irrelevant tuple units
and can improve the performance. Thus, the index size of
SKSA-index is much smaller than OðM �NÞ. Next, we give
a deep analysis about the index size of SKSA. Suppose the
average number of distinct keywords in a tuple unit is m

and the average number of neighbors of a tuple unit is F .
For any tuple unit and a keyword in the tuple unit, we only
need to keep the tuple units with score to the keyword
larger than � . As we normalize the IR score in (1) into (0, 1],
based on the ranking function (3), we only need to maintain
the tuple units with distances to the keyword smaller than

ffiffi
1
�

q
� 1:

That is, for each tuple unit and each keyword in the tuple
unit, we keep at most

O
�
1þ F þ F 2 þ � � � þ F

ffiffi
1
�

p
�1
� ¼ O

F
ffiffi
1
�

p

F � 1

 !
tuple units for the keyword. Thus, the total index size of
SKSA is

O N �m � F
ffiffi
1
�

p

F � 1

 !
:

5.2 KPSA-Index

This section presents another structure-aware index, key-
word-pair-based structure-aware index, called KPSA-Index,
to efficiently get the IR scores.

The entries of KPSA-Index are keyword pairs (two
keywords), and each entry keeps the tuple units which
contain the two keywords and the corresponding structure-
aware scores, i.e., SCOREDBð<ki; kj>; uÞ. For example, we
can construct the KPSA-Index of the graph in Fig. 3 as
illustrated in Table 6b. We can compute the overall DB
scores according to our KPSA-Index as computing IR scores
based on SKSA-Index.

Example 3. Consider the graph in Fig. 3. We compute the
DB scores, and store the scores in Table 6b.

Then, suppose that a user issues a keyword query
K ¼ fa; c; dg. We compute the DB scores of tuple units
w.r.t. K using the KPSA-Index as follows:

SCOREDBðK; u1Þ ¼ 0:76þ 0:15þ 0:10 ¼ 1:01;

SCOREDBðK; u2Þ ¼ 0:10þ 0:04þ 0:04 ¼ 0:18;

SCOREDBðK; u3Þ ¼ 0:02þ 0:16þ 0:16 ¼ 0:34;

SCOREDBðK; u4Þ ¼ 0:77þ 0:8þ 0:77 ¼ 2:34;

SCOREDBðK; u5Þ ¼ 0:01þ 0:05þ 0:04 ¼ 0:10:

We note that, the scores of u4 w.r.t. a and d are not the
maximum when compared with those of other tuple
units, such as u1 and u3, as shown in Table 6a. However,

it is obvious that u4 is very relevant to this query.
Interestingly, for each keyword pair, such as <a; c>,
<a; d>, and <c; d>, u4 has the maximum scores as
illustrated in Table 6b, which reflects the salient feature
of our keyword-pair-based scoring method.

For a pair of two keywords, the KPSA-index keeps the
tuple units that directly/indirectly contain the two key-
words in the pair. The maximal size of KPSA-index is
OðM2 �NÞ. Actually as we only keep those keyword pairs
whose relevancy is larger than a threshold � , the index size
of KPSA-index is much smaller than OðM2 �NÞ. Based on
(5), the sum of the two scores must be no larger than 2.
Then, based on (4), if a keyword pair is kept in the KPSA-
index, their distance is smaller thanffiffiffi

2

�

r
� 1:

Given a tuple unit u and a keyword pair hk1; k2i, suppose
the minimal distance between u and keyword k1 is d1 and
the minimal distance between u and keyword k2 is d2.
Without loss of generality, support d1 � d2. If u is kept for
the keyword pair, based on (5), the score between k1 and u
is not larger than �

2 . Based on (2), d1 must be smaller thanffiffiffi
2

�

r
� 1:

Based on triangle inequality, d2 is smaller than

2 �
ffiffiffi
2

�

r
� 1

 !
:

Thus, for each tuple unit, we keep at most

m � F
ffiffi
2
�

p

F � 1

 !
� m � F

2�
ffiffi
2
�

p
�1

F � 1

 !

keyword pairs. Thus, the total index size of KPSA is

O N �m2 � F
ffiffi
2
�

p

F � 1
� F

2�
ffiffi
2
�

p
�1

F � 1

 !
:

6 QUERY PROCESSING

Index-based method. Based on the SKSA-Index and KPSA-
Index, we answer a keyword query as follows: consider a
keyword query K ¼ fk1; k2; . . . ; kng. We first retrieve the
relevant tuple units that contain an input keyword, and
then compute the score of each relevant tuple-unit-based on
Lemma 2. Finally, we rank the tuple units and return the
top-k answers with the highest scores. Note that, given a
relevant tuple unit u, it is easy to get SCOREIRðu; kiÞ for
each ki 2 K based on the SKSA-Index. Thus, we can
efficiently compute the overall IR score, SCOREIRðK; uÞ,
by summing up SCOREIRðu; kiÞ for every ki 2 K. Similarly,
we can efficiently compute SCOREDBðK; uÞ by using the
KPSA-Index.

1788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Example 4. Suppose that a user issues a keyword query
K ¼ fa; c; dg and wants to get the top-2 answers. We
compute the scores of tuple units w.r.t. K, and get

SCOREðK; u1Þ ¼ 0:89þ 1:01 ¼ 1:90;

SCOREðK; u2Þ ¼ 0:46þ 0:18 ¼ 0:64;

SCOREðK; u3Þ ¼ 0:74þ 0:34 ¼ 1:08;

SCOREðK; u4Þ ¼ 1:17þ 2:34 ¼ 3:51;

SCOREðK; u5Þ ¼ 0:22þ 0:10 ¼ 0:32:

We return the top-2 tuple units with the highest
scores, i.e., u4 and u1. Finally, we construct the subtrees
composed of relevant tuple units according to the pivotal
tuple unit matrix, i.e., fu4g and fu1; u3g.

However, the above method first computes the scores for
all the tuple units, and then ranks the tuple units. This leads
to low efficiency if there are large numbers of tuple units.
Alternatively, we can employ threshold-based techniques to
efficiently identify the top-k answers.

Threshold-based method. There have been many studies
of identifying top-k answers in relational databases, such as
Fagin Algorithm (FA) [11], Threshold Algorithm (TA) [12],
and other methods [2], [22], [43]. To find the top-k tuple
units with the highest scores (summing up SCOREðu; kiÞ for
every keyword ki), the Fagin algorithm and Threshold
algorithm do not need to scan the full inverted lists of query
keywords. Instead they can do an early termination. The
basic idea is as follows: they scan the tuple units in the
inverted lists in a round-robin way and maintain an upper
bound for the scores of all unscanned tuple units. If there are
k scanned tuple units whose scores are larger than the upper
bound, the top-k answers have been found. We can borrow
their ideas to compute the top-k answers on top of our index
structures so as to improve the search efficiency.

SQL-based method. In addition, we can also use the
database capabilities to compute the top-k answers. We
construct and materialize a score expectation table (SET) to
store SCOREIRðu; kiÞ and SCOREDBð<ki; kj>; uÞ, where
attributes are keywords and keyword pairs, and records
are corresponding scores as shown in Table 7. Using the
score expectation table, we issue the following SQL
statement to compute top-k tuple units for answering a
keyword query:

SELECT top k TupleUnit
FROM SET
ORDER BY k1 þ � � � þ kn þ<k1; k2> � � �<kn�1; kn> DESC

Then, we find the pivotal tuple units based on SKSA-

Index and construct the top-k answers with the highest score
expectations. As there are many zero values in table SET,

SET is a sparse table. We can employ the sparse table-based
techniques in [49] to facilitate identifying top-k answers. To
understand our method better, we give a running example
as follows:

Example 5. Consider the modeled graph in Fig. 3. We
construct the score expectation table as illustrated in
Table 7. Suppose that a user issues a keyword query
fa; c; dg on the graph in Fig. 3, we first create the table
VK ¼ Va;c;d;<a;c>;<a;d>;<c;d> by projecting the six columns
from the score expectation table, and then find top-k
answers by issuing the following SQL statement:

SELECT top k TupleUnit
FROM VK
ORDER BY a+c+d+<a,c>+<a,d>+<c,d> DESC

7 EXPERIMENTAL STUDY

We have implemented our proposed methods in real
relational database system MYSQL 5.0.22. We report some
experimental results in this section.

We employed the DBLP3 and IMDB4 data sets to evaluate
our algorithms. We converted the DBLP data set into four
relational tables as shown in Table 8, where the underlined
attributes are the primary/foreign keys. The schema of the
IMDB data set is illustrated in Table 9. The raw file of the
DBLP data set was about 470 MB. IMDB contains approxi-
mately onemillion anonymous ratings of 3,900 movies made
by 6,040 users. We selected 100 keyword queries with
different numbers of input keywords to compare the
algorithms. The keyword number of DBLP data set is about
0.5 million and that of the IMDB data set is about 0.4 million.

We compared our algorithm with the state-of-the-art
algorithms, BLINKS [17], Retune [28] and SPARK [39].5 All
the algorithms were implemented in C++. All the experi-
ments were conducted on a computer with an Intel(R)
Core(TM) 2@2.0 GHz CPU, a 2 GB of RAM and a 120 G Disk
running Windows XP.

7.1 Index Time and Sizes

In this section, we report some experimental results of
indexing. We give the elapsed time of indexing, the number
of entries, the sizes of our structure-aware indexes, and
scalability. We set � ¼ 0:2. The experimental results are
summarized in Table 10. We observe that the elapsed time,
the number of entries, and the size of KPSA-Index are a bit
larger than those of SKSA-Index, as KPSA-Index needs to

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1789

TABLE 7
Score Expectation Table

3. http://dblp.uni-trier.de/xml/.
4. http://www.grouplens.org/node/73.
5. We did not compare with [45] and compared with SPARK, as SPARK

extends the method [45] by incorporating new ranking functions and
principles, and achieves better performance.

compute and materialize the keyword-pair-based scores.

More importantly, the two indexes scaled very well as the

data set increases.
In addition, the two structure-aware indexes can sig-

nificantly improve the search efficiency and result quality.

KPSA-Index achieves much higher search quality than

SKSA-Index, which in turn outperforms the other methods

as discussed in following sections. The experimental results

of indexing reflect that our structure-aware indexes are

practicable in real database systems.

7.2 Search Efficiency

This section evaluates the search efficiency of the three

algorithms. We selected 100 keyword queries from query

logs of our deployed systems for each data set and
evaluated different algorithms on them. To better under-
stand the performance of our indexing method, we tested
our algorithm with SKSA-Index (SAINT+SKSA) and KPSA-
Index (SAINT+KPSA).

We first varied different numbers of input keywords to
identify all the answers and compared the corresponding
average elapsed time. Fig. 4 summarizes the experimental
results on the two data sets. We observe that our algorithms
achieve much higher search efficiency than SPARK, as we
use structure-aware indexes to efficiently identify the
answers. Ourmethod also outperforms BLINKS as the graph
our method constructs has smaller number of nodes than
that of BLINKS. For example, on IMDB data set, SAINT costs
less than 1,500 ms to answer the keyword queries with six
keywords while SPARK even costs more than 5,000 ms. This
comparison shows the significance of our proposed struc-
ture-aware indexes, which can help to identify the answers
through our indexed tuples units, and thus significantly
improve the search efficiency. Although SAINT+SKSA costs
a little longer time than SAINT+KPSA, SAINT+KPSA
archives much higher result quality than SAINT+SKSA,
which will be further discussed in Section 7.3. SAINT is a bit
slower than Retune, as Retune only identifies a single tuple
unit and need not discover the relationships between
different tuple units. We will prove that Retune leads to
low search effectiveness in the following sections.

To further evaluate the performance of our algorithms,
we identified the top-k relevant answers and compared the
corresponding elapsed time. Figs. 5 and 6 give the
experimental results on the two data sets, respectively.
We see that our method beats SPARK significantly. For
example, on the DBLP data set, considering finding top-10
results of the queries with six keywords, our methods cost
about 1,000 ms while SPARK and BLINKS, respectively,
consumed 3,000 and 2,000 ms. This is so because, we adopt
the threshold-based techniques to identify the top-k an-
swers, which can help to progressively and efficiently

1790 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Fig. 4. Search efficiency.

TABLE 10
Evaluation of Indexing

TABLE 9
The Schema of IMDB Data Set

TABLE 8
The Schema of DBLP Data Set

Fig. 5. Search efficiency of top-k answers on DBLP data set.

identify the top-k results with the highest scores and thus
lead to high search efficiency.

7.3 Result Quality

This section evaluates the result quality of a search
technique in terms of search accuracy and completeness
using standard precision and recall metrics, where the
correct results are the answers returned by the correspond-
ing schema-aware languages such as SQL. Given a key-
word query, we enumerate all possible SQL queries for a
set of keywords (as discussed in the paper [15]) to generate
our baseline query results, which are assumed as accurate
and complete, and used to compare with the results for
these keywords using different algorithms. For each query,
we generated all possible SQL queries as follows: first, we
join the tables to formulate SQL queries with the WHERE
clauses containing keywords. Second, the tables that
contain the keywords can be connected within a specific
distance. (We set the distance as 4.) Third, the tables that
contain no keyword must be connected by some tables
containing keywords; otherwise, we remove them. For the
top-k queries, we evaluated the precision and recall by user
study, and the answer relevance of a query is judged from
discussions of the 15 people attending the user study.

7.3.1 Search Accuracy

We evaluate the search accuracy of the selected algorithms
in this section. We first varied the numbers of input
keywords and evaluated the corresponding precision. Fig. 7
illustrates the experimental results. We observe that SAINT

achieves much higher precision than existing methods such
as Retune, SPARK, and BLINKS significantly. This is
because our method integrates multiple tuple units to
answer a keyword query. For example, on IMDB data set,
SAINT achieves more than 90 percent precision, which leads
to about 20-30 percent over those of Retune and SPARK.
Moreover, SAINT+KPSA outperforms SAINT+SKSA as the
former considers the structural relevancy of input key-
words as well as the structural compactness of the answers.

In addition, as users are usually interested in the top-k
answers, we employed another good metric, top-k answer

relevancy to evaluate the search accuracy of SAINT, which
measures the ratio of the number of relevant answers
among the first k answers with the highest scores of an
algorithm to k. The experimental results of the average top-k
answer relevancy for the 100 queries on the two data sets
are summarized in Figs. 8 and 9.

As expected, SAINT+SKSA always achieves more than
85 percent precision, which is about 10-30 percent higher
than the existing methods for various queries and different
data sets. This reflects our relevancy-based ranking is very
effective and practicable. Moreover, we note that
SAINT+KPSA always gets more than 90 percent precision
and achieves the best performance. This is so because we
employ the keyword-pair-based ranking, which can capture
the structural relevancy between input keywords. This
comparison also reflects the effectiveness of our overall
ranking method by taking into account both structural
compactness between tuple units from DB point of view
and textual relevancy from IR perspective.

7.3.2 Search Completeness

This section evaluates the search completeness. To evaluate
the ranking mechanism, we compared the overall precision
and recall. Fig. 10 shows the precision/recall curves of
different algorithms. We observe that SAINT outperforms
the alternative methods and always achieves higher preci-
sion than state-of-the-art proposals on whatever values of
recall. Moreover, the precision of alternative methods falls
sharply with the increase of recall, while that of SAINT varies
little. This comparison further demonstrates the high search
effectiveness of our proposed ranking mechanism. For
example, on IMDB data set, when recall is 0.6, the precision
of SAINT+KPSA is 0.9, which leads to 20-30 percent over
those of Retune, SPARK, and BLINKS.

7.4 Usability Study

To further evaluate result quality of different methods, we
evaluate the query results by human judgement. We have
deployed a system on the DBLP data set which has been
widely used. We selected the 20 most frequently issued
queries to test different methods. Answer relevance of the
queries was judged from discussions of researchers in our
group. As users are usually interested in the top-k answers,
we employed the top-k precision, i.e., the ratio of the
number of answers deemed to be relevant in the first k
results to k. Table 11 shows the average top-k precision of
the selected 20 queries. We observe that our methods still
achieve higher search quality. For example, SAINT+KPSA
always achieves more than 90 percent precision while

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1791

Fig. 6. Search efficiency of top-k answers on IMDB data set.

Fig. 7. Search accuracy.

Retune, SPARK, and BLINKS only have less than 80 percent
precision. This is attributed to our effective ranking
methods by considering both DB and IR and integrating
multiple tuple units to answer a query.

8 RELATED WORK

Existing studies ofkeyword search in relationaldatabases can
be broadly classified into three types of methods: candidate-
network-based methods [18], [20], [39], Steiner-tree-based
algorithms [5], [10], [17], [23], and tuple-unit-based ap-
proaches [28], [45]. Steiner-tree-based methods first model
tuples in the relational database as a graph, where nodes are
database tuples and edges are primary/foreign keys, and
then identify the Steiner treeswhich contain all or some input
keywords to answer keyword queries. The candidate-net-
work-based methods identify the answers composed of
relevant tuples by generating and extending the candidate
networks (i.e., the primary/foreign keys).

DISCOVER-I [20] and DBXplorer [1] identified trees of
tuples connected through primary/foreign key relation-
ships that contain all the input keywords of a given
keyword query. BANKS-I [5] modeled relational data as
graphs and identified the connected trees, called Steiner
trees, to answer a query. DISCOVER-II [18] studied the
problem of keyword proximity search in terms of
disjunctive semantics, compared with DISCOVER-I only
considering the conjunctive semantics. BANKS-II [23]

improved the efficiency beyond BANKS-I by introducing
a novel technique of bidirectional expansion. Liu et al. [35]
proposed a novel ranking strategy to improve the result
quality in relational databases, using the phrase-based and
concept-based models. ObjectRank [3] extended the idea of
hub-authority-based ranking to rank the answers of
keyword queries in relational databases to improve the
search effectiveness. Although ObjectRank is effective to
rank objects, pages, and entities similar to HITS [25], it
cannot rank tree-structured results, such as Steiner trees.
Kimelfeld and Sagiv [24] studied keyword proximity
search in relational databases. The method shows that
the answer of keyword proximity search can be enumer-
ated in ranked order with a polynomial delay, under data
complexity. Sayyadian et al. [42] introduced schema
mapping into keyword search and proposed a method to
answer keyword search across heterogenous databases by
seamlessly integrating schema mapping and keyword
search. Ding et al. [10] proposed a dynamic-program-
ming-based method to improve the search efficiency for
identifying Steiner trees. He et al. [17] proposed a
partition-based method to improve the search efficiency
using a novel BLINKS index. Guo et al. [15] proposed data
topology search to retrieve meaningful structures from
biological databases. Markowetz et al. [40] studied the
problem of keyword search over relational data streams,
which is the first attempt to process keyword search over
relational data streams. Luo et al. [39] proposed a new
ranking method that adapts the state-of-the-art IR ranking

1792 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

Fig. 9. Search accuracy of top-k answers on IMDB data set.

Fig. 10. Precision-recall curves.

TABLE 11
Top-k Precision by Human Judgement

Fig. 8. Search accuracy of top-k answers on DBLP data set.

functions and principles into ranking tree-structured
results composed of joined database tuples. Li et al. [31],
[32] proposed compact Steiner trees to improve search
efficiency, by introducing an approximate algorithm to
identify Steiner trees.

However, the above methods compute the Steiner trees
composed of relevant tuples on-the-fly, and neglect the fact
that the relevant tuples can be identified and materialized
offline for facilitating the online processing of keyword
queries. Su and Widom [45] proposed a technique of
indexing tuples to improve the search efficiency. They
proposed text objects and virtual documents, which are tuples
connected through primary/foreign keys to answer key-
word queries. Li et al. [28] proposed tuple units to improve
search effectiveness by grouping the relevant text objects
and virtual documents. They computed single text object or
tuple unit to answer keyword queries. However, different
text objects or tuple units may also be relevant, and multiple
relevant text objects or tuple units can be integrated
together to answer a keyword query. Thus, those methods
may lead to miss some relevant results and introduce a
serious problem—false negative. Different from our pre-
vious study [28], we study how to identify multiple related
tuple units to answer keyword queries, as opposed to
taking a single tuple unit as an answer. In addition, Su and
Widom [45] only considered the document relevancy in IR
literature to rank the answers but neglected the rich
structural information, which is at least as important as
the textual information, and is even more crucial in many
cases. Instead, we propose a novel ranking method by
taking into account both the textual relevancy from the IR
point of view and the structural compactness between the
relevant tuple units from the DB viewpoint to improve the
result quality. Moreover, we devise two structure-aware
indexes to improve the search efficiency and accuracy,
which incorporate the structural information into the
indexes. Different from our poster paper [26], we added a
new structure-aware index, a new ranking technique, and
an extensive new performance study.

In addition, there are many studies on keyword search in
XML documents [8], [16], [21], [13], [37], [19], [38], [4], [6],
[13], [33], [36]. They modeled XML documents as tree
structures and computed connected subtrees to answer a
keyword query. To find such relevant trees, they used a
concept of “lowest common ancestors (LCAs)” or their
variants to answer keyword queries. As an extension of
LCA, XRank [16], XSEarch [8], Meaningful LCA (MLCA)
[34], Smallest LCA (SLCA) [47], Multiway-SLCA (MSLCA)
[46], Valuable LCA (VLCA) [27], RACE [13], Exclusive LCA
(ELCA) [48], [44], and XSeek [36] have recently been
proposed to answer keyword queries over XML documents.

9 CONCLUSION

We have studied the problem of effective keyword search
over relational databases. We proposed to integrate multi-
ple relevant tuple units to effectively answer keyword
queries. We devised two novel structure-aware indexes,
SKSA-Index and KPSA-Index, which incorporate the
structural relationships between tuple units and the textual
relevancy between input keywords into the indexes. We
proposed a novel ranking mechanism by taking into

consideration both the textual relevancy in IR literature

and the structural compactness of tuple units from the DB

viewpoint. We have implemented our method, and the

experimental results show that our method achieves high

performance and outperforms state-of-the-art approaches

significantly.
In future work, we will study how to support online

updates and how to reduce the index sizes.

ACKNOWLEDGMENTS

This work is partly supported by the National Natural

Science Foundation of China under Grant No. 61003004 and

No. 60873065, the National High Technology Development

863 Program of China under Grant No. 2009AA011906, the

National Grand Fundamental Research 973 Program of

China under Grant No. 2011CB302206, and National S&T

Project of China under Grant No. 2011ZX01042-001-002.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for
Keyword-Based Search over Relational Databases,” Proc. Int’l
Conf. Data Eng. (ICDE), pp. 5-16, 2002.

[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas, “Anytime
Measures for Top-k Algorithms,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), 2007.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-Based Keyword Search in Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 564-575, 2004.

[4] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML Keyword
Search with Relevance Oriented Ranking,” Proc. IEEE Int’l Conf.
Data Eng. (ICDE), pp. 517-528, 2009.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Databases
Using Banks,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 431-440, 2002.

[6] L.J. Chen and Y. Papakonstantinou, “Supporting Top-k Keyword
Search in Xml Databases,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
pp. 689-700, 2010.

[7] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton, “Combining
Keyword Search and Forms for Ad Hoc Querying of Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 349-360,
2009.

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A Semantic
Search Engine for XML,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 45-56, 2003.

[9] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword Search on
External Memory Data Graphs,” Proc. VLDB Endowment, vol. 1,
no. 1, pp. 1189-1204, 2008.

[10] B. Ding et al., “Finding Top-k Min-Cost Connected Trees in
Databases,” Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2007.

[11] R. Fagin, “Combining Fuzzy Information from Multiple Systems,”
Proc. ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems (PODS), pp. 216-226, 1996.

[12] R. Fagin, “Fuzzy Queries in Multimedia Database Systems,” Proc.
ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems (PODS), pp. 1-10, 1998.

[13] J. Feng, G. Li, J. Wang, and L. Zhou, “Finding and Ranking
Compact Connected Trees for Effective Keyword Proximity
Search in XML Documents,” Information Systems, vol. 35, no. 2,
pp. 186-203, 2010.

[14] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword Proximity
Search in Complex Data Graphs,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 927-940, 2008.

[15] L. Guo, J. Shanmugasundaram, and G. Yona, “Topology Search
over Biological Databases,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE),, 2007.

[16] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank:
Ranked Keyword Search over XML Documents,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 16-27, 2003.

FENG ET AL.: FINDING TOP-k ANSWERS IN KEYWORD SEARCH OVER RELATIONAL DATABASES USING TUPLE UNITS 1793

[17] H. He, H. Wang, J. Yang, and P. Yu, “Blinks: Ranked Keyword
Searches on Graphs,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, 2007.

[18] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient Ir-
Style Keyword Search over Relational Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 850-861, 2003.

[19] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava,
“Keyword Proximity Search in Xml Trees,” IEEE Trans. Knowledge
and Data Eng., vol. 18, no. 4, pp. 525-539, Apr. 2006.

[20] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search
in Relational Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 670-681, 2002.

[21] V. Hristidis, Y. Papakonstantinou, and A. Balmin, “Keyword
Proximity Search on Xml Graphs,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 367-378, 2003.

[22] M. Hua, J. Pei, A.W.C. Fu, X. Lin, and H.-F. Leung, “Efficiently
Answering Top-k Typicality Queries on Large Databases,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2007.

[23] V. Kacholia et al., “Bidirectional Expansion for Keyword Search
on Graph Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 505-516, 2005.

[24] B. Kimelfeld and Y. Sagiv, “Finding Approximating Top-k
Answers in Keyword Proximity Search,” Proc. ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems (PODS),
2006.

[25] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604-632, 1999.

[26] G. Li, J. Feng, and J. Wang, “Structure-Aware Indexing for
Keyword Search in Databases,” Proc. ACM Conf. Information and
Knowledge Management (CIKM), pp. 1453-1456, 2009.

[27] G. Li, J. Feng, J. Wang, and L. Zhou, “Efficient Keyword Search for
Valuable Lcas over XML Documents,” Proc. ACM Conf. Information
and Knowledge Management (CIKM), 2007.

[28] G. Li, J. Feng, and L. Zhou, “Retune: Retrieving and Materializing
Tuple Units for Effective Keyword Search over Relational
Databases,” Proc. Int’l Conf. Conceptual Modeling (ER), pp. 469-
483, 2008.

[29] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search on
Relational Data: A Tastier Approach,” Proc. SIGMOD Int’l Conf.
Management of Data, pp. 695-706, 2009.

[30] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An Effective
3-in-1 Keyword Search Method for Unstructured, Semi-Structured
and Structured Data,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 903-914, 2008.

[31] G. Li, X. Zhou, J. Feng, and J. Wang, “Progressive Keyword Search
in Relational Databases,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
pp. 1183-1186, 2009.

[32] G. Li, J. Feng, X. Zhou, and J. Wang, “Providing Built-in Keyword
Search Capabilities in RDBMS,” The VLDB J., vol. 20, no. 1, pp. 1-
19, 2011.

[33] J. Li, C. Liu, R. Zhou, and W. Wang, “Suggestion of Promising
Result Types for XML Keyword Search,” Proc. Int’l Conf. Extending
Database Technology (EDBT), pp. 561-572, 2010.

[34] Y. Li, C. Yu, and H.V. Jagadish, “Schema-Free Xquery,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 72-84, 2004.

[35] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 563-574, 2006.

[36] Z. Liu and Y. Chen, “Identifying Return Information for Xml
Keyword Search,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, 2007.

[37] Z. Liu and Y. Chen, “Reasoning and Identifying Relevant Matches
for Xml Keyword Search,” Proc. VLDB Endowment, vol. 1, no. 1,
pp. 921-932, 2008.

[38] Z. Liu, P. Sun, and Y. Chen, “Structured Search Result
Differentiation,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 313-
324, 2009.

[39] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-k Keyword
Query in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2007.

[40] A. Markowetz, Y. Yang, and D. Papadias, “Keyword Search on
Relational Data Streams,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, 2007.

[41] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Databases: The
Power of RDBMS,” Proc. SIGMOD Int’l Conf. Management of Data,
pp. 681-694, 2009.

[42] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano, “Efficient
Keyword Search across Heterogeneous Relational Databases,”
Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2007.

[43] K. Schnaitter, J. Spiegel, and N. Polyzotis, “Depth Estimation for
Ranking Query Optimization,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), 2007.

[44] F. Shao, L. Guo, C. Botev, A. Bhaskar, M. Chettiar, F. Yang, and J.
Shanmugasundaram, “Efficient Keyword Search over Virtual
XML Views,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2007.

[45] Q. Su and J. Widom, “Indexing Relational Database Content
Offline for Efficient Keyword-Based Search,” Proc. Int’l Database
Eng. and Application Symp. (IDEAS), 2005.

[46] C. Sun, C.Y. Chan, and A.K. Goenka, “Multiway SLCA-Based
Keyword Search in XML Data,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 1043-1052, 2007.

[47] Y. Xu and Y. Papakonstantinou, “Efficient Keyword Search for
Smallest LCAs in XML Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 527-538, 2005.

[48] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based Keyword
Search in XML Data,” Proc. Int’l Conf. Extending Database
Technology (EDBT), pp. 535-546, 2008.

[49] B. Yu, G. Li, K. Sollins, and A.K.H. Tung, “Effective Keyword-
Based Selection of Relational Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 139-150, 2007.

Jianhua Feng received the BS, MS, and PhD
degrees in computer science and technology
from Tsinghua University. He is currently work-
ing as a professor in the Department of
Computer Science and Technology in Tsinghua
University. His main research interests include
native XML database, data mining, and keyword
search over structure and semistructure data.
He has published papers in top conferences and
top journals. He is a member of the IEEE and a

senior member of China Computer Federation (CCF).

Guoliang Li received the PhD degree in
computer science from Tsinghua University,
Beijing, China, in 2009. Since then, he has
worked as an assistant professor in the
Department of Computer Science and Tech-
nology, Tsinghua University. His research
interests mainly include integrating databases
and information retrieval, data cleaning, and
data integration. He has published papers in
top conferences and journals, such as ACM

SIGMOD, VLDB, IEEE ICDE, WWW, VLDB Journal, and IEEE TKDE.

Jianyong Wang received the PhD degree in
computer science in 1999 from the Institute of
Computing Technology, Chinese Academy of
Sciences. He is currently an associate professor
in the Department of Computer Science and
Technology, Tsinghua University, Beijing, China.
He was ever an assistant professor at Peking
University, and visited Simon Fraser University,
University of Illinois at Urbana-Champaign, and
the University of Minnesota at Twin Cities. His

research interests mainly include data mining and knowledge discovery,
and web information management. He has coauthored more than
40 research papers in leading international conferences and top
international journals. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1794 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 12, DECEMBER 2011

